
On the Convergence of the SINDy Algorithm

Linan Zhang and Hayden Schaeffer

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213.
(linanz@andrew.cmu.edu, schaeffer@cmu.edu)

May 16, 2018

Abstract

One way to understand time-series data is to identify the underlying dynamical system which
generates it. This task can be done by selecting an appropriate model and a set of parame-
ters which best fits the dynamics while providing the simplest representation (i.e. the smallest
amount of terms). One such approach is the sparse identification of nonlinear dynamics frame-
work [6] which uses a sparsity-promoting algorithm that iterates between a partial least-squares
fit and a thresholding (sparsity-promoting) step. In this work, we provide some theoretical
results on the behavior and convergence of the algorithm proposed in [6]. In particular, we
prove that the algorithm approximates local minimizers of an unconstrained `0-penalized least-
squares problem. From this, we provide sufficient conditions for general convergence, rate of
convergence, and conditions for one-step recovery. Examples illustrate that the rates of conver-
gence are sharp. In addition, our results extend to other algorithms related to the algorithm in
[6], and provide theoretical verification to several observed phenomena.

1 Introduction

Dynamic model identification arises in a variety of fields, where one would like to learn the un-
derlying equations governing the evolution of some given time-series data u(t). This is often done
by learning a first-order differential equation u̇ = f(u) which provides a reasonable model for the
dynamics. The function f is unknown and must be learned from the data. Some applications in-
cluding, weather modeling and prediction, development and design of aircraft, modeling the spread
of disease over time, trend predictions, etc.

Several analytical and numerical approaches have been developed to solve various model identi-
fication problems. One important contribution to model identification is [4, 23], where the authors
introduced a symbolic regression algorithm to determine underlying physical equations, like equa-
tions of motion or energies, from data. The key idea is to learn the governing equation directly from
the data by fitting the derivatives with candidate functions while balancing between accuracy and
parsimony. In [6], the authors proposed the sparse identification of nonlinear dynamics (SINDy)
algorithm, which computes sparse solutions to linear systems related to model identification and
parameter estimation. The main idea is to convert the (nonlinear) model identification problem to
a linear system:

Ax = b, (1.1)

1

where the matrix A ∈ Rm×n is a data-driven dictionary whose columns are (nonlinear) candidate
functions of the given data u, the unknown vector x ∈ Rn represents the coefficients of the selected
terms in the governing equation f , and the vector b ∈ Rm is an approximation to the first-order time
derivative u̇. In this method, the number of candidate functions are fixed, and thus one assumes
that the set of candidate functions is sufficiently large to capture the nonlinear dynamics present
in the data. In order to select an accurate model (from the set of candidate functions) which does
not overfit the data, the authors of [6] proposed a sparsity-promoting algorithm. In particular, a
sparse vector x which approximately solves Equation (1.1) is generated by the following iterative
scheme:

Sk = {1 ≤ j ≤ n : |xkj | ≥ λ}, (1.2a)

xk+1 = argmin
x∈Rn: supp(x)⊆Sk

‖Ax− b‖2, (1.2b)

where λ > 0 is a thresholding parameter and supp(x) is the support set of x. In practice, it was
observed that the algorithm converged within a few steps and produced an appropriate sparse
approximation to Equation (1.1). These observations are quantified in our work.

There are several approaches which leverage sparse approximations for model identification.
In [9], the authors combined the SINDy framework with model predictive control to solve model
identification problems given noisy data. The resulting algorithm is able to control nonlinear
systems and identify models in real-time. In [13], the authors introduced information criteria to the
SINDy framework, where they selected the optimal model (with respect to the chosen information
criteria) over various values of the thresholding parameter. Other approaches have been developed
based on the SINDy framework, including: SINDy for rational governing equations [12], SINDy
with control [7], and SINDy for abrupt changes [15].

In [19], a sparse regression approach for identifying dynamical systems via the weak form was
proposed. The authors used the following constrained minimization problem:

min
x
‖x‖0 subject to ‖Ax− b‖2 ≤ σ,

where the dictionary matrix A is formulated using an integrated set of candidate functions. In [20],
several sampling strategies were developed for learning dynamical equations from high-dimensional
data. It was proven analytically and verified numerically that under certain conditions, the under-
lying equation can be recovered exactly from the following constrained minimization problem, even
when the data is under-sampled:

min
x
‖x‖1 subject to ‖Ax− b‖2 ≤ σ,

where the dictionary matrix A consists of second-order Legendre polynomials applied to the data.
In [21], the authors developed an algorithm for learning dynamics from multiple time-series data,
whose governing equations have the same form but different (unknown) parameters. The authors
provided convergence guarantees for their group-sparse hard thresholding pursuit algorithm; in
particular, one can recover the dynamics when the data-drive dictionary is coercive. In [26], the
authors provided conditions for exact recovery of dynamics from highly corrupted data generated
by Lorenz-like systems. To separate the corrupted data from the uncorrupt points, they solve the
minimization problem:

min
x,η
‖η‖2,1 subject to Ax+ η = b and x is sparse,

2

where the residual η := b − Ax is the variable representing the (unknown) corrupted locations.
When the data is a function of both time and space, i.e. u = u(t, y) for some spatial variable y,
the dictionary can incorporate spatial derivatives [17, 18]. In [18], an unconstrained `1-regularized
least-squares problem (LASSO [25]) with a dictionary build from nonlinear functions of the data
and its spatial partial derivatives was used to discover PDE from data. In [17], the authors proposed
an adaptive SINDy algorithm for discovering PDE, which iteratively applies ridge regression with
hard thresholding. Additional approaches for model identification can be found in [5, 8, 10, 11, 14,
16, 22, 24].

The sparse model identification approaches include a sparsity-promoting substep, typically
through various thresholding operations. In particular, the SINDy algorithm, i.e. Equation (1.2),
alternates between a reduced least-squares problem and a thresholding step. This is related to,
but differs from, the iterative thresholding methods widely used in compressive sensing. To find
a sparse representation of x in Problem (1.1), it is natural to solve the `0-minimization problems,
where the `0-penalty of a vector measures the number of its nonzero elements. In [1–3], the authors
provided iterative schemes to solve the unconstrained and constrained `0-regularized problems:

min
x
‖Ax− b‖22 + λ2‖x‖0, (1.3)

min
x
‖Ax− b‖22 subject to ‖x‖0 ≤ s, (1.4)

respectively, where ‖A‖2 = 1. To solve Problem (1.3), one iterates:

xk+1 = Hλ(xk +AT (b−Axk)), (1.5)

where Hλ is the hard thresholding operator defined component-wise by:

Hλ(x)j := sgn(xj) max(|xj |, λ).

To solve Problem (1.4), one iterates:

xk+1 = Ls(x
k +AT (b−Axk)), (1.6)

where Ls is a nonlinear operator that only retains s elements of x with the largest magnitude and
sets the remaining n− s elements to zero.

The authors of [1–3] also proved that the iterative algorithms defined by Equations (1.5) and
(1.6) converge to the local minimizers of Problems (1.3) and (1.4), respectively, and derived theo-
retically the error bounds and convergence rates for the solutions obtained via Equation (1.5). In
this work, we will show that the SINDy algorithm also finds local minimizers of Equation (1.3) and
has similar theoretical guarantees.

1.1 Contribution

In this work, we show (in Section 2) that the SINDy algorithm proposed in [6] approximates the
local minimizers of Problem (1.3). We provide sufficient conditions for convergence and bounds
on rate of convergence. We also prove that the algorithm typically converges to a local minimizer
rapidly (in a finite number of steps). Based on several examples, the rate of convergence is sharp.
We also show that the convergence results can be adapted to other SINDy-based algorithms. In
Section 3, we highlight some of the theoretical results by applying the algorithm from [6] to identify
dynamical systems from noisy measurements.

3

2 Convergence Analysis

Before detailing the results, we briefly introduce some notations and conventions. For an integer
n ∈ N, let [n] ⊂ N be the set defined by: [n] := {1, 2, · · · , n}. Let A be a matrix in Rm×n, where
m ≥ n. If A is injective (or equivalently if A is full column rank, i.e. rank(A) = n), then its
pseudo-inverse A† ∈ Rn×m is defined as A† := (ATA)−1AT . Let x ∈ Rn and define the support set
of x as the set of indices corresponding to its nonzero elements, i.e.,

supp(x) := {j ∈ [n] : xj 6= 0}.

The `0 penalty of x measures the number of nonzero elements in the vector and is defined as:

‖x‖0 := card(supp(x)).

The vector x is called s-sparse if it has at most s nonzero elements, thus ‖x‖0 ≤ s.
Given a set S ⊆ [n], where n ∈ N is known from the context, define S̄ := [n]\S. For a matrix

A ∈ Rm×n and a set S ⊆ [n], we denote by AS the submatrix of A in Rm×s which consists of the

columns of A with indices j ∈ S, where s = card(S). Similarly, for a vector x =
(
x1, x2, · · · , xn

)T
,

let xS be the subvector of x in Rs consisting of the elements of x with indices j ∈ S, or the vector
in Rn which coincides with x on S and is zero outside S:

(xS)j =

{
xj if j ∈ S,
0 if j ∈ S̄.

The representation of xS should be clear within the context.

2.1 Algorithmic Convergence

Let A ∈ Rm×n be a matrix with m ≥ n and rank(A) = n, x ∈ Rn be the unknown signal, and
b ∈ Rm be the observed data. The results presented here work for general A satisfying these
assumptions, but the specific application of interest is detailed in Section 3. The SINDy algorithm
from [6] is:

x0 = A†b, (2.1a)

Sk = {j ∈ [n] : |xkj | ≥ λ}, k ≥ 0, (2.1b)

xk+1 = argmin
x∈Rn:supp(x)⊆Sk

‖Ax− b‖2 k ≥ 0. (2.1c)

which is used to find a sparse approximation to the solution of Ax = b. The following theorem
shows that the SINDy algorithm terminates in finite steps.

Theorem 2.1. The iterative scheme defined by Equation (2.1) converges in at most n steps.

Proof. Let xk be the sequence generated by Equation (2.1). By Equation (2.1c) we have supp(xk+1) ⊆
Sk, and from Equation (2.1b) we have Sk+1 ⊆ supp(xk+1). Therefore, the sets Sk are nested:

Sk+1 ⊆ supp(xk+1) ⊆ Sk. (2.2)

4

Consider the following two cases. If there exists an integer M ∈ N such that SM+1 = SM , then:

xM+2 = argmin
supp(x)⊆SM+1

‖Ax− b‖2 = argmin
supp(x)⊆SM

‖Ax− b‖2 = xM+1. (2.3)

Thus, xk = xM+1 for all k ≥M + 1, and Sk = SM for all k ≥M . Since card(Sk) ≤ n for all k ∈ N,
we conclude that M ≤ n, so that the scheme converges in at most n steps.

On the other hand, if there does not exist an integer M such that SM+1 = SM and SM 6= ∅,
then we have a sequence of strictly nested sets, i.e.,

Sk+1 (Sk for all k such that Sk 6= ∅.

Since card(Sk) ≤ n for all k ∈ N, we must have Sk = ∅ for all k > n. Therefore, the scheme
converges to the trivial solution within n steps.

Remark 2.2. Equation (2.3) suggests that an appropriate stopping criterion for the scheme is that
the sets are stationary, i.e. Sk = Sk−1.

Note that, since the support sets are nested, the scheme will converge in at most card(S0) steps.
The following is an immediate consequence of Theorem 2.1.

Corollary 2.3. The iterative scheme defined by Equation (2.1) converges to an s-sparse solution
in at most card(S0)− s steps.

2.2 Convergence to the Local minimizers

In this section, we will show that the iterative scheme defined by Equation (2.1) produces a mini-
mizing sequence for a non-convex objective associated with sparse approximations. This will lead
to a clearer characterization of the fixed-points of the iterative scheme.

Without loss of generality, assume in addition that ‖A‖2 = 1. We first show that the scheme
converges to a local minimizer of the following (non-convex) objective function:

F (x) := ‖Ax− b‖22 + λ2‖x‖0, x ∈ Rn. (2.4)

Theorem 2.4. The iterates xk generated by Equation (2.1) strictly decreases the objective function
unless the iterates are stationary.

Proof. Define the auxiliary variable:

yk := xkSk , k ∈ N, (2.5)

which plays the role of an intermediate approximation. In particular, we will relate xk+1 and yk.
Observe that Equation (2.1) emits several useful properties. First, we have shown in Equation

(2.2) that Sk+1 ⊆ supp(xk+1) ⊆ Sk. Next, by Equation (2.1c), xk+1 is the least-squares solution
over the set Sk. By considering the derivative of ‖Ax− b‖22 with respect to x, we obtain that:(

AT (Axk+1 − b)
)
Sk

= 0, (2.6)

5

and the solution xk+1 to the above equation satisfies xk+1
Sk = (ASk)†b. To relate xk+1 and yk, note

that Equations (2.2) and (2.5) imply that:

supp(xk+1) ⊆ supp(yk) = Sk ⊆ supp(xk). (2.7)

By Equations (2.1c) and (2.7), we have:

‖Axk+1 − b‖2 ≤ ‖Ayk − b‖2, and ‖xk+1‖0 ≤ ‖yk‖0, (2.8)

respectively.
To show that the objective function decreases, we use the optimization transfer technique as in

[3]. Define the surrogate function G for F :

G(x, y) := ‖Ax− b‖22 − ‖A(x− y)‖22 + ‖x− y‖22 + λ2‖x‖0, x ∈ Rn. (2.9)

Since ‖A‖2 = 1, the term −‖A(x− y)‖22 + ‖x− y‖22 is non-negative:

−‖A(x− y)‖22 + ‖x− y‖22 ≥ −‖A‖22‖x− y‖22 + ‖x− y‖22 = 0,

and thus we have G(x, y) ≥ F (x) and G(x, x) = F (x) for all x, y ∈ Rn.
Define the matrix B := I − ATA. Since A is injective (which is implied by rank(A) = n) and

‖A‖2 = 1, we have that the eigenvalues of B are in the interval [0, 1]. Fixing the index k ∈ N, from
Equations (2.4) and (2.8)-(2.9), we have:

F (xk+1) = ‖Axk+1 − b‖22 + λ2‖xk+1‖0 ≤ ‖Axk+1 − b‖22 + λ2‖xk+1‖0 + ‖xk − yk‖2B
≤ ‖Ayk − b‖22 + λ2‖yk‖0 + ‖xk − yk‖2B = G(yk, xk).

It remains to show that G(yk, xk) ≤ G(xk, xk). By Equation (2.5), we have:

xk − yk = xk − xkSk = xksupp(xk) − x
k
Sk∩supp(xk) = xkS̄k∩supp(xk),

where we included the intersection with supp(xk) to emphasize that the difference is zero outside
of the support set of xk. Thus, the difference with respect to the surrogate function simplifies to:

G(yk, xk)−G(xk, xk)

= ‖Ayk − b‖22 − ‖A(yk − xk)‖22 + ‖yk − xk‖22 + λ2‖yk‖0 − ‖Axk − b‖22 − λ2‖xk‖0

= −2〈b, Ayk〉+ 2〈Ayk, Axk〉 − 2‖Axk‖22 + 2〈b, Axk〉+ ‖xk − yk‖22 + λ2
(
‖yk‖0 − ‖xk‖0

)
= −2〈yk − xk, AT (b−Axk)〉+ ‖xk − yk‖22 + λ2

(
‖yk‖0 − ‖xk‖0

)
= −2〈xkS̄k∩supp(xk), A

T (Axk − b)〉+ ‖xkS̄k∩supp(xk)‖
2
2 + λ2

(
‖yk‖0 − ‖xk‖0

)
. (2.10)

By Equations (2.2) and (2.6), we can observe that:

supp(xkS̄k∩supp(xk)) ⊆ supp(xk) ⊆ Sk−1, and (AT (Axk − b))Sk−1 = 0,

respectively, which together imply that:

〈xkS̄k∩supp(xk), A
T (Axk − b)〉 = 0. (2.11)

6

In addition, by Equation (2.7), we have:

card(Sk)− card(supp(xk)) = −card(supp(xk)\Sk) = −card(S̄k ∩ supp(xk)). (2.12)

Consider the following two cases. If S̄k ∩ supp(xk) = ∅, then by Equation (2.2), we must have
supp(xk) = Sk, i.e. xk = xk+1. Therefore, xk is a fixed point, and F (x`) is stationary for all ` ≥ k.
If S̄k ∩ supp(xk) 6= ∅, then there exists an integer j ∈ S̄k ∩ supp(xk) such that |xkj | < λ, and thus:

‖xkS̄k∩supp(xk)‖
2
2 < λ2 card(S̄k ∩ supp(xk)). (2.13)

Thus, by Equations (2.12) and (2.13), provided that the iterates are not stationary, we have:

‖xkS̄k∩supp(xk)‖
2
2 + λ2

(
‖yk‖0 − ‖xk‖0

)
= ‖xkS̄k∩supp(xk)‖

2
2 + λ2

(
card(Sk)− card(supp(xk))

)
< λ2card(S̄k ∩ supp(xk)) + λ2

(
card(Sk)− card(supp(xk))

)
= 0. (2.14)

Combining Equations (2.10), (2.11), and (2.14) yields:

G(yk, xk)−G(xk, xk) < 0.

Therefore, for k ∈ N such that the k-iteration is not stationary, we have:

F (xk+1) ≤ G(yk, xk) < G(xk, xk) = F (xk),

which completes the proof.

In the following theorem, we show that the scheme converges to a fixed point, which is a local
minimizer of the objective function F .

Theorem 2.5. The iterates xk generated by Equation (2.1) converges to a fixed point of the iterative
scheme defined by Equation (2.1). A fixed point of the scheme is also a local minimizer of the
objective function defined by Equation (2.4).

Proof. We first observe that

‖Axk − b‖2 ≤ ‖b‖2 (2.15)

for all k ∈ N. This is an immediate consequence of Equation (2.1c):

‖Axk − b‖2 = min
x∈Rn:supp(x)⊆Sk−1

‖Ax− b‖2 ≤ ‖b‖2,

since the zero vector is in the feasible set. Next, we show that:

∞∑
k=1

‖xk+1 − xk‖22 <∞. (2.16)

7

Denote the smallest eigenvalue of ATA by λ0. The assumption that A has full column rank implies
that λ0 > 0. Thus, by the coercivity of ATA,

‖xk+1 − xk‖22 ≤
1

λ0
‖A(xk+1 − xk)‖22. (2.17)

for all k ∈ N. For k ∈ N, define subsets W k, V k ⊆ Rm by:

W k := {Ax : x ∈ Rn, supp(x) ⊆ Sk},
V k := {r ∈ Rm : 〈r, y〉 = 0 ∀y ∈W k} = (W k)⊥.

Fixing M ∈ N and k ∈ [M] and setting r := b − Axk, we have (AT r)Sk−1 = 0 by Equation (2.6).
For x ∈ Rn with supp(x) ⊆ Sk−1, we have 〈r,Ax〉 = 〈AT r, x〉 = 0, which implies that r ∈ V k−1. In
addition, A(x− xk) ∈W k−1 for all x ∈ Rn with supp(x) ⊆ Sk−1. Thus,

‖Ax− b‖22 = ‖A(x− xk)‖22 − 2〈A(x− xk), r〉+ ‖Axk − b‖22 = ‖A(x− xk)‖22 + ‖Axk − b‖22 (2.18)

for all x ∈ Rn with supp(x) ⊆ Sk−1. By Equations (2.2) and (2.18),

‖A(xk+1 − xk)‖22 = ‖Axk+1 − b‖22 − ‖Axk − b‖22 (2.19)

for k ∈ [M]. Combining Equations (2.15), (2.17), and (2.19) yields:

M∑
k=1

‖xk+1 − xk‖22 ≤
1

λ0

M∑
k=1

‖A(xk+1 − xk)‖22

=
1

λ0

M∑
k=1

(
‖Axk+1 − b‖22 − ‖Axk − b‖22

)
≤ 1

λ0
‖AxM+1 − b‖22 ≤

1

λ0
‖b‖22,

and Equation (2.16) follows by sending M →∞.
We now show that the iterates xk converge to a fixed point of the scheme. Since ‖xk+1−xk‖2 → 0

as k → ∞, for any ε > 0, there exists an integer N ∈ N such that ‖xk+1 − xk‖ < ε for all k ≥ N .
Assume to the contrary that the scheme does not converge. Then there exists an integer K ≥ N
such that SK\SK+1 6= ∅. Thus, we can find an index j ∈ SK\SK+1. By Equation (2.1), we must
have |xKj | ≥ λ, |xK+1

j | < λ, and xK+2
j = 0. Thus,

λ− |xK+1
j | ≤ |xKj − xK+1

j | ≤ ‖xK+1 − xK‖2 < ε,

and

|xK+1
j | = |xK+1

j − xK+2
j | ≤ ‖xK+2 − xK+1‖2 < ε.

The two conditions on |xK+1
j | above implies that λ− ε < |xK+1

j | < ε, which fails when, for example,

ε = λ/3. Therefore, the iterates xk converges. In particular, the preceding argument indicates that
there exists an integer N ∈ N such that Sk\Sk+1 = ∅ for all k ≥ N . Since the sets Sk are nested,

8

we conclude that Sk+1 = Sk for all k ≥ N . Therefore, the iterates xk converge to a fixed point of
the scheme defined by Equation (2.1).

We now show that a fixed point of the scheme is a local minimizer of the objective function
defined by Equation (2.4). Let x∗ be a fixed point of the scheme. Then x∗ and the set S∗ := supp(x∗)
satisfy:

S∗ = {j ∈ [n] : |x∗j | ≥ λ} and x∗ = argmin
supp(x)⊆S∗

‖Ax− b‖2. (2.20)

From Equation (2.20), we observe that:

(AT (Ax∗ − b))S∗ = 0, (2.21)

and

x∗j 6= 0 ⇐⇒ |x∗j | ≥ λ. (2.22)

To show that x∗ is a local minimizer of F , we will find a positive real number ε > 0 such that

F (x∗ + z) ≥ F (x) for all z ∈ Rn with ‖z‖∞ < ε. (2.23)

Let U ⊆ [n] be the complement of the support set of x∗:

U := {j ∈ [n] : x∗j = 0}.

Then by Equation (2.22),

Ū = supp(x∗) = {j ∈ [n] : x∗j 6= 0} = {j ∈ [n] : |x∗j | ≥ λ} = S∗. (2.24)

Fixing z ∈ Rn, from Equation (2.9), we have:

G(x∗ + z, x∗)−G(x∗, x∗) = 2〈Az,Ax∗ − b〉+ λ2 (‖x∗ + z‖0 − ‖x∗‖0) + ‖z‖22,

Let aj be the j-th column of A, then:

2〈Az,Ax∗ − b〉+ λ2 (‖x∗ + z‖0 − ‖x∗‖0)

=
∑
j∈U

(
2aTj (Ax∗ − b) zj + λ2|zj |0

)
+
∑
j∈Ū

(
2aTj (Ax∗ − b) zj + λ2(|x∗j + zj |0 − |x∗j |0)

)
=
∑
j∈U

(
2aTj (Ax∗ − b) zj + λ2|zj |0

)
+
∑
j∈Ū

λ2(|x∗j + zj |0 − |x∗j |0), (2.25)

where the last step follows from Equation (2.21). To find an ε > 0 such that Equation (2.23) holds,
we will show that Equation (2.25) is non-negative (so that the difference in G is bounded below by
‖z‖22).

For j ∈ Ū , we have |x∗j | ≥ λ by Equation (2.24). If |zj | < λ for j ∈ Ū , then x∗j + zj 6= 0, and

thus |x∗j + zj |0 − |x∗j |0 = 0. Therefore, provided that |zj | < λ for all j ∈ Ū ,

2〈Az,Ax∗ − b〉+ λ2 (‖x∗ + z‖0 − ‖x∗‖0) =
∑
j∈U

(
2aTj (Ax∗ − b)zj + λ2|zj |0

)
.

9

For j ∈ U , consider the following two cases. If zj = 0, then the term in the sum is zero:

2aTj (Ax∗ − b)zj + λ2|zj |0 = 0.

If |zj | > 0 and λ2 ≥ 2|aTj (Ax∗ − b)zj |, then,

2aTj (Ax∗ − b)zj + λ2|zj |0 = 2aTj (Ax∗ − b)zj + λ2 ≥ 0.

Combining these results: if ε satisfies,

0 < ε ≤ λ2 min

{
min
j∈[n]

1

2|aTj (Ax∗ − b)|
, 1

}
.

then for any z ∈ Rn with ‖z‖∞ < ε, we have:

G(x∗ + z, x∗)−G(x∗, x∗) ≥ ‖z‖22,

which then implies that:

F (x∗ + z) = G(x∗ + z, x∗) + ‖Az‖22 − ‖z‖22 ≥ G(x∗ + z, x∗)− ‖z‖22 ≥ G(x∗, x∗) = F (x∗),

and the proof is complete.

We state a sufficient condition for global minimizers of the objective function in the following
theorem.

Theorem 2.6. (Theorem 12 from [27]) Let xg be a global minimizer of the objective function.
Define Ug := {j ∈ [n] : xgj = 0}. Then,

|aTj (Axg − b)| ≤ λ for all j ∈ Ug, (2.26a)

|xgj | ≥ λ and aTj (Axg − b) = 0 for all j ∈ Ūg. (2.26b)

Theorems 2.5 and 2.6 immediately imply the following result.

Corollary 2.7. A global minimizer of the objective function defined by Equation (2.4) is a fixed
point of the iterative scheme defined by Equation (2.1).

Theorem 2.5 shows that the iterative scheme converges to a local minimizer of the objective
function, but it does not imply that the iterative scheme can obtain all local minima. However,
by Corollary 2.7, the global minimizer is indeed obtainable. The following proposition provides a
necessary and sufficient condition that the scheme terminates in one step, which is a consequence
of Corollary 2.7.

Proposition 2.8. Let x∗ ∈ Rn be a vector which satisfies Ax∗ = b and |x∗j | ≥ λ on S := supp(x∗).
A necessary and sufficient condition that x∗ can be recovered using the iterative scheme defined by
Equation (2.1) in one step is:

min
j∈S
|(A†b)j | ≥ λ > max

j∈S̄
|(A†b)j |. (2.27)

10

Proof. First, observe from the definitions of x0 and S0 that

S0 = S ⇐⇒ {j ∈ [n] : |(A†b)j | ≥ λ} = S ⇐⇒ min
j∈S
|(A†b)j | ≥ λ > max

j∈S̄
|(A†b)j |.

Assume that x∗ can be recovered via the scheme in one step, i.e., x1 = x∗. By the definition of
S1, it follows that

S1 := {j ∈ [n] : |x1
j | ≥ λ} = {j ∈ [n] : |x∗j | ≥ λ} = S.

By the stopping criterion (see Remark 2.2), we have S1 = S0. Thus, S0 = S, which implies
Equation (2.27).

Assume that Equation (2.27) holds, i.e., S0 = S. The assumption that Ax∗ = b implies that:

‖Ax∗ − b‖2 = min
x∈Rn:supp(x)⊆S

‖Ax− b‖2

since supp(x∗) ∈ S and the norm is zero. Since A is injective, we have uniqueness and,

x∗ = argmin
x∈Rn:supp(x)⊆S

‖Ax− b‖2 = argmin
x∈Rn:supp(x)⊆S0

‖Ax− b‖2 = x1,

i.e. x∗ can recovered via the scheme in one step.

We summarize all of the convergence results in the following theorem. The algorithm proposed
in [6] is summarized in Algorithm 2.1.

Theorem 2.9. Assume that m ≥ n. Let A ∈ Rm×n with ‖A‖2 = 1, b ∈ Rm, and λ > 0. Let xk be
the sequence generated by Equation (2.1). Define the objective function F by Equation (2.4). We
have:

(i) xk converges to a fixed point of the iterative scheme defined by Equation (2.1) in at most n
steps;

(ii) a fixed point of the scheme is a local minimizer of F ;

(iii) a global minimizer of F is a fixed point of the scheme;

(iv) xk strictly decreases F unless the iterates are stationary.

The preceding convergence analysis for Algorithm 2.1 can be readily adapted to a variety of
SINDy based algorithms. For example, in [17], the authors proposed the Sequential Threshold
Ridge regression (STRidge) algorithm, to find a sparse approximation of the solution of Ax = b.
Instead of minimizing the function F , the STRidge algorithm minimizes the following objective
function:

F1(x) := ‖Ax− b‖22 + γ‖x‖22 + λ2‖x‖0, x ∈ Rn (2.28)

by iterating:

x0 = A†b, (2.29a)

Sk = {j ∈ [n] : |xkj | ≥ λ}, k ≥ 0 (2.29b)

xk+1 = argmin
x∈Rn:supp(x)⊆Sk

‖Ax− b‖22 + γ‖x‖22. (2.29c)

11

Algorithm 2.1 The SINDy algorithm [6] for Ax = b

Input: m ≥ n; A ∈ Rm×n with rank(A) = n; b ∈ Rm.
1: Set k = 0; Initialize x0 = A†b and S−1 = ∅
2: Set Sk = {j ∈ [n] : |xkj | ≥ λ}; Choose λ > 0 such that S0 6= ∅;
3: while Sk 6= Sk−1 do
4: xk+1 = argmin‖Ax− b‖2 such that supp(x) ⊆ Sk;
5: Sk+1 = {j ∈ [n] : |xk+1

j | ≥ λ};
6: k = k + 1;
7: end while
8: Output: xk.

We assume that the parameter γ > 0 is fixed. By defining:

Ã :=

(
A
γI

)
∈ R(m+n)×n, b̃ :=

(
b
0

)
∈ Rm+n, (2.30)

then F1(x) = ‖Ãx − b̃‖22 + λ2‖x‖0 is equivalent to the objective function of Algorithm 2.1 with Ã
and b̃. We then obtain the following corollary.

Corollary 2.10. Let A ∈ Rm×n, b ∈ Rm and γ, λ > 0. Assume that ‖Ã‖2 = 1, where Ã is defined
by Equation (2.30). Let xk be the sequence generated by Equation (2.29). Define the objective
function F1 by Equation (2.28). We have:

(i) the iterates xk converge to a fixed point of the iterative scheme defined by Equation (2.29);

(ii) a fixed point of the scheme is a local minimizer of F1;

(iii) a global minimizer of F1 is a fixed point of the scheme;

(iv) the iterates xk strictly decrease F1 unless the iterates are stationary.

Note that we no longer require A to be injective, since concatenation with the identity matrix
makes Ã injection.

2.3 Examples and Sharpness

We construct a few examples to highlight the effects of different choices of λ > 0. In particular,
we show that the scheme obtains nontrivial sparse approximations, give an example where the
minimizer is obtained in one step, and provide an example in which the maximum number of steps
(i.e., n− 1 steps) is required1. In all examples, A is injective.

Example 2.11. Consider a lower-triangular matrix A ∈ R5×5 given by:

A :=


1 0 0 0 0
−0.1 0.9 0 0 0
−0.1 −0.1 0.8 0 0
−0.1 −0.1 −0.1 0.7 0
−0.1 −0.1 −0.1 −0.1 0.6

 .

1The code is available on https://github.com/linanzhang/SINDyConvergenceExamples.

12

https://github.com/linanzhang/SINDyConvergenceExamples

Let x, b ∈ R5 be such that

x :=
(
10, 0.95, 0.9, 0.85, 0.8

)T
,

b := Ax =
(
10,−0.145,−0.375,−0.59,−0.79

)T
.

We want to obtain a 1-sparse approximation of the solution x from the system Ax = b. First,
observe that:

min
j∈S
|(A†b)j | = 10, max

j∈S̄
|(A†b)j | = 0.95,

where S = {1}. Thus by Proposition 2.8 choosing λ ∈ (0.95, 10] will yield immediate convergence:

x0 =
(
10, 0.95, 0.9, 0.85, 0.8

)T
, S0 = {1}, (2.31a)

x1 =
(
9.7981, 0, 0, 0, 0

)T
, S1 = {1}. (2.31b)

Indeed, we obtain a 1-sparse approximation of x in one step. Now consider a parameter outside of
the optimal range, for example λ = 0.802. Applying Algorithm 2.1 to the linear system yields:

x0 =
(
10, 0.95, 0.9, 0.85, 0.8

)T
, S0 = {1, 2, 3, 4}, (2.32a)

x1 =
(
9.9366, 0.8725, 0.8031, 0.7255, 0

)T
S1 = {1, 2, 3}, (2.32b)

x2 =
(
9.8869, 0.8117, 0.7271, 0, 0

)T
, S2 = {1, 2}, (2.32c)

x3 =
(
9.8417, 0.7566, 0, 0, 0

)T
, S3 = {1}, (2.32d)

x4 =
(
9.7981, 0, 0, 0, 0

)T
, S4 = {1}. (2.32e)

Therefore, a 1-sparse approximation of x is obtained in four steps, which is the maximum number of
iterations Algorithm 2.1 needs in order to obtain a 1-sparse approximation (see Corollary 2.3).

The following examples shows that the iterative scheme, Equation (2.1), obtains fixed-points
which are not obtainable via direct thresholding. In fact, if we re-order the support sets Sk based on
the magnitude of the corresponding components, we observe that the locations of the correct indices
will evolve over time. The provides evidence that, in general, iterating the scheme is required.

Example 2.12. Consider the matrix A ∈ R10×10 given by:

A =



4 5 1 6 8 4 6 6 2 7
6 5 7 5 3 3 2 5 9 2
1 5 1 7 4 8 1 3 9 7
10 2 9 5 5 10 0 8 1 2
9 9 3 9 6 4 3 7 1 4
10 1 7 8 7 4 10 3 3 6
2 4 4 5 6 9 1 9 1 9
2 5 1 3 6 3 10 7 2 1
1 1 1 3 10 4 4 4 5 1
6 5 1 4 2 5 1 5 1 8


.

13

Let x, η, b ∈ R10 be such that

x :=
(
1, 1, 1, 0, 0, 0, 0, 0, 0, 0

)T
,

η :=
(
0.23, 0.08,−0.01,−0.02, 0.04,−0.28,−0.32, 0.09, 0.30, 0.63

)T
,

b := Ax+ η =
(
10.23, 18.08, 6.99, 20.98, 21.04, 17.72, 9.68, 8.09, 3.30, 12.63

)T
,

where each element of η is drawn i.i.d. from the normal distribution N (0, 0.25). We want to recover
x from the noisy data b using Algorithm 2.1. The support set to be recovered is S := {1, 2, 3}.
Setting λ = 0.7 in Algorithm 2.1 yields:

x0 =
(
0.88, 2.83, 2.04,−1.60, 0.84, 0.63, 0.13,−1.82,−0.42, 0.26

)T
, S0 = {2, 3, 8, 4, 1, 5}, (2.33a)

x1 =
(
1.06, 1.08, 0.96,−0.10, 0.04, 0, 0,−0.03, 0, 0

)T
, S1 = {2, 1, 3}, (2.33b)

x2 =
(
1.04, 1.01, 0.94, 0, 0, 0, 0, 0, 0, 0

)T
, S2 = {1, 2, 3}, (2.33c)

where each Sk is re-ordered such that the j-th element of Sk is the j-th largest (in magnitude)
element in xk. Note that we have highlighted the desired components in blue.

Several important observations can be made from this example. First, there is no choice of λ
so that the method converges in one step, since the value of x0

1 is smaller (in magnitude) than two
components on S̄; however, the method still terminates at the correct support set. Second, setting
λ > 0.9 will remove the first component immediately, yielding an incorrect solution. Lastly, the
order of the indices in the support set changes between steps, which shows that the solution xk is
not simply generated by peeling offing the smallest elements of A†b. These observations lead one
to conclude that the iterative scheme is more refined than just choosing the most important terms
from A†b, i.e. the iterations shuffle the components and help to locate the correct components.

In the following example, we provide numerical support for Theorem 2.4.

Example 2.13. In Table 2.1, we list the values of the objective function F for the different
experiments, where F is defined by Equation (2.4). Recall that in Theorem 2.4, we have assumed
that ‖A‖2 = 1. Thus to compute F (xk) for a given example, one may need to rescale the equation
Ax = b by ‖A‖2. It can be seen from Table 2.1 that the value of F (xk) strictly decreases in k.

3 Application: Model Identification of Dynamical Systems

Let u be an observed dynamic process governed by a first-order system:

u̇(t) = f(u(t)),

where f is an unknown nonlinear equation. One application of the SINDy algorithm is for the
recovery (or approximation) of f directly from data. In this section, we apply Algorithm 2.1 to
this problem and show that relatively accurate solutions can be obtained when the observed data
is perturbed by a moderate amount of noise.

14

Before detailing the numerical experiments, we first define two relevant quantities used in our
error analysis. Let x ∈ Rn be the (noise-free) coefficient vector and η ∈ Rn be the (mean-zero)
noise. The signal-to-noise ratio (SNR) is defined by:

SNR(x, η) := 10 log10

(
‖x−mean(x)‖22

‖η‖22

)
.

Given Ax = b, let xtrue be the correct sparse solution that solves the noise-free linear system, and
x be the approximation of xtrue returned by Algorithm 2.1. The relative error E of x is defined by:

E(x) :=
‖x− xtrue‖2
‖xtrue‖2

.

3.1 The Lorenz System

Consider the Lorenz system: 
u̇1 = 10(u2 − u1),

u̇2 = u1(28− u3)− u2,

u̇3 = u1u2 − 8
3u3,

(3.1)

which produces chaotic solutions. To generate the synthetic data for this experiment, we set the

initial data u(0) =
(
−5, 10, 30

)T
and evolve the system using the Runge-Kutta method of order 4

up to time-stamp T = 10 with time step h = 0.025. The simulated data is defined as u(t). The
noisy data ũ(t) is obtained by adding Gaussian noise directly to u(t):

ũ = u+ η, η ∼ N (0, σ2).

Let A = A(ũ(t)) be the dictionary matrix consisting of (tensorized) polynomials in ũ up to order
p:

A =

 | | | | |
1 P (ũ(t)) P 2(ũ(t)) P 3(ũ(t)) · · · P p(ũ(t))
| | | | |

 ,

Table 2.1: The value of the objective function F in different experiments.

Inputs A and b Parameter λ Outputs xk and Sk F (xk)

as defined in Example 2.11 8 as given in Equation (2.31)
F (x0) = 320.0000
F (x1) = 65.2119

as defined in Example 2.11 0.802 as given in Equation (2.32)

F (x0) = 3.2160
F (x1) = 2.7727
F (x2) = 2.3688
F (x3) = 2.0490
F (x4) = 1.8551

as defined in Example 2.12 0.7 as given in Equation (2.33)
F (x0) = 4.9000
F (x1) = 2.9401
F (x2) = 1.4702

15

where

P (ũ(t)) :=

 | | |
ũ1(t) ũ2(t) ũ3(t)
| | |

 , (3.2a)

P 2(ũ(t)) :=

 | | | | | |
ũ1(t)2 ũ1(t)ũ2(t) ũ1(t)ũ3(t) ũ2(t)2 ũ2(t)ũ3(t) ũ3(t)2

| | | | | |

 , (3.2b)

P 3(ũ(t)) :=

 | | | | |
ũ1(t)3 ũ1(t)2ũ2(t) ũ1(t)2ũ3(t) ũ1(t)ũ2(t)2 · · · ũ3(t)3

| | | | |

 , (3.2c)

and so on. Each column of the matrices in Equation 3.2 is a particular polynomial (candidate
function) and each row is a fixed time-stamp. Let b be the numerical approximation of u̇:

bi(kh) :=



ũi(h)− ũi(0)

h
if kh = 0,

ũi((k + 1)h)− ũi((k − 1)h)

2h
if 0 < kh < T,

ũi(T)− ũi(T − h)

h
if kh = T,

(3.3)

for i = 1, 2, 3. Note that b is approximated directly from the noisy data, so it will be inaccurate
(and likely unstable). We want to recover the governing equation for the Lorenz system (i.e., the
right-hand side of Equation (3.1)) by finding a sparse approximation to solution of the linear system
Ax = b using Algorithm 2.1.

With p = 5 and λ = 0.8, we apply Algorithm 2.1 on data with different noise levels. The
resulting approximations for x (the coefficients) are listed in Table 3.1. The identified systems are:

(i) σ2 = 0.1 (where SNR(u, η) = 41.1508):
u̇1 = −9.8122u1 + 9.8163u2

u̇2 = 27.1441u1 − 0.8893u2 − 0.9733u1 u3

u̇3 = −2.6238u3 + 0.9841u1 u2

(3.4)

with E(x) = 0.0278;

(ii) σ2 = 0.5 (where SNR(u, η) = 27.0682):
u̇1 = −9.7012u1 + 9.6980u2

u̇2 = 27.0504u1 − 0.8485u2 − 0.9717u1 u3

u̇3 = −2.6197u3 + 0.9834u1 u2

(3.5)

with E(x) = 0.0334.

16

To compare between the identified and true systems in the presence of additive noise on the
observed data, we simulate the systems up to time-stamps t = 20 and t = 100. The resulting
trajectories are shown in Figures 3.1 and 3.2.

Figure 3.1(a) shows that for a relatively small amount of noise (σ2 = 0.1) the trajectory of the
identified system almost coincide with the Lorenz attractor for a short time, specifically from t = 0
to about t = 5. On the other hand, Figure 3.1(b) shows that for a larger amount of noise (σ2 = 0.5)
the error between the trajectories of the identified system and the Lorenz attractor remains small
for a shorter time (up to about t = 4). As expected, increasing the amount of noise will cause
larger errors on the estimated parameters, and thus on the predicted trajectories. In both cases,
the algorithm picks out the correct terms in the model. Increasing the noise will eventually lead to
incorrect solutions.

3.2 The Thomas System

Consider the Thomas system: 
u̇1 = −0.18u1 + sin(u2),

u̇2 = −0.18u2 + sin(u3),

u̇3 = −0.18u4 + sin(u1).

(3.6)

which is a non-polynomial system whose trajectories form a chaotic attractor. We simulate u(t)

using the initial condition u(0) =
(
1, 1, 0

)T
and by evolving the system using the Runge-Kutta

Table 3.1: Lorenz System: The recovered coefficients for two noise levels.

A
σ2 = 0.1 σ2 = 0.5

u̇1 u̇2 u̇3 u̇1 u̇2 u̇3

1 0 0 0 0 0 0

u1 -9.8122 27.1441 0 -9.7012 27.0504 0

u2 9.8163 -0.8893 0 9.6980 -0.8485 0

u3 0 0 -2.6238 0 0 -2.6197

u2
1 0 0 0 0 0 0

u1u2 0 0 0.9841 0 0 0.9834

u1u3 0 -0.9733 0 0 -0.9717 0

u2
2 0 0 0 0 0 0

u2u3 0 0 0 0 0 0

u2
3 0 0 0 0 0 0

u3
1 0 0 0 0 0 0

...
...

...
...

...
...

...

u5
3 0 0 0 0 0 0

17

(a) σ2 = 0.1

(b) σ2 = 0.5

Figure 3.1: Lorenz system: Component-wise evolution of the trajectories. Solid line: the trajec-
tory of the identified systems defined by: (a) Equation (3.4) and (b) Equation (3.5), respectively.
Red dashed line: the “true” Lorenz attractor.

method of order 4 up to time-stamp t = 100 with time step h = 0.025. We then add Gaussian
noise to u and obtain the observed noisy data ũ(t):

ũ = u+ η, η ∼ N (0, σ2).

18

Let b be the numerical approximation of u̇ which is defined by Equation (3.3). To identify the
governing equation for the data generated by the Thomas system (e.g. the right-hand side of
Equation (3.6)), we apply the algorithm to the linear system whose dictionary matrix A = A(ũ(t))
consists of three sub-matrices:

A =

 | | |
AP Asin Acos

| | |

 ,

where

AP =

 | | | | |
1 P (ũ(t)) P 2(ũ(t)) P 3(ũ(t)) · · · P p1(ũ(t))
| | | | |

 ,

Asin =

 | | | |
sin (P (ũ(t))) sin

(
P 2(ũ(t))

)
sin
(
P 3(ũ(t))

)
· · · sin (P p2(ũ(t)))

| | | |

 ,

Acos =

 | | | |
cos (P (ũ(t))) cos

(
P 2(ũ(t))

)
cos
(
P 3(ũ(t))

)
· · · cos (P p3(ũ(t)))

| | | |

 .

Here, P p is defined by Equation (3.2), which denotes the matrix consisting of polynomials in ũ of
order p. The matrices sin(P p) and cos(P p) are obtained by applying the sine and cosine functions
to each element of P p, respectively.

With p1 = 3, p2 = p3 = 1, and λ = 0.1, we apply the algorithm to data with different noise
levels. The resulting approximations for x are listed in Table 3.2. The identified systems are:

(i) σ2 = 0.1 (where SNR(u, η) = 25.8469):
u̇1 = −0.1805u1 + 1.0014 sin(u2)

u̇2 = −0.1799u2 + 1.0038 sin(u3)

u̇3 = −0.1803u3 + 0.9992 sin(u1)

(3.7)

with E(x) = 0.0023;

(ii) σ2 = 0.5 (where SNR(u, η) = 11.8738):
u̇1 = −0.1835u1 + 1.0304 sin(u2)

u̇2 = −0.1848u2 + 0.9956 sin(u3)

u̇3 = −0.1725u3 + 0.9658 sin(u1)

(3.8)

with E(x) = 0.0267.

Observe that the identified system defined by Equation (3.7) is exact up to two significant
digits. We simulate this system up to time-stamps t = 200 and t = 1000 and compare it with the
trajectories of the Thomas system. We show the short-time evolution of the trajectories in Figure
3.3 and the long-time dynamics in Figure 3.4. It can be observed that although the coefficients are
not exact, the trajectory of the identified system traces out a similar region to the exact trajectory
in state-space.

19

4 Discussion

The SINDy algorithm proposed in [6] has been applied to various problems involving sparse model
identification from complex dynamics. In this work, we provided several theoretical results that
characterized the solutions produced by the algorithm and provided the rate of convergence of the
algorithm. The results included showing that the algorithm approximates local minimizers of the `0-
penalized least-squares problem, and thus can be characterized through various sparse optimization
results. In particular, the algorithm produces a minimizing sequence, which converges to a fixed-
point rapidly, thereby providing theoretical support for the observed behavior. Several examples
show that the convergence rates are sharp. In addition, we showed that iterating the steps is
required, in particular, it is possible to obtain solutions through iterating that cannot be obtain via
thresholding of the least-squares solution. In future work, we would like to better characterize the
effects of noise, detailed in Section 3. It would be useful to have a quantifiable relationship between
the thresholding parameter, the noise, and the expected recovery error.

Table 3.2: The Thomas system: The recovered coefficients for two noise levels.

A
σ2 = 0.1 σ2 = 0.5

u̇1 u̇2 u̇3 u̇1 u̇2 u̇3

1 0 0 0 0 0 0

u1 -0.1805 0 0 -0.1835 0 0

u2 0 -0.1799 0 0 -0.1848 0

u3 0 0 -0.1803 0 0 -0.1725

u2
1 0 0 0 0 0 0

u1u2 0 0 0 0 0 0

u1u3 0 0 0 0 0 0

u2
2 0 0 0 0 0 0

...
...

...
...

...
...

...

u3
3 0 0 0 0 0 0

sin(u1) 0 0 0.9992 0 0 0.9658

sin(u2) 1.0014 0 0 1.0304 0 0

sin(u3) 0 1.0038 0 0 0.9956 0

cos(u1) 0 0 0 0 0 0

cos(u2) 0 0 0 0 0 0

cos(u3) 0 0 0 0 0 0

20

Acknowledgement

The authors would like to thank J. Nathan Kutz for helpful discussions. H.S. and L.Z. acknowledge
the support of AFOSR, FA9550-17-1-0125 and the support of NSF CAREER grant #1752116.

References

[1] Thomas Blumensath and Mike E. Davies. Iterative thresholding for sparse approximations.
Journal of Fourier Analysis and Applications, 14:629–654, 2008.

[2] Thomas Blumensath and Mike E. Davies. Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27:265–274, 2009.

[3] Thomas Blumensath, Mehrdad Yaghoobi, and Mike E. Davies. Iterative hard thresholding
and `0 regularisation. 2007 IEEE International Conference on Acoustics, Speech and Signal
Processing, 3:III–877, 2007.

[4] Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[5] Lorenzo Boninsegna, Feliks Nüske, and Cecilia Clementi. Sparse learning of stochastic dynamic
equations. ArXiv e-prints, December 2017.

[6] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016.

[7] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Sparse identification of nonlinear
dynamics with control (SINDYc). IFAC-PapersOnLine, 49(18):710–715, 2016.

[8] Magnus Dam, Morten Brøns, Jens Juul Rasmussen, Volker Naulin, and Jan S. Hesthaven.
Sparse identification of a predator-prey system from simulation data of a convection model.
Physics of Plasmas, 24(2):022310, 2017.

[9] Eurika Kaiser, J. Nathan Kutz, and Steven L. Brunton. Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit. ArXiv e-prints, November 2017.

[10] Jean-Christophe Loiseau and Steven L. Brunton. Constrained sparse Galerki regression. Jour-
nal of Fluid Mechanics, 838:42–67, 2018.

[11] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from data.
ArXiv e-prints, October 2017.

[12] Niall M. Mangan, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Inferring
biological networks by sparse identification of nonlinear dynamics. IEEE Transactions on
Molecular, Biological and Multi-Scale Communications, 2(1):52–63, 2016.

[13] Niall M. Mangan, J. Nathan Kutz, Steven L. Brunton, and Joshua L. Proctor. Model selection
for dynamical systems via sparse regression and information criteria. Proceedings of the Royal
Society of London A, 473(2204):20170009, 2017.

21

[14] Yannis Pantazis and Ioannis Tsamardinos. A unified approach for sparse dynamical system
inference from temporal measurements. ArXiv e-prints, October 2017.

[15] Markus Quade, Markus Abel, J. Nathan Kutz, and Steven L. Brunton. Sparse identification
of nonlinear dynamics for rapid model recovery. ArXiv e-prints, March 2018.

[16] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of
nonlinear partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

[17] Samuel H. Rudy, Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Data-driven
discovery of partial differential equations. Science Advances, 3:e1602614, 2017.

[18] Hayden Schaeffer. Learning partial differential equations via data discovery and sparse opti-
mization. Proceedings of the Royal Society of London A, 473(2197):20160446.

[19] Hayden Schaeffer and Scott G. McCalla. Sparse model selection via integral terms. Physical
Review E, 96(2):023302, 2017.

[20] Hayden Schaeffer, Giang Tran, and Rachel Ward. Extracting sparse high-dimensional dynamics
from limited data. ArXiv e-prints, July 2017.

[21] Hayden Schaeffer, Giang Tran, and Rachel Ward. Learning dynamical systems and bifurcation
via group sparsity. ArXiv e-prints, September 2017.

[22] Hayden Schaeffer, Giang Tran, Rachel Ward, and Linan Zhang. Extracting structured dynam-
ical systems using sparse optimization with very few samples. ArXiv e-prints, May 2018.

[23] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85, 2009.

[24] Mariia Sorokina, Stylianos Sygletos, and Sergei Turitsyn. Sparse identification for nonlinear
optical communication systems: SINO method. Optics express, 24(26):30433–30443, 2016.

[25] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[26] Giang Tran and Rachel Ward. Exact recovery of chaotic systems from highly corrupted data.
Multiscale Modeling & Simulation, pages 1108–1129.

[27] Joel A. Tropp. Just relax: convex programming methods for identifying sparse signals in noise.
IEEE Transactions on Information Theory, 52:1030–1051.

22

(a) The Lorenz attractor

(b) The trajectory defined by Equation (3.4)

(c) The trajectory defined by Equation (3.5)

Figure 3.2: Lorenz System: Trajectories of the Lorenz system from t = 0 to t = 20 (left column)
and from t = 0 to t = 100 (right column). (a) The “true” Lorenz attractor defined by Equation
(3.1). (b) The trajectory defined by Equation (3.4), which is identified from data with additive
noise σ2 = 0.1. (c) The trajectory defined by Equation (3.5), which is identified from data with
additive noise σ2 = 0.5.

23

Figure 3.3: The Thomas system: Component-wise evolution of the trajectories. Solid line: the
trajectory of the identified system defined by Equation (3.7). Red dashed line: the “true” Thomas
trajectory.

(a) The Thomas trajectory (b) The trajectory defined by Equation (3.7)

Figure 3.4: The Thomas system: Trajectories of the learned and “true” Thomas system from
t = 0 to t = 1000 (right column). (a) The Thomas trajectory defined by Equation (3.6). (b) The
trajectory defined by Equation (3.7), which is identified from data with additive noise σ2 = 0.1.

24

	Introduction
	Contribution

	Convergence Analysis
	Algorithmic Convergence
	Convergence to the Local minimizers
	Examples and Sharpness

	Application: Model Identification of Dynamical Systems
	The Lorenz System
	The Thomas System

	Discussion

