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Abstract. We analyze free energy functionals for macroscopic models of multi-agent systems
interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the
continuous description is modeled by pressure-related terms in the functional making it energetically
favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions
on general entropies and interaction potentials for which neither ground states nor local minimizers
exist. We show that these results are sharp for homogeneous functionals with entropies leading to
degenerate diffusions while they are not sharp for fast diffusions. The particular relevant case of
linear diffusion is totally clarified giving a sharp condition on the interaction potential under which
the corresponding free energy functional has ground states or not.

1. Introduction

Given an interaction potential, or kernel, W : Rd → (−∞,∞], an entropy, or internal density,
function U : [0,∞) → R, and a temperature ε ≥ 0, we consider the nonlinear evolution of a
normalized density ρ, given by the equation

∂tρ = ∇ · ((∇W ∗ ρ)ρ) + ε∇ ·
(
∇U ′(ρ)ρ

)
, t > 0. (1.1)

This work derives conditions on the relationship of the interaction potential W and the entropy
function U for the existence and nonexistence of stationary and ground states to (1.1). Taking
advantage of the fact that (1.1) is the 2-Wasserstein gradient flow of the free energy

Eε(ρ) =
1

2

∫
Rd

∫
Rd
W (x− y) dρ(x) dρ(y) + ε

∫
Rd
U(ρ(x)) dx, (1.2)

where we refer the reader for instance to [3, 29, 30, 52], we follow a strategy based on energetic
arguments to show our main results. For example, the existence of stationary or ground states
is obtained by analyzing suitable conditions for the free energy (1.2) to admit critical points or
global minimizers, respectively. This strategy has already been successfully used to analyze general
qualitative properties of local minimizers for zero temperature (ε = 0), as in [4, 19,20,25,48].

The case of linear diffusion, which in (1.1) translates to U(ρ) = ρ log ρ and ∇ · (∇U ′(ρ)ρ) = ∆ρ,
is classical in the literature and corresponds to the McKean–Vlasov equation [32]. In fact, under
suitable conditions on W , the flow (1.1) can be seen as the so-called mean-field limit of the following
coupled ODE system: consider N particles at positions {X1, ..., XN} ⊂ Rd satisfying the coupled
equations 

Ẋi = − 1

N

∑
j 6=i
∇W (Xi −Xj) +

√
2εBi,

Xi(0) = X0
i ∈ Rd,

i = 1, . . . , N , (1.3)
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where {Bi}Ni=1 is a family of N independent Brownian processes; see [49]. The ODE system
(1.3) and its mean-field limit (1.1) are widely used in diverse applications such as granular media
[8, 9, 51], pedestrian models [31], swarming [5, 38, 39, 43, 50], cell adhesion [46], chemotaxis cell
motility [12,14,34], and opinion dynamics [1,37,44], to name only a few. The case of homogeneous
nonlinear diffusion, corresponding to U(ρ) = 1

m−1ρ
m and ∇ · (∇U ′(ρ)ρ) = ∆ρm with m > 1, has

also received a lot of attention, in particular thanks to variants of the classical Keller–Segel model
for chemotaxis [13, 21, 22, 24, 26, 50] and to swarming aggregation models taking into account size
or volume constraints for the individual particles [17,18,36,45].

The first main result of this paper (Theorem 6.1) gives, for interaction potentials which are
bounded from below and linear diffusion, a sharp condition related to the noise strength ε allowing
for the existence or not of global minimizers of the corresponding free energy (1.2); see Section 6.
It is well-known that for homogeneous kernels with linear diffusion, the criticality corresponds to
the logarithmic kernel in any dimension [11, 22]. In particular, this is the case of the celebrated
classical Keller–Segel model in two dimensions [34] that enjoys the critical mass phenomena. Our
result is the natural counterpart for interaction potentials which are bounded from below giving
the sharp constant for this dichotomy in terms of the noise strength ε. More precisely, if

lim
|x|→∞

∇W (x) · x = L > 0

for some constant L, then there exists a critical diffusion εc = L/(2d) separating the existence of
ground states from the unboundeness from below of the free energy. Notice that this condition is
satisfied for interaction potentials behaving logarithmically at infinity. This result is not covered
by the concentration-compactness principle of Lions’ [41].

A related problem with linear diffusion concerns the question of how stable the (local) minimizers
with zero diffusion ε = 0 are when small noise ε is switched on. This question is very much related
to metastability phenomena observed in numerical simulations [6,7,35,37]. For instance, it is shown
in [19,48] that for compactly supported, not H-stable interaction potentials, the energy (1.2) with
ε = 0 has global minimizers given by compactly supported probability measures. We refer the
reader to [19, 48] for further considerations on H-stability and on the existence/nonexistence of
global minimizers without noise. Typical examples include Morse and repulsive-attractive power-
law potentials [28], as well as compactly supported repulsive-attractive potentials [7,37]. Our second
main result (Theorem 3.1) gives a negative answer for repulsive-attractive interaction potentials
which are smooth enough showing that no critical points or stationary states of the energy (1.2)
exist as soon as the linear diffusion is triggered with ε > 0, no matter how small the noise strength
ε is. Note that this is also related to the question of finding sharp conditions for the (non)existence
of steady states for kinetic systems such as the Vlasov–Poisson–Fokker–Planck system [15,33]. Our
strategy is based on an argument by contradiction using the nonlinear integral equation satisfied by
the steady states obtained from the Euler–Lagrange conditions for the critical points; see Section
3. We conjecture that this is one of the reasons behind the metastability observed in numerical
simulations [6,7,35,37] in this context. Note that our result asserts that no stationary state of (1.1)
exists for ε > 0 in the whole space Rd; however, for bounded domains with no-flux boundary con-
ditions, ground states exist by compactness and lower semicontinuity of the energy. Nevertheless,
the larger the domain the flatter the stationary state becomes; see Remark 3.2. Hence, for large
domains no stationary state resembles the global minimizer of (1.2) with ε = 0.

The third main result (Theorem 4.1) contains a sufficient condition on general interaction po-
tentials and nonlinear diffusions for the unboundeness from below of the free energy (1.2). This
result is again sharp for homogeneous diffusions U(ρ) = ρm, with m ≥ 1, recovering previous results
in [13,22]. Moreover, by means of an explicit counterexample, we see that these conditions are not
sharp for homogeneous diffusions U(ρ) = ρm, with m ≤ 1; see Section 4. Section 5 discusses the
sharpness of this condition in terms of existence of global minimizers for U(ρ) = ρm, with m > 1,
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and homogeneous kernels. Although the existence of global minimizers is a consequence of Li-
ons’ concentration-compactness principle [48], we give here an elementary different proof exploiting
extra compactness properties stemming from radial decreasing rearrangements.

In Section 2 we first collect some preliminary material necessary to the proper treatment of the
free energy (1.2) in subsets of probability measures.

2. Preliminaries

In this section we introduce the notation, definitions and preliminary results used throughout.

2.1. Measures. We write P(Rd) the set of Borel probabilty measures and Pac(Rd) the subset of
P(Rd) of measures which are absolutely continuous with respect to the d-dimensional Lebesgue
measure. Given p ∈ N, we write Pp(Rd) the subset of P(Rd) of measures with finite pth moment.
The pth Wasserstein distance dp(µ, ν) between two probability measures µ and ν belonging to

Pp(Rd) is

dp(µ, ν) = min
π∈Π(µ,ν)

(∫
Rd×Rd

|x− y|pdπ(x, y)

)1/p

,

where Π(µ, ν) is the set of tranport plans between µ and ν; i.e., Π(µ, ν) is the subset of P(Rd) ×
P(Rd) of measures with µ as first marginal and ν as second marginal. We also define the ∞-
Wasserstein distance d∞(µ, ν), whenever µ and ν are compacty supported, by

d∞(µ, ν) = inf
π∈Π(µ,ν)

sup
(x,y)∈suppπ

|y − x|,

where the supp denotes the support.
In this paper we work with the weak-∗ topology of measures. We say that a sequence (µn)n∈N of

measures in M(Rd), the set of Radon measures, converges weakly-∗ to a measure µ∞ ∈M(Rd) if∫
Rd
f(x) dµn(x)→

∫
Rd
f(x) dµ∞(x) as n→∞ for all f ∈ Cc(Rd),

where Cc(Rd) is the space of compactly supported continuous functions defined on Rd.
Since M(Rd) is the dual space of Cc(Rd), the Banach–Alaoglu theorem applied to measures

tells us that the closed unit ball in M(Rd) in the weak-* topology is weakly-∗ compact. If we now
restrict to P(Rd) and to the setM+(Rd) of nonnegative Radon measures, then we get the following
compactness [16, Chapter 3]:

Theorem 2.1 (compactness of weak-∗ topology). Let (µn)n∈N be a sequence in P(Rd). There
exists a subsequence of (µn)n∈N which converges weakly-∗ to some µ∞ ∈M+(Rd).

We recall the definition of tightness and Prokhorov’s theorem; see for example [10].

Definition 2.2 (tight family of measures). We say that a family {µn}n∈N ⊂M(Rd) is tight if for
every δ > 0 there exists a compact set Kδ ⊂ Rd such that

|µn(Kc
δ )| ≤ δ, uniformly in n,

where Kc
δ is the complementary set of Kδ.

Theorem 2.3 (Prokhorov’s theorem). A family {ρn}n∈N ⊂ P(Rd) is tight if and only if it is
weakly-∗ relatively compact in P(Rd).

Given a map T : Rd → Rd and a probability measure ρ, we write T#ρ the push-forward measure
of µ through T ; i.e., T#ρ is the probability measure such that, for any measurable function ϕ : Rd →
[−∞,∞] with ϕ ◦ T integrable, we have∫

Rd
ϕ(x) dT#ρ(x) =

∫
Rd
ϕ(T (x)) dρ(x).
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2.2. Definition of the energy. We introduce the family of free energy functionals defined on the
set of probability measures Eε : P(Rd) → (−∞,∞], indexed by ε > 0, given for all ρ ∈ P(Rd) by
Eε(ρ) =W(ρ) + εEU (ρ), where the interaction energy W and the entropy EU are defined by

W(ρ) =
1

2

∫
Rd

∫
Rd
W (x− y) dρ(x) dρ(y) and EU (ρ) =

∫
Rd
U(ρac(x)) dx+ ρs(Rd)Us.

Here, W is the interaction potential, or kernel, and U is the entropy, or internal density, function.
The measures ρac and ρs are the absolutely continuous and singular parts of ρ in the unique Lebesgue
decomposition ρ = ρac+ρs, and Us is defined as Us = lim supr→∞ U(r)/r; see [2, Definition 2.32] for
a link to the recession function. By convention, when Us = +∞, or equivalently, U has superlinear
growth at infinity, and ρs(Rd) = 0 we set ρs(Rd)Us = 0. Observe that when Us = +∞ we get

EU (ρ) =

{∫
Rd U(ρ(x)) dx for all ρ ∈ Pac(Rd),

+∞ for all ρ ∈ P(Rd) \ Pac(Rd).

Although further hypotheses may be considered in various places below, we shall most of the
time, sometimes implicitly, assume that W : Rd → (−∞,∞] is locally integrable (i.e., is in L1

loc(Rd)),
lower semicontinuous and symmetric (i.e., W (x) = W (−x) for all x ∈ Rd), and that U : [0,∞)→ R
is continuous, of class C2 on (0,∞), convex, and satisfying U(0) = 0. We refer to this set of
hypotheses as (H). Note that, without loss of generality, we can simply assume that W is positive
rather than bounded from below by a real constant.

We assume that W is symmetric without loss of generality, since otherwise one could symmetrize
the interaction potential and the question about minimizers or critical points of these functionals,
as defined below, would remain unchanged. We shall say that the interaction potential W is
differentiable away from the origin if W is of class C1 everywhere but 0.

Let us emphasize that the basic assumptions (H) together with boundedness from below of the
interaction potential W ensure that the free energy functional (1.2) is well-defined on the set of
probability measures. Indeed, notice first that the weak-∗ lower semicontinuity of the functional
EU is equivalent to the lower semicontinuity and convexity of U ; see [2, Theorem 2.34]. Moreover,
because W is lower semicontinuous and bounded from below, we obtain by [47, Proposition 7.2] that
W is weak-∗ lower semicontinuous. Therefore, we obtain that, given {ρn}n∈N ⊂ C∞c (Rd) ∩ P(Rd)
and ρ ∈ C∞c (Rd) ∩ P(Rd) such that ρn ⇀ ρ, the assumption (H) yields

Eε(ρ) ≤ lim inf
n→∞

Eε(ρn).

Now, we extend Eε to all of P(Rd) by lower semicontinuity. Given ρ ∈ P(Rd), we define

Eε(ρ) = inf
{ρn}n∈N⊂C∞c (Rd)∩P(Rd)

s.t. ρn⇀ρ

lim inf
n→∞

Eε(ρn).

In addition, regardless of the boundedness from below of W , the assumptions (H) make sure that
the energy is always well-defined when restricted to characteristic functions of balls. We shall
always make sure in the following to be in either of these two well-defined cases.

Each entropy function U is associated its McCann scaling function u : (0,∞) → R, which is
defined by

u(r) = rdU(r−d) for all r ∈ (0,∞).

As proven by McCann [42], convexity in the 2-Wasserstein sense of the associated entropy is equiv-
alent to u being nonincreasing and convex. Observe that u being nonincreasing and U convex are
equivalent to say that the formal 2-Wasserstein gradient flow is a nonlinear diffusion equation of the
form ∂tρ = ∆P (ρ) with P nonnegative and nondecreasing respectively since P (r) = rU ′(r)− U(r)
and P ′(r) = rU ′′(r). These conditions on U intuitively mean that the functional is modelling a
localized repulsive effect for ρ. We say that U does not model slow diffusion if limr→0 U

′(r) = −∞.
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Notice that this includes the subcase of linear diffusion P (ρ) = ρ, or equivalently, U(ρ) = ρ log ρ,
and the subcase of fast diffusion corresponding to limr→0 rU

′′(r) = −∞. Note that McCann’s
scaling function captures how the entropy functional changes over dilations of the normalized char-
acteristic function χBr of the open Euclidean ball Br of radius r ≥ 0 centered at the origin, or in
other words, over rays in the Wassertein metric spaces (Pp(Rd), dp), 1 ≤ p ≤ ∞. More precisely, it
is easy to check that

EU (ρr) = EU (r−dω−1
d χBr) =

∫
Br

U(r−dω−1
d ) dx = rdωdU(r−dω−1

d ) = u(rω
1/d
d ),

where ρr = Tr#(ω−1
d χB1) = r−dω−1

d χBr with Tr(x) = rx, and ωd is the volume of the d-dimensional
unit ball. Often we shall consider the derivative of the entropy functional under dilations, and for
that purpose we consider the related scaling function v : (0,∞)→ R given by

v(r) = −ru′(r) for all r ∈ (0,∞).

The model cases for the diffusion are given by the power (nonlinear) function

U(r) =
rm

m− 1
, m 6= 1, for all r ∈ [0,∞),

in which case we shall write Em instead of EU , and by the logarithmic function (which we refer to
as the linear case m = 1)

U(r) = r log r for all r ∈ [0,∞),

in which case we prefer the notation E over E1 for the entropy. In these typical models the associated
scaling functions are given for all r ∈ (0,∞) by

u(r) =
r(1−m)d

m− 1
and v(r) = dr(1−m)d

for m 6= 1, and by
u(r) = −d log(r) and v(r) = d

for m = 1.
The model case for attractive interaction potentials is given by power laws. For a given β > −d

we write Wβ in place of W for the interaction potential defined by

Wβ(x) =

{
|x|β
β if β 6= 0,

log |x| if β = 0.

The resulting interaction energy in this case is denoted Wβ. Note that for −d < β ≤ 0 one needs
to restrict the functional to a set of suitable densities for the energies Wβ and Em +Wβ to be
well-defined. For instance, these energies are always well-defined for compactly supported bounded
functions. We will specify the precise definition of the domain of the energies when needed. As we
shall see, there is a direct relationship between strength of attractivity in the interaction energy
Wβ and repulsivity in the entropy Em. In this paper we study in detail the criticality that happens
at β = 0 and m = 1; we give sharp conditions for the existence of global minimizers in the linear
diffusion regime (Theorem 6.1).

2.3. Critical points, local minimizers, and Euler–Lagrange conditions. We say that ρ ∈
P(Rd) is a critical point of Eε if Eε(ρ) <∞ and if it satisfies that δEε

δρ := εU ′(ρ) +W ∗ ρ be equal

to a constant, possibly different in each closed connected component of the support of ρ. Small
variants of the results in [4, 13, 22, 24, 25] imply that local minimizers of Eε with respect to dp for
any 1 ≤ p ≤ ∞ are critical points of Eε.

For the lack of a precise reference, we derive here the Euler–Lagrange conditions for d∞-local
minimizers. Given r > 0, we say that ρ is a d∞-local minimizer with radius r if Eε(ρ) ≤ Eε(ν)
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for any ν ∈ P(Rd) such that d∞(ρ, ν) < r. Note that this definition holds analogously for dp-local
minimizers for any p ∈ [1,∞). We show that if ρ is a d∞-local minimizer with radius r, then it
satisfies that for each closed connected component Ai of its support there exists Ci ∈ R such that{

εU ′(ρ) +W ∗ ρ = Ci almost everywhere on Ai,

εU ′(ρ) +W ∗ ρ ≥ Ci almost everywhere on Ai +Br.
(2.1)

Indeed, because ρ is a d∞-local minimizer, we obtain that if d∞(ν, ρ) ≤ r, then

d

dt
Eε((1− t)ρ+ tν)

∣∣∣∣
t=0

≥ 0,

which implies ∫
Rd

(εU ′(ρ) +W ∗ ρ) dν ≥
∫
Rd

(εU ′(ρ) +W ∗ ρ) dρ. (2.2)

We take x0 ∈ supp ρ and φ ∈ C∞c (Br(x0)), where Br(x0) stands for the open ball of radius r and
center x0. For δ < ‖φ‖L∞(Rd)/2, we consider the probability measure

ν = ρ
¬
Bc
r(x0) +

(
1 + ε

(
φ− 1

ρ(Br(x0))

∫
Br(x0)

φ dρ

))
ρ
¬
Br(x0),

where ρ
¬
Br(x0) denotes the restriction of ρ to the ball Br(x0) and ρ

¬
Bc
r(x0) the restriction to its

complement. Because ν results only from perturbing ρ inside Br(x0), it is clear that d∞(ν, ρ) < r.
For this particular ν, (2.2) can be rewritten as∫

Br(x0)
(εU ′(ρ) +W ∗ ρ)φdρ ≥

(
1

ρ(Br(x0))

∫
Br(x0)

φdρ

)∫
Br(x0)

(εU ′(ρ) +W ∗ ρ) dρ.

By taking −φ instead of φ, we get that, for any φ ∈ C∞c (Br(x0)),∫
Br(x0)

(εU ′(ρ) +W ∗ ρ)φdρ =

(
1

ρ(Br(x0))

∫
Br(x0)

φdρ

)∫
Br(x0)

(εU ′(ρ) +W ∗ ρ) dρ,

which implies that, almost everywhere in Br(x0),

εU ′(ρ) +W ∗ ρ =
1

ρ(Br(x0))

∫
Br(x0)

(εU ′(ρ) +W ∗ ρ) dρ.

Hence, εU ′(ρ) + W ∗ ρ is almost everywhere locally constant in each connected component of the
support of ρ. Which shows the first condition in (2.1). Next, we consider ψ ∈ C∞c (Br(x0)) positive.
For δ < 1/

∫
Rd ψ dx we now take the probability measure

ν = ρ+ δ

(
ψρ(Br(x0))−

(∫
Br(x0)

ψ dx

)
ρ
¬
Br(x0)

)
,

which again satisfies d∞(ν, ρ) < r. For this particular ν, (2.2) can be rewritten as

ρ(Br(x0))

∫
Br(x0)

(εU ′(ρ) +W ∗ ρ)ψ dx ≥

(∫
Br(x0)

ψ dx

)∫
Br(x0)

(εU ′(ρ) +W ∗ ρ) dρ.

The previous inequality holds for any ψ ∈ C∞c (Br(x0)) positive, which, combined with the first
condition in (2.1), implies the second inequality in (2.1).
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2.4. Radial rearrangements. We recall here Riesz’s rearrangement inequality and its conse-
quence on our energy Eε; see [40, Chapter 3].

Theorem 2.4 (Riesz’s rearrangement inequality). Let g, h : Rd → [0,∞) be two nonnegative func-
tions and f : Rd → (−∞, 0] be a nonpositive function. Then∫

Rd

∫
Rd
f∗(x− y)g∗(y)h∗(x) dx dy ≤

∫
Rd

∫
Rd
f(x− y)g(y)h(x) dx dy,

where f∗, g∗ and h∗ are the radially symmetric decreasing rearrangements of f , g and h, respectively.

If ρ ∈ Pac(Rd), then note that its radially symmetric decreasing rearrangement also belongs to
Pac(Rd); more generally, the Lm-norm of ρ equals that of ρ∗. If β < 0, we therefore have

Wβ(ρ∗) ≤ Wβ(ρ) and EU (ρ∗) = EU (ρ),

where the equality for the entropies follows from [40, Section 3.3, Equation (3)]. All in all we get
that if ρ ∈ Pac(Rd) and β < 0, then

Eε(ρ
∗) ≤ Eε(ρ). (2.3)

The case β = 0 is also included and satisfies Eε(ρ
∗) ≤ Eε(ρ); see [23, Lemma 2].

2.5. Inequalities of Hardy–Littlewood–Sobolev (HLS) type. We need some HLS-type in-
equalities; see [13] and [23, Theorem 1].

Theorem 2.5 (variation of the HLS inequality). Given ρ ∈ Pac ∩ Lm(Rd) and −d < λ < 0, for
any m ≥ 1− λ/d ∫

Rd

∫
Rd
|x− y|λ dρ(x) dρ(y) ≤ C(λ, d)‖ρ‖(1−θ)mc

Lm(Rd)
,

where C(λ, d,m) > 0 is a constant depending on λ, d and m, 0 ≤ θ < 1 and mc = 1− λ/d.

Proof. From [22, Theorem 3.1] we know that for mc = 1− λ/d.∫
Rd

∫
Rd
|x− y|λdρ(x)dρ(y) ≤ C(λ, d)

∫
Rd
ρ(x)mc dx. (2.4)

By interpolation, taking θ satisfying

1

mc
= θ +

1− θ
m

gives the inequality

‖ρ‖mc

Lmc (Rd)
≤ ‖ρ‖θmc

1 ‖ρ‖(1−θ)mc

Lm(Rd)
. (2.5)

Using (2.4), (2.5) and the fact that ‖ρ‖L1 = 1, one can derive the desired inequality∫
Rd

∫
Rd
|x− y|λdρ(x)dρ(y) ≤ C(λ, d)‖ρ‖mc

Lmc (Rd)
≤ C(λ, d)‖ρ‖θmc

1 ‖ρ‖(1−θ)mc

Lm(Rd)
. �

Theorem 2.6 (logarithmic HLS inequality). Let ρ ∈ Pac(Rd) satisfy log(1+ | · |2)ρ ∈ L1(Rd). Then
there exists C0 ∈ R depending only on d, such that

−
∫
Rd

∫
Rd

log(|x− y|)ρ(x)ρ(y) dx dy ≤ 1

d
E(ρ) + C0. (2.6)
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2.6. Compactness of probability measures with bounded interaction energy. We first
prove the following lemma, which we shall use throughout the paper.

Lemma 2.7. Given α > 0, there exists γα > 0 such that, for any ρ ∈ P(Rd) ∩ C∞c (Rd) satisfying∫
Rd x dρ(x) = 0, we have

2 max{1, 2α−1}
∫
Rd
|x|α dρ(x) ≥

∫
Rd

∫
Rd
|x− y|α dρ(x) dρ(y) ≥ γα

∫
Rd
|x|α dρ(x).

To prove Lemma 2.7 we need a variation of the classical triangle inequality.

Lemma 2.8. Given α > 0 and x, y ∈ Rd, we have the inequality

|x− y|α ≤ max{1, 2α−1}(|x|α + |y|α). (2.7)

Proof. Suppose first α ≥ 1. In this case we exploit the monotonicity and the convexity of the
function t 7→ tα and the triangle inequality to say

|x− y|α

2α
=

∣∣∣∣x− y2

∣∣∣∣α ≤ ( |x|+ |y|2

)α
≤ 1

2
(|x|α + |y|α).

Multiplying the previous equation by 2α gives (2.7) for α ≥ 1.
We now suppose α < 1. In this case we exploit the sublinear growth of the function t 7→ tα,

namely that, for any r ≥ 0,

(1 + r)α ≤ 1 + rα.

Assuming x 6= 0, or the result is trivial, the triangle inequality and the previous inequality yield

|x− y|α ≤ (|x|+ |y|)α = |x|α
(

1 +
|y|
|x|

)α
≤ |x|α

(
1 +
|y|α

|x|α

)
= |x|α + |y|α,

which gives the desired result. �

Proof of Lemma 2.7. The upper bound follows easily from Lemma 2.8. We show the lower bound
by classical compactness arguments. By contradiction we suppose that the inequality does not hold
for any γα > 0. Therefore, we can assume that there exists a sequence (ρn)n∈N ⊂ P(Rd)∩C∞c (Rd)
such that, for all n ∈ N,∫

Rd

∫
Rd
|x− y|α dρn(x) dρn(y) <

1

n

∫
Rd
|x|α dρn(x).

Next, we realize that the same inequality is satisfied by any arbitrary rescaling of our sequence
(Trn#ρn)n∈N. This follows from the scalings∫

Rd
|x|α dTr#ρn(x) = rα

∫
Rd
|x|α dρn(x)

and ∫
Rd

∫
Rd
|x− y|α dTr#ρn(x) dTr#ρn(y) = rα

∫
Rd

∫
Rd
|x− y|α dρn(x) dρn(y).

Then, for any n, we pick rn > 0 such that∫
Rd
|x|α dTrn#ρn(x) = 1.

Using this we define a sequence (νn)n∈N of probability measures such that, for all n ∈ N, νn =
Trn#ρn. This satisfies∫

Rd
|x|α dνn(x) = 1 and

∫
Rd

∫
Rd
|x− y|α dνn(x) dνn(y) <

1

n
for any n ∈ N. (2.8)
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By (2.8) we know that {νn}n∈N is a tight family due to Theorem 2.3, since∫
Bc
R

dνn(x) ≤ 1

Rα

∫
Bc
R

|x|α dνn(x) =
1

Rα
.

Therefore there exists ν∞ ∈ P(Rd), such that νn ⇀ ν∞ weakly-∗ as n→∞. By lower semicontinuity
of the interaction energy and (2.8) we get that∫

Rd

∫
Rd
|x− y|α dν∞(x) dν∞(y) = 0.

Using the hypothesis that
∫
Rd x dνn(x) = 0, we deduce that ν∞ = δ0. Now, we derive a contradiction

from this; in particular we want to show that∫
Rd

∫
Rd
|x− y|α dνn(x) dνn(y) >

1

max{2, 2α}
for n large enough, (2.9)

which contradicts (2.8). Because νn ⇀ δ0, for any ε > 0 and η > 0 there exists n0 ∈ N large enough
such that

νn(Bη) ≥ 1− ε for any n ≥ n0.

Then, we deduce∫
Rd

∫
Rd
|x− y|α dνn(x)dνn(y) ≥

∫
Bc
η

∫
Bη

|x− y|α dνn(x)dνn(y) ≥ (1− ε)
∫
Bc
η

(|y| − η)α dνn(y)

≥ 1− ε
max{1, 2α−1}

∫
Bc
η

|y|α dνn(y)− (1− ε)ηα

=
1− ε

max{1, 2α−1}

(
1−

∫
Bη

|y|α dνn(y)

)
− (1− ε)ηα

≥ 1− ε
max{1, 2α−1}

(1− ηα)− (1− ε)ηα,

where we have used the triangle inequality max{1, 2α−1}((|y|−η)α+ηα) ≥ |y|α given by Lemma 2.8.
Taking η and ε small enough yields (2.9), which in turn shows the desired contradiction. �

Because sequences of probability measures with uniformly bounded moments must be tight, from
Lemma 2.7 we can easily deduce the following: given a sequence of (ρn)n∈N ⊂ P(Rd) with center
of mass at zero, if

sup
n∈N

∫
Rd

∫
Rd
|x− y|α dρn(x) dρn(y) <∞,

then {ρn}n∈N is a tight family of probability measures, implying that {ρn}n∈N is weakly-∗ relatively
compact. In this work, we make use of the following more refined version of this observation, whose
proof does not directly require Lemma 2.7

Lemma 2.9. Let us consider a positive interaction potential satisfying (H) such that

lim
|x|→∞

W (x) = +∞. (2.10)

Given a sequence (ρn)n∈N ⊂ P(Rd), if

lim inf
n→∞

∫
Rd

∫
Rd
W (x− y) dρn(x)dρn(y) <∞, (2.11)

then {ρn}n∈N is weakly-∗ relatively compact up to translations. That is to say, there exists ρ∞ ∈
P(Rd), a subsequence {ρni}i∈N and a sequence of points {yi}i∈N ⊂ Rd, such that

Hyi#ρni ⇀ ρ∞ for all i ∈ N,
9



where Hyi : Rd → Rd is the translation map Hyi(x) = x− yi.
Proof. We show the result by contradiction. Assume that {ρn}n∈N is not weakly-∗ relatively com-
pact up to translations. By Prokhorov’s theorem (Theorem 2.3), this means that {ρn}n∈N is not
tight up to translations. That is, there exists ε > 0 such that, for any R > 0,

lim inf
n→∞

inf
x∈Rd

ρn(Bc
R(x)) > ε, (2.12)

where BR(x) is the ball of radius R centered at x. Given R > 0, we estimate the interaction energy
as ∫

Rd

∫
Rd
W (x− y) dρn(x)dρn(y) ≥

∫
{x,y∈Rd||x−y|>R}

W (x− y) dρn(x)dρn(y)

≥ inf
z∈Bc

R

W (z) inf
x∈Rd

ρn(Bc
R(x)).

Using (2.12) and taking the limit when n→∞ we have

lim inf
n→∞

∫
Rd

∫
Rd
W (x− y) dρn(x)dρn(y) ≥ ε inf

z∈Bc
R

W (z).

By taking the limit R→∞ and using our hypothesis in (2.10) we have

lim inf
n→∞

∫
Rd

∫
Rd
W (x− y) dρn(x)dρn(y) =∞,

which contradicts the boundedness of the interaction energy assumed in (2.11). �

Remark 2.10. Lemma 2.9 tacitly appears in [48]. Here we give a simple alternative proof that
only uses the classical Prokhorov’s theorem and does not employ the more refined concentration-
compactness lemma of [41].

Finally in this section we give a quick corollary of Lemma 2.7: we can bound the logarithmic
entropy E by the interaction energy Wβ.

Corollary 2.11. For any β, ε > 0 there exists Cβ,ε > 0 such that, for any ρ ∈ P(Rd), we have that

E(ρ) ≥ −Cβ,ε − εWβ(ρ).

Proof. Choose β, ε > 0. We recall the classical version of Carleman’s inequality [12, Lemma 3.4]:
for any β, ε0 > 0 there exists Cβ,ε0 > 0 such that, for any ρ ∈ P(Rd), we have

E(ρ) ≥ −Cβ,ε0 − ε0

∫
Rd
|x|β dρ(x).

Using Lemma 2.7 and picking 2βε0 = γβε, we obtain the desired result. �

3. Nonexistence of local minimizers and critical points

Theorem 3.1 (nonexistence of local minimizers and critical points). Let U(r) = r log(r), i.e., we
consider the case of linear diffusion. Suppose that the interaction potential W is positive, satisfies
(H) and that, for any δ > 0, W ∈ L∞(Rd \ Bδ). Then for any ε > 0 the energy Eε = εE +W
does not admit any dp-local minimizer for any p ∈ [1,∞] in P(Rd). Moreover, if W is Lipschitz

continuous, then there are no critical points of Eε in Pac(Rd).
Remark 3.2. Global minimizers of Eε = εE +W always exist in a bounded domain Ω with null
flux boundary conditions; this follows from compactness and the lower semicontinuity of the energy.
If W is Lipschitz, the argument below shows that, for any steady state ρ,

‖ρ‖L∞(Rd) ≤ |Ω|−1e
‖W‖L∞−infW

ε . (3.1)

Hence, at fixed ε > 0 the larger the domain, the smaller the L∞-norm of any steady state is.
10



Remark 3.3. Following a similar proof as below, Theorem 3.1 extends to any entropy functional
EU , where U is convex with u nonincreasing and with limr→0 U

′(r) = −∞ (that is, U does not
model slow diffusion). We can also observe from the proof that the Lipschitz hypothesis on W can
be relaxed if we assume extra integrability on the critical points.

Proof of Theorem 3.1. We show that a minimizer does not exist by contradicting the mass condi-
tion. Assume there exists ρ ∈ P(Rd) which is a dp-local minimizer of Eε. The minimality condition
(2.1) implies for each closed connected component Ai of the support of ρ, there exists Ci ∈ R and
an open neighborhood Ni of Ai such that{

ε log(ρ) +W ∗ ρ = Ci on Ai,

ε log(ρ) +W ∗ ρ ≥ Ci on Ni.
(3.2)

We first want to show that A1 = N1, which implies that A1 = Rd as it is nonempty, open and
closed. We suppose that there exists x ∈ N1 \ supp ρ. By our boundedness assumption on W away
from the origin, we get

|W ∗ ρ(x)| ≤ ‖W‖L∞(Rd\Bd(x,supp ρ)),

where d(x, supp ρ) stands for the distance between the point x and the set supp ρ. Using the second
equation in (3.2), we get the contradiction

−∞ = ε log(0) = ε log(ρ(x)) ≥ Ci − ‖W‖L∞(Rd\Bd(x,supp ρ)) > −∞.

Therefore, we have A1 = N1 and so A1 = Rd. This implies that, for any x ∈ Rd,

ρ(x) = exp

(
C1 −W ∗ ρ(x)

ε

)
. (3.3)

From this equation, and using the monotonicity of the exponential, we have the bound

‖ρ‖L∞(Rd) ≤ exp

(
C1 − inf W

ε

)
.

Combining this with the local integrability and boundedness hypothesis on W , we get that

‖W ∗ ρ‖L∞(Rd) ≤ ‖WχBδ ∗ ρ‖L∞(Rd) + ‖WχBc
δ
∗ ρ‖L∞(Rd)

≤ ‖W‖L1(Bδ)‖ρ‖L∞(Rd) + ‖W‖L∞(Bc
δ)
‖ρ‖L1(Rd).

Using (3.3), the monotonicity of the exponential and the above inequality, we finally deduce

ρ(x) ≥ exp

(
C1 − ‖W ∗ ρ‖L∞(Rd)

ε

)
> 0 for all x ∈ Rd,

which clearly contradicts ∫
Rd
ρ(x) dx = 1,

and thus shows the nonexistence of local minimizers.
Now, we assume that W is Lipschitz continuous and show that this implies the nonexistence

of critical points. If ρ ∈ Pac(Rd) is a critical point, then for each connected component Ai of the
support of ρ there exists Ci ∈ R such that

ε log(ρ) +W ∗ ρ = Ci on Ai. (3.4)

We also get that, in the sense of distributions,

∇ρ = ρ∇W ∗ ρ. (3.5)

Using that W is Lipschitz, we get that ∇ρ ∈ L1(Rd). By the Sobolev inequality, this implies that

ρ ∈ Ld/(d−1)(Rd). By using (3.5) and the Lipschitz condition again, we obtain that ∇ρ ∈ Ld/(d−1).
11



Iterating we get that there exists α > 0 such that ρ ∈ Cα(Rd). (See [24,26], where similar arguments
are applied to nonlinear fast diffusion.) Combining the smoothness of ρ with (3.4), we get that ρ
cannot vanish. Therefore, there exists C ∈ R such that

ε log(ρ) +W ∗ ρ = C in Rd,
and the contradiction follows as in the case above of local minimizers. �

4. Nonexistence of minimizers

We start by showing a general theorem with respect to the nonexistence of global minimizers.

Theorem 4.1 (nonexistence of global minimizers). Let ε > 0 and suppose that the interaction
potential W satisfies (H) and is differentiable away from the origin, and suppose that U is such
that u is nonincreasing. If

lim sup
r→∞

(
1

2
sup
z∈B2r

(∇W (z) · z)− εv(rω
1/d
d )

)
< 0 (4.1)

or

lim inf
r→0

(
1

2
inf
z∈B2r

(∇W (z) · z)− εv(rω
1/d
d )

)
> 0, (4.2)

then Eε is not bounded below in the class of compactly supported bounded functions.

Remark 4.2. If we consider the model cases U = Um and W =Wβ, then the hypotheses in (4.1)
and (4.2) translate, respectively, to

lim
r→∞

(
2β−1rβ − εdω1−m

d r(1−m)d
)
< 0 if β ≥ 0,

and
lim
r→0

(
2β−1rβ − εdω1−m

d r(1−m)d
)
> 0 if β ≤ 0.

Therefore, Theorem 4.1 shows that the energy is not bounded below in the so-called aggregation-
dominated [21, 22] regime

β < d(1−m).

For the critical case β = d(1−m), the theorem tells us that it depends on the size of ε. Indeed, the
energy is not bounded below in the class of compactly supported bounded functions in the case

m < 1 and ε >
2β−1

dω1−m
d

,

and in the case

m > 1 and ε <
2β−1

dω1−m
d

.

We show that the relationship β = d(1 − m) is sharp in the cases m > 1 and m = 1, and that
it is not sharp in the case m < 1; see Theorem 5.1, Theorem 6.1 and Theorem 4.3, respectively.
The fair competition regime corresponding to β = d(1 − m), with m ≥ 1, enjoys a critical mass
dichotomy based on variants of the HLS inequality for m > 1, Theorem 2.5, and the logarithmic
HLS inequality for m = 1 (Theorem 2.6); see [14, 22, 34] for details.

Proof of Theorem 4.1. Considering ρr = r−dω−1
d χBr , we claim that if the hypothesis in (4.1) is

satisfied, then limr→∞Eε(ρr) = −∞. On the other hand, if (4.2) is satisfied, then limr→0Eε(ρr) =
−∞. The proof is based on differentiating the energy under the scaling parameter r. Changing
variables, we obtain that

Eε(ρr) =
1

2ω2
d

∫
B1

∫
B1

W (r(x− y)) dxdy + εrdωdU(r−dω−1
d ).
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We remind that we denote rdωdU(r−dω−1
d ) = u(rω

1/d
d ), where u is the McCann scaling function.

Differentiating in r we obtain that

dEε(ρr)

dr
=

1

r

(
1

2ω2
d

∫
B1

∫
B1

∇W (r(x− y)) · r(x− y) dxdy − εv(rω
1/d
d )

)
.

Estimating the integral we get that

1

r

(
1

2
inf
z∈B2r

∇W (z) · z − εv(rω
1/d
d )

)
≤ dEε(ρr)

dr
≤ 1

r

(
1

2
sup
z∈B2r

∇W (z) · z − εv(rω
1/d
d )

)
If (4.1) is satisfied, there exists r1 > 0 and δ1 > 0, such that

dEε(ρr)

dr
≤ −δ1

r
for any r > r1.

Integrating we get that for any r > r1

Eε(ρr) ≤ δ1 log(r1/r) + Eε(ρr1).

Hence,

lim
r→∞

Eε(ρr) = −∞.

If now (4.2) is satisfied, there exists r2 > 0 and δ2 > 0 such that

dEε(ρr)

dr
≥ δ2

r
for any r < r2.

Integrating we get that for any r < r2

Eε(ρr) ≤ δ2 log(r/r2) + Eε(ρr2).

Hence,

lim
r→0

Eε(ρr) = −∞. �

For homogeneous energies, we can show that Theorem 4.1 is not sharp in the fast diffusion case.

Theorem 4.3 (unboundedness of energy for fast diffusion m < 1). Given m < 1 and 0 < β <
d(1−m)/m, then for any ε > 0 there exists ρ ∈ P(Rd) ∩ L∞(Rd) such that

Eε(ρ) =

∫
Rd

∫
Rd

|x− y|β

β
dρ(x)dρ(y) + ε

∫
Rd

ρm(x)

m− 1
dx = −∞.

Proof. We construct a probability measure such that the entropy functional Em is infinite but the
interaction energy Wβ is bounded. Decomposing Rd into dyadic rings, we consider

ρ =
∞∑
k=0

ρk
|B2k+1 \B2k |

χB
2k+1\B2k

, (4.3)

where

ρk =
2−kγ∑∞
`=0 2−`γ

.

Now we want to pick γ > 0 appropriately, such that∫
Rd

∫
Rd

|x− y|β

β
dρ(x)dρ(y) <∞

and ∫
Rd

ρm(x)

m− 1
dx = −∞.
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By Lemma 2.8 we know |x− y|β ≤ max{1, 2β−1}(|x|β + |y|β) for all x, y ∈ Rd; hence∫
Rd

∫
Rd

|x− y|β

β
dρ(x)dρ(y) ≤ 2 max{1, 2β−1}

β

∫
Rd
|x|β dρ(x).

Using (4.3), the exact form for ρ, we get∫
Rd
|x|β dρ =

∞∑
k=0

ρk
|B2k+1 \B2k |

∫
B

2k+1\B2k

|x|β dx = C1(d, β)
∞∑
k=0

ρk2
kβ = C1(d, β)

∑∞
k=0 2−k(γ−β)∑∞
`=0 2−`γ

,

where C1(d, β) is a constant that depends only on the dimension d and β. In order for the right
hand side to be finite, which in turn bounds the interaction energy, we need

γ > β. (4.4)

Turning our attention to the entropy and using the exact form of ρ again, we get∫
Rd
ρm(x) dx =

∞∑
k=0

ρmk |B2k+1 \B2k |(1−m) = C2(d, β)

∑∞
k=0 2−k(mγ−d(1−m))

(
∑∞

`=0 2−`γ)
m ,

for some constant C2(d, β). For the right hand side to be infinite, we need

mγ < d(1−m). (4.5)

Therefore, combining (4.4) and (4.5), we get

β < γ <
d(1−m)

m
.

By hypothesis, we have that β < d(1−m)/m, which implies we can take any γ in between. �

5. Existence of minimizers for m > 1

Again considering homogeneous energies, we now show that Theorem 4.1 is sharp when m > 1.

Theorem 5.1 (existence of global minimizers for slow diffusion m > 1). Given m > 1 and 0 >
β > (1−m)d, for any ε > 0 the energy Eε, given by

Eε(ρ) =


∫
Rd

∫
Rd

|x− y|β

β
dρ(x) dρ(y) + ε

∫
Rd

ρm(x)

m− 1
dx for all ρ ∈ Lm(Rd),

+∞ for all ρ ∈ P(Rd) \ Lm(Rd),

has a global minimizer.

Proof. We show the result by the direct method of the calculus of variations. We first observe that
the functional Eε(ρ) is well-defined and bounded below by the variant of the HLS inequality in
Theorem 2.5.

Step 1. We show that there exists (µn)n∈N ⊂ P(Rd) ∩ Lm(Rd) a minimizing sequence such that

lim
n→∞

Eε(µn) = inf Eε > −∞ and Wβ(µn) = ε
d(m− 1)

β
Em(µn) ∀n ∈ N. (5.1)

Moreover, each µn is radially symmetric and decreasing and E(µn) < 0 for all n ∈ N.
To construct (µn)n∈N we start by taking a minimizing sequence (ρn)n∈N ⊂ P(Rd)∩Lm(Rd), i.e.,

a sequence satisfying limn→∞Eε(ρn) = inf Eε. Because of (2.3), without loss of generality we can
take ρn to be radially symmetric and decreasing for all n ∈ N. For each n, we construct µn from
ρn by optimizing over dilations. To this end, we fix n ∈ N and we can explicitly compute

Eε(Tr#ρn) = rβWβ(ρn) + εrd(1−m)Em(ρn),
14



where we remind that Tr(x) = rx. Using that Wβ(ρn) < 0 and Em(ρn) > 0 combined with
the hypothesis that d(1 −m) < β < 0, we get that there exists a unique r0,n ∈ (0,∞) such that
Eε(Tr#ρn) is strictly decreasing for r < r0,n and strictly increasing for r > r0,n, and Eε(Tr0,n#ρn) <
0. Furthermore, we have

0 =
dEε(Tr#ρn)

dr

∣∣∣∣
r=r0,n

= β(r0,n)β−1Wβ(ρn) + εd(1−m)(r0,n)d(1−m)−1Em(ρn).

By multiplying by r0,n and undoing the scaling, we get the equation

Wβ(Tr0,n#ρn) = ε
d(m− 1)

β
Em(Tr0,n#ρn).

Now, since we have chosen r0,n to minimize over dilations we also have

Eε(Tr0,n#ρn) ≤ Eε(ρn).

Hence, we can take µn = Tr0,n#ρn that satisfies (5.1) and is radially decreasing because ρn is
radially decreasing. To conclude, we can write

inf Eε ≤ Eε(µn) = ε
d(m− 1) + β

β
Em(µn) < 0 (5.2)

since µn ∈ P(Rd) ∩ Lm(Rd) and 0 > β > (1−m)d.

Step 2. By Theorem 2.1, we know that there exists µ∞ ∈M+(Rd) and a subsequence {µni}i∈N,
such that µni ⇀ µ∞ weak-* as measures and 0 ≤ µ∞(Rd) ≤ 1. Abusing notation, we do not keep
track of this subsequence and we still denote by Eε(µ∞) the energy functional evaluated at µ∞
even if we do not know yet if it is a probability measure. In this step, we show that

inf Eε = lim inf
n→∞

Eε(µn) ≥ Eε(µ∞). (5.3)

We recall that Eε(µn) = Wβ(µn) + εEm(µn). Exploiting the lower semicontinuity of the entropy
functional we have

lim inf
n→∞

Em(µn) ≥ Em(µ∞).

We show (5.3) by proving that

lim
n→∞

Wβ(µn) =Wβ(µ∞). (5.4)

Using the properties of µn in (5.1), we get∫
Rd

∫
Rd
|x− y|β dµn(x)dµn(y) = εd

∫
Rd
µmn (x) dx.

Using that β > max{−d, d(1−m)}, we pick γ = (β + max{−d, d(1−m)})/2. By the variation of
the Hardy–Littlewood–Sobolev inequality Theorem 2.5 and Young’s inequality, we know that there
exists a constant C(d,m, β) > 0 that depends on dimension, β and m such that∫

Rd

∫
Rd
|x− y|β dµn(x)dµn(y) = εd

∫
Rd
µmn (x) dx

≥ εC(d,m, β)

∫
Rd

∫
Rd
|x− y|γ dµn(x)dµn(y)− εd. (5.5)

Because γ < β, we know that there exists η(d,m, β, ε) > 0, such that |z|β ≤ 1
2εC(d,m, β)|z|γ for

every z ∈ Bη. Therefore, we deduce∫ ∫
|x−y|<η

|x− y|β dµn(x)dµn(y) ≤ 1

2
εC(d,m, β)

∫ ∫
|x−y|<η

|x− y|γ dµn(x)dµn(y).
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Updating (5.5), we get that for every n ∈ N

ηβ + εd ≥
∫ ∫

|x−y|>η
|x− y|β dµn(x)dµn(y) + εd ≥ 1

2
εC(d,m, β)

∫
Rd

∫
Rd
|x− y|γ dµn(x)dµn(y).

Hence, updating the constants we obtain that there exists C(d,m, β, ε) > 0, such that∫
Rd

∫
Rd
|x− y|γ dµn(x)dµn(y) ≤ C(d,m, β, ε) for all n. (5.6)

Next we use (5.6) to pass to the limit in the interaction energy (5.4). We first realize that by
lower semicontinuity we have the inequality

lim inf
n→∞

∫
Rd

∫
Rd
|x− y|βdµn(x)dµn(y) ≥

∫
Rd

∫
Rd
|x− y|βdµ∞(x)dµ∞(y). (5.7)

Hence, we can show (5.4) by showing the reverse inequality to (5.7).
For any δ > 0 and R > 0, we bound the interaction energy by∫
Rd

∫
Rd
|x− y|β dµn(x)dµn(y) ≤

∫ ∫
{|x−y|<δ}

|x− y|β dµn(x)dµn(y)

+

∫ ∫
{δ−1>|x−y|>δ}∩{|x|<R}∩{|y|<R}

|x− y|β dµn(x)dµn(y)

+ 2

∫ ∫
{δ−1>|x−y|>δ}∩{|x|>R}

|x− y|β dµn(x)dµn(y)

+

∫ ∫
{δ−1<|x−y|}

|x− y|β dµn(x)dµn(y).

(5.8)

Analyzing the first term on the right hand side, we get∫ ∫
{|x−y|<δ}

|x− y|β dµn(x)dµn(y) ≤
∫ ∫

{|x−y|<δ}
|x− y|β−γ |x− y|γ dµn(x)dµn(y)

≤ δβ−γ
∫ ∫

{|x−y|<δ}
|x− y|γ dµn(x)dµn(y)

≤ δβ−γC(d,m, β, ε),

(5.9)

where in the last bound we have used (5.6). The second term has no singularity, hence we can pass
to the limit

lim sup
n→∞

∫ ∫
{δ−1>|x−y|>δ}∩{|x|<R}∩{|y|<R}

|x− y|β dµn(x)dµn(y) ≤
∫
Rd

∫
Rd
|x− y|βdµ∞(x)dµ∞(y). (5.10)

For the third term, we get

2

∫
Rd

∫
{x∈Rd|δ−1>|x−y|>δ, |x|>R}

|x− y|β dµn(x)dµn(y) ≤ 2‖µn‖L∞(Bc
R)δ

β

∫
Rd

∫
{x∈Rd|δ−1>|x−y|>δ, |x|>R}

dx dµn(y)

≤ 2‖µn‖L∞(Bc
R)δ

βωdδ
−d ≤ 2δβ−dR−d, (5.11)

where we have used that β < 0 and that because µn has unit mass and is radially decreasing we
have the inequality µn(x) ≤ (ωd|x|d)−1. Analyzing the fourth term, we get∫ ∫

{δ−1<|x−y|}
|x− y|β dµn(x)dµn(y) ≤ δ−β. (5.12)

Putting (5.8), (5.9), (5.10), (5.11) and (5.12) together, we obtain that, for any δ > 0 and R > 0,

lim sup
n→∞

∫
Rd

∫
Rd
|x− y|β dµn(x)dµn(y)≤Cδβ−γ+

∫
Rd

∫
Rd
|x− y|β dµ∞(x) dµ∞(y)+2δβ−dR−d+δ−β.
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First taking R → ∞ and then δ → 0 we recover the reverse inequality to (5.7). This shows the
desired property (5.3).

Step 3. In this step we show by contradiction that µ∞(Rd) = 1.
We first notice that µ∞(Rd) > 0. In fact, if µ∞(Rd) = 0, then µ∞ = 0 which implies by (5.3)

0 > inf Eε ≥ Eε(µ∞) = 0

a contradiction. The fact that inf Eε < 0 follows from (5.2).
Next, we derive a contradiction if 1 > µ∞(Rd) > 0. From µ∞ we construct µ̃∞ ∈ P(Rd), such

that by (5.3)

inf Eε ≥ Eε(µ∞) > Eε(µ̃∞) ≥ inf Eε, (5.13)

the desired contradiction. We construct µ̃∞ by an appropriate scaling of µ∞. We define

µ̃∞ = rd0 Tr0#µ∞, where r0 = (µ∞(Rd))−1/d

is chosen to satisfy the mass condition.
Next we analyze the behavior of the different parts of our energy under this scaling. Looking at

the entropy, we get

Em(rd0Tr0#µ∞) = rmd0 Em(Tr0#µ∞) = rmd0 r
(1−m)d
0 Em(µ∞) = rd0Em(µ∞). (5.14)

For the interaction energy, unpacking the scaling we get

Wβ(rd0Tr0#µ∞) = r2d
0 Wβ(Tr0#µ∞) = r2d

0 r
β
0Wβ(µ∞) = r2d+β

0 Wβ(µ∞). (5.15)

By the hypothesis that β > −d and that r0 > 1, we get that r2d+β
0 > rd0 . Using (5.14) and (5.15)

by looking at the full energy we get

Eε(µ̃∞) = r2d+β
0 Wβ(µ∞) + rd0Em(µ∞) < rd0Eε(µ∞) ≤ rd0 inf

P(Rd)
Eε < inf

P(Rd)
Eε,

which shows the desired contradiction (5.13) and finishes the proof of the Theorem. �

Remark 5.2. The previous is result is a particular case of [41, Theorem II.1]; see also [27] for
more comments. As a main difference, our proof exploits the extra rigidity stemming from the
radially decreasing rearrangement, bypassing the need of exploiting the subadditivity of the energy
of minimizers at different mass. Moreover, we make use of the HLS inequality to obtain lower
semicontinuity of the energy for the minimizing sequence.

6. Sharp condition on the existence of minimizers for m = 1

In the case of linear diffusion, we can show that Theorem 4.1 is sharp for general interaction
potentials. We should also note that this case is not considered in [41].

Theorem 6.1 (sharp condition on existence of global minimizers for linear diffusion). Suppose that
the entropy function is given by U(r) = r log r and that W is positive and satisfying (H). If

lim sup
|x|→∞

∇W (x) · x < 2dε, (6.1)

then Eε is not bounded below. Alternatively, if

lim inf
|x|→∞

∇W (x) · x > 2dε, (6.2)

then there exists ρ∞ ∈ P(Rd) such that

Eε(ρ∞) = inf Eε > −∞.
17



Proof. If we are under the hypothesis (6.1), then we can check that we satisfy hypothesis (4.1)
of Theorem 4.1; hence, the energy is not bounded below. In fact, when U(ρ) = ρ log ρ, we have
v(r) = d and is independent of r ∈ (0,∞) (as mentioned in Section 2.2). Thus, (4.1) is exactly

lim sup
|x|→∞

1

2
∇W (x) · x− εd < 0,

which is equivalent to (6.1). If now we are under the hypothesis (6.2), we show below in three
steps by means of the logarithmic HLS inequality that the energy is bounded from below and that
a minimizer exists.

Step 1. We show that under hypothesis (6.2), there exists δ ∈ (0, 1/2) and L ∈ R, such that

W (x) ≥ 2dε

1− δ
log |x|+ L. (6.3)

From (6.2) we know that there exists δ ∈ (0, 1/2) such that

lim inf
|x|→∞

∇W (x) · x > 2dε

1− 2δ
.

Therefore, we can say that there exists R0 such that

∇W (x) · x ≥ 2dε

1− δ
for all |x| > R0.

We define L by

L = inf
z∈BR0

W (z)− 2dε

1− δ
log(|z|).

Taking x ∈ Bc
R0

, we consider the function g(t) = W ((1 − t)x0 + tx) − 2dε
1−δ log(|(1 − t)x0 + tx|),

t ∈ [0, 1], where x0 = R0
x
|x| . Next, we notice that g is increasing. In fact, using that x and x0 are

parallel and that (1− t)x0 + tx ∈ Bc
R we can see, for all t ∈ [0, 1],

g′(t) = ∇W ((1− t)x0 + tx) · (x− x0)− 2dε

1− δ
(1− t)x0 + tx

|(1− t)x0 + tx|2
· (x− x0)

=
|x| −R0

(1− t)R0 + t|x|

(
∇W ((1− t)x0 + tx) · ((1− t)x0 + tx)− 2dε

1− δ

)
> 0.

Therefore, using the definition of g, its monotonicity and the definition of L we have

W (x)− 2dε

1− δ
log |x| = g(1) ≥ g(0) = W

(
R0

x

|x|

)
− 2dε

1− δ
log(R0) ≥ L,

which shows (6.3).

Step 2. Using the behavior of W (6.3) and the logarithmic HLS inequality, we show that

inf ((1− δ)W + εE) > −∞, (6.4)

where δ is given by Step 1.
By the logarithmic HLS inequality (Theorem 2.6) we have that there exists C ∈ R, such that for

any ρ ∈ C∞c (Rd) ∩ P(Rd)

−
∫
Rd

∫
Rd

log(|x− y|) dρ(x)dρ(y) ≤ 1

d
E(ρ) + C. (6.5)

By Step 1, we notice that there exists L ∈ R such that

(1− δ)
2

∫
Rd

∫
Rd
W (|x− y|) dρ(x)dρ(y) ≥ dε

∫
Rd

∫
Rd

log(|x− y|) dρ(x) dρ(y) +
(1− δ)L

2
.
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Combining this bound with (6.5), we get that for any ρ ∈ C∞c (Rd) ∩ P(Rd)

(1−δ)W(ρ)+εE(ρ) ≥ εE(ρ)+dε

∫
Rd

∫
Rd

log(|x−y|) dρ(x) dρ(y)+
(1− δ)L

2
≥ −dC+

(1− δ)L
2

> −∞.

We define Cε = −dC + L
4 . By the definition of the energy, we have that given any µ ∈ P(Rd)

(1− δ)W(µ) + εE(µ) = sup
{ρn}⊂C∞c (Rd)

s.t. ρn⇀µ

lim inf
n→∞

(1− δ)W(ρn) + εE(ρn) ≥ Cε,

which shows (6.4).

Step 3. We show now that any minimizing sequence {ρk}k∈N ⊂ P(Rd) is tight up to translations,
and hence, by lower semicontinuity there exists ρ∞ ∈ P(Rd) such that

Eε(ρ∞) = inf Eε > −∞.

By Step 2, we know that there exists δ > 0 and Cε ∈ R, such that

Eε(ρk) ≥ δW(ρk) + Cε.

Finally, we apply Lemma 2.9 combined with the observation that

lim inf
k→∞

W(ρk) ≤
1

δ
(lim inf
k→∞

Eε(ρk)− Cε) <∞

to get that there exists ρ∞ ∈ P(Rd) such that, up to translations and a subsequence,

ρk ⇀ ρ∞ weakly-∗ as k →∞.
Finally, the fact that ρ∞ is a minimizer follows from the lower semicontinuity of the energy. �

Remark 6.2. Theorem 6.1 can be further generalized to allow for certain singularity of the inter-
action potential at the origin. More precisely, one can follow the same proof to show that if the
interaction potential satisfies

lim inf
|x|→∞

(
W (x)− ε

2d
log |x|

)
=∞

and

inf
x∈Rd

(
W (x)− ε

2d
log |x|

)
> −∞,

then inf Eε > −∞ and minimizing sequences are tight. Further arguments are needed to show that
the infimum is achieved, see [11, 24] for related arguments.

Remark 6.3. For the energy functional

1

2

∫
Rd

∫
Rd

log |x− y| dρ(x) dρ(y) + ε

∫
Rd
ρ(x) log ρ(x) dx,

corresponding to the classical Keller–Segel model [12, 14, 34], it is known that there is a critical
value of the noise, εc = 1/(2d), such that the energy functional is bounded from below if and only if
ε = εc. Moreover, the optimizers of the logarithmic HLS (6.5) are equivalent to the set of stationary
states for this critical value εc. Similarly, our previous theorem shows that if W is bounded from
below and

lim
|x|→∞

∇W (x) · x = L > 0 ,

then there also exists a critical diffusion εc = L/(2d) separating the existence of steady states from
the unboundeness from below of the free energy. Notice that these two hypotheses on W allow us to
show for 0 < ε < εc that the energy is bounded below and that there is confinement for minimizing
sequences, respectively.
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[42] R. McCann. A convexity principle for interacting gases. Adv. Math., 128:153–179, 1997.
[43] A. Mogilner and L. Edelstein-Keshet. A non-local model for a swarm. Journal of Mathematical Biology, 38(6):534–

570, 1999.
[44] S. Motsch and E. Tadmor. Heterophilious dynamics enhances consensus. SIAM Rev., 56(4):577–621, 2014.
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