
THE 1D SCHRÖDINGER EQUATION WITH A SPACETIME
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Abstract. For the 1D Schrödinger equation with a mollified spacetime white
noise, we show that the average wave function converges to the equation with
an effective potential after an appropriate renormalization.
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1. Main result

Consider the Schrödinger equation driven by a weak stationary spacetime Gauss-
ian potential V (t, x):

(1.1) i∂tφ(t, x) +
1
2

∆φ(t, x) −
√
εV (t, x)φ(t, x) = 0, t > 0, x ∈ R,

on the diffusive scale (t, x)↦ ( t
ε2 ,

x
ε
),

(1.2) φε(t, x) ∶= φ(
t

ε2 ,
x

ε
)

satisfies

(1.3) i∂tφε(t, x) +
1
2

∆φε(t, x) −
1
ε3/2V ( t

ε2 ,
x

ε
)φε(t, x) = 0.

With appropriate decorrelating assumptions on V , the rescaled large highly oscil-
latory potential ε−3/2V (t/ε2, x/ε) converges in distribution to a spacetime white
noise, denoted by Ẇ (t, x). To the best of our knowledge, the asymptotics of φε and
making sense of the limit of (1.3), which formally reads

i∂tΦ(t, x) + 1
2

∆Φ(t, x) −Φ(t, x)Ẇ (t, x) = 0,

is an open problem. The goal of this short note is to take a first step by analyzing
E[φε] as ε→ 0.

1.1. Assumptions on the randomness. We assume the spacetime white noise
Ẇ (t, x) is built on the probability space (Ω,F ,P), and

V (t, x) =
ˆ
R2
%(t − s, x − y)Ẇ (s, y)dyds

for some mollifier % with
´
% = 1. By the scaling property of Ẇ , we have

1
ε3/2V ( t

ε2 ,
x

ε
) = 1

ε3/2

ˆ
R2
%( t
ε2 − s,

x

ε
− y)Ẇ (s, y)dyds

= 1
ε3/2

ˆ
R2

1
ε3 %(

t − s
ε2 ,

x − y
ε

)Ẇ ( s
ε2 ,

y

ε
)dyds

law=
ˆ
R2

1
ε3 %(

t − s
ε2 ,

x − y
ε

)Ẇ (s, y)dyds,
1
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which converges in distribution to Ẇ independent of the choice of %. For simplicity,
we choose

%(t, x) = η(t)√
π
e−∣x∣

2
,

with η ∈ C∞c (R) and
´
η = 1. The covariance function of V is

(1.4) R(t, x) = E[V (t, x)V (0,0)] =
ˆ
R2
%(t + s, x + y)%(s, y)dyds = Rη(t)q(x),

with

(1.5) Rη(t) ∶=
ˆ
R
η(t + s)η(s)ds, q(x) ∶= 1√

2π
e−

∣x∣2
2 .

We define R̃(ω, ξ) as the Fourier transform of R in (t, x):

R̃(ω, ξ) =
ˆ
R2
R(t, x)e−iωt−iξxdtdx.

We use f̂ to denote the Fourier transform of f in the x variable:

f̂(ξ) =
ˆ
R
f(x)e−iξxdx.

1.2. Main result. Assuming the initial data φε(0, x) = φ0(x) ∈ C∞c (R), so we have
a low frequency wave before rescaling: φ(0, x) = φ0(εx). The following is our main
result:

Theorem 1.1. There exists z1, z2 ∈ C depending on %, given by (2.12) and (2.15),
such that for any t > 0, ξ ∈ R,

(1.6) E[φ̂ε(t, ξ)]e
z1t
ε → φ̂0(ξ)e−

i
2 ∣ξ∣2t+z2t,

as ε→ 0.

Remark 1.2. The limit in (1.6) is the solution to

i∂tφ̄ +
1
2

∆φ̄ − iz2φ̄ = 0, φ̄(0, x) = φ0(x),

written in the Fourier domain:

φ̄(t, x) = 1
2π

ˆ
R
φ̂0(ξ)e−

i
2 ∣ξ∣2t+z2teiξxdξ.

Remark 1.3. In the parabolic setting, a Wong-Zakai theorem is proved [13, 12, 3, 11]
for

∂tuε =
1
2

∆uε +
1
ε3/2V ( t

ε2 ,
x

ε
)uε, u(0, x) = u0(x).

The result says that there exists c1, c2 > 0 depending on % such that

(1.7) uε(t, x)e−
c1t
ε −c2t ⇒ U(t, x)

in distribution, where U solves the stochastic heat equation

∂tU(t, x) =
1
2

∆U(t, x) + U(t, x)Ẇ (t, x), U(0, x) = u0(x),

with the product U(t, x)Ẇ (t, x) interpreted in the Itô’s sense. Since E[U] solves
the unperturbed heat equation

E[U(t, x)] =
ˆ
R

1√
2πt

e−
∣x−y∣2

2t u0(y)dy,

a consequence of (1.7) is

E[ûε(t, ξ)]e−
c1t
ε −c2t → û0(ξ)e−

1
2 ∣ξ∣2t,
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which should be compared to (1.6) in the Schrödinger setting, with −c1, c2 corre-
sponding to z1, z2.

Remark 1.4. Starting from the microscopic dynamics (1.1), if we consider a time
scale that is shorter than (1.2), (t, x)↦ ( t

ε
, x√

ε
), with a low frequency initial data

φ(0, x) = φ0(
√
εx), a homogenization result was proved in [10]: for any t > 0, ξ ∈ R,

(1.8) ε
d
2 φ̂( t

ε
,
√
εξ)→ φ̂0(ξ)e−

i
2 ∣ξ∣2t−z1t

in probability, where z1 is the same constant as in Theorem 1.1. On the other hand,
with a high frequency initial data φ(0, x) = φ0(x), a kinetic equation was derived
[2]:

(1.9) E[∣φ̂( t
ε
, ξ)∣2]→W (t, ξ),

where W (t, ξ) =
´
RW (t, x, ξ)dx with W solving the radiative transfer equation

∂tW (t, x, ξ) + ξ∇xW (t, x, ξ) =
ˆ
R
R̃( ∣p∣2−∣ξ∣2

2 , p − ξ)(W (t, x, p) −W (t, x, ξ)) dp
2π
.

For similar results in the case of a spatial randomness, see [14, 7, 4]. In other words,
in the high frequency regime where the wave and the media fully interact, the
momentum follows a jump process with the kernel R̃( ∣p∣2−∣ξ∣2

2 , p − ξ). The real part
of the constant z1, as in (1.6) and (1.8), describes the total scattering cross-section,
i.e., the jumping rate, evaluated at the zero frequency for the equation satisfied by
W :

2Re[z1] =
ˆ
R
R̃( ∣p∣2

2 , p) dp
2π
.

From this perspective, the renormalization in (1.6) is to compensate the attenuation
of wave propagation on the longer time scale of t/ε2. We emphasize that the average
wave function, or more precisely the term E[φ̂ε(t, ξ)]E[φ̂∗ε(t, ξ)], only captures
the ballistic component of wave, and provides little information on the scattering
components.

Remark 1.5. The convergences in (1.6), (1.8) and (1.9) hold in all dimensions d ⩾ 1,
but the scaling chosen in (1.3) leads to a spacetime white noise only in d = 1.

Remark 1.6. When the spacetime potential V (t, x) is replaced by a spatial potential
V (x), similar problems have been analyzed in [15, 1, 6, 9, 5] in d = 1,2.

2. Proofs

The proof contains two steps. First, we derive a probabilistic representation of the
average wave function E[φ̂(t, ξ)] with some auxiliary Brownian motion {Bt}t⩾0 built
on another probability space (Σ,A,PB). Using this probabilistic representation, we
pass to the limit using tools from stochastic analysis. Similar proofs have already
appeared in [9, 11].

2.1. Probabilistic representation. Assuming {Bt}t⩾0 is a standard Brownian
motion starting from the origin, defined on (Σ,A,PB). We denote the expectation
with respect to {Bt}t⩾0 by EB.

Lemma 2.1. For the equation

(2.1) i∂tψ +
1
2

∆ψ − V (t, x)ψ = 0, t > 0, x ∈ R,

with ψ(0, x) = ψ0(x), we have

(2.2) E[ψ̂(t, ξ)] = ψ̂0(ξ)EB[ei
√
iξBte−

1
2
´ t

0
´ t

0 R(s−u,
√
i(Bs−Bu))dsdu].
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On the formal level, (2.2) comes from an application of the Feynman-Kac formula
to (2.1) then averaging with respect to V . We write (2.1) as

∂tψ = i

2
∆ψ − iV (t, x)ψ = 0,

and assume the following expression:

ψ(t, x) = EB[ψ0(x +
√
iBt)e−i

´ t
0 V (t−s,x+

√
iBs)ds].

Averaging with respect to V and using the Gaussianity yields

E[ψ(t, x)] = EB[ψ0(x +
√
iBt)e−

1
2
´ t

0
´ t

0 R(s−u,
√
i(Bs−Bu))dsdu],

which, after taking the Fourier transform, gives (2.2).

Proof. We follow the proof of [9, Proposition 2.1], where a similar formula is derived
for spatial random potentials. For the convenience of readers, we provide all the
details here.

Fix (t, ξ), we define the function

F1(z) ∶= EB[eizξBt− 1
2
´ t

0
´ t

0 R(s−u,z(Bs−Bu))dsdu], z ∈ D̄0,

with D0 ∶= {z ∈ C ∶ Re[z2] > 0}. We also define the corresponding Taylor expansion

F2(z) =
∞
∑
n=0

F2,n(z), z ∈ D̄0,

with

F2,n(z) ∶=
(−1)n

2n(2π)nn!

ˆ
[0,t]2n

ˆ
Rn

n

∏
j=1

R̂(sj−uj , pj)EB

⎡⎢⎢⎢⎣
eizξBt

n

∏
j=1

eizpj(Bsj−Buj )
⎤⎥⎥⎥⎦
dpdsdu.

Recall that R(t, x) = Rη(t)√
2π e

−x2/2. In the definition of F1, we have extended the
definition so that R(t, z) = Rη(t)√

2π e
−z2/2 for all z ∈ C. We also emphasize that R̂(t, p)

is the Fourier transform of R(t, x) in the x−variable:

R̂(t, p) = Rη(t)e−
1
2p

2
.

It is straightforward to check that both F1 and F2 are analytic on D0 and
continuous on D̄0. Note that

√
i ∈ ∂D0. The goal is to show that

(2.3) E[ψ̂(t, ξ)] = ψ̂0(ξ)F1(
√
i).

Since (z, s, u)↦ R(s − u, z(Bs −Bu)) is bounded on D̄0 ×R2
+, we have

(2.4)

F1(z) =
∞
∑
n=0

(−1)n
2nn!

EB [eizξBt (
ˆ
[0,t]2

R(s − u, z(Bs −Bu))dsdu)
n

]

=
∞
∑
n=0

(−1)n
2nn!

EB

⎡⎢⎢⎢⎣
eizξBt

ˆ
[0,t]2n

n

∏
j=1

R(sj − uj , z(Bsj −Buj))dsdu
⎤⎥⎥⎥⎦

=
∞
∑
n=0

(−1)n
2n(2π)nn!

EB

⎡⎢⎢⎢⎣
eizξBt

ˆ
[0,t]2n

ˆ
Rn

n

∏
j=1

R̂(sj − uj , pj)eizpj(Bsj−Buj )dpdsdu
⎤⎥⎥⎥⎦
.

For z = x ∈ R, we can apply the Fubini theorem to see that F1(x) = F2(x). Due to
the analyticity and continuity of F1 and F2, we therefore have F1(z) = F2(z) for all
z ∈ D̄0. Hence, (2.3) is equivalent to

(2.5) E[ψ̂(t, ξ)] = ψ̂0(ξ)
∞
∑
n=0

F2,n(
√
i).
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For a fixed n, we rewrite

F2,n(
√
i) = (−1)n

2n(2π)nn!

ˆ
[0,t]2n

ˆ
R2n

n

∏
j=1

R̂(s2j−1 − s2j , p2j−1)δ(p2j−1 + p2j)

×EB [ei
√
iξBte−∑

2n
j=1 i

√
ipjBsj ]dsdp.

Let σ denote the permutations of {1, . . . ,2n}. After a relabeling of the p-variables
we can write
(2.6)

F2,n(
√
i) = (−1)n

2n(2π)nn!∑σ

ˆ
[0,t]2n

<

ˆ
R2n

n

∏
j=1

R̂(sσ(2j−1) − sσ(2j), pσ(2j−1))δ(pσ(2j−1) + pσ(2j))

×EB [ei
√
iξBte−∑

2n
j=1 i

√
ipjBsj ]dsdp,

where [0, t]2n
< ∶= {(s1, . . . , s2n) ∶ 0 ⩽ s2n ⩽ . . . ⩽ s1 ⩽ t}. Let F denote the pairings

formed over {1, . . . ,2n}. It is straightforward to check that

(2.7)
F2,n(

√
i) = 1

i2n(2π)n∑F

ˆ
[0,t]2n

<

ˆ
R2n

∏
(k,l)∈F

R̂(sk − sl, pk)δ(pk + pl)

×EB [ei
√
iξBte−∑

2n
j=1 i

√
ipjBsj ]dsdp.

The pre-factors in (2.6) and (2.7) differ by a factor of 2nn! since i−2n = (−1)n, and
this comes from the mapping between the sets of permutations and pairings: for a
given pairing with n pairs, we have n! ways of permutating the pairs, and inside
each pair, we have 2 options which leads to the additional factor of 2n.

The phase factor inside the integral in (2.7) can be computed explicitly:

(2.8) EB [ei
√
iξBte−∑

2n
j=1 i

√
ipjBsj ] = e− i2 ∣ξ∣2(t−s1)− i2 ∣ξ−p1∣2(s1−s2)−...− i2 ∣ξ−...−p2n∣2s2n .

On the other hand, the equation (2.1) is written in the Fourier domain as

∂tψ̂ = − i
2
∣ξ∣2ψ̂ +

ˆ
R

V̂ (t, dp)
2πi

ψ̂(t, ξ − p), ψ̂(0, ξ) = ψ̂0(ξ),

where V (t, x) admits the spectral representation V (t, x) =
´
R
V̂ (t,dp)

2π eipx. Using the
above formula, we can write the solution ψ̂(t, ξ) as an infinite series
(2.9)

ψ̂(t, ξ) =
∞
∑
n=0

ˆ
[0,t]n

<

ˆ
Rn

n

∏
j=1

V̂ (sj , dpj)
2πi

e−
i
2 ∣ξ∣2(t−s1)− i2 ∣ξ−p1∣2(s1−s2)−...− i2 ∣ξ−...−pn∣2sn

× ψ̂0(ξ − p1 − . . . − pn)ds.

Evaluating the expectation E[ψ̂(t, ξ)] in (2.9), using the Wick formula for computing
the Gaussian moment

E[V̂ (s1, dp1) . . . V̂ (sn, dpn)],

and the fact that

E[V̂ (si, dpi)V̂ (sj , dpj)] = 2πR̂(si − sj , pi)δ(pi + pj)dpidpj ,

and comparing the result to (2.7)-(2.8), we conclude that (2.5) holds, which completes
the proof. �
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2.2. Convergence of Brownian functionals. By Lemma 2.1, the interested
quantity is written as

E[φ̂ε(t, ξ)] = φ̂0(ξ)EB[ei
√
iξBte−

1
2
´ t

0
´ t

0 Rε(s−u,
√
i(Bs−Bu))dsdu],

with Rε defined as the covariance function of ε−3/2V (t/ε2, x/ε):

Rε(t, x) =
1
ε3R( t

ε2 ,
x

ε
).

After a change of variable and using the scaling property of the Brownian motion,
we have ˆ t

0

ˆ t

0
Rε(s − u,

√
i(Bs −Bu))dsdu

= ε
ˆ t/ε2

0

ˆ t/ε2

0
Rη(s − u)q(

√
i(Bε2s −Bε2u)/ε)dsdu

law= ε

ˆ t/ε2

0

ˆ t/ε2

0
Rη(s − u)q(

√
i(Bs −Bu))dsdu,

where Rη and q were defined in (1.5). Thus, by defining

Xε
t ∶=

ε

2

ˆ t/ε2

0

ˆ t/ε2

0
Rη(s − u)q(

√
i(Bs −Bu))dsdu,

we have

(2.10) E[φ̂ε(t, ξ)] = φ̂0(ξ)EB[ei
√
iξεBt/ε2−Xεt ].

To pass to the limit of E[φ̂ε(t, ξ)], it suffices to prove the weak convergence of
(εBt/ε2 ,Xε

t ) and some uniform integrability condition. The proof of Theorem 1.1
reduces to the following three lemmas.

Lemma 2.2. EB[Xε
t ] = z1t

ε
+O(ε) with z1 defined in (2.12).

Lemma 2.3. For fixed t > 0, as ε→ 0,
(2.11) (εBt/ε2 ,Xε

t −EB[Xε
t ])⇒ (N1,N2 + iN3)

in distribution, where N1 ∼ N(0, t) and is independent of (N2,N3) ∼ N(0, tA), with
the 2 × 2 covariance matrix A defined in (2.13).

Lemma 2.4. For any λ ∈ R, there exists a constant C > 0 such that

EB[∣eλ(X
ε
t −EB[Xεt ])∣] ⩽ C

uniformly in ε > 0.

Remark 2.5. With some extra work as in [11, Proposition 2.3], the convergence
in (2.11) can be upgraded to the process level. To keep the argument short, we
only consider the marginal distributions, which is what we need in the proof of
Theorem 1.1.

Proof of Lemma 2.2. A straightforward calculation gives

EB[Xε
t ] =ε

ˆ t/ε2

0
ds

ˆ s

0

Rη(s − u)√
2π

EB[e− i2 ∣Bs−Bu∣2]du

=ε
ˆ t/ε2

0
ds

ˆ s

0

Rη(u)√
2π

EB[e− i2 ∣Bs−Bs−u∣2]du.

Since Rη is compactly supported, it is clear that

EB[Xε
t ] =

z1t

ε
+O(ε),
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where

(2.12) z1 =
ˆ ∞

0

Rη(u)√
2π

EB[e− i2 ∣Bu∣2]du =
ˆ ∞

0

Rη(u)√
2π(1 + iu)

du.

The proof is complete. �

Proof of Lemma 2.3. The proof is based on a martingale decomposition. Denote
the Brownian filtration by Fr and the Malliavin derivative with respect to dBr by
Dr. An application of the Clark-Ocone formula leads to

Xε
t −EB[Xε

t ] =
ˆ t/ε2

0
EB[DrX

ε
t ∣Fr]dBr.

A direct calculation gives

DrX
ε
t = −iε

ˆ t/ε2

0

ˆ s

0

Rη(s − u)√
2π

e−
i
2 ∣Bs−Bu∣2(Bs −Bu)1[u,s](r)duds

for all r ∈ [0, t/ε2]. Taking the conditional expectation with respect to Fr yields

Y ε,tr ∶= ε−1EB[DrX
ε
t ∣Fr]

= −i
ˆ t/ε2

0

ˆ s

0

Rη(s − u)√
2π(1 + i(s − r))

e−
i∣Br−Bu ∣

2
2(1+i(s−r)) (Br −Bu)1[u,s](r)duds.

By the assumption, there exists M > 0 such that Rη(s − u) = 0 if s − u ⩾M , so we
have for M ⩽ r ⩽ t/ε2 −M that

Y ε,tr = Yr ∶ = −i
ˆ r+M

r

ˆ r

r−M

Rη(s − u)√
2π(1 + i(s − r))

e−
i∣Br−Bu ∣

2
2(1+i(s−r)) (Br −Bu)1[u,s](r)duds

= −i
ˆ M

0

ˆ M

0

Rη(s + u)√
2π(1 + is)

e−
i∣Br−Br−u ∣

2
2(1+is) (Br −Br−u)duds.

We extend the definition of Yr to r ∈ R by interpreting B as a two-sided Brownian
motion. Thus, {Yr}r∈R is a stationary process with a finite range of dependence.

It is easy to check that

Xε
t −EB[Xε

t ] − ε
ˆ t/ε2

0
YrdBr = ε

ˆ t/ε2

0
(Y ε,tr − Yr)dBr → 0

in probability. Define Y1,r = Re[Yr] and Y2,r = Im[Yr], applying Ergodic theorem,
we have

ε2
ˆ t/ε2

0
Yj,rYl,rdr → tE[Yj,rYl,r], j, l = 1,2,

and

ε2
ˆ t/ε2

0
Yrds→ tE[Yr] = 0,

almost surely. We apply the martingale central limit theorem [8, pp. 339] to derive

(εBt/ε2 , ε

ˆ t/ε2

0
YrdBr)⇒ (Bt,W 1

t + iW 2
t )

in C[0,∞), where Bt is a standard Brownian motion, independent of the two-
dimensional Brownian motion (W 1

t ,W
2
t ) with the covariance matrix A = (Ajl)j,l=1,2

given by
(2.13) Ajl = E[Yj,rYl,r].
The proof is complete. �
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Proof of Lemma 2.4. We write

Xε
t −EB[Xε

t ] = ε
ˆ t/ε2

0
Zsds,

where
Zs ∶=

ˆ s

0

Rη(u)√
2π

(e− i2 ∣Bs−Bs−u∣2 −EB[e− i2 ∣Bs−Bs−u∣2])du.

Again, assuming that Rη(u) = 0 for ∣u∣ ⩾M . Let Nε = [ t
Mε2 ], we have

Xε
t −EB[Xε

t ] =ε
Nε

∑
k=2

ˆ kM

(k−1)M
Zsds + ε

⎛
⎝

ˆ M

0
+
ˆ t/ε2

NεM

⎞
⎠
Zsds

=ε
Nε

∑
k=2

Zk + ε
⎛
⎝

ˆ M

0
+
ˆ t/ε2

NεM

⎞
⎠
Zsds

where we defined Zk ∶=
´ kM
(k−1)M Zsds for 2 ⩽ k ⩽ Nε. Since Zs is uniformly bounded,

we have RRRRRRRRRRR
ε
⎛
⎝

ˆ M

0
+
ˆ t/ε2

NεM

⎞
⎠
Zsds

RRRRRRRRRRR
≲ ε.

For the first part, we write

ε
Nε

∑
k=2

Zk =
⎛
⎝ ∑k∈Aε,1

+ ∑
k∈Aε,2

⎞
⎠
εZk,

with Aε,1 = {2 ⩽ k ⩽ Nε ∶ k even } and Aε,2 = {2 ⩽ k ⩽ Nε ∶ k odd }. By the
independence of the increments of the Brownian motion, we know that {Zk}k∈Aε,j
are i.i.d. for j = 1 and 2. Therefore,

EB[∣eλ(X
ε
t −EB[Xεt ])∣] ≲EB[eλε∑

Nε
k=2 Re[Zk]]

≲
√

EB[e2λε∑k∈Aε,1 Re[Zk]]EB[e2λε∑k∈Aε,2 Re[Zk]].
The proof is complete by invoking the fact that Zk is bounded with zero mean. �

2.3. Proof of Theorem 1.1. By (2.10), we have

(2.14) E[φ̂ε(t, ξ)]eEB[Xεt ] = φ̂0(ξ)EB[ei
√
iξεBt/ε2−(Xεt −EB[Xεt ])].

By Lemma 2.3, we know that, for fixed t > 0, ξ ∈ R, the random variable

i
√
iξεBt/ε2 − (Xε

t −EB[Xε
t ])⇒ i

√
iξN1 − (N2 + iN3)

in distribution, where N1 ∼ N(0, t) independent of (N2,N3) ∼ N(0, tA). Since
Lemma 2.4 provides the uniform integrability:

EB[∣ei
√
iξεBt/ε2−(Xεt −EB[Xεt ])∣2] ⩽

√
EB[∣ei

√
iξεBt/ε2 ∣2]EB[∣e−(Xεt −EB[Xεt ])∣2] ≲ 1.

Sending ε→ 0 on both sides of (2.14) and applying Lemma 2.2, we have

E[φ̂ε(t, ξ)]e
z1t
ε → φ̂0(ξ)EB[ei

√
iξN1−(N2+iN3)] = φ̂0(ξ)e−

i
2 ∣ξ∣2te

1
2 (A11−A22+2iA12)t.

Define

(2.15) z2 =
1
2
(A11 −A22 + 2iA12),

the proof of Theorem 1.1 is complete.
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