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Abstract. As a counterpoint to classical stochastic particle methods for diffusion, we develop
a deterministic particle method for linear and nonlinear diffusion. At first glance, deterministic
particle methods are incompatible with diffusive partial differential equations since initial data given
by sums of Dirac masses would be smoothed instantaneously: particles do not remain particles.
Inspired by classical vortex blob methods, we introduce a nonlocal regularization of our velocity
field that ensures particles do remain particles and apply this to develop a numerical blob method
for a range of diffusive partial differential equations of Wasserstein gradient flow type, including
the heat equation, the porous medium equation, the Fokker–Planck equation, and the Keller–Segel
equation and its variants. Our choice of regularization is guided by the Wasserstein gradient flow
structure, and the corresponding energy has a novel form, combining aspects of the well-known
interaction and potential energies. In the presence of a confining drift or interaction potential,
we prove that minimizers of the regularized energy exists and, as the regularization is removed,
converge to the minimizers of the unregularized energy. We then restrict our attention to nonlinear
diffusion of porous medium type with at least quadratic exponent. Under sufficient regularity
assumptions, we prove that gradient flows of the regularized energies converge to solutions of the
porous medium equation. As a corollary, we obtain convergence of our numerical blob method,
again under sufficient regularity assumptions. We conclude by considering a range of numerical
examples to demonstrate our method’s rate of convergence to exact solutions and to illustrate key
qualitative properties preserved by the method, including asymptotic behavior of the Fokker–Planck
equation and critical mass of the two-dimensional Keller–Segel equation.

1. Introduction

For a range of partial differential equations, from the heat and porous medium equations to the
Fokker–Planck and Keller–Segel equations, solutions can be characterized as gradient flows with
respect to the quadratic Wasserstein distance. In particular, solutions of the equation

∂tρ = ∇ · (∇V ρ)︸ ︷︷ ︸
drift

+∇ · ((∇W ∗ ρ)ρ)︸ ︷︷ ︸
interaction

+ ∆ρm︸ ︷︷ ︸
diffusion

V : Rd → R, W : Rd → R, m ≥ 1, (1)

where ρ is a curve in the space of probability measures, are formally Wasserstein gradient flows of
the energy

E(ρ) =

∫
V dρ+

1

2

∫
(W ∗ ρ) dρ+ Fm(ρ), Fm(ρ) =



∫
ρ log(ρ) dLd for m = 1, ρ� Ld,∫
ρm

m− 1
dLd for m > 1, ρ� Ld

+∞ otherwise,

(2)
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where Ld is d-dimensional Lebesgue measure. This implies that solutions ρ(t, x) of (1) satisfy

∂tρ = −∇W2E(ρ),

for a generalized notion of gradient ∇W2 , which is formally given by

∇W2E(ρ) = −∇ ·
(
ρ∇δE

δρ

)
,

where δE/δρ is the first variation density of E at ρ (c.f. [3, 27,28,81]).
Over the past twenty years, the Wasserstein gradient flow perspective has led to several new the-

oretical results, including asymptotic behavior of solutions of nonlinear diffusion and aggregation-
diffusion equations [27, 28, 68], stability of steady states of the Keller–Segel equation [9, 11], and
uniqueness of bounded solutions [26]. The underlying gradient flow theory has been well developed
in the case of convex (or, more generally, semiconvex) energies [2–4, 24, 54, 76, 81, 82], and more
recently, is being extended to consider energies with more general moduli of convexity [5,26,28,35].

Wasserstein gradient flow theory has also inspired new numerical methods, with a common goal
of maintaining the gradient flow structure at the discrete level, albeit in different ways. Recent work
has considered finite volume, finite element, and discontinuous Galerkin methods [8, 16, 21, 60, 79].
Such methods are energy decreasing, positivity preserving, and mass conserving at the semidiscrete
level, leading to high-order approximations. They naturally preserve stationary states, since dissi-
pation of the free energy provides inherent stability, and often also capture the rate of asymptotic
decay. Another common strategy for preserving the gradient flow structure at the discrete level is
to leverage the discrete-time variational scheme introduced by Jordan, Kinderlehrer, and Otto [54].
A wide variety of strategies have been developed for this approach: working with different dis-
cretizations of the space of Lagrangian maps [42, 55, 65–67], using alternative formulations of the
variational structure [43], making use of convex analysis and computational geometry to solve the
optimality conditions [7], and many others [10,17,23,29,31,46,47,83].

In this work, we develop a deterministic particle method for Wasserstein gradient flows. The
simplest implementation of a particle method for equation (1), in the absence of diffusion, begins
by first discretizing the initial datum ρ0 as a finite sum of N Dirac masses, that is,

ρ0 ≈ ρN0 =
N∑
i=1

δximi, xi ∈ Rd, mi ≥ 0, (3)

where δxi is a Dirac mass centered at xi ∈ Rd. Without diffusion and provided sufficient regularity
of V and W , the solution ρN of (1) with initial datum ρN0 remains a sum of Dirac masses at all
times t, so that

ρN (t) =

N∑
i=1

δxi(t)mi, (4)

and solving the partial differential equation (1) reduces to solving a system of ordinary differential
equations for the locations of the Dirac masses,

ẋi = −∇V (xi)−
N∑
j=1

∇W (xi − xj)mj , i ∈ {1, . . . , N}. (5)

The particle solution ρN (t) is the Wasserstein gradient flow of the energy (2) with initial data ρN0 ,
so in particular the energy decreases in time along this spatially discrete solution. The ODE system
(5) can be solved using range of fast numerical methods, and the resulting discretized solution ρN (t)
can be interpolated in a variety of ways for graphical visualization.
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This simple particle method converges to exact solutions of equation (1) under suitable as-
sumptions on V and W , as has been shown in the rigorous derivation of this equation as the
mean-field limit of particle systems [22,24,51]. Recent work, aimed at capturing competing effects
in repulsive-attractive systems and developing methods with higher-order accuracy, has considered
enhancements of standard particle methods inspired by techniques from classical fluid dynamics,
including vortex blob methods and linearly transformed particle methods [19, 36, 45, 48]. Bertozzi
and the second author’s blob method for the aggregation equation obtained improved rates of
convergence to exact solutions for singular interaction potentials W by convolving W with a mol-
lifier ϕε. In terms of the Wasserstein gradient flow perspective this translates into regularizing the
interaction energy (1/2)

∫
(W ∗ ρ) dρ as (1/2)

∫
(W ∗ ϕε ∗ ρ) dρ.

When diffusion is present in equation (1), the fundamental assumption underlying basic particle
methods breaks down: particles do not remain particles, or in other words, the solution of (1) with
initial datum (3) is not of the form (4). A natural way to circumvent this difficulty, at least in the
case of linear diffusion (m = 1), is to consider a stochastic particle method, in which the parti-
cles evolve via Brownian motion. Such approaches were originally developed in the classical fluids
case [33], and several recent works have considered analogous methods for equations of Wasserstein
gradient flow type, including the Keller–Segel equation [49,51,52,61]. The main practical disadvan-
tage of these stochastic methods is that their results must be averaged over a large number of runs
to compensate for the inherent randomness of the approximation. Furthermore, to the authors’
knowledge, such methods have not been extended to the case of degenerate diffusion m > 1.

Alternatives to stochastic methods have been explored for similar equations, motivated by
particle-in-cell methods in classical fluid, kinetic, and plasma physics equations. These alterna-
tives proceed by introducing a suitable regularization of the flux of the continuity equation [34,74].
Degond and Mustieles considered the case of linear diffusion (m = 1) by interpreting the Laplacian
as induced by a velocity field v, ∆ρ = ∇ · (vρ), v = ∇ρ/ρ, and regularizing the numerator and
denominator separately by convolution with a mollifier [40,73]. For this regularized equation, par-
ticles do remain particles, and a standard particle method can be applied. Well-posedness of the
resulting system of ordinary differential equations and a priori estimates relevant to the method
were studied by Lacombe and Mas-Gallic [57] and extended to the case of the porous medium
equation by Lions and Mas-Gallic [59,62]. In the case m = 2 on bounded domains, Lions and Mas-
Gallic succeeded in showing that solutions to the regularized equation converge to solutions of the
unregularized equation, as long as the initial data has uniformly bounded entropy. Unfortunately,
this assumption fails to hold when the initial datum is given by a particle approximation (3), and
consequently Lions and Mas-Gallic’s result doesn’t guarantee convergence of the particle method.
An alternative approach, now known as the particle strength exchange method, incorporates in-
stead the effects of diffusion by allowing the weights of the particles mi to vary in time. Degond
and Mas-Gallic developed such a method for linear diffusion (m = 1) and proved second order
convergence with respect to the initial particle spacing [38, 39]. The main disadvantage of these
existing deterministic particle methods is that, with the exception of Lions and MasGallic’s work
when m = 2, they do not preserve the gradient flow structure [59]. Other approaches that respect
the method’s variational structure have been recently proposed in one dimension by approximat-
ing particles by non-overlapping blobs [25, 30]. For further background on deterministic particle
methods, we refer the reader to Chertock’s comprehensive review [32].

The goal of the present paper is to introduce a new deterministic particle method for equations
of the form (1), with linear and nonlinear diffusion (m ≥ 1), that respects the problem’s underlying
gradient flow structure and naturally extends to all dimensions. In contrast to the above described
work, which began by regularizing the flux of the continuity equation, we follow an approach
analogous to Bertozzi and the second author’s blob method for the aggregation equation and
regularize the associated internal energy F . For a mollifier ϕε(x) = ϕ(x/ε)/εd, x ∈ Rd, ε > 0, we
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define

Fmε (ρ) =


∫

log(ϕε ∗ ρ) dρ for m = 1,∫
(ϕε ∗ ρ)m−1

m− 1
dρ for m > 1.

(6)

For more general nonlinear diffusion, we define

Fε(ρ) =

∫
F (ϕε ∗ ρ) dρ, F : (0,∞)→ R. (7)

As ε → 0, we prove that the regularized internal energies Fmε Γ-converge to the unregularized
energies Fm for all m ≥ 1; see Theorem 4.1. In the presence of a confining drift or interaction
potential, so that minimizers exist, we also show that minimizers converge to minimizers; see
Theorem 4.5. For m ≥ 2 and semiconvex potentials V,W ∈ C2(Rd), we show that the gradient
flows of the regularized energies Emε are well-posed and are characterized by solutions to the partial
differential equation

∂tρ = ∇ · ((∇V +∇W ∗ ρ)ρ) +∇ ·
[
ρ
(
∇ϕε ∗

(
(ϕε ∗ ρ)m−2ρ

)
+ (ϕε ∗ ρ)m−2(∇ϕε ∗ ρ)

)]
. (8)

Under sufficient regularity conditions, we prove that solutions of the regularized gradient flows
converge to solutions of equation (1); see Theorem 5.8. When m = 2 and the initial datum has
bounded entropy, we show that these regularity conditions automatically hold, thus generalizing
Lions and Mas-Gallic’s result for the porous medium equation on bounded domains to the equation
(1) on all of Rd; see Corollary 5.9 and [59, Theorem 2].

For this regularized equation (8), particles do remain particles; see Corollary 5.5. Consequently,
our numerical blob method for diffusion consists of taking a particle approximation for (8). We
conclude by showing that, under sufficient regularity conditions, our blob method’s particle solutions
converge to exact solutions of (1); see Theorem 6.1. We then give several numerical examples
illustrating the rate of convergence of our method and its qualitative properties.

A key advantage of our approach is that, by regularizing the energy functional and not the flux,
we preserve the problem’s gradient flow structure. Still, at first glance, our regularization of the
energy (6) may seem less natural than other potential choices. For example, one could instead
consider the following more symmetric regularization

Umε (ρ) := Fm(ϕε ∗ ρ) =


∫

(ϕε ∗ ρ) log(ϕε ∗ ρ) dLd for m = 1,∫
(ϕε ∗ ρ)m

m− 1
dLd for m > 1,

and for more general nonlinear diffusion,

Uε(ρ) =

∫
U(ϕε ∗ ρ) dLd, U : [0,∞)→ R.

Although studying the above regularization is not without interest, we focus our attention on the
regularization in (6) and (7) for numerical reasons. Indeed, computing the first variation density
of Uε gives

δUε
δρ

= ϕε ∗ (U ′ ◦ (ϕε ∗ ρ)),

as compared to
δFε
δρ

= ϕε ∗ (F ′ ◦ (ϕε ∗ ρ)ρ) + (ϕε ∗ ρ)F ′ ◦ (ϕε ∗ ρ)
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for Fε. In the first case, one can see that replacing ρ by a sum of Dirac masses still requires the
computation of an integral convolution with ϕε, whereas in the second case, all the convolutions
reduce to finite sums, which are numerically less costly.

Another advantage of our approach, in the m = 2 case, is that our regularization of the energy
can naturally be interpreted as an approximation of the porous medium equation by a very localized
nonlocal interaction potential. In this way, our proof of the convergence of the associated particle
method provides a theoretical underpinning to approximations of this kind in the numerics and
swarming literature [56, 58]. Further advantages our blob method include the ease with which it
may be combined with particle methods for interaction and drift potentials, its simplicity in any
dimension, and the good numerical performance we observe for a wide choice of interaction and
drift potentials.

Our paper is organized as follows. In Section 2, we collect preliminary results concerning the
regularization of measures via convolution with a mollifier, including a mollifier exchange lemma
(Lemma 2.2), and relevant background on Wasserstein gradient flow and weak convergence of
measures. In Section 3, we prove several results on the general regularized energies (7), which
are of a novel form from the perspective of Wasserstein gradient flow theory, combining aspects
of the well-known interaction and internal energies. We show that these regularized energies are
semiconvex and differentiable in the Wasserstein metric and characterize their subdifferential with
respect to this structure; see Propositions 3.10–3.12. In Section 4, we prove that Fε Γ-converges
to F as ε → 0 and that minimizers converge to minimizers, when in the presence of a confining
drift or interaction term; see Theorems 4.1 and 4.5. With this Γ-convergence in hand, in Section 5
we then turn to the question of convergence of gradient flows, restricting to the case m ≥ 2. Using
the framework introduced by Sandier and Serfaty [75,77], we prove that, under sufficient regularity
assumptions, gradient flows of the regularized energies converge as ε → 0 to gradient flows of the
unregularized energy, recovering a generalization of Lions and Mas-Gallic’s results when m = 2; see
Theorem 5.8 and Corollary 5.9. Finally, in Section 6, we prove the convergence of our numerical
blob method, under sufficient regularity assumptions, when the initial particle spacing h scales with
the regularization like h = o(ε); see Theorem 6.1.

We close with several numerical examples, in one and two dimensions, analyzing the rate of
convergence to exact solutions with respect to the 2-Wasserstein metric, L1-norm, and L∞-norm
and illustrating qualitative properties of the method, including asymptotic behavior of the Fokker–
Planck equation and critical mass of the two-dimensional Keller–Segel equation; see Section 6.3.
In particular, for the heat equation and porous medium equations (V = W = 0, m = 1, 2, 3), we

observe that the 2-Wasserstein error depends linearly on the grid spacing h ∼ N−1/d for m = 1, 2, 3,
while the L1-norm depends quadratically on the grid spacing for m = 1, 2 and superlinearly for
m = 3. We apply our method to study long time behavior of the nonlinear Fokker–Planck equation
(V = |·|2 /2, W = 0, m = 2), showing that the blob method accurately captures convergence to the
unique steady state. Finally, we conduct a detailed numerical study of equations of Keller–Segel
type, including a one-dimensional variant (V = 0,W = 3 log |·| ,m = 1, 2) and the original two-
dimensional equation (V = 0, W = ∆−1, m = 1). The one-dimensional equation has a critical mass
1, and the two-dimensional equation has critical mass 8π, at which point the concentration effects
from the nonlocal interaction term balance with linear diffusion (m = 1) [12,41]. We show that the
same notion of criticality is present in our numerical solutions and demonstrate convergence of the
critical mass as the grid spacing h and regularization ε are refined.

There are several directions for future work. Our convergence theorem for m ≥ 2 requires
additional regularity assumptions, which we are only able to remove in the case m = 2 when the
initial data has bounded entropy. In the case for m > 2 or more general initial data, it remains
an open question how to control certain nonlocal norms of the regularized energies, which play an
important role in our convergence result; see Theorem 5.8. Formally, we expect these to behave as
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approximations of the BV -norm of ρm, which should remain bounded by the gradient flow structure;
see equations (24) and (25). When 1 ≤ m < 2, it not clear how to use these nonlocal norms to get
the desired convergence result or whether an entirely different approach is needed. Perhaps related
to these questions is the fact that our estimate on the semiconvexity of the regularized energies
(6) deteriorates as ε → 0, while we expect that the semiconvexity should not deteriorate along
smooth geodesics; see Proposition 3.11. Finally, while our results show convergence of the blob
method for diffusive Wasserstein gradient flows, they do not quantify the rate of convergence in
terms of h and ε. In particular, a theoretical result on the optimal scaling relation between h and
ε remains open, though we observe good numerical performance for ε = h1−p, 0 < p� 1. In a less
technical direction, we foresee a use of the presented ideas in conjunction with splitting schemes for
certain nonlinear kinetic equations [1, 20], as well as in the fluids [48], since our numerical results
demonstrate comparable rates of convergence to the particle strength exchange method, which has
already gained attention in these contexts [40].

2. Preliminaries

2.1. Basic notation. For any r > 0 and x ∈ Rd we denote the open ball of center x and radius
r by Br(x). Given a set S ⊂ Rd, we write 1S : Rd → {0, 1} for the indicator function of S, i.e.,
1S(x) = 1 for x ∈ S and 1S(x) = 0 otherwise. We say a function A : Rd → R has at most quadratic
growth if there exist c0, c1 > 0 so that |A(x)| ≤ c0 + c1|x|2 for all x ∈ Rd.

Let P(Rd) denote the set of Borel probability measures on Rd, and for, any p ∈ N, Pp(Rd)
denotes elements of P(Rd) with finite pth moment, Mp(Rd) :=

∫
Rd |x|p dµ(x) < +∞. We write

Ld for the d-dimensional Lebesgue measure, and for given µ ∈ P(Rd), we write µ � Ld if µ is
absolutely continuous with respect to the Lebesgue measure. Often we use the same symbol for
both a probability measure and its Lebesgue density, whenever the latter exists. We let Lp(µ;Rd)
denote the Lebesgue space of functions with pth power integrable against µ.

Given σ a finite, signed Borel measure on Rd, we denote its variation by |σ|. For a Borel set
E ⊂ Rd we write σ(E) for the σ-measure of set E. For a Borel map T : Rd → Rd and µ ∈ P(Rd),
we write T#µ for the push-forward of µ through T . We let id : Rd → Rd denote the identity map

on Rd and define (id, T ) : Rd → Rd × Rd by (id, T )(x) = (x, T (x)) for all x ∈ Rd. For a sequence

(µn)n ⊂ P(Rd) and some µ ∈ P(Rd), we write µn
∗
⇀ µ if (µn)n converges to µ in the weak-∗

topology of probability measures, i.e., in the duality with bounded continuous functions.

2.2. Convolution of measures. A key aspect of our approach is the regularization of the energy
(2) via convolution with a mollifier. In this section, we collect some elementary results on the
convolution of probability measures, including a mollifier exchange lemma, Lemma 2.2.

For any µ ∈ P(Rd) and measurable function φ, the convolution of φ with µ is given by

φ ∗ µ(x) =

∫
Rd

φ(x− y) dµ(y) for all x ∈ Rd,

whenever the integral converges. We consider mollifiers satisfying the following assumption.

ASSUMPTION 2.1 (mollifier). Suppose ζ ∈ C2(Rd; [0,+∞)) is even, ‖ζ‖L1(Rd) = 1, and

ζ(x) ≤ Cζ |x|−q, |∇ζ(x)| ≤ C ′ζ |x|−q
′

for some Cζ , C
′
ζ > 0 and q > d+ 1, q′ > d.

Let ϕ = ζ ∗ ζ.

This assumption is satisfied by both Gaussians and smooth functions with compact support.
Assumption 2.1 also ensures that ϕ has finite first moment. For any ε > 0, we write

ϕε = ε−dϕ(·/ε) and ζε = ε−dζ(·/ε).
6



Throughout, we use the fact that the definition of convolution allows us to move mollifiers from
the measure to the integrand. In particular, for any φ bounded below and ψ ∈ L1(Rd) even,∫

Rd

φd(ψ ∗ µ) =

∫
Rd

φ ∗ ψ dµ.

Likewise, we often use the following lemma which provides sufficient conditions for moving functions
in and out convolutions with mollifiers within integrals. (See also [59] for a similar result.) The
proof is contained in Appendix A.

LEMMA 2.2 (mollifier exchange lemma). Let f : Rd → R be Lipschitz continuous with constant
Lf > 0, and let σ and ν be finite, signed Borel measures on Rd. There is p = p(q, d) > 0 so that∣∣∣∣∫ ζε ∗ (fν) dσ −

∫
(ζε ∗ ν)f dσ

∣∣∣∣ ≤ εpLf (∫ (ζε ∗ |ν|) d|σ|+ Cζ |σ|(Rd)|ν|(Rd)
)

for all ε > 0.

We conclude this section with a proposition stating that if a sequence of measures converges in
the weak-∗ topology of P(Rd), then the mollified sequence converges to the same limit. We refer
the reader to Appendix A for the proof.

PROPOSITION 2.3. Let µε be a sequence in P(Rd) such that µε
∗
⇀ µ as ε → 0 for some

µ ∈ P(Rd). Then ϕε ∗ µε
∗
⇀ µ.

2.3. Wasserstein metric. For µ, ν ∈ P(Rd), we denote the set of transport plans from µ to ν by

Γ(µ, ν) := {γ ∈ P(Rd × Rd) | π1
#γ = µ, π2

#γ = ν},
where π1, π2 : Rd × Rd → Rd are the projections of Rd × Rd onto the first and second copy of Rd,
respectively. The Wasserstein distance W2(µ, ν) between two probability measures µ, ν ∈ P2(Rd)
is given by

W2(µ, ν) = min
γ∈Γ(µ,ν)

(∫
Rd×Rd

|x− y|2dγ(x, y)

)1/2

, (9)

and a transport plan γo is optimal if it attains the minimum in (9). We denote the set of optimal
transport plans by Γo(µ, ν). If either µ is absolutely continuous with respect to Lebesgue measure,
then there is a unique optimal transport plan γo, and

γo = (id, To)#µ,

for a Borel measurable function To : Rd → Rd. To is unique up to sets of µ-measure zero is known
as the optimal transport map from µ to ν. Convergence with respect to the Wasserstein metric is
stronger than weak-∗ convergence. In particular, if (µn)n ⊂ P2(Rd) and µ ∈ P2(Rd), then

W2(µn, µ)→ 0 as n→∞ ⇐⇒
(
µn

∗
⇀ µ and M2(µn)→M2(µ) as n→∞

)
.

In order to define Wasserstein gradient flows, we will require the following notion of regularity
in time with respect to the Wasserstein metric.

DEFINITION 2.4 (absolutely continuous). µ ∈ AC2
loc((0,∞);P2(Rd)) if there is f ∈ L2

loc((0,∞))
so that

W2(µ(t), µ(s)) ≤
∫ t

s
f(r) dr for all t, s ∈ (0,∞) with s ≤ t.

Along such curves, we have a notion of metric derivative.

DEFINITION 2.5 (metric derivative). Given µ ∈ AC2
loc((0,∞);P2(Rd)), its metric derivative is

|µ′|(t) := lim
s→t

W2(µ(t), µ(s))

|t− s|
7



An important class of curves in the Wasserstein metric are the (constant speed) geodesics. Given
µ0, µ1 ∈ P2(Rd), geodesics connecting µ0 to µ1 are of the form

µα = ((1− α)π1 + απ2)#γo for α ∈ [0, 1], γo ∈ Γo(µ, ν).

If γo is induced by a map To, then

µα = ((1− α)id + αTo)#µ0.

More generally, given µ1, µ2, µ3 ∈ P2(Rd), a generalized geodesic connecting µ2 to µ3 with base µ1

is given by

µ2→3
α =

(
(1− α)π2 + απ3

)
#
γ for α ∈ [0, 1] and γ ∈ P(Rd × Rd × Rd) (10)

such that π1,2
#γ ∈ Γo(µ1, µ2) and π1,3

#γ ∈ Γo(µ1, µ3).

with π1,i : Rd×Rd×Rd → Rd×Rd the projection of onto the first and ith copies of Rd. When the
base µ1 coincides with one of the endpoints µ2 or µ3, generalized geodesics are geodesics.

A key property for the uniqueness and stability of Wasserstein gradient flows is that the energies
are convex, or more generally semiconvex, along generalized geodesics.

DEFINITION 2.6 (semiconvexity along generalized geodesics). A functional G : P2(Rd)→ (−∞,∞]
is semiconvex along generalized geodesics if there is λ ∈ R such that for all µ1, µ2, µ3 ∈ P2(Rd) there
exists a generalized geodesic connecting µ2 to µ3 with base µ1 such that

G(µ2→3
α ) ≤ (1− α)G(µ2) + αG(µ3)− λ(1− α)α

2
W 2

2,γ(µ2, µ3) for all α ∈ [0, 1],

where

W 2
2,γ(µ2, µ3) =

∫
Rd×Rd×Rd

|y − z|2 dγ(x, y, z).

For any functional G : P(Rd) → (−∞,∞], we denote its domain by D(G) = {µ ∈ X | G(µ) <
+∞}, and we say that G is proper if D(G) 6= ∅. As soon as a functional is proper and lower semi-
continuous with respect to the weak-* topology, we may define its subdifferential ; see [3, Definition
10.3.1 and Equation 10.3.12]. Following the approach in [24], the notion of subdifferential we use
in this paper is, in fact, the following reduced one.

DEFINITION 2.7 (subdifferential). Given G : P2(Rd)→ (−∞,∞] proper and lower semicontin-
uous, µ ∈ P2(Rd), and ξ : Rd → Rd with ξ ∈ L2(dµ), then ξ belongs to the subdifferential of G at

µ, written ξ ∈ ∂G(µ), if as ν
W2−−→ µ,

G(ν)− G(µ) ≥ inf
γ∈Γ0(µ,ν)

∫
Rd×Rd

〈ξ(x), y − x〉 dγ(x, y) + o(W2(µ, ν)).

The Wasserstein metric is formally Riemannian, and we may define the tangent space as follows.

DEFINITION 2.8. Let µ ∈ P2(Rd). The tangent space at µ is

Tanµ P2(Rd) = {∇φ | φ ∈ C∞c (Rd)},

where the closure is taken in L2(µ;Rd).

We now turn to the definition of a gradient flow in the Wasserstein metric (c.f. [3, Proposition
8.3.1, Definition 11.1.1]).

DEFINITION 2.9 (gradient flow). Suppose G : P2(Rd) → R ∪ {+∞} is proper and lower semi-
continuous. A curve µ ∈ AC2

loc((0,+∞);P2(Rd)) is a gradient flow of G if there exists a velocity
8



vector field v : (0,∞) × Rd → [−∞,∞]d with −v(t) ∈ ∂G(µ(t)) ∩ Tanµ(t) P2(Rd) for almost every
t > 0 such that µ is a weak solution of the continuity equation

∂tµ(t, x) +∇ · (v(t, x)µ(t, x)) = 0;

i.e., µ is a solution to the continuity equation in duality with C∞c (Rd).
We close this section with the following definition of the Wasserstein local slope.

DEFINITION 2.10 (local slope). Given G : P2(Rd)→ (−∞,∞], its local slope is

|∂G|(x) = lim sup
d(x,y)→0

(G(x)−G(y))+

d(x, y)
for all x ∈ D(G),

where the subscript + denotes the positive part.

REMARK 2.11. When the functional G in Definition 2.9 is in addition semiconvex along geodesics
the local slope |∂G| is a strong upper gradient for G. In this case a gradient flow of G is characterized
as being a 2-curve of maximal slope with respect to |∂G|; see [3, Theorem 11.1.3].

3. Regularized internal energies

The foundation of our blob method is the regularization of the internal energy F via convolution
with a mollifier. This allows us to preserve the gradient flow structure and approximate our original
partial differential equation (1) by a sequence of equations for which particles do remain particles.
In this section, we consider several fundamental properties of the regularized internal energies Fε,
including convexity, lower semicontinuity, and differentiability. In what follows, we will suppose
that our internal energies satisfy the following assumption.

ASSUMPTION 3.1 (internal energies). Suppose F ∈ C2(0,+∞) satisfies lims→+∞ F (s) = +∞
and lim infs→0 F (s)/sβ > −∞ for some β > −2/(d + 2). Suppose further that U(s) = sF (s) is
convex, bounded below, and lims→0 U(s) = 0. Define the internal energy corresponding to F by

F(ρ) =

∫
F (ρ) dρ

In particular, this assumption ensures that F is nondecreasing.

REMARK 3.2 (nondecreasing). Assumption 3.1 implies that F is nondecreasing. Indeed, by the
convexity of U(s) and the fact that lims→0 sF (s) = 0,

sF (s) =

∫ s

0
U ′(r) dr ≤ sU ′(s) = s2F ′(s) + sF (s) for all s ∈ (0,∞),

which leads to F ′(s) ≥ 0 for all s ∈ (0,∞).

Our assumption does not ensure that F is convex along Wasserstein geodesics, unless F is convex.

REMARK 3.3 (McCann’s convexity condition). Our conditions on F are slightly different from
McCann’s condition for the convexity of the internal energy [64]. In particular, McCann’s condition
that the function s 7→ F (s−d) is nonincreasing and convex on (0,∞) holds if and only if

(d+ 1)F ′(s) + dsF ′′(s) ≥ 0 for all s ∈ (0,∞),

which, by Remark 3.2, holds when for example F is convex.

We regularize the internal energies by convolution with a mollifier.

DEFINITION 3.4 (regularized internal energies). Given F : (0,∞) → R satisfying Assumption
3.1, we define the regularized internal energies by

Fε(µ) =

∫
F ◦ (ϕε ∗ µ) dµ for all ε > 0.

9



Note that, for all µ ∈ P(Rd) and ε > 0, Fε(µ) < +∞.
An important class of internal energies satisfying Assumption 3.1 are given by the (negative)

entropy and Rényi entropies.

DEFINITION 3.5. The entropy and Rényi entropies, and their regularizations, are given by

Fm(ρ) =

∫
Fm(ρ) dρ, Fmε (ρ) =

∫
Fm(ϕε ∗ ρ) dρ, for Fm(s) =

{
s log s for m = 1,

sm−1/(m− 1) for m > 1.

In order to approximate solutions of equation (1), we will consider combinations of the above
regularized internal energies with potential and interaction energies.

DEFINITION 3.6 (regularized energies). Let V,W : Rd → (−∞,∞] be proper and lower semi-
continuous. Suppose further that W is locally integrable. For all ε > 0 define

Eε(µ) =

∫
V dµ+

1

2

∫
(W ∗ µ) dµ+ Fε(µ)

When F = Fm for some m ≥ 1, then we denote E by Em and Eε by Emε .

The regularized internal energy in Definition 3.4 incorporate a blend of interaction and internal
phenomena, through the convolution with the mollifier, or potential, ϕε and the composition with
the function F . To our knowledge, this is a novel form of functional on the space of probability
measures. We now describe some of its basic properties: energy bounds and lower semicontinuity,
when F is the logarithm or a power, and differentiability, convexity and subdifferential character-
ization when F is convex. For the existence and uniqueness of gradient flows associated to this
regularized energy, see Section 5.

REMARK 3.7. Although the regularized energy in Definition 3.4 is of a novel form, it was noticed
in [69, Proposition 6.9] that a previous particle method for diffusive gradient flows leads to a similar
regularized internal energy after space discretization [25,30]. The essential difference between these
two methods stands in the choice of the mollifier, which, instead of satisfying 2.1, is a very singular
potential.

We begin with inequalities relating the regularized internal energies to the unregularized energies.
See Appendix A for the proof, which is a consequence of Jensen’s inequality and a Carleman-type
estimate on the lower bound of the entropy [30, Lemma 4.1].

PROPOSITION 3.8. Given µ ∈ P(Rd) and ε > 0, we have

Fm(µ) + Cε ≥ Fmε (µ) ≥ Fm(ζε ∗ µ) for 1 ≤ m ≤ 2, (11)

Fmε (µ) ≤ Fm(ζε ∗ µ) for m ≥ 2. (12)

where Cε = Cε(m,µ)→ 0 as ε→ 0. Furthermore, for all δ > 0, we have

Fmε (µ) ≥

{
−(2π/δ)d/2 − 2δ(M2(µ) + ε2M2(ζ)) if m = 1,

0 if m > 1.
(13)

For all ε > 0, the regularized entropies are lower semicontinuous with respect to weak-* conver-
gence (m > 1) and Wasserstein convergence (m = 1). For m > 2, we prove this using a theorem
of Ambrosio, Gigli, and Savaré on the converge of maps with respect to varying measures; see
Proposition B.2. For 1 < m ≤ 2, this is a consequence of Jensen’s inequality. For m = 1, we apply
both Jensen’s inequality and a version of Fatou’s lemma for varying measures; see Lemma B.3. In
this case, we also require that the mollifier ϕ is a Gaussian, so that we can get the bound from
below required by Fatou’s lemma. We refer the reader to Appendix A for the proof.

PROPOSITION 3.9 (lower semicontinuity). Let ε > 0. Then
10



(i) Fmε is lower semicontinuous with respect to weak-∗ convergence in P(Rd) for all m > 1;
(ii) if ϕ is a Gaussian, then F1

ε is lower semicontinuous with respect to the quadratic Wasserstein
convergence in P2(Rd).

When F is convex, the regularized internal energies are differentiable along generalized geodesics.
The proof relies on the fact that F is differentiable and ϕε ∈ C2(Rd), with bounded Hessian; see
Appendix A.

PROPOSITION 3.10 (differentiability). Suppose F satisfies Assumption 3.1 and is convex.
Given µ1, µ2, µ3 ∈ P2(Rd) and γ ∈ P2(Rd×Rd×Rd) with πi#γ = µi, let µ2→3

α =
(
(1− α)π2 + απ3

)
#
γ

for α ∈ [0, 1]. Then

d

dα
Fε(µ2→3

α )
∣∣
α=0

=

∫∫∫ ∫∫∫
F ′ (ϕε ∗ µ2(y))∇ϕε(y − v) · (z − w − (y − v)) dγ(u, v, w) dγ(x, y, z).

(14)

A key consequence of the preceding proposition is that the regularized energies are semiconvex
along generalized geodesics, as we now show.

PROPOSITION 3.11 (convexity). Suppose F satisfies Assumption 3.1 and is convex. Then Fε
is λF -convex along generalized geodesics, where

λF = −4‖D2ϕε‖L∞(Rd)F
′(‖ϕε‖L∞(Rd)). (15)

Proof. Let (µ2→3
α )α∈[0,1] be a generalized geodesic connecting two probability measures µ2, µ3 ∈

P2(Rd) with base µ1 ∈ P2(Rd); see (10). We have, using the above-the-tangent inequality for
convex functions,

Fε(µ3)−Fε(µ2) =

∫∫∫
(F (ϕε ∗ µ3)(y)− F (ϕε ∗ µ2)(z)) dγ(x, y, z)

≥
∫∫∫

F ′(ϕε ∗ µ2(y)) (ϕε ∗ µ3(z)− ϕε ∗ µ2(y)) dγ(x, y, z)

=

∫∫∫ ∫∫∫
F ′(ϕε ∗ µ2(y)) (ϕε(z − w)− ϕε(y − v)) dγ(u, v, w) dγ(x, y, z).

Therefore, by Proposition 3.10,

Fε(µ3)−Fε(µ2)− d

dα
Fε(µ2→3

α )
∣∣
α=0

≥
∫∫∫ ∫∫∫

F ′(ϕε ∗ µ2(y))

× [ϕε(z − w)− ϕε(y − v)−∇ϕε(y − v) · (z − w − (y − v))] dγ(u, v, w) dγ(x, y, z)

≥ −
‖D2ϕε‖L∞(Rd)

2

∫∫∫ ∫∫∫
F ′(ϕε ∗ µ2(y))|z − w − (y − v)|2 dγ(u, v, w) dγ(x, y, z)

≥ −
‖D2ϕε‖L∞(Rd)F

′(‖ϕε‖L∞(Rd))

2

∫∫∫ ∫∫∫
|z − w − (y − v)|2 dγ(u, v, w) dγ(x, y, z)

≥ −4‖D2ϕε‖L∞(Rd)F
′(‖ϕε‖L∞(Rd))W

2
2,γ(µ2, µ3),

which gives the result. �

We now use the previous results to characterize the subdifferential of the regularized internal
energy. The structure of argument is classical (c.f. [3, 24, 54]), but due to the novel form of our
regularized energies, we include the proof in Appendix A.
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PROPOSITION 3.12 (subdifferential characterization). Suppose F satisfies Assumption 3.1 and
is convex. Let ε > 0 and µ ∈ D(Fε). Then

v ∈ ∂Fε(µ) ∩ Tanµ P2(Rd) ⇐⇒ v = ∇δFε
δµ

,

where

∇δFε
δµ

= ∇ϕε ∗
(
F ′ ◦ (ϕε ∗ µ)µ

)
+
(
F ′ ◦ (ϕε ∗ µ)

)
∇ϕε ∗ µ, µ-almost everywhere. (16)

In particular, we have |∂Fε|(µ) =
∥∥∥∇ δFε

δµ

∥∥∥
L2(µ;Rd)

.

As a consequence of this characterization of the subdifferential, we obtain the analogous result
for the full energy Eε, as in Definition 3.6. See Appendix A for the proof.

COROLLARY 3.13. Suppose F satisfies Assumption 3.1 and is convex. Let ε > 0 and µ ∈ D(Eε).
Suppose V,W ∈ C1(Rd) are semiconvex, with at most quadratic growth, and W is even. Then

v ∈ ∂Eε(µ) ∩ Tanµ P2(Rd) ⇐⇒ v = ∇δEε
δµ

,

where

∇δEε
δµ

= ∇ϕε ∗
(
F ′ ◦ (ϕε ∗ µ)µ

)
+
(
F ′ ◦ (ϕε ∗ µ)

)
∇ϕε ∗ µ+∇V +∇W ∗ µ, µ-almost everywhere.

In particular, we have |∂Eε|(µ) =
∥∥∥∇ δEε

δµ

∥∥∥
L2(µ;Rd)

.

4. Γ-convergence of regularized internal energies

We now turn to the convergence of the regularized energies and, when in the presence of confining
drift or interaction terms, the corresponding convergence of their minimizers. In this section, and
for the remainder of the work, we consider regularized entropies and Rényi entropies of the form
Fmε for m ≥ 1. We begin by showing that Fmε Γ-converges to F as ε→ 0.

THEOREM 4.1. For all m ≥ 1, the regularized energies (Fmε )ε Γ-converge to Fm. In particular,

(i) given µε, µ ∈ P2(Rd) satisfying µε
∗
⇀ µ, we have lim infε→0Fmε (µε) ≥ Fm(µ);

(ii) given µ ∈ P2(Rd), we have lim supε→0Fmε (µ) ≤ Fm(µ).

Proof. We begin by showing the result for 1 ≤ m ≤ 2, in which case the function F is concave. We
first show part (i). By Proposition 3.8, for all ε > 0,

Fmε (µε) ≥ Fm(ζε ∗ µε).

By Proposition 2.3, µε
∗
⇀ µ implies ζε ∗µε

∗
⇀ µ. Therefore, by the lower semicontinuity of Fm with

respect to weak-∗ convergence [3, Remark 9.3.8],

lim inf
ε→0

Fmε (µε) ≥ lim inf
ε→0

Fm(ζε ∗ µε) ≥ Fm(µ),

which gives the result. We now turn to part (ii). Again, by Proposition 3.8, for all ε > 0,

Fm(µ) + Cε ≥ Fmε (µ),

where Cε → 0 as ε→ 0. Therefore, for any µ ∈ P2(Rd), lim supε→0Fmε (µ) ≤ Fm(µ).
We now consider the case when m > 2. Part (ii) follows quickly: by Proposition 3.8, Young’s

convolution inequality, and the fact that ‖ζε‖L1(Rd) = 1, for all ε > 0 we have

Fmε (µ) ≤ Fm(ζε ∗ µ) = 1
m−1‖ζε ∗ µ‖

m
Lm(Rd) ≤

1
m−1‖ζε‖

m
L1(Rd)‖µ‖

m
Lm(Rd) = 1

m−1‖µ‖
m
Lm(Rd) = Fm(µ).

12



Taking the supremum limit as ε → 0 then gives the result. Let us prove part (i). Without loss of
generality, we may suppose that lim infε→0Fmε (µε) is finite. Furthermore, there exists a positive
sequence (εn)n such that εn → 0 and limn→+∞Fmεn(µεn) = lim infε→0Fmε (µε). In particular, there
exists C > 0 for which Fmεn(µεn) < C for all n ∈ N. By Jensen’s inequality for the convex function

x 7→ xm−1 and the fact that ζε ∗ ζε = ϕε for all ε > 0,

(m− 1)Fmε (µε) =

∫
(ϕε ∗ µε)m−1 dµε ≥

(∫
ϕε ∗ µε dµε

)m−1

=

(∫
Rd

|ζε ∗ µε(x)|2 dx
)m−1

.

Thus, since Fmεn(µεn) < C for all n ∈ N, we have ‖ζεn ∗ µεn‖L2(Rd) < C ′ := (C(m − 1))1/2(m−1).

We now use this bound on the L2-norm of ζεn ∗ µεn to deduce a stronger notion of convergence of
ζεn ∗ µεn to µ. First, since (µεn)n converges weakly-∗ to µ as n→∞, Proposition 2.3 ensures that
(ζεn ∗µεn −µεn)n converges weakly-∗ to 0. Since the L2-norm is lower semicontinuous with respect
to weak-∗ convergence [64, Lemma 3.4], we have

C ′ ≥ lim inf
n→∞

‖ζεn ∗ µεn‖L2(Rd) ≥ ‖µ‖L2(Rd),

so that µ ∈ L2(Rd). Furthermore, up to another subsequence, we may assume that (ζεn ∗ µεn)n
converges weakly in L2 to some w ∈ L2(Rd). Since ζεn ∗ µεn

∗
⇀ µ, for all f ∈ C∞c (Rd),∫

fw = lim
n→∞

∫
f dζεn ∗ µεn =

∫
f dµ,

so (ζεn ∗ µεn)n converges to µ weakly in L2. By the Banach–Saks theorem (c.f. [71, Section 38]),
up to taking a further subsequence of (ζεn ∗ µεn)n, the Cesàro mean (vk)k defined by

vk :=
1

k

k∑
i=1

ζεi ∗ µεi for all k ∈ N,

converges to µ strongly in L2. Finally, for any f ∈ C∞c (Rd), this ensures∣∣∣∣∫ f(vk)
2 dLd −

∫
fµ2 dLd

∣∣∣∣ ≤ ∫ |f ||vk − µ||vk + µ| dLd

≤ ‖f‖L∞(Rd)‖vk − µ‖L2(Rd)‖vk + µ‖L2(Rd),

so that

lim
k→∞

∫
f(vk)

2 dLd =

∫
fµ2 dLd. (17)

We now use this stronger notion convergence to conclude our proof of part (i). Since m > 2 and

‖ϕεn ∗ µεn‖m−1
Lm−1(µεn ;Rd)

= (m− 1)Fmεn(µεn) < C for all n ∈ N,

by part (i) of Proposition B.2, up to another subsequence, there exists w ∈ L1(µ;Rd) so that for
all f ∈ C∞c (Rd),

lim
n→∞

∫
f(ϕεn ∗ µεn) dµεn =

∫
fw dµ. (18)

Furthermore, recalling the definition of the regularized energy and applying [3, Theorem 5.4.4(ii)],

lim inf
ε→0

Fmε (µε) = lim
n→∞

Fmεn(µεn) = lim
n→∞

1

m− 1

∫
(ϕεn ∗ µεn)m−1 dµn ≥

1

m− 1

∫
wm−1 dµ.

Therefore, to finish the proof, it suffices to show that w(x) ≥ µ(x) for µ-almost every x ∈ Rd. By
Lemma 2.2 and the fact that ζεn ∗ ζεn = ϕεn for all n ∈ N, there exists p > 0 and Cζ > 0 so that
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for all f ∈ C∞c (Rd), ∣∣∣∣∫ f(ϕεn ∗ µεn) dµεn −
∫
f(ζεn ∗ µεn)2 dLd

∣∣∣∣
=

∣∣∣∣∫ ζεn ∗ (fµεn) dζεn ∗ µεn −
∫

(ζεn ∗ µεn)f dζεn ∗ µεn
∣∣∣∣

≤ εpn‖∇f‖L∞(Rd)

(
‖(ζεn ∗ µεn)‖2L2(Rd) + Cζ

)
Combining this with equation (18), we obtain

lim
n→∞

∫
f(ζεn ∗ µεn)2 dLd =

∫
fw dµ. (19)

Finally, using equation (17) and the definition of (vk)k as a sequence of convex combinations of the
family {ζεi ∗ µεi}i∈{1,...,k}, for all f ∈ C∞c (Rd) with f ≥ 0 we have∫

fµ2 dLd = lim
k→∞

∫
f(vk)

2 dLd = lim
k→∞

∫
Rd

f

(
1

k

k∑
n=1

ζεn ∗ µεn(x)

)2

dx

≤ lim
k→∞

1

k

k∑
n=1

∫
f (ζεn ∗ µεn)2 dLd.

Since the limit in (19) exists, it coincides with its Cesàro mean on the right-hand side of the above
equation. Thus, for all f ∈ C∞c (Rd) with f ≥ 0,∫

fµ2 dLd ≤
∫
fw dµ.

This gives w(x) ≥ µ(x) for µ-almost every x ∈ Rd, which completes the proof. �

Now, we add a confining drift or interaction potential to our internal energies, so that energy
minimizers exist and we may apply the previous Γ-convergence result to conclude that minimizers
converge to minimizers. For the remainder of the section we consider energies of the form Emε given
in Definition 3.6, with the following additional assumptions on V and W to ensure that the energy
is confining.

ASSUMPTION 4.2 (confining assumptions). The potentials V and W are bounded below and
one of the following additional assumptions holds:

V has compact sublevel sets; (CV)

V (x) ≥ C0|x|2 + C1 for all x ∈ Rd for some C0 > 0, C1 ∈ R; (CV′)

V = 0 and W is radial satisfying lim
|x|→∞

W (x) = +∞; (CW)

Under these assumptions, the regularized energies Emε are lower semicontinuous with respect to
weak-∗ convergence (m > 1) and Wasserstein convergence (m = 1), where for the latter we assume
ϕ is a Gaussian (c.f. Proposition 3.9, and [3, Lemma 5.1.7], [64, Lemma 3.4] and [78, Lemma 2.2]).

REMARK 4.3 (tightness of sublevels). Assumptions (CV) and (CV′) ensure that the set {µ ∈
P(Rd) |

∫
V dµ ≤ C} is tight for all C > 0; c.f. [3, Remark 5.1.5]. Likewise, Assumption (CW) on

W ensures that the set {µ ∈ P(Rd) |
∫
W ∗ µdµ ≤ C} is tight up to translations for all C > 0;

c.f. [78, Theorem 3.1].

We now prove existence of minimizers of Emε , for all ε > 0.
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PROPOSITION 4.4. Let ε > 0. When m > 1, suppose either Assumption (CV) or (CW) holds.
When m = 1, suppose (CV′) holds and ϕ is a Gaussian. Then minimizers of Emε over P(Rd) exist.

Proof. First suppose m > 1, so that Fε(µ) ≥ 0 and Emε is bounded below. By Remark 4.3, if
(CV) holds, then any minimizing sequence of Emε has a subsequence that converges in the weak-∗

topology, conserving mass by tightness. Likewise, if (CW) holds, then any minimizing sequence of
Emε has a subsequence that, up to translation, converges in the weak-∗ topology, conserving mass
by tightness. By lower semicontinuity of Emε , the limits of minimizing sequences are minimizers of
Emε .

Now, suppose m = 1. By Proposition 3.8, for all δ > 0,

Fmε (µ) ≥ −(2π/δ)d/2 − 2δ(M2(µ) + ε2M2(ζ)),

Consequently, by the assumption in (CV′) and the fact that W is bounded below by, say, C̃ ∈ R,
we can choose δ = C0/2 and obtain

C̃ + C0M2(µ) + C1 − (4π/C0)d/2 − C0ε
2M2(ζ) ≤ Emε (µ) for all µ ∈ P(Rd), (20)

Hence any minimizing sequence (µn)n has bounded second moment. Thus, (µn)n has a subsequence
that converges in the weak-∗ topology, conserving mass by tightness, and by the lower semicontinuity
of Emε the limit must be a minimizer of Emε . �

Finally, we conclude that minimizers of the regularized energy converge to minimizers of the
unregularized energy.

THEOREM 4.5 (minimizers converge to minimizers). Consider a sequence (µε)ε ⊂ P(Rd) such
that µε is a minimizer of Emε for all ε > 0. If Assumption (CV) holds when m > 1 (resp. (CV′)

when m = 1 and ϕ is a Gaussian), then, up to a subsequence, µε
∗
⇀ µ, where µ is a minimizer of

Em. Likewise, if Assumption (CW) holds when m > 1, then, up to a subsequence and translation,

µε
∗
⇀ µ, where µ is a minimizer of Em.

Proof. The proof is classical, although we include it for completeness.
We only prove the result under Assumptions (CV)/(CV′) since the argument for (CW) is anal-

ogous. For any ε > 0, since µε is a minimizer of Emε , for any ν ∈ P(Rd), Emε (µε) ≤ Emε (ν). Taking
the infimum limit of the left-hand side and the supremum limit of the right-hand side, Theorem
4.1(ii) ensures that

lim inf
ε→0

Emε (µε) ≤ lim sup
ε→0

Emε (ν) ≤ Em(ν). (21)

Since E is proper, there exists ν ∈ P(Rd) so that the right-hand side is finite. Thus, up to a
subsequence, we may assume that {Emε (µε)}ε is uniformly bounded. When m > 1, Fε(µ) ≥ 0 for
all ε0, and this implies that {

∫
V dµε}ε is uniformly bounded, so {µε}ε is tight. When m = 1,

the inequality in (20) ensures that {M2(µε)}ε is uniformly bounded, so again {µε}ε is tight. Thus,
up to a subsequence, (µε)ε converges weakly-∗ to a limit µ ∈ P(Rd). By Theorem 4.1(i) and the
inequality in (21), we obtain

Em(µ) ≤ lim inf
ε→0

Emε (µε) ≤ Em(ν) for all ν ∈ P(Rd).

Therefore, µ is a minimizer of Em. �

REMARK 4.6 (convergence of minimizers). One the main difficulties for improving the topology
in which the convergence of the minimizers happen is that we do not control Lm-norms of the
regularized minimizing sequences due to the special form of our regularized energy. This is the
main reason we only get weak-∗ convergence in the previous result and the main obstacle to improve
results for the Γ-convergence of gradient flows, as we shall see in the next section.
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5. Γ-convergence of gradient flows

We now consider gradient flows of the regularized energies Emε , as in Definition 3.6, for m ≥ 2
and prove that, under sufficient regularity assumptions, gradient flows of the regularized energies
converge to gradient flows of the unregularized energy as ε→ 0. For simplicity of notation, we often
write Emε and Fmε for ε ≥ 0 when we refer jointly to the regularized and unregularized energies.

We begin by showing that the gradient flows of the regularized energies are well-posed, provided
that V and W satisfy the following convexity and regularity assumptions.

ASSUMPTION 5.1 (convexity and regularity of V and W ). The potentials V,W ∈ C1(Rd) are
semiconvex, with at most quadratic growth, and W is even. Furthermore, there exist C0, C1 > 0 so

|W (x)|, |∇V (x)|, |∇W (x)| ≤ C0 + C1|x|m−1 for all x ∈ Rd.

REMARK 5.2 (ω-convexity). More generally, our results naturally extend to drift and interaction
energies that are merely ω-convex; see [35]. However, given that the main interest of the present
work is approximation of diffusion, we prefer the simplicity of Assumption (5.1), as it allows us to
focus our attention on the regularized internal energy.

PROPOSITION 5.3. Let ε ≥ 0 and m ≥ 2. Suppose Emε is as in Definition 3.6 and V and W

satisfy Assumption 5.1. Then, for any µ0 ∈ D(Emε ), there exists a unique gradient flow of Emε with
initial datum µ0.

Proof. It suffices to verify that Emε is proper, coercive, lower semicontinuous with respect to 2-
Wasserstein convergence, and semiconvex along generalized geodesics; c.f. [3, Theorem 11.2.1].
(See also [3, Equation (2.1.2b)] for the definition of coercive.) If ε > 0, then Fmε is finite on all of
P2(Rd), and if ε = 0, then Fm is proper. Thus, our assumptions on V and W ensure that Emε is
proper. Clearly Fmε is bounded below. Hence, since the semiconvexity of V and W ensures that
their negative parts have at most quadratic growth, Emε is coercive.

For ε > 0, Proposition 3.9 ensures that Fmε is lower semicontinuous with respect to weak-∗

convergence, hence also 2-Wasserstein convergence. For ε = 0, the unregularized internal energy
Fm is also lower semicontinuous with respect to weak-∗ and 2-Wasserstein convergence [64, Lemma
3.4]. Since V and W are lower semicontinuous and their negative parts have at most quadratic
growth, the associated potential and interaction energies are lower semicontinuous with respect to
2-Wasserstein convergence [3, Lemma 5.1.7, Example 9.3.4]. Therefore, Emε is lower semicontinuous
for all ε ≥ 0.

For ε > 0, Proposition 3.11 ensures that Fmε is semiconvex along generalized geodesics in P2(Rd).
For ε = 0, the unregularized internal energy Fm is convex [64, Theorem 2.2]. For V and W
semiconvex, the corresponding drift

∫
V dµ and interaction (1/2)

∫
(W ∗ µ) dµ energies are semi-

convex [3, Proposition 9.3.2], [24, Remark 2.9]. Therefore, the resulting regularized energy Emε is
semiconvex. �

In the case ε = 0, gradient flows of the energies Em are characterized as solutions of the partial
differential equation (1); c.f. [3, Theorems 10.4.13 and 11.2.1], [24, Theorem 2.12]. Now, we show
that gradient flows of the regularized energies Emε can also be characterized as solutions of a partial
differential equation.

PROPOSITION 5.4. Let ε > 0 and m ≥ 2. Suppose Emε is as in Definition 3.6 and V and W
satisfy Assumption 5.1. Then, µε ∈ AC2

loc((0,+∞);P2(Rd)) is the gradient flow of Emε if and only
if µε is a weak solution of the continuity equation with velocity field

v = −∇V −∇W ∗ µε −∇ϕε ∗
(
(ϕε ∗ µε)m−2µε

)
− (ϕε ∗ µε)m−2∇ϕε ∗ µε . (22)

Moreover,
∫ T

0 ‖v(t)‖2
L2(µε;Rd)

dt <∞ for all T > 0.
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Proof. Suppose µε ∈ AC2
loc((0,+∞);P2(Rd)) is the gradient flow of Emε . Then, by Definition

2.9 and Corollary 3.13, µε is a weak solution to the continuity equation with velocity field (22).
Conversely, suppose µε is a weak solution to the continuity equation with velocity field (22). By
Corollary 3.13, −v(t) ∈ ∂E(µ(t)) ∩ Tanµ(t) P2(Rd) for almost every t ∈ (0,∞). Furthermore, since∫ T

0 ‖v(t)‖2
L2(µε;Rd)

dt <∞ for all T > 0, µε ∈ AC2
loc((0,+∞);P2(Rd)) by [3, Theorem 8.3.1].

�

A consequence of the previous proposition is that, for the regularized energies Emε , particles
remain particles, i.e. a solution of the gradient flow with initial datum given by a finite sum of
Dirac masses remains a sum of Dirac masses, and the evolution of the trajectories of the particles
is given by a system of ordinary differential equations.

COROLLARY 5.5. Let ε > 0 and m ≥ 2, and let V and W satisfy Assumption 5.1. Fix N ∈ N.
For i ∈ {1, . . . , N} := I, fix X0

i ∈ Rd and mi ≥ 0 satisfying
∑

i∈I mi = 1. Then the ODE system{
Ẋi(t) = −∇V (Xi(t))−

∑
j∈I ∇W (Xi(t)−Xj(t))mj −∇ δFm

ε
δµ (ΣjδXj(t)mj), t ∈ [0, T ],

Xi(0) = X0
i ,

(23)

is well-posed for all T > 0. Furthermore, µε =
∑

i∈I δXi(·)mi belongs to AC2([0, T ];P2(Rd)) and is
the gradient flow of Emε with initial conditions µε(0) :=

∑
i∈I δX0

i
mi.

Proof. To see that (23) is well-posed, first note that the function

(y1, . . . , yN ) 7→∇δF
m
ε

δµ
(Σjδyjmj)

=
∑
j∈I

(∑
k∈I

ϕε(yj − yk)mk

)m−2

−

(∑
k∈I

ϕε(yi − yk)mk

)m−2
∇ϕε(yi − yj)mj

is Lipschitz. Likewise, Assumption 5.1 ensures yi 7→ ∇V (yi) and yi 7→
∑

j∈I ∇W (yi − yj) are

continuous and one-sided Lipschitz. Therefore, the ODE system (23) is well-posed forward in time.
Now, suppose (Xi)

N
i=1 solves (23) with initial data (X0

i )Ni=1 on an interval [0, T ], for some fixed T .
We abbreviate by vi = vi(X1, X2, . . . , XN ) the velocity field for Xi in (23). For any test function
ϕ ∈ C∞c (Rd × (0, T )), the fundamental theorem of calculus ensures that, for all i ∈ I,∫ T

0

(
∇ϕ(Xi(t), t)Ẋi(t) + ∂tϕ(Xi(t), t)

)
dt = −ϕ(Xi(0), 0).

Combining this with (23), we obtain∫ T

0
∂tϕ(Xi(t), t) dt+ ϕ(X0

i , 0)−
∫ T

0
∇ϕ(Xi(t), t)vi(t) dt = 0

Multiplying both sides by mi, summing over i, and taking µε =
∑

i∈I δXi(·)mi for t ∈ [0, T ] gives∫ T

0
∂tϕ(t, x) dµε(t, x)dt+

∫
Rd

ϕ(0, x) dµε(0, x) +

∫ T

0

∫
Rd

∇ϕ(t, x)v(t, x) dµε(t, x) dt = 0,

for v as in (22). Therefore, µε is a weak solution of the continuity equation with velocity field v.
Furthermore, for all T > 0∫ T

0
‖v(t)‖2L2(µε;Rd) dt ≤ 2 max

(i,j,k)∈I3

[∫ T

0

(
|∇V (Xi(t))|2 + |∇W (Xi(t)−Xj(t))|2

)
dt

+

∫ T

0

( ∣∣(ϕε(Xj(t)−Xk(t))
m−2 + (ϕε(Xi(t)−Xk(t))

m−2
∣∣2
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× |∇ϕε(Xi(t)−Xj(t))|2
)
dt

]
<∞,

by the continuity of ∇V , ∇W , and ϕε. Therefore, by Proposition 5.4, we conclude that µε ∈
AC2([0, T ],P2(Rd)) and µε is the gradient flow of Emε . �

We now turn to the Γ-convergence of the gradient flows of the regularized energies, using the
scheme introduced by Sandier–Serfaty [75] and then generalized by Serfaty [77], which provides
three sufficient conditions for concluding convergence. We will use the following variant of Serfaty’s
result, which allows for slightly weaker assumptions on the gradient flows of the regularized energies,
but follows from the same argument as Serfaty’s original result. (See also Remark 2.11 on the
correspondence between Wasserstein gradient flows and curves of maximal slope.)

THEOREM 5.6 (c.f. [77, Theorem 2]). Let m ≥ 2. Suppose that, for all ε > 0, µε belongs to
AC2([0, T ];P2(Rd)) and is a gradient flow of Emε with well-prepared initial data, i.e.,

µε(0)
∗
⇀ µ(0), lim

ε→0
Emε (µε(0)) = Em(µ(0)), µ(0) ∈ D(Em). (S0)

Suppose further that there exists a curve µ of probability measures such that, for almost every

t ∈ [0, T ], µε(t)
∗
⇀ µ(t) and

(S1) lim inf
ε→0

∫ t

0
|µ′ε|(s)2 ds ≥

∫ t

0
|µ′|(s)2 ds,

(S2) lim inf
ε→0

Emε (µε(t)) ≥ Em(µ(t)),

(S3) lim inf
ε→0

∫ t

0
|∂Emε |2(µε(s)) ds ≥

∫ t

0
|∂Em|2(µ(s)) ds.

Then µ ∈ AC2([0, T ],P2(Rd)), and µ is a gradient flow of Em.

For simplicity of notation, in what follows we shall at times omit dependence on time when
referring to curves in the space of probability measures.

In order to apply Serfaty’s scheme in the present setting to obtain Γ-convergence of the gradient
flows, a key assumption is that the following quantity is bounded uniformly in ε > 0 along the
gradient flows µε of the regularized energies Emε :

‖µε‖BVm
ε

:=

∫
Rd

∫
Rd

ζε(x− y)
∣∣(∇ζε ∗ pε)(x) + (∇ζε ∗ µε)(x)(ϕε ∗ µε)(y)m−2

∣∣ dµε(y) dx ,

where we use the abbreviation pε := (ϕε∗µε)m−2µε. This quantity differs from ‖∇δFmε /δµε‖L1(µε;Rd)

merely by the placement of the absolute value sign:

‖µε‖BVm
ε
≥
∫
Rd

∣∣∣∣∫
Rd

ζε(x− y)(∇ζε ∗ pε)(x) + (∇ζε ∗ µε)(x)(ϕε ∗ µε)(y)m−2dx

∣∣∣∣ dµε(y)

=

∫ ∣∣(∇ϕε ∗ pε) + (∇ϕε ∗ µε)(ϕε ∗ µε)m−2
∣∣ dµε =

∥∥∥∥∇δFmεδµε
∥∥∥∥
L1(µε;Rd)

. (24)

Serfaty’s scheme allows one to assume, without loss of generality, that |Fmε |(µε) is bounded uni-
formly in ε > 0 for a.e. t ∈ [0, T ], and Hölder’s inequality ensures |Fmε |(µε) = ‖∇δFmε /δµε‖L2(µε;Rd) ≥
‖∇δFmε /δµε‖L1(µε;Rd); see Proposition 3.12. Consequently, we miss the bound we require on

‖µε‖BVm
ε

merely by placement of the absolute value sign in inequality (24).
Still, ‖µε‖BVm

ε
has a useful heuristic interpretation. Through the proof of Theorem 5.8, we obtain

lim inf
ε→0

∫ T

0

∥∥∥∥∇δFmεδµε
∥∥∥∥
L1(µε;Rd)

dt ≥ m

m− 1

∫ T

0

∥∥∇µ(t)m−1
∥∥
L1(µ(t);Rd)

dt
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=

∫ T

0

∫
Rd

|∇µ(t, x)m| dt; (25)

see inequality (33) and Proposition B.2. Consequently, one may think of ‖µε‖BVm
ε

as a nonlocal

approximation of the L1-norm of the gradient of µm.
We begin with a technical lemma we shall use to prove the convergence of the gradient flows.

LEMMA 5.7. Let ε > 0 and m ≥ 2, and let T > 0 and µε ∈ AC2([0, T ],P2(Rd)). Then for any
Lipschitz function f : [0, T ]× Rd → R with constant Lf > 0, there exists r > 0 so that

‖[(ζε ∗ (fµε))− f(ζε ∗ µε)] (∇ζε ∗ pε) + [(ζε ∗ (fpε))− f(ζε ∗ pε)] (∇ζε ∗ µε)‖L1([0,T ]×Rd)

≤ εrLf

∫ T

0
‖µε(t)‖BVm

ε
dt+ 2Cζ‖∇ζ‖L1(Rd)T

1/(m−1)

(∫ T

0
Fmε (µε(t)) dt

)m−2
m−1

 ,

where Cζ > 0 is as in Assumption 2.1.

Proof. We argue similarly as in Lemma 2.2. Let f : [0, T ] × Rd → R be Lipschitz with constant
Lf > 0. Then,∫ ∣∣ [(ζε ∗ (fµε))− f(ζε ∗ µε)] (∇ζε ∗ pε) + [(ζε ∗ (fpε))− f(ζε ∗ pε)] (∇ζε ∗ µε)

∣∣ dLd
=

∫
Rd

∣∣∣∣∫
Rd

ζε(x− y)[f(y)− f(x)]
[
(∇ζε ∗ pε)(x) + (∇ζε ∗ µε)(x)(ϕε ∗ µε)(y)m−2

]
dµε(y)

∣∣∣∣ dx
≤ Lf

∫
Rd

∫
Rd

ζε(x− y)|x− y|
∣∣(∇ζε ∗ pε)(x) + (∇ζε ∗ µε)(x)(ϕε ∗ µε)(y)m−2

∣∣ dµε(y) dx .

By Assumption 2.1, Cζ is so that ζ(x) ≤ Cζ |x|−q for q > d+ 1 for all x ∈ Rd. Choose r̄ so that

0 < r̄ <
q − (d+ 1)

q − 1
. (26)

Now, we break the integral with respect to dµε(y) above into integrals over the domain Bεr̄(x) and
Rd \Bεr̄(x), bounding the above quantity by

Lf

∫
Rd

∫
Bεr̄ (x)

ζε(x− y)|x− y|
∣∣(∇ζε ∗ pε)(x) + (∇ζε ∗ µε)(x)(ϕε ∗ µε)(y)m−2

∣∣ dµε(y) dx

+ Lf

∫
Rd

∫
Rd\Bεr̄ (x)

ζε(x− y)|x− y|
∣∣(∇ζε ∗ pε)(x) + (∇ζε ∗ µε)(x)(ϕε ∗ µε)(y)m−2

∣∣ dµε(y) dx,

=: I1 + I2

First, we consider I1. Since, in the integral, |x− y| < εr̄, we obtain

I1 < εr̄Lf‖µε‖BVm
ε
.

Now, we consider I2. We apply the inequality in (52) to obtain ζε(x − y)|x − y| ≤ Cζε
r̃ with

r̃ := r̄(1− q) + q − d in the integral—the inequality in (26) ensures r̃ > 1. Consequently,

I2 ≤ εr̃LfCζ
(∫
|∇ζε ∗ pε| dLd

∫
dµε +

∫
|∇ζε ∗ µε| dLd

∫
pε dLd

)
≤ 2εr̃LfCζ‖∇ζε‖L1(Rd)

∫
pε Ld ≤ 2εr̃−1LfCζ‖∇ζ‖L1(Rd)Fmε (µ)(m−2)/(m−1),
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where, in the last inequality, we use that ‖∇ζε‖L1(Rd) = ‖∇ζ‖L1(Rd)/ε and, by Jensen’s inequality

for the concave function s(m−2)/(m−1),∫
pε dLd =

∫
(ϕε ∗ µε)m−2dµε ≤

(∫
(ϕε ∗ µε)m−1dµε

)(m−2)/(m−1)

= Fmε (µε)
(m−2)/(m−1). (27)

Since 0 ≤ (m− 2)/(m− 1) < 1, Jensen’s inequality gives∫ T

0
Fmε (µε(t))

(m−2)/(m−1) dt ≤ T
(

1

T

∫ T

0
Fmε (µε(t)) dt

)(m−2)/(m−1)

. (28)

This gives the result by taking r := min(r̄, r̃ − 1). �

With this technical lemma in hand, we now turn to the Γ-convergence of the gradient flows.

THEOREM 5.8. Let m ≥ 2, and let V and W be as in Assumption 5.1. Fix T > 0 and suppose
that µε ∈ AC2([0, T ];P2(Rd)) is a gradient flow of Emε for all ε > 0 satisfying

µε(0)
∗
⇀ µ(0), lim

ε→0
Emε (µε(0)) = Em(µ(0)), µ(0) ∈ D(Em). (A0)

Furthermore, suppose that the following hold:

(A1) supε>0

∫ T
0 Mm−1(µε(t)) dt <∞,

(A2) supε>0

∫ T
0 ‖µε(t)‖BVm

ε
dt < +∞,

(A3) ζε ∗ µε(t)→ µ(t) in L1([0, T ];Lmloc(Rd)) as ε→ 0, and supε>0

∫ T
0 ‖ζε ∗ µε(t)‖

m
m dt <∞.

Then µε(t)
∗
⇀ µ(t) for almost every t ∈ [0, T ], µ ∈ AC2([0, T ],P2(Rd)), and µ is the gradient flow

of E with initial data µ(0).

Proof. First, we prove that µε(t)
∗
⇀ µ(t) for almost every t ∈ [0, T ]. By assumption (A1),

supε>0

∫ T
0 Mm−1(µε(t)) dt <∞. Thus, Fatou’s lemma implies∫ T

0

(
lim inf
ε→0

∫
Rd

|x|m−1dµε(t, x)

)
dt ≤ lim inf

ε→0

∫ T

0

∫
Rd

|x|m−1dµε(t, x)dt < +∞,

and lim infε→0Mm−1(µε(t)) < ∞ for almost every t ∈ [0, T ]. Consequently, for almost every t ∈
[0, T ], every sequence (µε(t))ε has a further subsequence along which {Mm−1(µε(t))}ε is uniformly
bounded in ε; hence, a further subsequence that converges in the weak-∗ topology to some ν(t) ∈
P(Rd). By Proposition 2.3, this also implies ζε ∗ µε(t)

∗
⇀ ν(t). Since both this and Assumption

(A3) imply convergence in weak sense, by uniqueness of limits, ν(t) = µ(t). Thus, µε(t)
∗
⇀ µ(t) for

almost every t ∈ [0, T ].
It remains to verify conditions (S0), (S1), (S2), and (S3) from Theorem 5.6. Item (S0) holds

by hypothesis. Item (S1) follows by the same argument as in [37, Theorem 5.6]. Item (S2) is an

immediate consequence of the fact that µε(t)
∗
⇀ µ(t) for almost every t ∈ [0, T ] and the lower

semicontinuity of the potential and interaction energies with respect to weak-∗ convergence [3,
Lemma 5.1.7].

We devote the remainder of the proof to showing Condition (S3). We shall use the following fact
throughout: combining assumption (A3) with Proposition 3.8 implies that

sup
ε>0

∫ T

0
Fmε (µε(t)) dt ≤ sup

ε>0

1

m− 1

∫ T

0
‖ζε ∗ µε(t)‖mm dt <∞. (29)
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To prove (S3) we may assume, without loss of generality, that lim infε→0

∫ T
0 |∂E

m
ε |(µε(t))2 dt is

finite, so by Fatou’s lemma

∞ > lim inf
ε→0

∫ T

0
|∂Emε |(µε(t))2 dt ≥

∫ T

0
lim inf
ε→0

|∂Emε |(µε(t))2 dt, (30)

so lim infε→0 |∂Emε |(µε(t)) <∞ for almost every t ∈ [0, T ]. In particular, up to taking subsequences,
we may assume that, for almost every t ∈ [0, T ], {|∂Emε |(µε(t))}ε is bounded uniformly in ε > 0.
By Corollary 3.13,

|∂Emε |(µε) =

∥∥∥∥∇V +∇W ∗ µε +∇δF
m
ε

δµε
(µε)

∥∥∥∥
L2(µε;Rd)

.

Furthermore, note that if

µm ∈W 1,1(Rd) and ∇µm +∇V µ+ (∇W ∗ µ)µ = ξµ for some ξ ∈ L2(µ;Rd), (31)

then |∂Em|(µ) = ‖ξ‖L2(µ;Rd); c.f. [3, Theorem 10.4.13]. Thus, to prove (S3) it suffices to show that

lim inf
ε→0

∫ T

0

∫ ∣∣∣∣∇V +∇W ∗ (µε(t)) +∇δF
m
ε

δµε
(µe(t))

∣∣∣∣2 dµε(t) dt ≥ ∫ T

0

∫
|ξ(t)|2 dµ(t) dt, (32)

when (31) holds for almost every t ∈ [0, T ]. Furthermore, the inequality in (32) is, by Proposition
B.2, a consequence of

lim
ε→0

∫ T

0

∫
f(t)

(
∇V +∇W ∗ µε(s) +∇∂F

m
ε

∂µε
(s)

)
dµε(s)ds =

∫ T

0

∫
f(t)ξ(t) dµ(t) ds, (33)

for all f ∈ C∞c ([0, T ] × Rd). Observe that Proposition B.2 is stated for probability measures—we
can easily rescale dµε ⊗ dLd to be a probability measure by diving the above equations by T > 0.

First, we address the terms with the drift and interaction potentials V and W . Combining
Assumption 5.1 on V and W with Assumption (A1) on µε ensures that |∇V | is uniformly integrable
in dµε ⊗ dLd and (x, y) 7→ |∇W (x − y)| is uniformly integrable dµε ⊗ dµε ⊗ dLd.Therefore, by [3,
Lemma 5.1.7], (µε)ε converging weakly-∗ to µ ensures that

lim
ε→0

∫ T

0

∫
f(t) (∇V +∇W ∗ (µε(t))) dµε(t) dt =

m

m− 1

∫ T

0

∫
Rd

f(t)
(
∇V +∇W ∗ (µ(t))

)
dµ(t) dt.

Now we deal with proving the diffusion part of (31) (that is, for almost every t ∈ [0, T ], we have
µ(t)m ∈W 1,1(Rd) and ∇µ(t)m = η(t)µ(t) for η ∈ L2(µ;Rd)), and with proving that

lim
ε→0

∫ T

0

∫
f(t)∇δF

m
ε

δµε
(µε(t)) dµε(t) dt =

∫ T

0

∫
f(t)η(t) dµ(t) dt, (34)

Recalling the abbreviation pε := (ϕε ∗µε)m−2µε, we rewrite the inner integral on the left-hand side
of (34) as ∫

f∇∂F
m
ε

∂µε
dµε =

∫
f
(
(∇ϕε ∗ pε) + (ϕε ∗ µε)m−2(∇ϕε ∗ µε)

)
dµε

=

∫
(ζε ∗ (fµε))(∇ζε ∗ pε) + (ζε ∗ (fpε))(∇ζε ∗ µε) dLd.

Applying Lemma 5.7 together with (29) and (A3), and integrating by parts, we obtain

lim
ε→0

∫ T

0

∫
f(t)∇δF

m
ε

δµε
(µε(t)) dµε(t) dt = lim

ε→0

∫ T

0

∫
f(t)(ζε ∗ (µε(t)))(∇ζε ∗ (pε(t))) dLd dt

+

∫ T

0

∫
f(t)(ζε ∗ (pε(t)))(∇ζε ∗ (µε(t))) dLd dt
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= − lim
ε→0

∫ T

0

∫
∇f(t)(ζε ∗ (µε(t)))(ζε ∗ (pε(t))) dLd dt

= − lim
ε→0

∫ T

0

∫
ζε ∗ (∇f(t)(ζε ∗ (µε(t))))pε(t) dLd dt.

Now we move ∇f out of the convolution. By Lemma 2.2, there exists p > 0 so∣∣∣∣∫ ζε ∗ (∇f(ζε ∗ µε))pε dLd −
∫
∇f(ζε ∗ (ζε ∗ µε))pε dLd

∣∣∣∣
≤ εp‖∇f‖L∞([0,T ]×Rd)

(∫
(ϕε ∗ µε)m−1dµε + Cζ

∫
pε dLd

)
≤ εp‖∇f‖L∞([0,T ]×Rd)

(
Fmε (µε) + CζFmε (µε)

(m−2)/(m−1)
)
,

where we again use (27). Using the inequality in (28) and that {
∫ T

0 F
m
ε (µε(t)) dt}ε is uniformly

bounded in ε,

− lim
ε→0

∫ T

0

∫
f(t)∇δF

m
ε

δµε
(µε(t)) dµε(t) dt = lim

ε→0

∫ T

0

∫
∇f(t)(ϕε ∗ µε)pε dLd dt (35)

= lim
ε→0

∫ T

0

∫
Rd

∇f(t)(ϕε ∗ µε(t))m−1dµε(t) dt. (36)

To conclude the proof, we aim to apply Proposition B.2(iii), and we begin by verifying the
hypotheses of this proposition. First, note that since ζε ∗ µε → µ in L1([0, T ];Lmloc(Rd)) for m ≥ 2

as ε → 0, we also have ζε ∗ µε → µ in L1([0, T ];L2
loc(Rd)). Let wε = ϕε ∗ µε. By definition,∫

wεdµε =
∫

(ζε ∗ µε)2 dLd. Thus, Assumption (A3) and the fact that ζε ∗ µε(Rd) = 1 imply

sup
ε>0

∫ T

0

∫
|ζε ∗ µε(t)|2 dLd dt <∞,

so that wε ∈ L1([0, T ], L1(µε;Rd)). Furthermore, for any h ∈ L∞([0, T ];W 1,∞(Rd)), the mollifier
exchange lemma 2.2 and the convergence of ζε ∗ µε to µ in L1([0, T ];L2

loc(Rd)) give∫ T

0

∫
h(t)wε(t) dµε(t) =

∫ T

0

∫
ζε ∗ (hµε(t)) dζε ∗ (µε(t)) dt

=

∫ T

0

∫
h(t)(ζε ∗ µε(t))2 dLd dt (37)

+ εp‖∇h‖L∞([0,T ];W 1,∞(Rd))

(∫ T

0

∫
‖ζε ∗ (µε(t))‖2L2(Rd) dL

d dt+ Cζ

)
−→

∫ T

0

∫
h(t)µ(t)2 dLd dt,

as ε→ 0. Thus, wε ∈ L1([0, T ];L1(µε;Rd)) converges weakly to µ ∈ L1([0, T ];L1(dµ)) in the sense
of Definition B.1 as ε → 0. As before, while this definition is stated for probability measures, we
can easily rescale dµε ⊗ dLd to be a probability measure by diving the above equations by T > 0.

We now seek to show that, for all g ∈ C∞c ([0, T ]× Rd),

lim
ε→0

∫ T

0

∫
g(t)|wε(t)|m−1 dµε(t) dt =

∫ T

0

∫
g(t)|µ(t)|m−1 dµ(t).

When m = 2, this follows from equation (37). Suppose m > 2. Let κ : Rd → R be a smooth
cutoff function with 0 ≤ κ ≤ 1, ‖∇κ‖L∞(Rd) ≤ 1, ‖D2κ‖L∞(Rd) ≤ 4, κ(x) = 1 for all |x| < 1/2 and
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κ(x) = 0 for all |x| > 2. Given R > 0, define κR := κ(·/R), so that ‖∇κR‖L∞(Rd) ≤ 1/R. Then, by

Jensen’s inequality for the convex function s 7→ sm−1, Lemma 2.2, and Assumption (A3),

lim sup
ε→0

∫ T

0

∫
|κRwε(t)|m−1 dµε(t) dLd dt ≤ lim sup

ε→0

∫ T

0

∫
(ζε ∗ (µε(t)))

m−1ζε ∗ (κm−1
R µε(t)) dLd dt

≤ lim sup
ε→0

∫ T

0

∫
κm−1
R (ζε ∗ (µε(t)))

m dLd dt

=

∫ T

0

∫
(κRµ(t))m−1 dµ(t) dt.

Combining this with (37), where we may choose h = κRg for any g ∈ C∞c (Rd), we have that (κRwε)ε
converges strongly in Lm−1(µε;Rd) to κRµ ∈ Lm−1(µ;Rd) as ε→ 0, in the sense of Definition B.1.

Finally, since Assumption (A1) ensures that
∫ T

0 Mm−1(µε(t)) ds is bounded uniformly in ε, we may

apply Proposition B.2(iii) to conclude that for all g ∈ C∞c ([0, T ]× Rd),

lim
ε→0

∫ t

0

∫
Rd

g|κRwε|m−1dµε =

∫ t

0

∫
Rd

g|κRµ|m−1dµ.

Taking g = ∇f , choosing R > 1 so that κR ≡ 1 on the support of ∇f , and combining the above
equation with equation (35), we obtain

lim
ε→0

∫ T

0

∫
f(t)∇δF

m
ε

δµε
(µε(t)) dµε(t) dt = −

∫ T

0

∫
∇f(t)µ(t)m dLd dt. (38)

We now prove that µ has the necessary regularity. In particular, we show that for almost every
t ∈ [0, T ], we have µm ∈ W 1,1(Rd) and ∇µm = ηµ for η ∈ L2(µ;Rd). Inequality (30) ensures

that, up to subsequences {
∫ t

0 |∂F
m
ε |2(µε(t)) dt}ε is bounded uniformly in ε > 0. Thus, by Hölder’s

inequality, there exists C > 0 so that

C >

∫ T

0

∥∥∥∥∇δFmεδµε (µe(t))

∥∥∥∥2

L2(µε;Rd)

dt ≥
∫ T

0

∥∥∥∥∇δFmεδµε (µε(t))

∥∥∥∥2

L1(µε;Rd)

dt

≥ T

(
1

T

∫ T

0

∥∥∥∥∇δFmεδµε (µε(t))

∥∥∥∥
L1(µε;Rd)

dt

)2

,

for all ε > 0. Combining this with (38) gives

CT‖f‖L∞(Rd) ≥ lim sup
ε→0

‖f‖L∞([0,T ]×Rd)

∫ T

0

∥∥∥∥∇δFmεδµε (µε(t))

∥∥∥∥
L1(µε;Rd)

≥
∫ T

0

∫
f(t)∇(µ(t)m) dLd dt.

Hence ∇(µm) has finite measure on [0, T ]× Rd, so we may rewrite (38) as

lim
ε→0

∫ t

0

∫
f∇δF

m
ε

δµε
(µε(t)) dµε(t) dt = −

∫ t

0

∫
f(t) d∇(µ(t)m) dt. (39)

By another application of Hölder’s inequality, this guarantees

√
C

(∫ t

0
‖f(t)‖2L2(µ;Rd) dt

)1/2

≥ lim sup
ε→0

∫ t

0
‖f(t)‖L2(µε;Rd)

∥∥∥∥∇δFmεδµε (µε(t))

∥∥∥∥
L2(µε;Rd)

≥
∫ t

0

∫
f(t)d∇(µ(t)m) dt.
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Riesz representation theorem then ensures that there exists η ∈ L2([0, t];L2(µ;Rd)) so that ηµ =
∇(µm). In particular, this implies ∇(µ(t)m) ∈ L1(Rd) for almost every t ∈ [0, T ], so µm ∈W 1,1(Rd)
for almost every t ∈ [0, T ] and we may rewrite (39) as

lim
ε→0

∫ T

0

∫
Rd

f(t)∇δF
m
ε

δµε
(µε(t)) dµε(t) dt = −

∫ T

0

∫
f(t)η dµ(t) dt,

which completes the proof. �

We conclude this section by showing that, in the case when m = 2 and for V,W ∈ C2(Rd) with
bounded Hessians, whenever the initial data of the gradient flows have bounded second moments
and internal energies, we automatically obtain Assumptions (A1)–(A3). Consequently, in this
special case, we are able to conclude the convergence of the gradient flows without these additional
assumptions.

COROLLARY 5.9. Let ε > 0 and m = 2. In addition to satisfying Assumption 5.1, assume
that V,W ∈ C2(Rd) have bounded Hessians D2V and D2W . Fix T > 0, and suppose µε ∈
AC2([0, T ];P2(Rd)) is a gradient flow of Emε satisfying

µε(0)
∗
⇀ µ(0), lim

ε→0
Emε (µε(0)) = Em(µ(0)), µ(0) ∈ D(Em), (40)

sup
ε>0

M2(µε(0)) <∞, sup
ε>0

∫
µε(0) log(µε(0)) dLd < +∞. (41)

Then, there exists µ ∈ AC2([0, T ];P2(Rd)) such that

µε(t)
∗
⇀ µ(t) and ζε ∗ µε(t)

L2(Rd)−−−−→ µ(t) for all t ∈ [0, T ],

and µ is the gradient flow of Em with initial data µ(0).

REMARK 5.10 (Previous work, m = 2). The above theorem generalizes a result by Lions and
Mas-Gallic [59] on a numerical scheme for the porous medium equation ∂tµ = ∆µ2 on a bounded
domain with periodic boundary conditions to equations of the form (1) on Euclidean space.

Proof of Corollary 5.9. First, we show that supε>0 ‖ζε ∗ (µε(0))‖L2(Rd) < ∞. The fact that D2V

and D2W are bounded ensures |V | and |W | grow at most quadratically. Combining this with
equations (40)–(41), which ensure {Emε (µ(0))}ε and {M2(µε(0))}ε are bounded uniformly in ε > 0,
we obtain

sup
ε>0
‖ζε ∗ (µε(0))‖2L2(Rd) = sup

ε>0
F2
ε (µε(0))

= sup
ε>0

(
E2
ε (µε(0))−

∫
V dµε(0)− 1

2

∫
W ∗ (µε(0))dµε(0)

)
< +∞.

Furthermore, since the energy F2
ε decreases along solutions to the gradient flow, we have

sup
ε>0
‖ζε ∗ (µε(t))‖2L2(Rd) ≤ sup

ε>0
‖ζε ∗ (µε(0))‖2L2(Rd) <∞ for all t ∈ [0, T ]. (42)

Next, we show that our assumption that the initial data has bounded entropy (41) ensures∫ t
0 ‖∇ζε ∗ (µε(s))‖2L2(Rd)

ds < C(1 + T ) +M2(µε(t)) for all t ∈ [0, T ], for some C > 0 depending on

d, V , W and supε>0

∫
logµε(0) dµε(0). Formally differentiating the entropy F1(µ) =

∫
log(µ) dµ

along the gradient flows µε, we expect that, for all t ∈ [0, T ],

d

dt

[
F1(µε(t))

]
= −2

∫
|∇ζε ∗ (µε(t))|2 dLd +

∫
∆V dµε(t) +

∫
∆W ∗ (µε(t)) dµε(t).
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Hence, for any t ∈ [0, T ],

F1(µε(t))−F1(µε(0)) = −2

∫ t

0

∫
|∇ζε ∗ (µε(s))|2 dLd ds

+

∫ t

0

∫
∆V dµε(s) ds+

∫ t

0

∫
∆W ∗ (µε(s)) dµε(s) ds

≤ −2

∫ t

0

∫
|∇ζε ∗ (µε(s))|2 dLd ds+ t

(
‖D2V ‖L∞(Rd) + ‖D2W‖L∞(Rd)

)
This computation can be made rigorous by first proving the analogous inequality along discrete time
gradient flows using the flow interchange method of Matthes, McCann, and Savaré [63, Theorem
3.2] and then sending the timestep to zero to recover the above inequality in continuous time. Thus,
there exists K0 > 0 depending on V,W and supε>0F1(µε(0)) so that, for all t ∈ [0, T ],∫ t

0
‖∇ζε ∗ (µε(s))‖2L2(Rd) ds ≤ −F

1(µε(t)) +K0(1 + t).

Finally, by a Carleman-type estimate [30, Lemma 4.1], we have F1(ν) ≥ −(2π)d/2−M2(ν) for any
ν ∈ P2(Rd). Therefore,∫ t

0
‖∇ζε ∗ (µε(s))‖2L2(Rd) ds ≤M2(µε(t)) + C(1 + t). (43)

Now, we use this estimate to show that {M2(µε(t))}ε is uniformly bounded in ε for all t ∈ [0, T ].
Let κ be a smooth cutoff function with 0 ≤ κ ≤ 1, ‖∇κ‖L∞(Rd) ≤ 1, ‖D2κ‖L∞(Rd) ≤ 4, κ(x) = 1

for all |x| < 1/2 and κ(x) = 0 for all |x| > 2. Given R > 0, define κR(x) = κ(x/R), so that
‖∇κR‖L∞(Rd) ≤ 1/R and ‖D2κR‖L∞(Rd) ≤ 4/R2. Then there exists Cκ > 0 so that for all R > 1,

|∇(κR(x)x2)| ≤ Cκ|x| and |D2(κR(x)x2)| ≤ Cκ for all x ∈ Rd. By Proposition 5.4, µε is a weak
solution of the continuity equation. Therefore choosing κR(x)|x|2 as our test function, we obtain,
for all t ∈ [0, T ],∫

Rd

κR(x)|x|2 dµε(t, x)−
∫
Rd

κR(x)|x|2 dµε(0, x)

= −2

∫ t

0

∫
Rd

∇(κR(x)x2) (∇ϕε ∗ (µε(s)) +∇V (x) +∇W ∗ (µε(s))(x)) dµε(s, x).

Since D2V and D2W are bounded, |∇V | and |∇W | grow at most linearly. Consequently, there
exists C ′ > 0, depending on V , W , and Cκ so that

−2

∫ t

0

∫
Rd

∇(κR(x)x2)(∇V (x) +∇W ∗ (µε(s))(x) dµε(s, x) ≤ C ′
(

1 +

∫ t

0
M2(µε(s)) ds

)
.

Likewise, by Lemma 5.7, there exists r > 0 so that, for all t ∈ [0, T ],

− 2

∫ t

0

∫
Rd

∇(κR(x)x2)∇ϕε ∗ (µε(s))(x) dµε(s, x)

= −2

∫ t

0

∫
Rd

ζε ∗ (∇(κR(x)x2)µε(s))∇ζε ∗ (µε(s))(x) dx ds

≤ −2

∫ t

0

∫
Rd

∇(κR(x)x2)ζε ∗ (µε(s))(x)∇ζε ∗ (µε(s))(x) dx ds

+ εrCκ

(∫ t

0
‖µε(s)‖BVm

ε
ds+ 2t‖∇ζ‖L1(Rd)

)
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=

∫ t

0

∫
Rd

∆(κR(x)x2)(ζε ∗ (µε(s)))
2 dx ds+ εrCκ

(∫ t

0
‖µε(s)‖BVm

ε
ds+ 2t‖∇ζ‖L1(Rd)

)
≤ Cκ

∫ t

0
F2
ε (µε(s)) ds+ 2εrCκ

(∫ t

0
‖ζε ∗ (µε(s))‖L2(Rd)‖∇ζε ∗ (µε(s))‖L2(Rd) ds+ 2t‖∇ζ‖L1(Rd)

)
≤ CκtF2

ε (µε(0)) + 2εrCκ

(√
tF2

ε (µε(0))
√
M2(µε(t)) + C(1 + t) + 2t‖∇ζ‖L1(Rd)

)
≤ C ′′ (1 + t+ εrM2(µε(t)))

for C ′′ depending on Cκ, supε>0F2
ε (µε(0)), and ‖∇ζ‖L1(Rd). In the second inequality, we use that

‖µε‖BVm
ε
≤ 2‖(∇ζε ∗ µε)(ζε ∗ µε)‖L1(Rd) ≤ ‖ζε ∗ µε‖L2(Rd)‖∇ζε ∗ µε‖L2(Rd) (44)

Therefore, there exists C ′′ > 0 so that, for all t ∈ [0, T ],∫
Rd

κR(x)|x|2 dµε(t, x) ≤M2(µε(0)) + C ′
(
t+

∫ t

0
M2(µε(s)) ds

)
+ C ′′ (1 + t+ εrM2(µε(t))) .

As the right-hand side is independent of R > 1, by sending R→ +∞ by the dominated convergence
theorem we obtain that for εr < 1/(2C ′′),

M2(µε(t)) ≤ 2C ′
(
t+

∫ t

0
M2(µε(s)) ds

)
+ 2C ′′(t+ 1).

Therefore, by Gronwall’s inequality, there exists C̃ depending on C ′, C ′′ and T (and independent
of ε) so that

M2(µε(t)) < C̃ for all t ∈ [0, T ]. (45)

We may combine this with the inequality in (43) to obtain, for all t ∈ [0, T ],∫ t

0
‖∇ζε ∗ (µε(s))‖2L2(Rd) ds ≤ C̃ + C(1 + t) for t ∈ [0, T ]. (46)

We now use these results to verify the assumptions of Theorem 5.8 hold, so that we may apply
this result to conclude convergence of the gradient flows. Assumption (A1) is a consequence of the
inequality in (45). Assumption (A2) is a consequence of the inequalities in (42), (44) and (46).

It remains to show Assumption (A3). First, note that since supε>0 ‖ζε ∗ µε‖L∞([0,T ]×Rd) < ∞,

every subsequence of (ζε ∗ µε)ε has a further subsequence, which we also denote by (ζε ∗ µε)ε, that
converges weakly in L2([0, T ]× Rd) to some ν as ε→ 0, and for which ζε ∗ µε(t) ⇀ ν(t) weakly in
L2(Rd) for all t ∈ [0, T ]. By uniqueness of limits and (40), we have ν(0) = µ(0) almost everywhere.

Next, note that (42) and (46) ensure that supε>0 ‖ζε ∗ µ‖L2([0,T ];H1(Rd)) < ∞. In particular we

have supε>0 ‖κRζε ∗ µ‖L2([0,T ];H1(Rd)) <∞ for the smooth cutoff function κR, R > 1. Therefore, by

the Rellich–Kondrachov Theorem (c.f. [44, Section 5.7]), for almost every t ∈ [0, T ], up to another
subsequence, (κRζε ∗ µε(t))ε converges strongly in L2(Rd) to some νR(t). In particular, for any
f ∈ C∞c (BR/2(0)),∫

f dν(t) = lim
ε→0

∫
f dζε ∗ µε(t) =

∫
f dνR(t) for all t ∈ [0, T ],

so ν = νR almost everywhere in BR/2(0). Since R > 1 is arbitrary, this shows that for all t ∈ [0, T ],

ζε ∗ µε(t) → ν(t) strongly in L2
loc(Rd). Finally, using again that {‖ζε ∗ µε(t)‖L2(Rd)}t is bounded

uniformly in t ∈ [0, T ], the dominated convergence theorem ensures that ζε ∗ µε(t) → ν(t) in
L1([0, T ];L2

loc(Rd) as ε→ 0. This completes the proof of assumption (A3).

As we have now verified the conditions of Theorem 5.8, we now conclude that µε(t)
∗
⇀ ν(t) for

almost every t ∈ [0, T ], for some ν ∈ AC2([0, T ];P2(Rd)) which is the gradient flow of E2 with
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initial data µ(0). By Proposition 5.3, the gradient flow of E2 with initial data µ(0) is unique. Thus,
since any subsequence of (µε)ε has a further subsequence which converges to ν, the full sequence
must converge to µ, which gives the result. �

6. Numerical results

6.1. Numerical method and convergence. We now apply the theory of regularized gradient
flows developed in the previous sections to develop a blob method for diffusion, allowing us to
numerically simulate solutions to partial differential equations of Wasserstein gradient flow type
(1). We begin by describing the details of our numerical scheme and applying Theorem 5.8 to prove
its convergence, under suitable regularity assumptions.

THEOREM 6.1. Assume m ≥ 2 and V and W satisfy Assumption 5.1. Suppose µ(0) ∈ D(Em)
is compactly supported in BR(0), the ball of radius R centered at the origin. For fixed grid spacing
h > 0, define the grid indices QhR := {i ∈ Zd : |ih| ≤ R} and approximate µ(0) by the following
sequence of measures:

µε(0) :=
∑
i∈Qh

R

δihmi, mi =

∫
Qi

dµ(0), i ∈ {1, . . . , N}, (47)

where Qi is the cube centered at ih of side length h. Next, for ε > 0, define the evolution of these
measures by

µε(t) =
∑
i∈Qh

R

δXi(t)mi, t ∈ [0, T ], (48)

where {Xi(t)}i∈Qh
R

are solutions to the ODE system (23) on a time interval [0, T ] with initial data

Xi(0) = ih. If h = o(ε) as ε → 0 and Assumptions (A1)–(A3) from Theorem 5.8 hold, then
(µε(t))ε converges in the weak-∗ topology to µ(t) as ε→ 0 for almost every t ∈ [0, T ], where µ(t) is
the unique solution of (1) with initial datum µ(0).

Proof. By Corollary 5.5, µε ∈ AC2([0, T ];P2(Rd)) is the gradient flow of Emε with initial condition
µε(0) for all ε > 0. To apply Theorem 5.8 and obtain the result, it remains to show that Assumption
(A0) holds. In particular, we must show that, assuming h = o(ε),

lim
ε→0

(∫
V dµε(0) +

1

2

∫
(W ∗ (µε(0))) dµε(0) + Fmε (µε(0))

)
=

∫
V dµ(0) +

1

2

∫
(W ∗ (µ(0))) dµ(0) + Fm(µ(0)).

Define T : Rd → Rd by T (y) = ih for y ∈ Qi and i ∈ QhR. Then T is a transport map from µ(0) to

µε(0) and |T (y)− y| ≤ h for all y ∈ Rd. By construction,

W2(µε(0), µ(0)) ≤ {|T (y)− y| | y ∈ supp µ(0)} ≤ h,

so µε(0)
∗
⇀ µ(0) as ε → 0 (and so, as h → 0). Likewise, for all ε, h > 0, supp µε(0) ⊆ BR(0).

Consequently, since V and W are continuous,

lim
ε→0

∫
V dµε(0) +

1

2

∫
(W ∗ (µε(0))) dµε(0) =

∫
V dµ(0) +

1

2

∫
(W ∗ (µ(0))) dµ(0).

Thus, it remains to show that

lim
ε→0
Fmε (µε(0)) = Fm(µ(0)).
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By Theorem 4.1, we have that lim infε→0Fmε (µε(0)) ≥ Fm(µε(0)). By Proposition 3.8, for all ε > 0
we have

Fmε (µε(0)) ≤ Fm(µε(0)) = 1
m−1‖ζε ∗ µε‖

m
m.

Consequently, to show that lim supε→0Fmε (µε(0)) ≤ Fm(µ(0)) = ‖µ(0)‖mm/(m − 1), it suffices to
show that ζε ∗ µε(0)→ µ(0) in Lm as ε→ 0.

For simplicity of notation, we suppress the dependence on time and show ζε ∗ µε → µ in Lm as
ε → 0. By the assumptions that µ ∈ D(Em) with compact support and V and W are continuous,
we have µ ∈ Lm(Rd). Consequently ζε ∗ µ → µ in Lm as ε → 0, and it is enough to show that
ζε ∗ µε − ζε ∗ µ→ 0 in Lm. Using that T is a transport map from µε to µ,

|ζε ∗ µε(x)− ζε ∗ µ(x)| =
∣∣∣∣∫

Rd

ζε(x− T (y))− ζε(x− y) dµ(y)

∣∣∣∣
≤
∫ 1

0

∫
Rd

|∇ζε(x− (1− α)T (y)− αy)| |T (y)− y| dµ(y)dα

≤ h
∫ 1

0

∫
Rd

|∇ζε(x− (1− α)T (y)− αy)| dµ(y)dα.

Combining the decay of ∇ζ from Assumption 2.1 with the fact that ∇ζ is continuous, there exists
C > 0 so that |∇ζ(x)| ≤ C(1B(x)+|x|−q′1Rd\B(x)), where B = B1(0) is the unit ball centered at the

origin. Note that if |x−y| ≥ 2h, then for all α ∈ [0, 1], |x−(1−α)T (y)−αy| ≥ |x−y|−h ≥ |x−y|/2
and |x− (1− α)T (y)− αy| ≤ 3|x− y|/2. Thus, by the assumptions on our mollifier, we have

|∇ζε(x− (1− α)T (y)− αy)|

≤ C

εd+1

[
1B

(
x− (1− α)T (y)− αy

ε

)

+ εq
′ |x− (1− α)T (y)− αy|−q

′
1Rd\B

(
x− (1− α)T (y)− αy

ε

)]

≤ C

εd+1

(
1B

(
|x− y|

2ε

)
+

(
2ε

3

)q′
|x− y|−q

′
1B\Rd

(
3|x− y|

2ε

))
.

Thus, taking the Lm-norm with respect to x, doing a change of variables, and applying Minkowski’s
inequality, we obtain

‖ζε ∗ µε − ζε ∗ µ‖m

≤ h‖∇ζε‖∞

∥∥∥∥∥
∫
B2h(x)

µ(y)

∥∥∥∥∥
m

+
Ch

εd+1

∥∥∥∥∥
∫
B2h(x)c

(
1B

(
|x− y|

2ε

)
+

(
2ε

3

)q′
|x− y|−q

′
1B\Rd

(
3|x− y|

2ε

))
dµ(y)

∥∥∥∥∥
m

= h‖∇ζε‖∞

∥∥∥∥∥
∫
B2h(0)

µ(x− w)dw

∥∥∥∥∥
m

+
Ch

εd+1

∥∥∥∥∥
∫
B2h(0)c

(
1B

(
|w|
2ε

)
+

(
2ε

3

)q′
|w|−q

′
1B\Rd

(
3|w|
2ε

))
µ(x− w)dw

∥∥∥∥∥
m

≤ c‖µ‖m
(
hd+1

εd+1
+
h

ε

)
,

28



where c > 0 depends on C, ‖∇ζ‖∞, and the space dimension. Therefore, provided that h = o(ε) as
ε→ 0, we obtain that ζε ∗ µε − ζε ∗ µ→ 0 in Lm.

�

REMARK 6.2 (compact support of initial data). In Theorem 6.1, we assume that the initial
datum of the exact solution µ(0) ∈ D(Em) is compactly supported. More generally, under the same
assumptions on V , W , and m, given any ν0 ∈ D(Em) ∩ P2(Rd) without compact support, there
exists ν̃0 ∈ D(Em) with compact support such that ν0 and ν̃0 are arbitrarily close in the Wasserstein
distance. Furthermore, by the contraction inequality for gradient flows of Em, the solution ν with
initial data ν0 and the solution ν̃ with initial data ν̃0 satisfy

W2(ν(t), ν̃(t)) ≤ CW2(ν0, ν̃0) for all t ∈ [0, T ],

where C > 0 depends on T and the semiconvexity of V and W [3, Theorem 11.2.1]. In this way,
any solution of (1) with initial datum in D(Em) ∩ P2(Rd) can be approximated by a solution with
compactly supported initial datum, so that our assumption of compact support in Theorem 6.1 is
not restrictive.

REMARK 6.3 (Assumptions (A1)–(A3)). In Theorem 6.1, we prove that, as long as Assumptions
(A1)–(A3) from Theorem 5.8 hold along the particle solutions {µε}ε, then any limit of these particle
solutions must be the corresponding gradient flow of the unregularized energy. Verifying these
conditions analytically can be challenging; see Theorem 5.9. However, numerical results can provide
confidence that these conditions hold along a given particle approximation.

A sufficient condition for Assumption (A1) is that the (m− 1)th moment of the particle solution∑
i∈Qh

R

|Xi(t)|m−1mi

is bounded uniformly in t, ε, and h. In particular, this is satisfied if the particles remain compactly
supported in a ball.

A sufficient condition for Assumption (A2) is that∫
|∇ζε ∗ pε| dζε ∗ µε +

∫
|∇ζε ∗ µε| dζε ∗ pε, (49)

with pε = (ϕε ∗ µε)m−2µε, remains bounded uniformly in t, ε, and h. In fact, for purely diffusive
problems, we observe that this quantity not only bounded uniformly in ε and h, but decreases in
time along our numerical solutions; see Figure 3 below. For the nonlinear Fokker–Planck equation,
we observe that this quantity is bounded uniformly in ε and h and converges to the corresponding
norm of the steady state as t→∞; see Figure 6 below.

A sufficient condition for Assumption (A3) is that the blob solution converges to a limit in L1

and L∞, uniformly on bounded time intervals. Again, we observe this numerically, in both one and
two dimensions, and both for purely diffusive equations and the nonlinear Fokker–Planck equation;
see Figures 4–6 below. In this way, Assumptions (A1)–(A3) may be verified numerically in order
to give confidence that the limit of any blob method solution is, in fact, the correct exact solution.

6.2. Numerical implementation. We now describe the details of our numerical implementation.
In all of the numerical examples which follow, our mollifiers ζε and ϕε are given by Gaussians,

ζε(x) =
1

(4πε2)d/2
e−|x|

2/4ε2 , ϕε(x) = ζε ∗ ζε(x) =
1

(8πε2)d/2
e−|x|

2/8ε2 , x ∈ Rd, ε > 0.

In addition to Gaussian mollifiers, we also performed numerical experiments with a range of com-
pactly supported and oscillatory mollifiers and observed similar results. In practice, Gaussian
mollifiers provided the best balance between speed of computation and speed of convergence.
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We construct our numerical particle solutions µε(t) as described in Theorem 6.1. As a mild
simplification, we consider the mass of each particle to be given by mi = µ(0, ih)hd, where µ(0, ih)
is the value of the initial datum µ(0) at the grid point ih. For the numerical examples we consider,
in which µ(0) is a continuous function, the rate of convergence is indistinguishable from defining
mi as in (47).

The system of ordinary differential equations that prescribes the evolution of the particle locations
(c.f. (23) and (48)) can be solved numerically in a variety of ways, and we observe nearly identical
results independent of our choice of ODE solver. In analogy with previous work on blob methods
in the fluids case [6], we find that the numerical error due to the choice of time discretization is
of lower order than the error due to the regularization and spatial discretization. We implement
the blob method in Python, using the Numpy, SciPy, and Matplotlib libraries [50, 53, 80]. In
particular, we compute the evolution of the particle trajectories via the SciPy implementation of
the Fortran VODE solver [15], which uses either a backward differentiation formula (BDF) method
or an implicit Adams method, depending on the stiffness of the problem.

Our convergence result, Theorem 6.1, requires that h = o(ε) as ε→ 0. Numerically, we observe
the fastest rate of convergence with ε = h1−p, for 0 < p� 1, as h→ 0. Since computational speed
decreases as p approaches 0, we take ε = h0.99 in the following simulations. In these examples, we
discretize the initial data on a line (d = 1) or square of sidelength 5.0 (d = 2), centered at 0.

Finally, to visualize our particle solution (48) and compare it to the exact solutions in Lp-norms,
we construct a blob solution obtained by convolving the particle solution with a mollifier,

µ̃ε(t, ·) := ζε ∗ µε(t, ·) =
∑
i∈Qh

R

ζε(· − xi)mi, t ∈ [0, T ] (50)

By Proposition 2.3, if µε
∗
⇀ µ as ε → 0, where µ is the exact solution, then we also have µ̃ε

∗
⇀ µ.

Consequently our convergence result, Theorem 6.1, also applies to this blob solution.
We measure the accuracy of our numerical method with respect to the L1-, L∞-, and Wasserstein

metrics. To compute the L1- and L∞-errors, we take the difference between the exact solution and
the blob solution (50) and evaluate discrete L1- and L∞-norms using the following formulas:

‖f‖L1(Qh
R) =

∑
i∈Qh

R

|f(ih)|hd, ‖f‖L∞(Qh
R) = max

i∈Qh
R

|f(ih)|, for a given function f : Rd → R.

We compute the Wasserstein distance between our particle solution µε in (48) and the exact
solution µ in one dimension using the formula

W2(µε, µ) =

(∫ 1

0
|F−1
µε (s)− F−1

µ (s)|2 ds
)1/2

, (51)

where F−1
µε and F−1

µ are the generalized inverses of the cumulative distribution functions of µ
and µε, respectively; c.f. [3, Theorem 6.0.2]. We evaluate the integral in (51) numerically using the
SciPy implementation of the Fortran library QUADPACK [70]. In two dimensions, we compute the
Wasserstein error by discretizing the exact and blob solutions as piecewise constant functions on a
fine grid and then using the Python Optimal Transport library to compute the discrete Wasserstein
distance between them. In particular, we use the Earth Mover’s Distance function in this library,
which is based on the network simplex algorithm introduced by Bonneel, van de Panne, Paris, and
Heidrich [14].

6.3. Simulations. Using the method described in the previous section, we now give several exam-
ples of numerical simulations. We consider initial data given by linear combinations of Gaussian
and Barenblatt profiles, which we denote as follows:
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Heat and Porous Medium Equations: Fundamental Solution

Exact vs. Numerical Solution, h = 0.02, varying m
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Figure 1. Comparison of exact and numerical solutions to the heat (m = 1) and
porous medium (m = 2, 3) equations. Numerical solutions are plotted with thick
lines, and exact solutions are plotted with thin lines.

ψm(τ, x) =

{
1

(4πτ)d/2 e
−|x|2/4τ for m = 1,

τ−dβ(K − κτ−2β|x|2)
1/(m−1)
+ for m > 1,

x ∈ Rd,

with

β =
1

2 + d(m− 1)
and κ =

β

2

(
m− 1

m

)
,

and K = K(m, d) chosen so that
∫
ψm(τ, x)dx = 1.

In Figure 1, we compare exact and numerical solutions to the heat and porous medium equations
(V = W = 0, m = 1, 2, 3), with initial data given by a Gaussian (m = 1) or Barenblatt (m = 2, 3)
function with scaling τ = 0.0625. The top row shows the evolution of the density on a large spatial
scale, at which the exact and numerical solutions are visually indistinguishable for m = 1 and
m = 2. However, for m = 3 the fat tails of the numerical simulation peel away from the exact
solution at small times. The second row depicts the numerical simulations for m = 3 on a smaller
spatial scale, illustrating how the tails of the numerical simulation converge to the exact solution
as the spacing of the computational grid is refined.

In Figure 2, we compute solutions of the one-dimensional heat and porous medium equations
(V = W = 0, m = 1, 2, 3), illustrating the role of the diffusion exponent m. The initial data is
given by a linear combination of Gaussians, ρ0(·) = 0.3ψ1(·+ 1, 0.0225) + 0.7ψ1(· − 1, 0.0225), and
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Heat and Porous Medium Equations: Double Bump Initial Data

Figure 2. Numerical simulation of the one-dimensional heat and porous medium
equations. Top: Evolution of the blob density ρhε . Bottom: Evolution of the
particle trajectories xi, with colors indicating relative mass of each particle.

the grid spacing is h = 0.01. For m = 1, the infinite speed of propagation of support of solutions
to the heat equation is reflected both at the level of the density, for which the gap between the two
bumps fills quickly, and also in the particle trajectories, which quickly spread to fill in areas of low
mass. In contrast, for m = 2 and m = 3, we observe finite speed of propagation of support, as well
as the emergence of Barenblatt profiles as time advances.

In Figure 3, we compute the evolution of the nonlocal Sobolev norm (49) along the numerical
solutions from Figures 1 and 2. In both cases, we observe that the quantity converges as h→ 0 and
decreases in time. This gives further credence to the heuristic that the nonlocal Sobolev norm is an
approximation of the L1-norm of the gradient of the mth power of the exact solution, which does
decrease in time along the exact solution; see (24) and (25). In particular, this provides numerical
evidence that Assumption (A2) from our main convergence theorem, Theorem 5.8, is satisfied.

In Figure 4, we analyze the rate of convergence of our numerical scheme in one dimension. We
compute the error between numerical and exact solutions of the heat and porous medium equations
(m = 1, 2, 3) in Figure 1 at time t = 0.05, with respect to the 2-Wasserstein distance, L1-norm,
and L∞-norm and examine the scaling of the error with the grid spacing h. (Recall that ε = h0.99

throughout.) Plotting the errors on a logarithmic scale, we observe that the Wasserstein error
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Heat and Porous Medium Equations: Evolution of Nonlocal Sobolev Norm

Fundamental Solutions Double Bump Initial Data
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Figure 3. Left: Comparison of nonlocal Sobolev norm (49) along numerical so-
lutions (dashed line) with the value of ‖∇µm‖L1(Rd) along exact solutions µ (solid

line). Right: Evolution of nonlocal Sobolev norm along the numerical solutions.

Convergence Analysis: One-Dimensional Diffusion
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Figure 4. Rate of convergence of blob method for one-dimensional heat and porous
medium equations.
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Convergence Analysis: Two-Dimensional Diffusion

Figure 5. Rate of convergence of blob method for two-dimensional heat and porous
medium equations.

depends linearly on the grid spacing for all values of m. The L1-norm scales quadratically for
m = 1 and 2 and superlinearly for m = 3. Finally, the L∞-error scales quadratically for m = 1,
superlinearly form = 2, and sublinearly form = 3. This deterioration of the rate of L∞-convergence
for m = 3 is due to the sharp transition at the boundary of the exact solution; see the second row
of Figure 1. In Figure 5, we perform the same analysis on the rate of convergence of our method
in two dimensions and observe similar rates of convergence as in the one-dimensional case.

In Figure 6, we simulate solutions to the nonlinear Fokker–Planck equation (V (·) = |·|2 /2,
W = 0, m = 2) and consider the rate of convergence to the steady state of the equation, ψ2(0.25, x).
In the top row, we compute the error between the numerical solution at time t = 1.2 and the steady
state with respect to the Wasserstein, L1-, and L∞-norms for various choices of grid spacing h. We
consider solutions with Barenblatt initial data (m = 2, τ = 0.15). We plot the error’s dependence
on h with a logarithmic scale and compute the slope of the line of best fit to determine the scaling
relationship between the error and h. We observe similar rates of convergence as in the case of the
heat and porous medium equations; see Figure 5. In the middle rows, we give snapshots of the
evolution of the blob method solution, as it converges to the steady state. We consider Barenblatt
initial data (m = 2, τ = 0.15) and double bump initial data given by a linear combination of
Barenblatts, ρ0(x) = 0.7ψ2(x−(1.25, 0), 0.1)+0.3ψ2(x+(1.25, 0), 0.1). The grid spacing is h = 0.02.
In the bottom row, we compute the evolution of the nonlocal Sobolev norm (49) along the numerical
solutions from the middle rows. In both cases, we observe that this quantity converges for h small.
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Fokker–Planck: Two Dimensions
Rate of Convergence to Steady State

Evolution of Density: Barenblatt and double bump initial data
t = 0.0 t = 0.6 t = 1.2

t = 0.0 t = 0.6 t = 1.2

Evolution of Nonlocal Sobolev Norm: Barenblatt and double bump initial data
Barenblatt initial data Double bump initial data
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Figure 6. Top row: Error between numerical solutions and steady state. Middle
rows: Snapshots of the evolution towards steady state. Bottom left: Comparison
of nonlocal Sobolev norm (49) along numerical solution from second row (dashed
line) with ‖∇µm‖L1(Rd) along exact solution µ (solid line). Bottom right: Com-

parison of nonlocal Sobolev norm along numerical solution from third row (dashed
line) with ‖∇µm‖L1(Rd) evaluated at steady state µ (solid line).
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For Barenblatt initial data, it decreases in time along the numerical solution and agrees well with
the value of ‖∇µ2‖L1(Rd) along the exact solution µ. For the double bump initial data, it remains

bounded in time, converging asymptotically to ‖∇(ψ2(0.25, ·))2‖L1 , where ψ2(0.25, ·) is the steady
state. Again, this supports the interpretation of the nonlocal Sobolev norm as an approximation of
the L1-norm of the gradient of the mth power of the exact solution and provides numerical evidence
for Assumption (A2) from Theorem 5.8.

In the remaining numerical examples, we apply our method to simulate solutions of Keller–Segel
type equations, with the interaction potential W given by 2χ log |·| for χ > 0. In one dimension,
the derivative of this potential is not integrable, and we remove its singularity it setting it equal to
2χ/ε for all x ∈ Rd such that |x| < ε. In two dimensions, the gradient of this potential is integrable,
and we regularize it by convolving it with a mollifier ϕε, as done in previous work by the second
author on a blob method for the aggregation equation [36].

One-Dimensional Keller–Segel Equation: Blow-up
Evolution of Second Moment Evolution of Particle Trajectories
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Figure 7. Left: Comparison of the evolution of the second moment along exact so-
lutions (solid line) with blob method solutiosn (dashed line) and previous numerical
results by the DGF particle method [25]. Right: Evolution of particle trajectories,
with colors indicating the relative mass of each particle.

In Figure 7, we consider the one-dimensional variant of the Keller–Segel equation (V = 0,
W (·) = 2χ log |·|, m = 1) studied in [18]. Its interest is that it has a defined critical value χ for unit
mass leading to the dichotomy of blow-up versus global existence. For χ = 1.5 and initial data of
mass one, solutions blow up in finite time. We consider initial data given by a Gaussian ψ1(τ, ·),
τ = 0.25, discretized on the interval [−4.5, 4.5] with grid spacing h = 0.009. We compare the
evolution of the second moment of our blob method solutions with the second moment of the exact
solution. We also compare our results with those obtained in previous work via a one-dimensional
Discrete Gradient Flow (DGF) particle method [25,30]. By refining our spatial grid with respect to
the DGF particle method, we observe modest improvements. (Alternative simulations, with similar
spatial and time discretizations as used in the DGF method, yielded similar results as obtained
by DGF.) The blow-up of solution is not only evident in the second moment, which converges to
zero linearly in time, but also in the evolution of the particle trajectories. In particular, we observe
particle trajectories merging on several occasions as time advances.
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One-Dimensional Nonlinear Keller–Segel Equation: Convergence to Steady State
Evolution of Second Moment Evolution of Particle Trajectories
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Figure 8. Left: Evolution of the second moment. Right: Evolution of particle
trajectories, with colors indicating the relative mass of each particle.

Two-Dimensional Keller–Segel Equation: Evolution of Density
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Figure 9. Evolution of numerical solutions for the two-dimensional Keller–Segel
equation with subcritical, critical, and supercritical initial data.

In Figure 8, we consider a nonlinear variant of the Keller–Segel equation (V = 0, W (·) = 2χ log |·|,
m = 2) in one dimension, with initial data and discretization as in Figure 7. We observe the
convergence to a steady state both at the level of the second moment and the particle trajectories.
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Two-Dimensional Keller–Segel Equation: Analysis of Blowup Behavior
Evolution of Second Moment, h = 0.03̄ Convergence of Second Moment
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Figure 10. Left: Evolution of second moment of numerical solutions. Right:
Convergence of slope of second moment to theoretically predicted slope (solid line).

Two-Dimensional Keller–Segel Equation: Blowup with Supercritical Mass 9π
Evolution of Second Moment Evolution of Particle Trajectories
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Figure 11. Left: Comparison of second moment of numerical solution (dashed
line) to exact solution (solid line). Right: Evolution of particle trajectories, colored
according to the relative mass of each trajectory.

In Figures 9–12 we consider the classical Keller–Segel equation (V = 0, W (·) = 1/(2π) log |·|,
m = 1) in two dimensions. In Figures 9, 10, and 11, the initial data is given by a Gaussian ψ1(τ, ·),
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Two Dimensional Keller–Segel Equation: Evolution of Density
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Figure 12. Top: We plot the evolution of blob solutions to the two-dimensional
Keller–Segel equation, with initial data given by constant multiples of the linear
combination of Barenblatts from Figure 6. In particular, we consider constant mul-
tiples M = 7π, 8π, and 9π and again observe that larger values of M correspond to
faster aggregation at the origin. Bottom: We consider the evolution of the second
moment along particle solutions, for each choice of M . We estimate the slope of the
line using the line of best fit.

τ = 0.16, scaled to have mass that is either supercritical (> 8π), critical (= 8π), or subcritical
(< 8π) with respect to blowup behavior. In particular, for supercritical initial data, solutions blow
up in finite time [13,41]. In Figure 9, we analyze the blow-up behavior. We compute the evolution
of the second moment of solutions for fixed grid spacing h = 0.03̄ and varying mass 7π, 8π, and 9π,
illustrating how initial data with larger mass aggregates more quickly at the origin.
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In Figure 10, we consider the evolution of the second moment for the solutions from Figure 9.
For fixed grid spacing h = 0.03̄, we observe that the second moment depends linearly on time, and
we compute its slope using the line of best fit. We then analyze how the slope of this line converges
to the theoretically predicted slope as the grid spacing h→ 0.

In Figure 11, we consider the evolution of the second moment for the supercritical mass solution
from Figure 9 on a longer time interval. As in the one-dimensional case (see Figure 7), we are
able to get approximately halfway to the time when the second moment becomes zero before the
second moment of our numerical solution begins to peel away from the second moment of the exact
solution. Indeed, one of the benefits of our blob method approach is that the numerical method
naturally extends to two and more dimensions, and we observe similar numerical performance
independent of the dimension. We also plot the evolution of particle trajectories, observing the
tendency of trajectories in regions of larger mass to be driven largely by pairwise attraction, while
trajectories in regions of lower mass feel more strongly the effects of diffusion.

Finally, in Figure 12, we consider the evolution of the density and second moment for double
bump initial data, with initial mass 7π, 8π, and 9π. The slopes of the second moment agree well
with the theoretically predicted slopes given in Figure 10.

Appendix A. Proofs of preliminary results

We now turn to the proofs of some of the elementary lemmas and propositions from Sections 2
and 3. We begin with the proof of the mollifier exchange lemma.

Proof of Lemma 2.2. By the Lipschitz continuity of f ,∣∣∣∣∫ ζε ∗ (fν) dσ −
∫

(ζε ∗ ν)f dσ

∣∣∣∣ ≤ ∫
Rd

∫
Rd

ζε(x− y)|f(x)− f(y)| d|ν|(y) d|σ|(x)

≤ Lf
∫
Rd

∫
Rd

ζε(x− y)|x− y| d|ν|(y) d|σ|(x)

Set p := (q−d)/q > 0. Decomposing the domain of the integration of |ν| into Bεp(x) and Rd\Bεp(x),
we may bound the above quantity by

Lf

∫
Rd

(∫
Bεp (x)

ζε(x− y)|x− y| d|ν|(y) dx+

∫
Rd\Bεp (x)

ζε(x− y)|x− y| d|ν|(y)

)
d|σ|(x).

By the decay assumption on ζ (see Assumption 2.1), for all x, y ∈ Rd with |x− y| > εp we have

ζε(x− y)|x− y| = ζ

(
x− y
ε

)
|x− y|
εd

≤ Cζ |x− y|1−qεq−d ≤ Cζεp. (52)

Thus, we conclude our result by estimating the above quantity by

εpLf

∫
Rd

(ζε ∗ |ν|) d|σ|(x) + εpLfCζ |σ|(Rd)|ν|(Rd). �

We now give the proof that if µε
∗
⇀ µ, then ϕε ∗ µε

∗
⇀ µ.

Proof of Lemma 2.3. By [3, Remark 5.1.6], it suffices to show that ϕε ∗ µε converges to µ in distri-
bution, that is, in the duality with smooth, compactly supported functions. For all f ∈ C∞c (Rd),∣∣∣∣∫

Rd

f d(ϕε ∗ µε)−
∫
Rd

f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
Rd

f d(ϕε ∗ µε)−
∫
Rd

f dµε

∣∣∣∣+

∣∣∣∣∫
Rd

f dµε −
∫
Rd

f dµ

∣∣∣∣
Since µε

∗
⇀ µ, the second term goes to zero. We bound the first term as follows:∣∣∣∣∫

Rd

f d(ϕε ∗ µε)−
∫
Rd

f dµε

∣∣∣∣ =

∣∣∣∣∫
Rd

∫
Rd

(f(y)− f(x))ϕε(x− y) dy dµε(x)

∣∣∣∣
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≤ ‖∇f‖L∞(Rd)

∫
Rd

∫
Rd

|x− y|ϕε(x− y) dy dµe(x) = ‖∇f‖L∞(Rd)

∫
Rd

∫
Rd

∣∣∣ z
εd

∣∣∣ϕ(z
ε

)
dz dµε(x)

= ε‖∇f‖L∞(Rd)

∫
Rd

|z|ϕ(z) dz,

which goes to zero as ε→ 0. �

Next, we prove the inequalities relating the regularized internal energies to the unregularized
internal energies.

Proof of Lemma 3.8. We begin with (11). To prove the left inequality, we may assume without loss
of generality that µ ∈ D(F). First, we show the result for the entropy (m = 1). Note that

F1(µ)−F1
ε (µ) = H(µ|ϕε ∗ µ),

where H is the relative entropy; that is, for all ν ∈ P(Rd),

H(µ|ν) :=

{∫
log
(
dµ
dν

)
dµ if µ� ν,

+∞ otherwise.

By Jensen’s inequality for the convex function s 7→ s log s, the relative entropy is nonnegative, which
gives the result. Now, we show the left inequality in (11) for 1 < m ≤ 2. By the above-the-tangent
property of the concave function Fm and Hölder’s inequality, we get

Fm(µ)−Fmε (µ) =
1

m− 1

∫ (
µm−1 − (ϕε ∗ µ)m−1

)
dµ ≥

∫
(µ− ϕε ∗ µ)µm−2 dµ

≥ −‖µ− ϕε ∗ µ‖Lm(Rd)‖µm−1‖Lm/(m−1)(Rd) = −‖µ− ϕε ∗ µ‖Lm(Rd)‖µ‖m−1
Lm(Rd)

.

Since µ ∈ D(Fm) implies µ ∈ Lm(Rd), the first term goes to zero as ε → 0 and the second term
remains bounded. This gives the result.

We now turn to the right inequality in (11) in the case 1 ≤ m ≤ 2. By the fact that ϕε = ζε ∗ ζε
and Jensen’s inequality for the concave function Fm, for all x ∈ Rd we have

Fm(ϕε ∗ µ(x)) = Fm

(∫
Rd

ζε(y)ζε ∗ µ(x− y) dy

)
≥
∫
Rd

ζε(y)Fm (ζε ∗ µ(x− y)) dy = ζε ∗ (Fm ◦ (ζε ∗ µ)) (x).

Consequently, we deduce

Fmε (µ) =

∫
Rd

Fm(ϕε ∗ µ(x)) dµ(x) ≥
∫
Rd

ζε ∗ (Fm ◦ (ζε ∗ µ)) (x) dµ(x)

=

∫
Rd

Fm(ζε ∗ µ(x)) d(ζε ∗ µ)(x) = Fm (ζε ∗ µ) .

Now, we show (12). Since Fm is convex for m ≥ 2, this is simply a consequence of reversing the
inequalities in the last two inequalities.

Finally, we consider the lower bounds (13). When m = 1, these follow from the right inequality in

(11), a Carleman-type estimate [30, Lemma 4.1] ensuring that Fmε (ζε∗µ) ≥ −(2π/δ)d/2−δM2(ζε∗µ)
for all δ > 0, and the fact that∫
Rd

ζε(y)|x+ y|2 dy ≤ 2|x|2 + 2M2(ζε) =⇒ M2(ζε ∗µ) ≤ 2M2(µ) + 2M2(ζε) = 2M2(µ) + 2ε2M2(ζ).

When m > 1, we simply use that Fm ≥ 0. �
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We now give the proof that, for all ε > 0, the regularized energies are lower semicontinuous with
respect to weak-* convergence (m > 1) and Wasserstein convergence (m = 1), where in the latter
case, we require ϕ to be a Gaussian.

Proof of Proposition 3.9. We first show (i). Let (µn)n ⊂ P(Rd) and µ ∈ P(Rd) be such that

µn
∗
⇀ µ; we must show lim infn→∞Fmε (µn) ≥ Fmε (µ). Without loss of generality, we replace (µn)n

by a subsequence which attains the limit on the left-hand side, and we may assume that this limit
is finite. Consequently, there exists C > 0 so that

Fmε (µn) < C for all n ∈ N. (53)

We now consider the case when 1 < m ≤ 2. For any a, b > 0, |am−1−bm−1| ≤ |a−b|m−1. Combining
this with Jensen’s inequality for the concave function s 7→ sm−1,

Fε(µn) =
1

m− 1

∫
(ϕε ∗ µn)m−1dµn −

1

m− 1

∫
(ϕε ∗ µ)m−1dµn +

1

m− 1

∫
(ϕε ∗ µ)m−1dµn

≥ − 1

m− 1

∫
|ϕε ∗ (µn − µ)|m−1dµn +

1

m− 1

∫
(ϕε ∗ µ)m−1dµn

≥ − 1

m− 1

(∫
|ϕε ∗ (µn − µ)|dµn

)m−1

+
1

m− 1

∫
(ϕε ∗ µ)m−1dµn

≥ − 1

m− 1

(∫
|ζε ∗ (µn − µ)|dζε ∗ µn

)m−1

+
1

m− 1

∫
(ϕε ∗ µ)m−1dµn.

Since ϕε ∈ Cb(Rd), µn
∗
⇀ µ ensures that ζε ∗ µn → ζε ∗ µ pointwise. The integrand of the

first term is bounded above by 2‖ζε‖2L∞(Rd)
, so by the dominated convergence theorem, the first

integral converges to zero. Since the integrand of the second term is continuous and bounded by
‖ϕε‖m−1

L∞(Rd)
, the fact that (µn)n converges weakly-∗ to µ ensures this second term converges to

Fε(µ). This gives the result for 1 < m ≤ 2. We now deal with the case m > 2. Inequality (53)
ensures that Fmε (µn) = ‖ϕε ∗ µn‖Lm−1(µn;Rd) < C for all n ∈ N; so by Proposition B.2 there exists

w ∈ Lm−1(µ;Rd) such that, up to another subsequence, for all f ∈ Cb(Rd) we have

lim inf
n→∞

‖ϕε ∗ µn‖Lm−1(µn;Rd) ≥ ‖w‖Lm−1(µ;Rd) and

∫
f(ϕε ∗ µn) dµn →

∫
fw dµ. (54)

It suffices to show that w ≥ ϕε ∗ µ holds µ-almost everywhere. Then, the inequality in (54) gives

lim inf
n→∞

Fmε (µn) = lim inf
n→∞

‖ϕε ∗ µn‖Lm−1(µn;Rd) ≥ ‖w‖Lm−1(µ;Rd) ≥ ‖ϕε ∗ µ‖Lm−1(µ;Rd) = Fmε (µ).

Since µn
∗
⇀ µ and f, ζε ∈ Cb(Rd), we have ζε ∗ (fµn) → ζε ∗ (fµ) and ζε ∗ µn → ζε ∗ µ pointwise.

Consequently, using that ϕε = ζε ∗ ζε and Fatou’s lemma, we obtain that for all nonnegative
f ∈ C∞(Rd),

lim inf
n→∞

∫
f(ϕε ∗ µn) dµn = lim inf

n→∞

∫
ζε ∗ (fµn) dζε ∗ µn ≥

∫
ζε ∗ (fµ) dζε ∗ µ =

∫
fϕε ∗ µdµ.

Combining this with the second property in (54) gives∫
fw dµ ≥

∫
fϕε ∗ µdµ for all f ∈ C∞(Rd) with f ≥ 0.

Therefore, w ≥ ϕε ∗ µ holds µ-almost everywhere, which gives the result.
We now show (ii). Let (µn)n be a sequence in P2(Rd) converging in the Wasserstein metric to

some µ ∈ P2(Rd); we must show lim infn→∞F1
ε (µn) ≥ F1

ε (µ). For all 0 < δ < ε, Jensen’s inequality
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ensures that

F1
ε (µn) =

∫
Rd

log(ϕε ∗ µn(x)) dµn(x) ≥
∫
Rd

log(ϕε−δ ∗ µn(x))ϕδ ∗ µn(x) dx, (55)

and, since ϕ is a Gaussian, there exist x0 ∈ Rd and C0, C1 ∈ R so that

log(ϕε−δ ∗ µn(x)) ≥ C0|x− x0|2 + C1, (56)

for δ > 0 sufficiently small and n sufficiently large. This ensures that

lim inf
n→∞

∫
Rd

log(ϕε−δ ∗ µn(x))ϕδ ∗ µn(x) dx ≥
∫
Rd

log(ϕε−δ ∗ µ(x))ϕδ ∗ µ(x) dx. (57)

Indeed, let us write fn := log(ϕε−δ ∗ µn) and q(·) := C0| · −x0|2 +C1. By continuity of ϕδ we know
that ϕδ ∗ µn(E)→ ϕδ ∗ µ(E) as n→∞ for any Borel set E ⊆ Rd. Then, since µ has finite second
moment and (µn)n converges to µ in the Wasserstein metric, using that fn − q ≥ 0 by (56) and
Lemma B.3 implies

lim inf
n→∞

∫
Rd

(fn − q)(x) dϕδ ∗ µn(x) ≥
∫
Rd

f(x) dϕδ ∗ µ(x)−
∫
Rd

q(x) dϕδ ∗ µ(x)

=

∫
Rd

f(x) dϕδ ∗ µ(x)− lim sup
n→∞

∫
Rd

q(x) dϕδ ∗ µn(x),

Hence,

lim inf
n→∞

∫
fn dϕδ ∗ µn ≥

∫
f dϕδ ∗ µ,

which is (57). This, together with (55) proves that

lim inf
n→∞

F1
ε (µn) ≥

∫
Rd

log(ϕε−δ ∗ µ(x))ϕδ ∗ µ(x) dx. (58)

We now want to pass to the limit δ → 0. To this end first note that, for every Borel set E ⊆ Rd,

lim
δ→0

ϕδ ∗ µ(E) = lim
δ→0

∫
E

∫
Rd

ϕδ(x− y) dµ(y) dx =

∫
Rd

1E(y) dµ(y) = µ(E). (59)

Indeed, for every R > 0, we have∫
E∩BR

∫
Rd

ϕδ(x− y) dµ(y) dx =

∫
Rd

∫
Rd

ϕδ(x− y)1E∩BR
(x) dµ(y) dx =

∫
Rd

ϕδ ∗ 1E∩BR
(y) dµ(y),

which yields

lim
δ→0

∫
E∩BR

∫
Rd

ϕδ(x− y) dµ(y) dx =

∫
Rd

1E∩BR
(y) dµ(y),

and gives (59) by taking the limit R→∞. Using Lemma B.3 on the variable δ in (58) gives

lim inf
n→∞

F1
ε (µn) ≥ lim

δ→0

∫
Rd

log(ϕε−δ ∗ µ(x))ϕδ ∗ µ(x) dx =

∫
Rd

log(ϕε ∗ µ(x))µ(x) = F1
ε (µ),

which is the desired result. �

Now we turn to the proof that the regularized energies are differentiable along generalized
geodesics.

Proposition 3.10. By definition, for all α ∈ [0, 1],

Fε(µ2→3
α ) =

∫∫
F (ϕε ∗ µα((1− α)x+ αy)) dγ(x, y).
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Therefore, we deduce

Fε(µ2→3
α )−Fε(µ2) =

∫∫∫ (
F
(
ϕε ∗ µ2→3

α ((1− α)y + αz))
)
− F (ϕε ∗ µ1(y))

)
dγ(x, y, z)

=

∫ 1

0

∫∫∫
F ′(cs,α(y, z))

(
ϕε ∗ µ2→3

α ((1− α)y + αz))− ϕε ∗ µ1(y)
)
dγ(x, y, z) ds,

where cs,α(y, z) = (1− s)ϕε ∗ µ1(y) + sϕε ∗ µ2→3
α ((1− α)y + αx). Using Taylor’s theorem compute

ϕε ∗ µ2→3
α ((1− α)y + αz))− ϕε ∗ µ1(y)

=

∫∫∫
(ϕε((1− α)(y − v) + α(z − w))− ϕε ∗ (y − v)) dγ(u, v, w)

=

∫∫∫
(α∇ϕε(y − v) · (z − w − (y − v)) +Dα(y, z, v, w)) dγ(u, v, w),

where Dα(y, z, v, w) is a term depending on the Hessian of ϕε satisfying∣∣∣∣∫∫∫ Dα(y, z, v, w) dγ(u, v, w)

∣∣∣∣ ≤ α2

2

∥∥D2ϕε
∥∥
L∞(Rd)

∫∫
|z − w − (y − v)|2 dγ(u, v, w)

≤ 2α2
∥∥D2ϕε

∥∥
L∞(Rd)

(
|z|2 + |y|2 +

∫
|w|2 dµ3(w) +

∫
|v|2 dµ2(v)

)
Hence, since F ′ is nondecreasing,

Fε(µ2→3
α )−Fε(µ2)

= α

∫ 1

0

∫∫∫ ∫∫∫
F ′(cs,α(y, z))∇ϕε(y − v) · (z − w − (y − v)) dγ(u, v, w) dγ(x, y, z) ds+ Cα,

where |Cα| ≤ 4α2‖D2ϕε‖L∞(Rd)F
′(‖ϕε‖L∞(Rd))(

∫
|x|2 dµ2(x) +

∫
|x|2 dµ3(x)). Note that cs,α(y, z)

converges pointwise to ϕε ∗ µ2(y) as α→ 0 since∣∣ϕε ∗ µ2→3
α ((1− α)y + αz) −ϕε ∗ µ2(y)|

=

∣∣∣∣∫∫∫ (ϕε((1− α)(y − v) + α(z − w))− ϕε(y − v)) dγ(u, v, w)

∣∣∣∣
≤ α‖∇ϕε‖L∞(Rd)

(
|z|+ |y|+

∫
|w| dµ3(w) +

∫
|v| dµ2(v)

)
.

Thus, to complete the result, it suffices to show that there exists g ∈ L1(γ ⊗ γ) so that

F ′(cs,α(y, z)) |∇ϕε(y − v) · (z − w − (y − v))| ≤ g(y, z, v, w),

since the result then follows by the dominated convergence theorem. Since F ′ is nondecreasing we
may take

g(y, z, v, w) = F ′
(
‖ϕε‖L∞(Rd)

)
‖∇ϕε‖L∞(Rd) |z − w − (y − v)|,

which ends the proof. �

Next, we apply the result of the previous proof to characterize the subdifferential of the regular-
ized energies.

Proof of Proposition 3.12. Suppose v is given by equation (16). This part of the proof is closely
inspired by that of [24, Proposition 2.2]. For all x, y ∈ Rd define G(α) = F (ϕε ∗µα((1−α)x+αy))
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for all α ∈ [0, 1], where µα = ((1− α)π1 + απ2)#γ, with some γ ∈ Γo(µ, µ1), connects µ0 = µ and
µ1. Now define

f(α) =
G(α)−G(0)

α
− λα

2

(
|x− y|2 +W 2

2 (µ0, µ1)
)

for all α ∈ [0, 1],

where λ = −2F ′(‖ϕε‖L∞(Rd))‖D2ϕε‖L∞(Rd) = λF /2; see (15). We write [a, b]α := (1−α)a+αb for

any a, b ∈ Rd. Let us compute the first two derivatives of G for all α ∈ [0, 1]:

G′(α) = F ′(ϕε ∗ µα([x, y]α))

∫
Rd×Rd

(y − x+ u− v) · ∇ϕε([x− u, y − v]α) dγ(u, v), (60)

and

G′′(α) = F ′′(ϕε ∗ µα([x, y]α))

(∫
Rd×Rd

(y − x+ u− v) · ∇ϕε([x− u, y − v]α) dγ(u, v)

)2

+ F ′(ϕε ∗ µα([x, y]α))

∫
Rd×Rd

(y − x+ u− v)D2ϕε([x− u, y − v]α)(y − x+ u− v) dγ(u, v).

Since F ′′ ≥ 0, F ′ ≥ 0 and
∥∥D2ϕε

∥∥
L∞(Rd)

is finite, we have

G′′(α) ≥ −F ′(‖ϕε‖L∞(Rd))
∥∥D2ϕε

∥∥
L∞(Rd)

∫
Rd×Rd

|y − x+ u− v|2 dγ(u, v)

≥ −2F ′(‖ϕε‖L∞(Rd))
∥∥D2ϕε

∥∥
L∞(Rd)

∫
Rd×Rd

(
|y − x|2 + |u− v|2

)
dγ(u, v)

= λ
(
|y − x|2 +W 2

2 (µ0, µ1)
)
.

(61)

Now, by Taylor’s theorem,

f(α) = G′(0) +

∫ α

0

α− s
α

G′′(s) ds− λα

2

(
|x− y|2 +W 2

2 (µ0, µ1)
)
,

and therefore, using (61) leads to

f ′(α) =
1

α2

∫ α

0
sG′′(s) ds− λ

2

(
|x− y|2 +W 2

2 (µ0, µ1)
)
≥ 0,

which shows that f is nondecreasing, and so f(1) ≥ limα→0 f(α), which implies (after integrating
against dγ(x, y))

Fε(µ1)−Fε(µ0) ≥
∫
Rd×Rd

lim
α→0

(
G(α)−G(0)

α

)
dγ(x, y) + λW 2

2 (µ0, µ1)

=

∫
Rd×Rd

G′(0) dγ(x, y) + λW 2
2 (µ0, µ1).

Then, by (60) and antisymmetry of ∇ϕε, compute∫
Rd×Rd

G′(0) dγ(x, y) =

∫
Rd×Rd

∫
Rd×Rd

F ′(ϕε ∗ µ0(x))(y − x+ u− v) · ∇ϕε(x− u) dγ(u, v) dγ(x, y)

=

∫
Rd×Rd

F ′(ϕε ∗ µ0(x))∇ϕε ∗ µ0(x) · (y − x) dγ(x, y)

+

∫
Rd×Rd

∇ϕε ∗ (F ′ ◦ (ϕε ∗ µ0)µ0)(u) · (v − u) dγ(u, v)

=

∫
Rd×Rd

∇δFε
δµ0

(x) · (y − x) dγ(x, y).
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Hence

Fε(µ1)−Fε(µ0) ≥
∫
Rd×Rd

∇δFε
δµ0

(x) · (y − x) dγ(x, y) + λW 2
2 (µ0, µ1),

which shows that δFε/δµ0 ∈ ∂Fε(µ0). We now prove that v ∈ Tanµ P2(Rd). Consider a vector-

valued function ξ ∈ C∞c (Rd)d, and for any x, y ∈ Rd define H(α) = F (
∫
Rd ϕε(x − y + α(ξ(x) −

ξ(y)) dµ(y)) for all α ∈ [0, 1]. Then

H ′(0) = F ′(ϕε ∗ µ(x))

∫
Rd

(ξ(x)− ξ(y)) · ∇ϕε(x− y) dµ(y).

Now compute, using the antisymmetry of ∇ϕε,

lim
α→0

Fε((id +αξ)#µ)−Fε(µ)

α
= lim

α→0

∫
Rd

H(α)−H(0)

α
dµ(x) =

∫
Rd

H ′(0) dµ(x)

=

∫
Rd

F ′(ϕε ∗ µ(x))∇ϕε ∗ µ(x) · ξ(x) dµ(x)

+

∫
Rd

∇ϕε ∗ (F ′ ◦ (ϕε ∗ µ)µ)(x) · ξ(x) dµ(x)

=

∫
Rd

∇δFε
δµ

(x) · ξ(x) dµ(x),

where passing the limit α→ 0 inside the integral in the first line is justified by the fact that H ′ is
bounded. Then, by the definition of the local slope of Fε,

lim inf
α→0

Fε((id +αξ)#µ)−Fε(µ)

W2((id +αξ)#µ, µ)
≥ −|∂Fε|(µ).

Therefore, by the previous computation,∫
Rd

∇δFε
δµ

(x) · ξ(x) dµ(x) ≥ −|∂Fε|(µ) lim inf
α→0

W2((id +αξ)#µ, µ)

α
≥ −|∂Fε|(µ)‖ξ‖L2(µ;Rd),

since, by definition of the 2-Wasserstein distance,

lim sup
α→0

W2((id +αξ)#µ, µ)

α
≤ ‖ξ‖L2(µ;Rd).

Then, by replacing ξ with −ξ, by arbitrariness of ξ and by density of C∞c in L2(µ;Rd), we get

‖v‖L2(µ;Rd) =

∥∥∥∥∇δFεδµ
∥∥∥∥
L2(µ;Rd)

≤ |∂Fε|(µ),

which shows the desired result. Since |∂Fε|(µ) is the unique minimal norm element of ∂Fε, this
also shows that we actually have equality in the right-hand side above.

Suppose now that v ∈ ∂Fε(µ)∩Tanµ P2(Rd). Fix ψ ∈ C∞c (Rd) and define µα = (id +α∇ψ)#µ and
µ̂α = (id−α∇ψ)#µ for all α ∈ [0, 1]. For α sufficiently small, x2/2 +αψ(x) is convex and id +α∇ψ
is the optimal transport map from µ to µα, so Γo(µ, µα) = {id×(id +α∇ψ)}. Similarly, Γo(µ̂α, µ) =
{id×(id−α∇ψ)}. Since v ∈ ∂Fmε (µ), taking ν = µα in Definition 2.7 of the subdifferential, for α
sufficiently small, gives

Fε(µα)−Fε(µ) ≥
∫
〈v, α∇ψ〉 dµ+ o(α‖∇ψ‖L2(µ)),

and

Fε(µ̂α)−Fε(µ) ≤
∫
〈v, α∇ψ〉 dµ+ o(α‖∇ψ‖L2(µ)),
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Combining this with Proposition 3.10, we obtain∫
〈v,∇ψ〉 dµ ≤ lim

α→0

Fε(µα)−Fε(µ)

α
=

d

dα
Fε(µα)

∣∣∣∣
α=0

=
d

dα
Fε(µ̂α)

∣∣∣∣
α=0

= lim
α→0−

Fε(µ̂α)−Fε(µ)

α
≤
∫
〈v,∇ψ〉 dµ.

Rewriting the expression from equation (14) gives∫
〈v,∇ψ〉 dµ =

d

dα
Fε(µα)

∣∣∣∣
α=0

=

∫ 〈
∇ϕε ∗

(
F ′ ◦ (ϕε ∗ µ)µ

)
+ F ′(ϕε ∗ µ)∇ϕε ∗ µ,∇ψ

〉
dµ.

Thus, for w = v − ∇ϕε ∗ (F ′ ◦ (ϕε ∗ µ)µ) + F ′(ϕε ∗ µ)∇ϕε ∗ µ, we have
∫
〈w,∇ψ〉 dµ = 0, i.e.

∇ · (wµ) = 0 in the sense of distribution. By [3, Proposition 8.4.3], since v ∈ Tanµ P2(Rd) we get
‖v − w‖L2(µ;Rd) ≥ ‖v‖L2(µ;Rd). Since we have already shown that the vector in (16) is the element

of minimal norm of ∂Fε, we get that ‖v − w‖L2(µ;Rd) ≤ ‖v‖L2(µ;Rd), and so ‖v − w‖L2(µ;Rd) =

‖v‖L2(µ;Rd). Again using [3, Proposition 8.4.3], we obtain w = 0, which ends the proof. �

Finally, we prove the characterization of the subdifferential of the full regularized energies Emε .

Proof of Corollary 3.13. Write λV ∈ R and λW ∈ R the semiconvexity constants of V and W ,
respectively. The proof follows the same steps as that of Proposision 3.12 with the only difference
being the definitions of the functions G, f and H. Given x, y ∈ Rd, we define, for all α ∈ [0, 1],

G(α) = F (ϕε ∗ µα((1− α)x+ αy)) + V ((1− α)x+ αy) + 1
2W ∗ µα((1− α)x+ αy),

f(α) =
G(α)−G(0)

α
− (λ+ λW )α

2

(
|x− y|2 +W2(µ0, µ1)

)
− λV α

2
|x− y|2,

and

H(α)=F

(∫
Rd

ϕε(x− y + α(ξ(x)− ξ(y)) dµ(y)

)
+V (x+αξ(y))+

∫
Rd

W (x−y+α(ξ(x)−ξ(y))) dµ(y),

where µ0, µ1, λ and ξ are as in the proof of Proposition 3.12. �

Appendix B. Weak convergence of measures

In this appendix, we recall several fundamental results on the weak convergence of measures.
We begin with a result due to Ambrosio, Gigli, and Savaré on convergence of maps with respect to
varying probability measures. This plays a key role in our proofs of both the Γ-convergence of the
energies and the Γ convergence of the gradient flows.

DEFINITION B.1 (weak convergence with varying measures; c.f. [3, Definition 5.4.3]). Given
a sequence (µn)n ⊂ P(Rd) converging in the weak-∗ topology to some µ ∈ P(Rd), we say that a
sequence (vn)n with vn ∈ L1(µn;Rd) for all n ∈ N converges weakly to some v ∈ L1

µ(Rd) if

lim
n→∞

∫
Rd

f(x)vn(x) dµn(x) =

∫
Rd

f(x)v(x) dµ(x).

Furthermore, we say that (vn)n converges strongly to v in Lp, p > 1, if

lim sup
n→∞

‖v‖Lp(µn;Rd) ≤ ‖v‖Lp(µ;Rd) .

PROPOSITION B.2 (properties of convergence with varying measures; c.f. [3, Theorem 5.4.4]).
Let (µn)n ⊂ P(Rd), µ ∈ P(Rd) and (vn)n be such that vn ∈ L1(µn;Rd) for all n ∈ N. Suppose

µn
∗
⇀ µ and supn∈N ‖vn‖Lp(µ;Rd) <∞ for some p > 1. The following items hold.

(i) There exists a subsequence of (vn)n converging weakly to some w ∈ L1
µ(Rd).
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(ii) If (vn)n weakly converges to some v ∈ L1
µ(Rd), then

lim inf
n→∞

‖vn‖Lp(µ;Rd) ≥ ‖v‖Lp(µ;Rd) for all p ≥ 1.

.
(iii) If (vn)n strongly converges in Lp to some v ∈ Lp(µ;Rd) and supn∈NMp(µn) <∞, then

lim
n→∞

∫
f |vn|pdµn =

∫
f |v|pdµ for all f ∈ C∞c (Rd).

We close by recalling a generalization of Fatou’s lemma, for varying measures.

LEMMA B.3 (Fatou’s lemma for varying measures; c.f. [72, Chapter 11, Section 4]). Given
a sequence (µn)n ⊂ P(Rd) and µ ∈ P(Rd), suppose that for every Borel set E ⊂ Rd we have
µn(E) → µ(E) as n → ∞. Then for any sequence (fn)n of nonnegative functions on Rd with
pointwise infimum limit f , we have∫

Rd

f dµ ≤ lim inf
n→∞

∫
Rd

fn dµn.
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