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0.1 Notation

M

[in

Wy, j

10

3 R

compact manifold without boundary embedded in R?. Riemann
metric on M is the one inherited from R<.

the dimension of M.

the volume of A C M according to Riemann volume form.

the geodesic distance between points x,y € M.

ball in M with respect to geodesic distance on M.

ball in R? of radius r, centered at the origin.

probability measure supported on M that describes the data
distribution.

density of p with respect to volume form on M.

density of the weight measure (which allows us to consider the
normalized graph Laplacian) with respect to p.

constant describing the bounds on the densities p and p, see (|1.2))
and .

point cloud X = {z1,...,2,} C M drawn from distribution u.
Also considered as the set of vertices of the associated graph.
empirical measure of the sample X.

The vector giving the values of the discrete weights used in var-
ious forms of graph Laplacian, see Sections and [1.2.2]
edge weight between vertices x; and x;.

differential of function u : X — R. It maps edges to R and is
defined by du; ; = u(z;) — u(x;).

injectivity radius of M. The injectivity radius at a point p € M
is the largest radius of a ball for which the exponential map at p
is a diffeomorphism. The injectivity radius ig is the infimum of
the injectivity radii at all points of M.

maximum of the absolute value of sectional curvature of M
reach of M, defined in .

nonnegative function setting the edge weights as a function of
the distance between the vertices, see .

length scale such that weight between vertices is large if their
distance is comparable to or less than h.

is the kernel dependent scaling factor relating the graph Lapla-
cian and the continuum Laplacian; defined in .

the volume of unit ball in R™.

infinity transportation distance between measures pu, v.

upper bounds on the transportation distance between p and g, .
Lipschitz constant of various functions: p, p and 7.
discretization operator defined in .

is the adjoint of P if p = 1 and an approximate adjoint otherwise.
Interpolation operator defined in .
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1 Introduction

Given an ii.d. sample X = {z1,...,2,} from the data generating measure
p in Euclidean space R?, the goal of most tasks in machine learning and
statistics is to infer properties of . A particularly interesting case is if  has
support on a m-dimensional compact submanifold M in R? e.g. due to strong
dependencies between the individual features. In this case one can construct
a neighborhood graph on the sample by connecting all vertices of Euclidean
distance less than a certain length-scale h, and in this way produce a discrete
approximation of the unknown manifold M. Laplacian Eigenmaps [2] and
Diffusion Maps [§] have been proposed as tools to extract intrinsic structure
of the manifold by considering the eigenvectors of the resulting unnormalized
resp. normalized graph Laplacian; in particular, Laplacian eigenmaps are used
in the first step of spectral clustering [29], one of the most popular graph-based
clustering methods . In general, it is well known that the spectrum of the graph
Laplacian resp. Laplace-Beltrami operator captures important structural resp.
geometric properties of the graph [I7] resp. manifold [7].

In this paper we examine this question: under what conditions, and at
what rate, does the spectrum of the graph Laplacian built from i.i.d. samples
on a submanifold converge to the spectrum of the (weighted) Laplace—Beltrami
operator of the submanifold as the sample size n — oo and the neighborhood
radius h — 07

Graph-based approximations to the Laplace-Beltrami operator have been
studied by several authors and in a variety of settings. The pointwise conver-
gence of the graph Laplacian towards the Laplace-Beltrami operator has been
proven in [T54LT3][T41[25128]. The spectral convergence of the graph Laplacian
for fixed neighborhood size h for Euclidean domains has been established in
[B0,2T]. The spectral convergence of the graph Laplacian towards the Laplace—
Beltrami operator for the uniform distribution has been discussed in [3] for
the case of Gaussian weights and in [26] for the connection Laplacian, without
precise information on allowable scaling of neighborhood radius, A and with-
out convergence rates. In [12] the authors establish the conditions on graph
connectivity for the spectral convergence on domains in R". In particular they
prove convergence when h — 0 as n — oo and

1 Pm
h > %’
nm
where
3 ifm=2
Pm = (1'1)
% if m > 3.

However no error estimates were established. The preprint [23] establishes
(in Theorem 1.1) the spectral convergence of graph Laplacians constructed
from data sampled from a submanifold in R¢ with a convergence rate of

1
O((k’%) Amia ), where m is the intrinsic dimension of the submanifold.
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In this paper we propose a general framework to analyze the rates of spec-
tral convergence for a large family of graph Laplacians. This framework in
particular allows us to improve the results in [23] and establish a convergence

L
rate of O ((10%) 2’”) which is a significant improvement, in particular for small

dimensions m. These convergence rates hold for different reweighing schemes
of the graph Laplacian found in the literature including the unnormalized
Laplacian, normalized Laplacian, and the random walk Laplacian. When the
intrinsic dimension of the submanifold M is small, our results show, to some
extent, why Laplacian eigenmaps can effectively extract geometric informa-
tion from the data set, even though the number of features d may be high.
Moreover, similar to [12], we show that the conditions in are sufficient for
spectral convergence. This is essentially the same condition required to ensure
that the constructed graph is almost surely connected [20] and thus is close to
optimal. It is interesting to note that for pointwise conigstency of the graph
nh™Z 0.

Laplacian [I5[13] the required stronger condition is oz

Our framework is completely different from that in [3l23] and builds on
two main ideas. First, it builds on an extension of the recent result of Burago,
Ivanov und Kurylev [@], see also [I0], which shows in a non-probabilistic set-
ting how one can approximate eigenvalues and eigenfunctions of the Laplace-
Beltrami operator using the eigenvalues/eigenvectors of the graph Laplacian
associated to an e-net of the submanifold. As in our setting the manifold M is
unknown, we generalize the result of [6] by using a graph construction which
requires no knowledge about the submanifold M but which achieves the same
approximation guarantees for the eigenvalues. In addition, we introduce a new
out-of-sample extension of the eigenvectors for the approximation of the eigen-
functions which requires no information about the submanifold without signif-
icant loss in the convergence rate compared to the corresponding construction
used in [6]. Our second main result generalizes the recent work of Garcia Trillos
and Slepéev [11] to the setting of empirical measures on submanifolds M C R¢
and establishes their rate of convergence in co-optimal transportation (OT)
distance; the co-OT distance between the empirical measure associated to a
point cloud and the volume form of the submanifold can be seen to be closely
related to the notion of e-net used in [6]. These estimates encompass all the
probabilistic computations that we need to obtain our main results, and in
particular, when combined with our deterministic computations, provide all
the probabilistic estimates that quantify the rate of convergence of the spec-
trum of graph Laplacians constructed from randomly generated data towards
the spectrum of a (weighted) Laplace-Beltrami operator on M. We believe
that both the generalization of [6], as well as the generalization of [I1] are
of independent interest. The combination of these two ideas and a number of
careful estimates lead to our main results.

In what follows we make the setting that we consider in the sequel precise,
as well as define precisely the different graph Laplacians and their continuous
counterparts.
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1.1 Graph construction

Let M be a compact connected m-dimensional Riemannian manifold without
boundary, embedded in R?, with m > 2. We assume that the absolute value
of sectional curvature is bounded by K, the injectivity radius is 79 and with
reach R. We write d(z,y) for the distance between z and y on the manifold
and |z — y| for the Euclidean distance in R.

Let u be a probability measure on M that has a non-vanishing Lipschitz
continuous density p with respect to the Riemannian volume on M with Lip-
schitz constant L,. Compactness of M and continuity of p guarantee the ex-
istence of a constant v > 1 such that

1
— <p(x) <a forall z e M. (1.2)
@
We let x1,2z9,...,x,,... be a sequence of i.i.d. samples from p. In order
to leverage the geometry of M from the data, we build a graph with vertex
set X = {x1,...,2,}. In the simplest setting, for each n € IN we choose

a neighborhood parameter h = h, and we put an edge from z; to z; and
from z; to x; (and write x; ~ x;) provided that |z; — z;| < h; we let E =
{(i,5) € {1,...,n}? : ; ~ x;} be the set of such edges. More generally, we
consider weighted graphs, with weights that depend on the distance between
the vertices connected by them. For that purpose, let us consider a decreasing
function 7: [0,00) — [0, 00) with support on the interval [0, 1] such that the
restriction of 1 to [0, 1] is Lipschitz continuous. Normalizing 7 if needed allows
us to assume from here on that

/ n(|z|)dx = 1. (1.3)
]Rm

For convenience we assume that 1(1/2) > 0. We denote by

o = / lva*n(lyl)dy. (1.4)
Rm

the surface tension of n, where y; represents the first coordinate of the vector
y € R™. To every given edge (i,j) € E we assign the weight w; ; where

1 |z — ;]
= 1.5
Wi nhmn< h ) (1.5)

and we consider the weighted graph (X, w) with w; ; as in (1.5]) for every (¢, j).
In fact, note that if the points x;, x; are not connected by an edge in £ then
Wi,; = 0.

Remark 1 The function 7 can be chosen as cl[g 1) as well as a smooth function

like
1
n(t) =c =
0 t>1,
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(where ¢ is the appropriate constant ensuring normalization) or simply a trun-
cated version of a Gaussian. Also, we note that for n = ﬁ]l[m] it follows from
[6, (2.7)] that o, = ﬁ, where w,, is the volume of the unit ball in R™. While
the definition of the weights is up to the constant o, and a slightly different
rescaling in terms of h is similar to [6], the main difference is that we use
the Euclidean metric of the ambient space R? in (L.5)), whereas in [6] neigh-
borhoods are throughout defined in terms of the geodesic distance. Here we
are forced to use the metric from the ambient space as the manifold M is in
general assumed to be unknown.

Remark 2 We have assumed that n: [0,1] — R is decreasing and that n(1/2) >
0, which would imply that n(0) > 0. Nevertheless, we remark that none of
the results presented in this paper change if we modify the value of n(0). In
particular we allow for 1(0) = 0 if desired and we can simply assume that n
is decreasing and Lipschitz in (0,1) (then the condition 7(0) > 0 changes to
n(0+) > 0). This observation is relevant in order to allow for graphs where
vertices have no edges with themselves.

Remark 3 The requirement that n is compactly supported is purely a tech-
nical one. It is in principle possible to carry out the arguments of this work
for noncompact kernels, like the Gaussian one. However that would require
obtaining error bounds on extra terms and would make the already involved
estimates even more complicated.

1.2 Dirichlet forms and laplacians

In this section we introduce the Laplacians in both discrete and continuous
settings.

We use the graph structure defined in the previous section to define a
Dirichlet form in the discrete setting. First, the weights w; ; serve as a measure
on the set F and thus induce a scalar product of functions F,G: E — R given
by

(F,G) = (F, Qi) = —— 3 wisFli,/)GG,)

" (i,4)eE

Second, for functions u,v: X — R on the vertices, we define the discrete
differential

(Gu)(i, §) == %(u(xj) “u(zy) for (i,5) € E. (1.6)

We can then define the discrete Dirichlet form between u,v: X — R as

b(u,v) = (0u, 6v) 12(EB,w)- (1.7)
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In the continuous setting, on the domain V := H(M,u) (the Sobolev
space of functions in L?(M, u) with distributional derivative in L*(M, u)) we
define the Dirichlet form D: V xV — R as

D(f,g) = /M<Vf, Vg)ap? (2)dV ol(x), (18)

where Vol stands for the Riemannian volume form of M, V f and Vg are the
gradients of f and g and (-,-) represents the Riemannian metric induced on
M. Since p is bounded from above, this symmetric bilinear form is continuous,
ie. |D(f,9)] < C'fllyllglly for a suitable constant C” > 0 and all f,g € V.
For the remainder we use b(u) and D(f) as shorthand for b(u,w) and D(f, f),
respectively.

Next, we choose measures on X and on the manifold M and define corre-
sponding operators associated with the forms b and D on L?(X) and L?(M),
respectively. The idea is that by modifying the inner product in L?(X) and in
L?(M) we obtain different realizations of Laplacian operators. The so-called
unnormalized and random walk graph Laplacian (see definitions below), as
well as their continuous counterparts, are instances of the general framework
that we consider. Let u,, be the empirical measure of the random sample, i.e.

1 n
My = E;ém

On X we consider the measure p,, endowed with a density m = (mq,...,my),
denoted by m,. On the other hand, on M, we consider the measure pu, where
p is a Lipschitz continuous density with Lipschitz constant L, with respect to
w satisfying

<pz)<a foralzeM. (1.9)

Q| =

On the graph I' = I'(X, mu,, F,w), we define the associated weighted
graph Laplacian Ar as §*9, i.e. as the unique operator satisfying

(Aru,v) r2(x mp,) = (0, 0V) 12 (B,w)

for all u,v € L*(X).
At the continuum level, we define a weighted Laplacian associated with the
form D and the measure pu as follows. On the domain

Dom(A) = {f €V :Ahe LAM, pp) s. t. D(f,g) = (h, g) L2 (ampw V9 € V}

we set Af := h. The operator A is formally defined as
1 ..,
Af =——div(p°Vf),
PP

where div stands for the divergence operator on M.
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One of the main results of this paper is that the spectrum of Ap approx-
imates well that of A. Intuitively, one of the elements needed for this to be
true is that the measure my,, approximates py as n — oo. We use

Im — plle = max i — p(as) (1.10)

[XERR}

to quantify this approximation.
We now describe particular forms of the graph Laplacian which frequently
used in the machine learning literature.

1.2.1 Unnormalized graph Laplacian

To obtain the unnormalized graph Laplacian, we choose the density vector m
as (1,1,...). Then Ap is explicitly given by

(Aru)(r) = 2 3wy () — ulay)

Jiinvg

for all #; € X, which is, up to the factor - h2’ known as the unnormalized

graph Laplacian. In this case p = 1, since ,0 1s the limit of m as n — oco. This
results in a realization of the Laplacian on L?(M, pu) that satisfies

| Atw@de = [ (95.Vg)0*@)de = (1.0
for all f,g € Dom(A). In case p € C*(M), this operator A coincides with
1.
Af =—p-Aof = —Ele(pQVf)

from Definition 8 of [15], where it was identified as the pointwise limit of the
unnormalized graph Laplacian.

1.2.2 Random walk graph Laplacian

In order to obtain the random walk graph Laplacian, we choose the density
vector m as the vertex degrees, i.e.

mi= 3wy = hmz (m zf') for i € {1,...,n} (1.11)
j=1

and p(x) = p(x) for all x € M. Then Ar is given by

(Aru)(a) = - 2 >0 (ufar) — u(z)

Jiinvg

for all x; € X and A satisfies

/ Af - g-p*dVol = D(f.g)
M
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for all f,g € Dom(A). In case that p € C1(M), A is nothing but
1,
Af =-Asf = 2 div(p“V f)

from [I5 Definition 8]. In the remainder we use A7’ to denote the random
walk graph Laplacian and A™ for its continuous counterpart. Showing the
closeness of m and p, , reduces to showing a kernel density estimate on
a manifold. In the Appendix [A] we show that provided h satisfies Assumption
we have

max |m; —p(xi)] < CLph + Can(O)mwm% + Cam <K + ;) R%, (1.12)

where C' > 0 is a universal constant and ¢ is the co-OT distance between p,,
and p (see and Section . These estimates are proved using a simple
and general approach using the transportation maps introduced in Section
in contrast to usual kernel density estimation approaches. The estimates are
not optimal, but they are on the same order of error as the approximation
error of the Dirichlet form D by the discrete Dirichlet form b that we present
in Lemma [I3] and Lemma [I4} the bottom line is that the rates of convergence
for the spectrum of the random walk graph Laplacian are unaffected by the
non-optimal estimate . On the other hand our proof of has the
advantage of reducing all probabilistic estimates in our problem to estimating
the co-OT distance between pu,, and p; which is done in Section

1.2.3 Normalized graph Laplacian

So far we have described how one can obtain the unnormalized and random
walk Laplacians as examples of the general framework introduced in this sec-
tion. Let us recall another popular version of normalized Laplacian usually
referred to as symmetric normalized graph Laplacian. For given u: X — R,
the symmetric normalized Laplacian of u is given by

(Aw)(z;) = UnhQ > (f*)_qf/(aiv

J: 7/"’]

with m; defined by (L.1I)). We remark that A7 can not be obtained by ap-
propriately choosing the measure my as described in this section (in order
to recover it we would have to modify the definition of discrete differential
in ) Nevertheless, we can indirectly analyze the rate convergence of its
spectrum towards that of a continuous counterpart noting that A% and A™
are similar matrices. Indeed, we recall that A7u = Au if and only if ATy = \v

where v(z;) == m, -1/ u(z;). Thus, A7 and AP share the same spectrum.



10 Nicolds Garcia Trillos et al.

1.3 Main results
1.8.1 Convergence of eigenvalues and transportation estimates

Our first main result is the following.

Theorem 1 Let x1,...,x, be i.i.d. samples from a distribution p supported
on M, with density p satisfying . Consider m and p as in Sectionm
or Section [1.2.9 For k > 2 let A\y(I") be the k-th eigenvalue of the graph
Laplacian Ap defined in Section [1.9 with

__[log(n)pm
b= ’/Tl S

where py, = 3/4 if m = 2 and p,, = 1/m if m > 3. Let A\y(M) be the k-th
eigenvalue of the Laplacian A defined in Section[I.3 Then,

|)\k(F/\)k(.A)/\tk)(M) - O< biﬁ%), almost surely.

The actual choice of h in the previous theorem is explained by the more
general and detailed result stated in Theorem [d] together with the estimates
for the co-OT distance between p and g, in Theorem [2| Indeed, we have
taken h to scale like /¢ where ¢ is the co-OT distance between u and p,.
More precisely,

€= doo(phy tin) 1= Tﬂ{ﬁ}g# esssup e g d(x, T(x)). (1.13)

where Ty = p,, means that p(T-2(U)) = pu,(U) for every Borel subset U
of M. Such mappings T are called transport maps from p to p,. One of the
key ingredients needed to establish Theorem [I]is the probabilistic estimate on
00-OT distance contained in our next theorem.

Theorem 2 Let M be a smooth, connected, compact manifold with dimension
m. Let p: M — R be a probability density satisfying and constder the
measure du = pdVol. Let x1,...,x, be an i.i.d sample of . Then, for any
B > 1 and every n € N there exists a transportation map T,,: M — X and a
constant A such that

log(n)*/* ; _

iz o if m =2,
sup d(z, T, (z)) < l:= A . (1.14)
zeM (IC)rgllni/)vn) me Z 37

holds with probability at least 1 — C v or(M),m,io -n~P, where A depends only
on K, ig, m, Vol(M), a and S.
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The exact dependency of A in on the geometry of M is given in Lemma
[[] We remark that the scaling on n on the right-hand side is optimal, even in
the Euclidean case [11].

With the estimates in Theorem [2| at hand, Theorem [I] follows from the
more general Theorem |4 below (more precisely from its corollaries). Indeed,
convergence rates for the spectrum of graph Laplacians can be written in terms
of h and € as long as 0 < ¢ < h < 1. Throughout this paper we assume that
h,e, ; and [[m—pl|o are sufficiently small. In particular we make the following
assumptions.

Assumption 3 Assume that

1 R
VmK \2Tm

where iy is the injectivity radius of the manifold M, K is a global upper bound
on the absolute value of sectional curvatures of M, m is the dimension of M,
and R is the reach of M (seen as a submanifold embedded in RY).

h<min{1,i%7 } and (m+5)e < h,

Theorem 4 Fork € IN let A, (I") be the k-th eigenvalue of the graph Laplacian
Ar defined in Section using the weights m, and let A\,(M) be the k-th
eigenvalue of the Laplacian A defined in Section [I.3 using the weight function
p. Finally let € be the co-OT distance between p,, and p and assume that h > 0
satisfies Assumptions[3 Then,

1. (Upper bound) If € and |m — p||o are such that
A(M) e+ [lm = plloc <, (1.15)

for a positive constant c that depends only on m,«, L,, L, and n, then,

ML) = Me(M) _ € h?
W <C (Lph-‘r 7 + VA(M)e + Kh? + R + |lm — p(1|o<;2)

where C only depends on m, o, L,, L, and 7.
2. (Lower bound) If h and ||m — p|ls are such that

VAEM)R + ||m — plle < ¢ (1.17)

for a positive constant c that depends only on m, o, L,, L,, and n, then,

Ae (L) = A (M) . - 2
WE—C(LMH—E—F\/Wh%—Kh +||m_p|‘oo)

i (1.18)
where C only depends on m,a, L,, L, and 7.
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Remark 4 Note that the lower bound does not depend on the reach R. This
is due to the one sided-inequality

In contrast, for the upper bound one must use a reverse inequality with an
additional higher order correction term that depends on R. See Proposition 2]
It is also worth pointing out that the presence of the term /Aip(M)e in
the upper bound ultimately comes from the estimate on how far is the map
P in from being an isometry when restricted to the first £ eigenspaces
of A; the relevant length-scale for this estimate is the size of transport cells,
i.e., €. On the other hand, the term /A (M)h in the lower bound comes from
the estimate on how far is the map I in from being an isometry when
restricted to the first & eigenspaces of Ap; the relevant length-scale for this
estimate is h, which is of the same order as the bandwidth for the kernel used
to define the map I. This can be seen from Lemmas [13| and |14] respectively.

Remark 5 From the estimates ([1.16) and (1.18) we see that curvature of M
only introduces a second order correction to the rate of convergence of A\ (1)
towards Ak (M).

The estimates on € from Theorem [2] combined with Theorem 4] imply that
A () converges towards A, (M) with probability one whenever |[m—p||o — 0,
h — 0, 7 — 0. We can specialize Theorem W to the examples from Section
where in particular we provide estimates on ||m — p||s in terms of n.

Corollary 1 (Convergence of eigenvalues unnormalized graph Lapla-
cian) In the context of Theorem |4 suppose that the weights are taken to be
m=1 and p=1. If h is small enough for

(VAM) + Dh <,

to hold for a positive constant c that depends only on m,a, L,, and 1, then

Ne(D) = Ae(M)| = [ 1
HD O <o (e AT+ (K4 g5 ) 12). (19

where C only depends on m, o, L,, and 7.

Proof The result follows directly from Theorem [4 after noticing that in this
case |m — p|loc =0 and L, = 0.

Corollary 2 (Convergence of eigenvalues random walk graph Lapla-
cian) In the context of Theorem suppose that the weights m are as in ((1.11])
and p =p. If h and €/h are such that

(VAWM + Db+ - <
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for a positive constant c that depends only on m,a, L,, and 1, then,

Ae(l) = M) _ & (€ LY ,2
M) Sc(h+(1+‘/)"“(M))h+(K+R2)h)’ (1.20)

where C only depends on m, o, Ly, and 7.

Proof The result follows directly from Theorem [4] after using (|1.12)). Indeed,
notice that the term ||m — pll can be absorbed in the h, £ and h? terms by
enlarging constants if necessary.

Remark 6 Notice that the estimates in the previous results provide a lower
bound on the mode at which the spectrum of the graph Laplacian stops being
informative about the spectrum of the Laplace-Beltrami operator. Namely,
notice that the right hand sides of and are small when h/ A, (M)
is small. Using Weyl’s law for the growth of eigenvalues of the Laplace-Beltrami
operator we know that

V(M) ~ k™

and thus, the relative error of approximating Ag (M) with \g(I") is small when
k < 4 and & < h . In particular, if 4 is taken to scale like h = /&, then A\, (M)

~ hm
is approximated by Ap(I") only if & < % for m > 3 and k < /W
for m = 2.

Remark 7 We would like to remark that one of the main advantages of writing
all our estimates in Theoremin terms of the quantity & (which is the only one
where randomness is involved) is that we can transfer probabilistic estimates
for £ into probabilistic estimates for the error of approximation of \i(I"). In
particular, when combined with Theorem [2 Corollary 1 and Corollary 2 can
be read as follows: Suppose that loi(g),:m < h < 1. Let k := k, be such that

kn < 7% . Let B > 1. Then, with probability at least 1 — Ci vor(am),mion

|)\j(F>?jzj\i\lj)(M) <Gy (% +(1+ m)h + <K + ;) h2>

forall j=1,...,k,.

Moreover, writing all our estimates in Theorem [f]in terms of the quantity &
is also convenient because the theorem itself continues to be true even when the
points x1,...,x, are not i.i.d. samples from the measure u. For general point
clouds (even deterministic ones) € in the Theorem has to still be interpreted
as the co-OT distance between the empirical measure of the point cloud and
w; the estimates on € in Theorem [2] may not hold in general, and one would
have to compute them on a case by case basis.
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1.3.2 Convergence of eigenfunctions

We prove that eigenvectors of Ay converge towards eigenfunctions of A and
provide quantitative error estimates. To make the statements precise, we need
to make sense of how to compare functions defined on the graph/sample X
with functions defined on the manifold M. In this paper we consider two
different ways of doing this.

The first approach involves an interpolation step by composing with the
optimal transportation map T : M — X from followed by a smoothen-
ing step. Both of these steps require the knowledge of M. The map T induces
a partition Uy, ..., U, of M where

Ui =T ' ({zs}). (1.21)

We note that p(U;) = L for all i = 1,...,n. We define the contractive dis-
cretization map P: L*(M, pu) — L?(X, mu,) by

(PH@) =n- [ f@du@), felPMpm.  (12)

and the eztension map P*: L?(X, mu,) — L?*(M, pu) by

n

(Pru)(x) = > u(zi)ly,(z), ue L*(X mp,). (1.23)
i=1

We note that P*u can be written as P*u = w o T. We then consider the
interpolation operator I: L?(X, my,) — Lip(M)

ITu = Ap_o:P*u (1.24)

where Ap_o. is defined in (3.4) and is simply a convolution operator using
some particularly chosen kernel; see Section for a discussion on why we
need to consider a specific kernel.

Theorem 5 Let Ap be the graph Laplacian defined in Section using the
weights m, and let A be the Laplacian defined in Section [I.3 using the weight
function p. Let € be the co-OT distance between ., and p and assume that
h > 0 satisfies Assumptions[3 Finally, assume that h and ||m— p||s are small

enough so that
1+ VAM)h+ [m = plle <,

for a constant c that depends only on m,«, Ly, L,, 1.

Then, for every u € L?(X,myu,) normalized eigenfunction of Ar cor-
responding to the eigenvalue \i(I"), there exists a normalized eigenfunction
f € L?(M,pu) of A corresponding to the k-th eigenvalue A\i,(M) such that

C € h?
ITu=Fllaapom < 2 — (h + (L VAM))A + ER® + 25 + [lm — poo) :
P
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where C' is a constant that only depends on m,n, o, L,, L, and where v, p, 15
the difference between the smallest eigenvalue of A that is strictly larger than
Ak (M) and the largest eigenvalue of A that is strictly smaller than A\i,(M) (i.e

a spectral gap).
__[log(n)pm
h:=/ Ry

In particular, if we take
where py, = 3/4 for m =2 and p,, = 1/m for m > 3, then,

log(n)Pm
1w = fll 2 o) = O( —m | almost surely.

Remark 8 As in Remark [7] we would like to emphasize that the probabilistic
estimates for ¢ translate directly into probabilistic estimates for the conver-
gence of eigenfunctions in Theorem [5] Likewise, we would like to point out
that Theorem [l can be made concrete in the context of Sections [[.2.1] and
using the corresponding estimates for |jm — p|| in terms of € and h.

The second approach to compare eigenvectors of A with eigenfunctions
of A is to extrapolate the values of discrete eigenvectors to the Euclidean
Voronoi cells induced by the points {x1,...,2,}. That is, for an arbitrary
function u : X — R we assign to each point z € M the value u(z;) where z;
is the nearest neighbor of x in X with respect to the Euclidean distance. More
formally, for ¢ € {1,...,n} we consider the Voronoi cells

Vi=s{zeM:|z—z)= .nllin |z — x|}, (1.25)
J=1..n

ERRRE}

and define the function @ € L?(M, pu) by

a(x) =Y _u(z;)ly,(x) for z € M. (1.26)

i=1

We notice that the Voronoi cells Vi,...,V, form a partition of M, up to a
set of ambiguity of p-measure zero. Besides being a computationally simple
interpolation, the Voronoi extension can be constructed exclusively from the
data and no information on M is needed. We show that the interpolation @
of a discrete eigenvector u approximates the corresponding eigenfunction f on
M with almost the same rate as in Theorem [5] In order to obtain convergence
of the Voronoi extensions 4, we require h = h,, to satisfy

lim log™?™(n) - (h + E) =0 (1.27)

n— oo h

This condition holds, for instance, when h is chosen as /e, which minimizes
the error in the following result.
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Theorem 6 Fix S > 1. Let Ap be the graph Laplacian defined in Section
[I3 using the weights m, and let A be the Laplacian defined in Section [1.9
using the weight function p. Let € be the co-OT distance between p, and p
and assume that h > 0 satisfies Assumptions [3. Finally, assume that h and
lm — p|loo are small enough so that in particular

I+ VM) + [m = pllc <,

for a constant c that depends only on m, o, Ly, L,, 1.

Then, with probability at least 1 — Cp g voi(m),io n=8, for every u €
L?(X,my,) normalized eigenfunction of Ar corresponding to the eigenvalue
A (M), it holds

<@B\/W<;+(1+\/W)h

||z — fHL2(M,pM) = Ve, pp
(1.28)

2 m+1

h
+Kh2++||m—p|oo>+CM/\k(M) ig,

R2

where f and i, are as in Theorem@ @ is as in (1.26)), and Crq is a constant
that depends on the manifold M.

Remark 9 We remark that the first term in is worse than the estimate
in Theorem [f| by a logarithmic factor of n. This is due to our uniform estimates
on the size of Voronoi cells based on transportation (see Lemma [L7). On the
other hand, the extra factor in is an estimate for the difference of the
averages of f over transport cells and Voronoi cells; here we use the regularity
of an eigenfunction f and in particular we use a bound for |V f||« found in
[22].

1.4 Outline of the approach and discussion

To prove our main results we exploit well-known variational characterizations
for the spectra of Ar and A. Our results are then deduced from a careful
comparison between the objective functionals of the variational problems.
From the definition of Ap in Section [1.2] it clear that A, is positive-
semidefinite with respect to the inner product of L?(X, mpu,). We denote by

0= () < A(I) < A1) < ...

the eigenvalues of Ap, repeated according to their multiplicities. By the min-
max principle we have

Ai(I) =min  ma b()

X 1.29
Ly weLi {0} [|ul[ (1.29)

X;m/"wn)
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where the minimum is over all k-dimensional subspaces L of L?(X, mpu,).
At the continuum level, and given that p and p are bounded from below, one
can show that A is a closed and densely defined symmetric operator with
compact resolvent [I, Lemma 2.7]. Therefore, its spectrum consists of positive
eigenvalues only, which we denote by

0=M(M) < AM) <As(M) < ...,

where eigenvalues are repeated according to their multiplicities. Moreover, by
Courant’s minmax principle we have

Ae(M) =min m __by) (1.30)

i ax 2
Li feLi\{0} ||fHL2(M,pu)

where the minimum is over all k-dimensional subspaces Ly of L?(M, pu), see
[18, Lemma 2.9].

The proof of our results may be split into two main parts. The first part
contains all the probabilistic estimates needed in the rest of the paper and is
devoted to the proof of Theorem [2] The study of the estimates for doo (1, tin)
goes back to [24l[I6l27] where the problem was considered in a simpler setting:
1 is the Lebesgue measure on the unit cube (0,1)™ and the points 1, ..., z,
are i.i.d. uniformly distributed on (0, 1)?. In that context, with very high prob-
ability,

(log(n))Pr

dOO(M?:U’W) ~ nl/m

)

where p,,, is defined in (1.1)). In [II] the estimates are extended to measures
defined on more general domains (not just (0,1)?) and with more general
densities (not just uniform). In this paper we extend the results in [T1] to the
manifold case. In order to prove Theorem [2| we use a similar proof scheme
to the one used in [I1]. Indeed, we first establish Lemma [1| below which is
analogous to [IT, Theorem 1.2] and is of interest on its own. The result includes
explicit estimates on how the distance depends on the geometry of M.

Lemma 1 Let py, p2 be two probability densities defined on M with

<pi(r) <a forallz e M andiec {1,2}

QI

for some a > 1. Then it holds for the corresponding measures vy, vo, defined
as dvy = prdx and dvs = padzx,

doo(v1,12) < Allp1 — pallLee(m), (1.31)

W T

where A = C’”‘%#‘Wmax{ﬁc, M}, N, = (1+C’mK7‘2)w and

r =+ min{1, i, \/%}
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With Lemma [I| at hand, the next step is to construct a careful partition of
the manifold M into patches in which we can use directly the results from
[I1]. The construction requires some geometric estimates which are obtained
in Section [2.1] Using properties of the constructed partition of M and Lemma
we can establish Theorem

The second part of the proof of our main results consists of a set of precise
deterministic computations used to relate the discrete and continuum Dirichlet
energies appearing in the variational characterization of the spectra of the
graph and continuum Laplacians; these computations are based on ideas from
[6]. Roughly speaking, the proof of our main results relies on the following
upper and lower bounds. We first show the upper bound

b(Pf) < (1+error)E.(f) < (14 error)D(f), f e L*(M,pu),

where FE,. is the non-local kernel approximation of the continuum Dirichlet
energy defined in and 7 is a length-scale which up to leading order is
equal to h; the term error can be explicitly written in terms of h, € and
geometric quantities associated to the manifold M. It is possible to interpret
the first inequality as a “variance” estimate as it relates an energy constructed
exclusively from the graph with an “average” energy. The second inequality
on the other hand can be thought as a “bias” estimate. We would like to point
out that the second inequality is a manifestation of the intuitive fact that local
energies bound non-local ones. Our lower bound takes the form

D(I(u)) < (14 error)E.(P*u) < (1 +error)b(u), u € L*(X).

We remark that it is not too hard to obtain a relation of the form D(I(u)) <
CE,(P*u) for some constant C. Nevertheless, since our goal is to find error
estimates, the constant C' must be sharp (up to some small error). We obtain
this sharp constant using the specific form of the convolution operator A in
the definition of I (see (3.5)). Our analysis of convergence of the spectra is
completed by showing that the maps P, P* and I are almost isometries when
restricted to eigenspaces (discrete or continuum).

We want to highlight the fact that in contrast with the construction in
[6], our graphs and our “out-of-sample extensions” of eigenvectors are defined
exclusively from the ambient space Euclidean distance. Theorem [6]is obtained
a posteriori from Theorem [2| and uses Theorem [2| to bound the measure of
Voronoi cells. We also use uniform estimates for the gradient of eigenfunctions
of the Laplace-Beltrami operator from [22].

1.5 QOutline

The rest of the paper is organized as follows. In Section we present some
estimates from differential geometry that we need in the sequel. Section
is devoted to the estimation of the co-transportation distance between u,
and g and in particular contains the proof of Theorem [2] Section [3] contains
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results on the kernel-based approximation of the Laplacian operator; in more
precise terms, we relate the (weighted) Dirichlet energy D with the non-local
Dirichlet energy . Section |4| addresses the convergence of eigenvalues and
in particular contains the proof of Theorem[d] Finally, in Section 5] we establish
the convergence of eigenvectors of graph Laplacians, first in the sense of the
interpolation map I from (Theorem [5) and then in the sense of Voronoi
extensions (Theorem@. The Appendixcontains the optimal-transportation-
based proof of kernel-density estimates on manifolds.

1.6 Some estimates from differential geometry

We conclude the introduction by recalling some notation and stating a few
results from differential geometry.

For a point x € M, we denote by T, M the tangent space of M at x.
Fix 0 < 7 < min{ip, 1/v/K} and let us denote by exp,: B(r) C TuM — M
the Riemannian exponential map. Since r < ig the map is a diffeomorphism
between the ball B(r) and the geodesic ball By (z,r). In particular exp;!
defines a local chart at x. Let g be the pull back of the metric of M by the
exponential map. That is for an orthonormal basis ey, ..., e, of T, M and
for given v € B(r) let ¢; |» == ((dexp,)s(e:), (dexp,).(€;)), where we have
identified the tangent space of T, M at v with T, M itself. Then

5i,j - CK"U‘Z S gi,j S 5i,j + CK"U|2, (132)

where |v| is the Euclidean length of v, §;; is 1 if ¢ = j and 0 otherwise
and where C' is a universal constant. Such estimates are bounds on the metric
distorsion by the exponential map and follow from Rauch comparison theorem
([9, Chapter 10] and [6, Section 2.2]). Similarly, since » < 1/v/K, one can show
that for any v € B(r) and any w € T, M = T,(T, M),

1
§‘w|$ < |(dexpz)v(w)|expz(v) < 2‘w|$ (133)

Proposition 1 Assume 0 < r < min{io,1/v/K}. Let p € M and consider
any smooth curve v: [0,1] — B(r) C T,M. Then

1
5 Length(7y) < Length(exp, o) < 2 Length(7y).

Furthermore, on By (p, %) the exponential mapping exp,: B (O7 %) CT,M—
By (p7 %) s a bi-Lipschitz bijection with bi-Lipschitz constant 2.

Proof The first claim follows immediately from . To deduce the second
part let g1,¢2 € Ba(p, 5). Consider a smooth curve 4: [0, 1] — M connecting
g1 and go, i.e., 7(0) = ¢1 and F(i) = g2. We observe that if 4 is not contained
in Bay(p, ), then

d(q1,q2) < d(q1,p) + d(ge,p) < r < Length(7).
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In fact, to deduce that r < Length(¥) let s € (0,1) be such that 5(s) &
Bu(p,r). Tt is straightforward to see that the length of the restriction of ¥
to the interval [0, s] is larger than the distance between 7(s) and 0B (p, 5),
which in turn is larger than 3. Similarly the length of the restriction of 4 to
the interval [s, 1] is larger than . Hence r < Length(¥) as desired.

Now, let ¥ be a smooth curve realizing the distance between ¢; and ¢o
(which after appropriate normalization has to be a geodesic). From the previ-
ous observation we see that 4 is contained in Ba(p, ). Consider v := exp[j1 oy,
where we note that exp,, 1is well defined along 7 given that r < ig. From the

first part of the proposition, we deduce that

1 _ _ 1 -
id(expp Haqr), exp,, Hg)) < 3 Length(y) < Length(y) = d(q1, g2)-

Finally, for an arbitrary smooth curve v: [0,1] — B(r) C T, M with v(0) =
expy, '(q1) and 4(i) = exp, ' (g2) we have

d(q1,q2) < Length(exp, oy) < 2 Length(y).

Taking the infimum on the right hand side over all such curves v we deduce
that d(q1,q2) < 2d(exp, ' (q1), exp;, ' (¢2)). This completes the proof.

The bounds on metric distortion (1.32)) imply that the Jacobian of the
exponential map (i.e. the volume element) J,(v) := y/det(g) satisfies

(1+CmK|v|*) ™" < J.(v) < (1 4+ CmK|v]). (1.34)
A direct consequence of ([1.34]) is that

w 7,.7YL
m

— < B <(1 Kr? m 1.
Tr Cmir? = Vol(Bpm(z,1)) < (1 4+ CmKr*)w,r™, (1.35)
which implies that
Vol (B (,7)) — wpnr™| < CmKr™+? (1.36)

where w,,, is the volume of the unit ball in R™.

Now we want to state a relation between the intrinsic distance on the
manifold and the Euclidean distance on the ambient space. For that purpose
we recall that R, the reach of the manifold M, is defined as

R = sup {t >0 :Vz e RY, dist(z, M) <t,

L , (1.37)
ly € M s.t. dist(z, M) = |z — y[}.

We note that R is an extrinsic quantity, meaning it depends on the specific
embedding of M into R?. In addition, we note that the quantity % is related
to extrinsic curvature, as it uniformly controls the principal curvatures of M
(see [19]). We now show that the distances M are locally a second order
perturbation of the Euclidean distance in R¢ and provide explicit error bounds
in terms of the reach of M.
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Proposition 2 Let R be the reach of the manifold M C R?. Let z,y € M
and suppose that |x — y| < g. Then,

8 3
Ix—ylﬁd(w,y)ﬁIx—y|+ﬁlx—y| :

Proof The inequality |z — y| < d(z,y) is trivial. To show the other inequality
we note that since |z — y| < &, it follows from [19, Prop 6.3] that

[, 2]z -yl
d <R—Ry/1-22_
(z,y) <R-R 7

Using the fact that for every t € [0,1], VI —1 >1— 1t — 142

lz—yl 2
R R?

2
o) < -2 (1 o= 3l*) =lo sl + Flo—yl* <20~y

(1.38)
To improve the error estimate let L = d(x,y) and let v : [0,L] — M be an
arc-length-parameterized length-minimizing geodesic between = and y. Heuris-
tically, 7 is a “straight” line in M and thus its curvature in R? is bounded by
the maximal principal curvature of M in R?, which is bounded by %. More
precisely we claim that

5(#)| < = for all ¢ € [0, L]. (1.39)

This statement follows from [I9, Prop 6.1] (and is used in the proof of Propo-
sition 6.3 of [I9]). Using translation we can assume that z = 0. Furthermore
note that that (t) - 4(¢) = 0 for all ¢. Thus

L
& —yl = (L)] = (L) -4(L) = / i(s) - 4(L)ds

L L
-/ <W(L)— / &(r)dr>-~'y<L>ds (1.40)

L L /L I3
:L—/O/S/Tﬁ(r)-ﬁ(z)dzdrdszL—ﬁ

Combining with (138) implies L < |z — y| + 2|z — y[*.
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2 The oo-transportation distance

The main goal of this section is to prove Theorem [2| For that purpose, we use
a similar proof scheme to the one used in [T1]. We first establish Lemma and
then we construct a “nice” partition of the manifold M by using a Voronoi
tessellation using some (fixed) appropriately chosen points; what makes the
partition nice is that each of its cells is bi-Lipschitz homeomorphic (with uni-
versal bi-Lipschitz constant) to a fixed ball in R™ where we can apply the
results from [I1]. In Section we present the construction of such partition
and prove Theorem

Throughout this section, we make use of the following construction and

estimates. Let r = £ min{1, i, \/%} Let Y = {y; : ¢ € I} be a maximal subset
of M such that d(y;,y;) > r for all i # j. Note that the balls { Baq(yi,7/2)},c;
do not overlap. From (|1.35)), we conclude that N, := card Y satisfies

No(1+ CmKr?)~! ’;T <3 Vol (Bu(yi,r/2)) < Vol(M)

iel
and hence
N, < (1+ CmKrQ)%l(mM). (2.1)
W T
From now on we list the elements of Y as y,...,yn,. It follows from the

maximality of Y that the collection of balls { Boq(yi, 1)}y .y, covers M. We
also claim that if dist(y;,y;) < 2r, then the balls Bag(ys,2r) and Bay(y;,2r)
have a “big” overlap in the sense that

(1+ CmKr?) tw,r™ < Vol(Bm(yi, 2r) N Ba(y;, 2r)). (2.2)

In fact, let y;; be the point that is halfway from y; to y; on the geodesic
connecting y; and y;. Let y € Baq(yij,7). Then dist(y,y;) < dist(y,yi;) +
dist(yi;,vi) < r+7r < 2r. This shows that Ba(yij,7) C Ba(yi, 2r). Similarly,
we have Ba(yij,7) € Bam(yj,2r). Inequality (2.2]) now follows from the fact
that

(1+ CmK7r?) wp,r™ < Vol(Ba(yij, 7))

We now claim that for arbitrary y;,y;, there is a way to start from y; and
move from ball to ball until reaching y; in such a way that any two consecutive
balls visited have big overlap, i.e. that holds. To make this idea precise,
let us consider a graph (Y, +») where

y; <y iff y; # yi and dist(y;, ;) < 2. (2.3)

We claim that (Y, <) is a connected graph; this is a consequence of the
connectedness of M. In fact, suppose for the sake of contradiction that (Y, )
is not connected. Then, we can find a partition of Y into two nonempty sets
S1, S such that for all y; € S; and all y; € Sa, y; ¢ y; (e d(yi,y;) > 2r).
Because of this, we can find € > 0 such that

U Bm@r+e)n J Buly,r+e) =0,
YyESL y€Sa
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but since

M= J Bmwir) < JBu@r+eu | Bulyr+e),
i=1,...,N,

YyEST YyES2

this implies that M is disconnected, which is not true. Hence, we conclude
that the graph (Y, <) is connected. We are now ready to prove Lemma

Proof (Lemma 1) In order to estimate doo(p1,p2), the idea is to construct
intermediate densities and estimate the distances between them using [111
Theorem 1.2]. But to use [I1, Theorem 1.2] we need to map the intermediate
densities to the the Euclidean space. Motivated by this, we consider the balls
Bam(y1,2r),...,Bm(yn,,2r) constructed before. By relabelling if necessary,
the connectedness of the graph (Y, <») implies that we can assume that for ev-
ery k=1,..., N, the graph ({91,...,yx},~) is connected. For k =1,..., N,
we define the sets

k—1 k—1
I := Baa(y, 2) \ | Bam(ws.2r), Ok := Baa(yn,2r) 0 | Baly;, 2r).
j=1 j=1

Note that Iy = B(yi,2r) and O; = (. We define the functions 7, v, , ok
iteratively as follows. Let us start with k¥ = N. If [ Iy prde > J Iy, P2dx we
set 'y;{,c = p1 and vy = po; if not, we reverse the roles of p; and py. We let
PN, be

*y;,c(x) ifxeln,,
pn.(x) = vk (x) + BN, if 2 € On,,
7 (2) otherwise,

where
g o J 0%~ )
. Vol(On,)

Having defined the functions v, ~~, g for the iterations N., N. —1,...,k+1,
we define the functions v;",v; , fx as follows. If flk Vg 1dz > flk Pri1dr we
set vlj = Yeg1 and v = pr1; if not, we reverse the roles of v, | and pr1.
The function py is defined as

V. (x) it x € I,
or(x) =Sy (@) + B if x € Oy,
v (@) otherwise,

where
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We note that p; =, and set 51 := 0. Also, observe that for every k, 8 > 0

and
/'y,:dxz/ W,jdx:/ prdx,
M M M

where the second equality follows from the definition of 8 and where the first
equality follows iteratively from the definitions above.
Using the triangle inequality and the above definitions we obtain

oo (p1,p2) = doo (Vi V.
< dOO(’Y]TZCvﬁNF) + dOO(ﬁNCv’YKIC)
= doo (Vs AN.) + doo (V.15 YN, —1)
< doo (V3. PN.) F doo (VR _1> PN.—1) + doo (AN, ~1, V. _1)-

Continuing the chain of inequalities provides, by induction,

Ne

doo(p1,p2) <Y doo (Vi Pre)-
1

>
Il

Our goal is to estimate each of the terms doo(%j, pr). From the definitions
above, it is straightforward to see that 'y,j and gy, coincide in M \ By (yk, 2r)
and thus

N. N,
doo(pr,p2) €Y AoV 8) €Y doc (W B s (e s20) PE Bra(yn2r))- - (24)
k=1 k=1

The last inequality is a consequence of the following observation: if two mea-
sures v,V give the same total mass and we can write ;1 = v + 7 and
Vo = vV + Dy, then one possible way to transport mass from v into vs is to
leave the mass distributed as v where it is and simply focus on transporting
the mass distributed as 7; to have it distributed as 5. This observation leads
to the desired inequality.

In order to obtain an estimate on deo (Vi | B (ye,2r) Pl Bt (e 2r))> We first
estimate [|7; — fk |l Lo (B (ye,2r))- From the definitions above we have

175 = Prll Lo (B2 < max {1y — 75 oo (1), Br } - (2.5)

Hence, we focus on obtaining estimates for ||v;" — v, [|r(z,) and .
First, we claim that for every k, the function ('y,': — 7 )11, has the form

N,

(W =), = (o1 — p2)ls, + D £Bi1n00,- (2.6)
j=k+1
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To see this, note that in case k = N, the result is trivial. In general, from the
definitions above it follows that

(=7 ), = (Vg — Ars1) 1y,
= (V1 — Vi) — Bes1lr,n004s)
=tV — Yer )10 + £kl 000,
= £y — Pr+2)lr, + EBis1lrn00,
= (Vo — Ny2) e + EBrs211,000s0 + Brt111,n054, -

Continuing the chain of inequalities proves the claim in N, — k iterations. An
immediate consequence of the previous fact is that for k =2,..., N,

Jn o= pade g8 Vollli00))
J

= Va0 TVal0r)

j=k+1

and in particular

(I
Volll) | 3y g, YO NO) o ..

Br < lpr = pallLe (M) 572 )
Vol(0g) ", 2 T Val(Og)
2.7)
For every k =2,..., N. we claim that
B < llor = p2lloo (32 s ) (2.8)

where the sum is taken over all s < N, — k and all s-tuples N, > j; > jo >
- > js—1 > js = k, and where

v o Volll) Vol(lj; NO;) Vollli,1n0s,,)  Vol(l;, N0;..,)
Bl T Vol(0y,)  Vol(Og,) T Vol(0;,,) Vol(0;,)

In fact, relation is obtained inductively by using recursion ) and the
fact that Sy, < ||p1 —pQHLw(M)% Let us now fix s with 0 < s < N.—k
and k' with k+s < k' < Ng; set j1 = k' and j; = k. Let us write a;,. ;. in

the more convenient way:

Qi i = VOZ(Ijl) . VOl(Ijz ﬂOjl) VOZ( Js-1005, 2) . VOl(I]S mojsfl)
e S Vel(0,) Val(0y) T Vell0g) | VellOy_)

Note that

Lo Vel Vol(l;, n0;) Vol(1j,_.no,, ,)
T Vol(0y,)  Vol(05,) T Vol(OJH) ’
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and therefore summing over js_; we obtain

S ay < Vol(l;,) Vol(lj, N 0;) Vol ,N0Oj, )
Nl =yol(0;,)  Vel(0y,) T Vol(04._,)

Js—1

Z VOZ(Ijsfl m Oj372)
Va0, ,)
Observe that the sum on the right hand side of the above expression is less

than one because the sets I;,_, are disjoint. Proceeding in this fashion adding

over js_a,...,Js we conclude that
VOZ(Ik/)
<
] Z Ajy.js = VOZ(Ok)
J2---Js—1

Finally, first summing over all such s and then over all such %', it follows

from (2.8)) that

N Vol(I
B <lor = palloe St < o1 = pollee 3 eVollU)
VOl(Ok)
k<k’<N. (29)
N.Vol(M)
<lps =l D)

where in the last inequality we have used the fact that the sets I}/ are disjoint.

Going back to (2.5)), we note that from (2.6)) and (2.9)) it follows that for
every k=1,..., N,
N
19 = Pkl L (Bacy2e) < llor = p2llzoean) + D By
j=k
1
<|lp1 — pallp~ 1+ N2Vol(M —— ) (210
< o= pallz-aa < T NVOlM) | p, vol(oj))
Cpu N2V ol (M) )
t—— )

< |lp1 — p2llLe (M) (1 "

where the last inequality follows from the lower bound on the size of the

overlaps (2.2]).

Now we notice that from the standing assumption p;(z), pa(z) > L for
every x € M, it follows that for every k =1,..., N, and every x € M

1
«

’Y;j(l")a%:(x)aﬁk(m) > for all z € M.

Likewise, from the standing assumption pi(x), p2(x) < « for all x € M, it
follows that for every k =1,..., N, and every x € M

N,

W (@), 7% (@), pr(x) < @+ Y B <a+t o1 = pallL )
j=1

Cp N2V ol(M)

TTTL
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Assume for a moment that [|py — p2||z(aq) is small enough so that in

Cr N2V ol(M)
-

particular [|p1 — p2|lze ) < «. In that case, for every k =

1,..., N. we would have

’ 1

o

Consider the exponential map exp,, : B(2r) € T,, M — Baq(yr,2r) € M
and the functions g1, g2: B(2r) — (0,00) defined as

<~ ok < 2a. (2.11)

91(v) = (expy, () Jy, (v)

and

92(v) = pr(expy, (v))Jy, (v),
where J,, denotes the Jacobian of the exponential map. From (2.11)), (2.10)
and (1.34)) we conclude that

1

aCm(l + Kr2) < gi(v) <aCm(1+ Kr?) fori=1,2 and all v € B(2r)

(2.12)
and that for all v € B(2r)

191(v) = g2(v)] < (1+ CmKr?)yf (expy, (v)) = prexp,, ()]
Con N2V ol(M (2.13)
< #le — p2|lzee(m)

We recall that our choice of r in particular gurantees that r? K < 1. Applying
[11, Theorem 1.2] to the densities g; and g with the bounds given by (2.12)
we conclude that

Cm.a N2V ol(M
doo (91, 92) < Crmarllgr — 92l (B2r)) < — ( )||pl - P2Loo(M)

,r.mfl

where the last inequality follows from (2.13)). From the second part of Propo-
sition [T} it follows that

Crn.a N2V 0l(M)

,rm—l

doo (Vi i) < 2doc (g1, 92) < o1 = p2ll e (A

Therefore, using (2.4) it follows that if

2
Cr N~V ol(M) <

— a’
T’ITL

o1 — p2llze (m)

then
Con.a N2V ol(M)

Tm—l

deo(p1,p2) < p1 = p2ll Lo (M)

1 Note that as stated, our theorems give Cm,a,r , but in this case Cm,a,r = Cm, o because
we can always rescale to the unit ball.
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In case ||p1 — ’02||L00(M)W > a > 1, we have

doo(p1, p2) < diam(M)

Cn N2V ol(M) diam(M
< (rm) ( )||P1*P2||LW(M)7

where we note that the first inequality in the above expression is always true,
as the maximum distance any point can travel in M is diam(M). Therefore,
in any case we have

deo(p1, p2) < Cllpr — p2llze (M),

where C' can be written as

C =

(2.14)

pm—1 r

2 .
Crn,a NV ol(M) i {Nc, diam(M) } .

2.1 Proof of Theorem

In the following, we consider the Voronoi tessellation induced by the set
Y = {y1,...,yn,} constructed in the beginning of Section [2} i.e. for each
ie{l,...,N.} we define

V(i) = {o € M: d(z, i) < da,y;) for all j € {1,..., N.}}.

These measurable sets form a partition of M up to a negligible set of ambiguity
of measure zero. We make use of the following.

Proposition 3 For each i € {1,...,N.} there exists a bi-Lipschitz bijection

U Va(y) — (0, %) C R™ with bi-Lipschitz constant at most 18.

To prove Proposition [3] we use the sequence of lemmas that follow.

Lemma 2 For allie€ {1,...,N.}

Bam(yi,r/2) € Valyi) € Bam(yi,r)-

Let V(y;) = exp, ' (Vam(yi)). Then B (0,%) C V(y;) C B(r) and for almost
every zp € OV (y;)
20

— Ny 2
|z

3

0| =

where ng is the outward unit normal vector to OV (y;) at zp.
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Proof Let y; € Y. Since for every x € By (yi, %) and every y; € Y with j # 4
it holds that d(z,y;) > d(y;,y:) — d(y;, x) > % we conclude that By (y;,5) C
V(). On the other hand, since YV is a maximal set with the property that
d(yj,yx) > r for all j # k, we conclude that for all € M there exists
y; € X such that d(z,y;) < r. Therefore Va(yi) C Bam(yi, 7). Since exp,,
maps B(s) bijectively to Baq(yi,s) for s = § and for s = r, it follows that
B (0,%) C V(y;) C B(r). This establishes the first part of the statement.

Now let us consider the second part of the statement. For almost every
2o € OV (y;) there exists a unique y; # y; such that zy € 8exp;_1(VM (y;)); let
us fix one such zo. Note that 2r > d(y;,y;) > r and that d(y;, z) = [20],, <7.
We let 2 := exp,, (20). We consider the level set I' := {x € M : d(x,y;) =
d(x,y;)}, which is a C'-hypersurface around z by the implicit function theo-
rem; moreover a unit normal vector to I at the point z is given by

n o= ﬂi — ’l]j _ U; — Uy
.o ~ ~ - )
|ui—uj|z |Ui—Uj|Z
~ exp_ (yi) -1 ~
where u; := — ) o Wi = —exp, (y;) and u;, @; are defined analogously.

Let us consider the set Iy := expy' (I' N Baq(yi, 2r)); note that around
the point 2o, Iy coincides with OV (y;), and in particular given that I" is a C'!-
hypersurface around z, OV (y;) is a C'-hypersurface around zp. Let us denote
by ng the outward unit normal to OV (y;) at zo. We write |z§70 as

|yi

20
W = wo + Ccno,
Oly;

Z

where (wy, E
Yi

)y: = 0 and (ng, |z§—‘|)>y1 = ¢. Clearly ¢ > 0. Now, by definition

of the exponential map, @; = (dexp,, ), ( ) , and so

20
[zoly,
U; = w + cn,
where w := (dexp,, )., (wo) and 7t := (dexp,, )=, (n0). Then,
(@i,n). = (w+cit,n). = c(it,n). < clii], < 2¢|nol,, = 2¢,
where the second inequality follows from the fact that w is tangent to I
(which in turn follows from the fact that wq is tangent to I'y) and where the

last inequality follows from ((1.33]). It thus remains to show that (@;,n), > 1/4.
To see this, simply note that the fact that (@; + @;,@; — @;), = 0 implies

(g, ) = <ﬁz‘ﬂj i — U > _w ], e =gl o diys) (L
(] 4 ~ ~ - - - -
, P I 2 2d(z,y;) ~ Ad(z,y:) ~ 4

where the second to last inequality follows from Proposition [I]
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So far we have been able to construct a partition of M into cells (the
Voronoi cells Vi (y;)) with the property that when each of the cells Vi (y;) is
mapped by the inverse of the exponential map, the resulting set V; (which is
contained in R™) is a star shaped domain with center the origin. In the next
lemma we show that when the unit normal to the boundary of a star shaped
domain does not deviate too much from the radial direction emanating from its
center, the domain is bi-Lipschitz homeomorphic to a ball and the bi-Lipschitz
constant can be controlled. This establishes Proposition [3]

Lemma 3 Let V be a star-shaped subset of R™ with center at 0 and such that
B(R) C V C B(2R). Assume V' has Lipschitz boundary and let n be the unit
outside normal vector to OV. Assume there exists 5 € (0,1) such that for a.e.
x eV
> p.

le
Let r: S™ 1 — [R,2R)] be the function describing OV in radial coordinates.
That is let r(z) = sup{s € R : sz € V'}. Consider the function : V — B(R)
given by

d(x) = ]E x forxz#0
r (m)
and $(0) = 0. Then @ is a bi-Lipschitz bijection with bi-Lipschitz constant at

most L 5T 1
Proof Extend r to R™\{0} by 7(x) := r(lf—l) For  # 0

Db (x) = —- f z(Vi(z))T + f(]Z)I.

Consider the function G: R™\{0} — 9V given by x — i‘(x)ﬁ
zeSmt

(2.15)
Note that at

DG(z) = 2(Vi(z))T +r(z) (I — z27).

Since n is orthogonal to the image of G, we conclude that (DG(z))Tn = 0,
which implies

(n-2)Vi(z) +r(z)(n—(n-2z)z) =0.

Since n - z > [ we obtain
BIV#(2)| < #(z) forall z € S™ L.

Combining this with (2.15]), we deduce that & is (% + 1)-Lipschitz. Analogous
computations show that ®~!, which is given by &~ 1(y) = r(ly‘)y, is also
(% + 1)-Lipschitz.
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Proof (Proposition @ By Proposition (1| the exponential map exp, : B(r) —
B (ys, rils a bi-Lipschitz bijection with bi-Lipschitz constant at most 2. By

Lemmas |2[ and |3 l with R= ¢ and 8 = , there exists a mapping

p— 770
@ exp, (Vaaly) = B (0,7)

which is a bi-Lipschitz bijection with bi-Lipschitz constant at most 9. The
composition ¥; o exp, I provides the desired mapping.

Proof (Theorem@ We consider the maps ¥;: Va(y;) — B(r/2) C R™ from
Proposition [3] Given the sample zq,...,z, from the density p, we define a
density p,: M — R by setting

P (Vi) — w(Vam(yi))
Vol(Va(yi))

Let us recall that Hoeffding’s inequality states that for every ¢ > 0,
2
P (|1 (Vaa(ys)) = n(Vaa(ya))| > t) < 27200

Using the previous concentration inequality we conclude that for every i =
1,..., N,

pn(z) = p(x) + for z € V(yi)- (2.16)

1
lp = Palle(vacwo < 5

VOl(VM(Zh

with probability at least 1—2 exp ( ) In particular, using a union

bound, we conclude that with probability at least 1 — 2N, exp (—nc”;#)

1

— < < . .
g = pn(z) <2a, zEM (2.17)

. . . o1 T2m
Similarly, with probability at least 1 — 2N, exp (—nCT)

SHVan(0) < 1 (Vin(w) < S u(Via(y) (215)

Hoeffding’s inequality together with an union bound also shows that with
probability at least 1 — 2N,.n~7,

plog(n)

rm n

P = pallpe(my < (2.19)

We let A,, be the event where (2.17)), (2.18) and (2.19) hold. From the above we
know that A,, occurs with probability at least 1 — Cn~". Where the constant
C depends on r, «, 8, m, Vol(M). We denote by fi,, the measure dji,, = ppdz.
Conditioned on the event A,,, we see from Lemma [I{ and from that

~ [ lo
doc (fin, 1) < Cllp — pnIILoc<M><CTn S( ),




32 Nicolds Garcia Trillos et al.

where C is the constant in (2.14).
Now we estimate duoo (fin, ftn) in the event A,. Observe that

fn (Vi (yi)) = tin(Vam(y;)) foralli=1,..., N,

and hence

dOO (lu”n) [j’n) S 7,:Ilna,X . dOO (ILLn\—VM (yl)a ﬂn‘—VM (yl))»
where we denote by Ly, (y,) the restriction of a measure to Vi (y;). The goal
is now to estimate doo (UnLv,,(y:)> Bnlva(y,)) for every i.

Let xj,,...,x;, be the points in X that fall in Vi(y;). We consider
the transformed points ¥;(z;, ), ..., ¥i(x;, ) and the measure Wiy (finl vy, (y:));

which is supported on B(r/2). The fact that ¥; is bi-Lipschitz with constant
18 implies that the measure Wiy (finLv,,(y,)) has a density with respect to the
Lebesgue measure and this density is lower and upper bounded by constant
multiples of the lower and upper bounds of the density p. Hence, the trans-
formed points are almost surely samples from W, (finLy,,(y,)) restricted to the
open ball B(r/2). Therefore, it follows from [I1, Theorem 1.1] that conditioned
on the event A,
log(n;)Pm
doo (Wiﬁ<ﬂnLVM(yi))’Wiﬁ(MnLVM(yi))) < CmapT gn(l/ln)@
1

hold for all i € {1,..., N} with probability at least 1 — CN.n~%, where C
is a constant that depends on 3,7, o, m. Note that we have used the fact that
in the event A,,, the second inequality in is satisfied and so we can give
the probability bounds in terms of n and not in terms of n;. Moreover, from
the first inequality in it, follows that

\Pm 1/m Pm
log(n)? _ , al/™ (og(m)

1 — m 1
ni/m r n /m

Finally, from the fact that W[l is Lipschitz with Lipschitz constant no
larger than 18, it follows that

oo (inVpa (4:)» HnViaa () < 180 (Wi (fim v (9))s Wiz (B v (0)) -
From the previous discussion, we deduce that with probability at least 1 —
CNcniﬁ =1- Cm,,@‘,oe,r,\/ol(/\/l) 'n7ﬁ7

oo (11, fin) < doo(H; fin) + doo (fin, fin)
Pm Pm
<ol ot o st
n

nl/m nl/m

for a constant C’ that can be written as €’ = e (' where C is as in (2.14).

T

2 Note that as stated, Theorem 1.1 in [I1] gives Cyy, 0,5, but in this case Cpy a.5,r =
Cm,a,p T as one can simply rescale to the unit ball.
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3 Kernel-based approximation of the Laplacian

Here we focus on a kernel-based approximation of the continuous Dirichlet
form defined in . This part does not depend on the graph obtained from
the sample set X and can be seen as the bias part of the desired error estimates.

The results in this section correspond to those of Section 3 and 5 in [6] but
cannot be directly infered from them. Instead, we need to adjust most of the
proofs to our setting.

For f € L?(M), 0 < r < 2h and a Borel set V C M let

V=[] (") 156 - sl dmanto). 6)

We write E,(f) shorthand for E,.(f, M). The main results of this section,
Lemma [§] and [0} demonstrate how this functional approximates the form A.

Remark 10 Let E,.(f, V) denote the functional in (3.1)) when 7 is taken to be
the kernel 1}y ;). Then E,.(f, V) is nothing but £.(f,V) as defined in [6 Def.
3.1]. Note that, for general 7 satisfying the assumptions from Section

1

for every f € L?(M) and any Borel set V C M.

Lemma 4 Suppose h satisfies Assumptions [3 Then there exists a universal
constant C > 0 such that for every 0 < r < 2h and every f € L*(M, p)

Eo(f) < C2"(1 + aLy)E, ja(f)-

Proof Let 0 < r < 2h. Then r < min{ig,1/v/K} by Assumptions [3| Note
that it suffices to consider f to be smooth because smooth functions are dense
in L2(M, i) and both sides of the inequality are continuous with respect to
L?-convergence; notice that for smooth functions we can talk about pointwise
values. For z,y € M with d(z,y) < r let z;, be the point in M which lies
halfway along the geodesic connecting = and y, i.e. 2z = expx( exp; 1 (y)).
In partlcular d(x Zpy) = d(y,zx y) = 3d(z,y). Since |f(z) — f(y )P < 2|f(x) —

f(zmy)| +2|f(y f(zxy)| by symmetry we obtain

= / (22) 1760) = ) Pautr)anto)
=i f [ (B = s (exes (5)) [ 2etptesp. i)

<crarar) [ f . 0 (21 170 - fCexp. (@) a(w)

p(exp, (w))dwdp(x)

= C2™(1+ aLy)E, j2(f),
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where C' is a universal constant. In the above, we used the change of variables

w = 3 (which explains the term 2) and we also used the inequalities:

< 2927 (V) < v
Jo(v) < (1 +CmKr?)2J, (2) <CJ, (2) :
(combined with Assumptions [3|) and

plexpg (v)) < (14 aly)p(exp,(v/2)).

Lemma 5 (cf. [6, Lemma 3.3]) Suppose h satisfies Assumptions[. Then,
there exists a universal constant C' > 0 such that

E.(f) = E.(f,M) < (1 + Lyar) - (1 + CmKr*)o,r™2D(f),

for every f € HY(M) and 0 < r < 2h.

Proof Let us first consider the case in which 7 takes the form n = 1o 1}; as we
will see the general case follows easily from this special case. As in [6] Lemma
3.3], we may assume that f is smooth and we write

/ @) — F(@)Pduly) = / | (expa(v)) — £(2)2p(expy (v)) Ju (v)do
B (z,r)

B(r)

where J, denotes the determinant of the Jacobian of the exponential map.
We recall from that there exists a constant C' > 0 such that J,(v) is
bounded from above by 1 + CmKr? for all v € B(r). From the fundamental
theorem of calculus it follows that

2

flesp, ) = 1@ < [ |5 Hexpeo))| de = [ lar@iao)Par

In the above @; denotes the time ¢ geodesic flow, @¢(z,v) = (Vzu(t), 7y, (1)),
where 7, ., (t) := exp, (tv). The expression df (P;(x,v) has to be interpreted as:
the form df at v, . (t) acting on the tangent vector v ,(¢). Therefore,

A [ ] 1o, 0) = £ pexp (0)dvp(@)d ol(a)
M JB(r)

< /O /M /B (r)|df(dst(x,v))l p(®1(2,0)1)p(Po (2, v)1)dvdV ol (x)dt

where £ — &; denotes the projection of £ € TM on M. From the Lipschitz
continuity of p, it follows that p(z) < (1 + Lyar)p(y) for all z,y € M where
d(z,y) < r. Using the fact that ®; preserves the canonical volume Volrp on
TM and that

B, ={=(x,v) eTM:|v| <r}
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is invariant under @, see [5, 1.125], we obtain after a change of variables
1
A< Wt Lo [ [ @) @)V olrss ()it
0o JB.

= (1+ Lyor)? /B A (€)1 (€1)dV olras (€)

_ 2 Wm_ m+2 2 2
=(1+ Lyar) /M o [V f|"p*(x)dVol(x).

Using the previous computations, (1.34]) and Remark [I} we deduce that

E (f) < (1+CmEr?)- A< (1+CmKr?)-(1+ Lpar)%rm“z)(f)

=(1+CmKr?) - (1+ Lpozr)onrm”D(f)
(3.3)

for a universal constant C', which proves the claim for n = 1y ;;. Now, notice
that one easily obtains from the previous computations that is still valid
for n of the form n = 1y 4 for some 0 < ¢t < 1. Finally, since E,(f) and o,
are linear in 7, the statement holds if n: [0,1] — [0,00) is a decreasing step
function (and hence can be written as linear combination of functions of the
form 1y 4). By monotone convergence applied on both sides of the inequality,
the assertion follows for any decreasing (and thus measurable) function 7.

Remark 11 Note that in comparison to the case of constant p treated in [G]
Lemma 3.3], the above estimates have the additional term (1 + aL,r).

Lemma 6 (cf. [6, Lemma 3.4]) Suppose h satisfies Assumptions @ Let
e<r<2h, feL*M)and V C M a Borel set such that u(V) > 0 and

diam (V') < 2e. Then
1 . 2(1+ CmKr?)
5@ = s [, ] @) <

Proof The proof is almost identical to the proof of [6, Lemma 3.4], replacing
the volume with the measure p and taking Remark [10] into account.

2

Es.(f,V).

Next we define a smoothening operator A: L?(M, pu) — Lip(M) similar
to the one introduced in [6l Section 5] but adapted to the kernel 7. To this
end, we first define a mapping ¢: [0, 00) — [0, 00) by

1 oo
P(t) = —/ 7(s)sds.
O’n ¢
Note that, as n is supported on [0, 1], ¢ (¢) = 0 for all ¢ > 1.

Remark 12 We remark that for () = 1,1](¢) the above v coincides with the
kernel function used in [0, Section 5].
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For every r > 0, we define the operator A%: L?(M,Vol) — Lip(M) by

/ F@W)k,(x,y)dVol(y) (3.4)

where

k() = v (d("“’)) |

r

As in [6 Definition 5.2], we define the smoothing operator A,: L?(M, pu) —
Lip(M) by

A f(z) = (0(x)) " AV f (2), (3-5)

where 0 = A%1. Note that the term  is introduced so that A, preserves
constant functions.

Let us deduce some useful properties of the functions just introduced. Since
P'(s) = —én(s)s for all s > 0, we obtain from the mean value theorem that

for any 0 < ¢ < r there exists £ <s <1 such that

ENE E—]

Hence, by the monotonicity of 7, we have

ky(@,y) < L77 (d(my)) (3.6)

apr™ r

for every z,y € M. If d(x,y) < r, then the gradient of the kernel k, can be
written as

V(- y)(x) = Tmlﬂ v (d(a: y)) - Z}Efy;y)

1 d(aj?y) —1
= anrm+277< " )expz (y)

where we refer to [6] (2.6)] for the gradient of the distance function. Moreover,

we have
/ o(|z))dz = 1. (3.8)
IRm

To see this, first note that using polar coordinates we obtain

2 * "
moy = Z/}Rmn(lxl)x?dm: /}R n(|z))|z|*dz :mwm/o () dr,
i=1

(3.7)
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where w,,, is the volume of the Euclidean unit ball in R™. Thus, using inte-
gration by parts and polar coordinates, it follows that

Wl dz = meon, / ¥y

]Rm
= fwm/ ' (r)r™dr
0
=Y n(r)r™dr = 1.
0'77 0
For §(z) :== A%(1) we now obtain the following bounds.

Lemma 7 (cf. [6, Lemma 5.1]) There exists an absolute constant C > 0
such that
(1+CmKr?)™' <0(x) <1+ CmKr?

and |V0(x)| < CmKr/oy for all x € M.
Proof We have

0(z) = rim /Bmm) " (M) dVol(y) = Tim /Bm " (Z') Jo(v)dv.

Thus, the first assertion now follows from ([1.34]) and (3.8)). Since (1.34]) implies
|Jo(v) — 1] < CmK|v|* and since

/ P (|v|> vdv =0
B(r) r

for symmetry reasons, the bound on the gradient of 6 can be obtained from

ED as

r

bl (s o)
= oo /B(T)i/1<r v (v)dv /B(T)w . vdv

__ 1 [ _
= G /B(T)w <7~) v(Jo(v) — 1)dv

< C’mKT;’/ " (|v|> do — CmKr'
O'UT'er B(r) T 077
In order to establish the following properties of A, we make use of the

fact that the densities p and p are Lipschitz continuous and are bounded from
below. Thus

p(z) < (1+ Lpar)p(y) and  p(z) < (1+ Lyar)p(y)

whenever d(z,y)

_ 1 d(ﬂ?,y)) X< —1
Vo) = e Y ( exp; ! (y)dVol(y)

IN

r.
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Lemma 8 (cf. [6, Lemma 5.4]) Suppose that h satisfies Assumptions @ .
Then, there exists a universal constant C > 0 such that

2
1A 22y < (L aLpr) (1 4+ aL,r)(1+ CmEr?) || FllE2 o, pn)

and
C a?
apr™

||‘/1 f fHLQ(M pu)

for all f € L>(M) and all r < 2h.

E.(f)

Proof The first assertion follows from Jensen’s inequality,

| e s@ppwine < Wp@)(f(y»?dwuy)du(x)
M

mIm 0z
<1+ aLyr)(1+aL,r)(1+ CmKr2)||f||%z(M’pu),

where the last inequality follows from the Lipschitz continuity of p and p
together with the estimates from Lemma [7]

For the second assertion notice that as in the proof of [6, Lemma 5.4] we
can conclude that for a.e. x

1
A f(z) = fa)) < e}

Integrating this inequality with respect to pu and using (3.6) we obtain that

2
HArf - fHL2(M,pu)

<1+CmKr// (
- onr™

¢ &*E,.(f)

m
o

[ kel - f@Pav).
Bam(x,r)

)|f< )~ () PdVol(y)pla)du(z)

IN

Lemma 9 ([cf. [6, Lemma 5.5]) Suppose that h satisfies Assumptions [3
Then, there exists a universal constant C > 0 such that

DA f) < (1+aLyr) - (1+C(1+ 1/0n)mKr2)ﬁEr(f)

On

for every f € L2(M) and every 0 < r < 2h.

Proof We can write
1

V(A7f) = m

A (x) + Ay(x)

where

Ay(z) = / Vhe () (@) (f ) — F(2))dVol(y)
B (z,r)
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and

Ay(z) = V(0 ) (2) / k() (F) — F(@)dVol(y).

B (z,r)

Regarding A; we have |A;(x)| = (A1(x),w) for some unit vector w € T, M.
Therefore, using (3.7)),

| A1 (z)] = (A1(2), w)
1 d(z, )
= ot /BM ! <(y)) (f(y) = f(2)){exp; " (y), w)dVol(y)

r

o |, X (") () (0, w) T (0) .

where p(v) = f(exp,(v)) — f(z). By the Cauchy-Schwartz inequality,

. v l
Ax2<7/ vaJzUQ”<>dv/ <U’w>2n( dv
| 1( )| 07277“2('”“) B(r)| ( )| ( ) r B(r) T

1 2 2 |U|
0'777"7'L+2 »/B(T)|<p(v)| (U) 7 ( r °

where, in the last step, we used radial symmetry to conclude that

/ (v, w) (' ) dv = rm+2/ u%n(|u|)du = rm+2an.
B(r) B(1)

Now we obtain from ([1.34)) that

1+ CmKr? v
o < S e () g
n T

:1+CmKr2/ n(d(m,y)

m—+2
O'n’l" T

) () - f())dVol(y)

Integrating this inequality with respect to the density p? and using the Lips-
chitz continuity of p, we obtain

2
||A1 ||L2(M p2Vol)

< o 0 (B2 1510) - s avaitp?a)avts)

<1+aLp; L+ Ok / /B . ( >)f<> § @) Pdpu(y)diu(a)

< (14 aLyr)(14+ CmKr?)
- oprmt?

IN

E.(f).
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Regarding A, first note that |V(0~')| < CmKr/o, and § < C by Lemma
Therefore, by the Cauchy-Schwartz inequality and (3.6)), we obtain

As()? < V(6 \/ ,ydy/ FW) — 1)k (2 m)dV ol (y)
— V(0o /\f )k (2, y)dVol(y)
Cm2K2r? d(z,y) \

< OB [ () 1)~ S@)Fdvol(y)

3pm
0'777'

Integrating this inequality with respect to the density p? while using the Lip-
schitz continuity of p shows that

c(1+ aLpT)mKr2 1
E
O'nTerz T(f)

12l g gaven < -

for some universal constant C. By combining these estimates and the lower
bound for # from Lemma we obtain that

D(Af)F < (1+aLyr)-(1+C(1+1/0,)mKr?)

Hence the claim follows.

4 Convergence of eigenvalues

terms of the continuous one (|1.8)) while we interpolate and discretize between
the graph and the manifold in an almost isometric manner using the mappings

P, P* from (1.22), (1.23) and A, from (3.5). We start this section with some

preliminary lemmas.

In order to prove Theorem [4| we estimate the discrete Dirichlet form (1.7]) in
-i

Lemma 10 Let us assume that the support of 1) is contained in [0,1] and that
n 4s Lipschitz in [0,1]. Then, for all r,s > 0 and t > 0 we have

9 n() <0(82) < (25) + Eattcrnn
(ii) n (52) = (£

where L, > 0 denotes the Lipschitz constant of n restricted to [0,1].

) — L2 < gy prom'ded that s < r.

Proof Regarding assertion (i) first note that every term vanishes for ¢t > r+s.
In order to prove the first inequality in the remaining case, we need to verify
that (¢t — s)/r <t/(r + s) provided that ¢t < r + s. This follows from

t t— t— t— -1 t
t—s _rt—(r+s)(t—s) sr+s —S<1— >>0.
r+s

r+s ro r(r+s) r or+s T
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Combining this estimate with the Lipschitz continuity of n shows that

(t—s)+ t t (t—s)+

0< ~— ) - <L R
_77( r " r+s,) K r+s r
t t—s S t S
<L - =L,—(1-— <L,-
- "<r+s r ) 177"( r+s>_ Ty

which implies the second inequality of assertion (i). The proof of assertion (ii)
is completely analogous.

The next results relate the operators P and P* defined in (1.22)) and ((1.23| -
In particular, we show that P and P* are almost adjoint to each other and
that P* is almost an isometry. In case mu, = u, and pu = pu, (i.e. in case
m=(1,...,1) and p = 1) then P and P* are truly adjoint to each other and
P* is truly an isometry.

Lemma 11 For all u € L*(X) and f € L*(M)

(P u, f) L2 (Moo = (s PF) L2 (Xmgan | < 0(lm—=plloo+eLy) (P [ul, | £1) 120t

and

., 112 2 S
Pl e (e = N0l 22 gy | < @l = plloe + L) 1Pl 2 0t -

Moreover, if we assume that aflm — plles < 1 then Vu € L?(X),

* 2
1P ull72 (at ) < 201+ aLpe)[ull 72 (x wmp)

for some universal constant C' > 0.

Proof We infer from (1.12)) that

|<uan>L2(X mpy,) <P*u f>L2 ,pu)l

> utw) n [ g /Z u(a) L, fod
=
</ ;mm

< a(llm = plloo + L) (P*[ul; [f) L2 (M. pp)-

(@)] - [mi = i) + p(i) — p(x)|du

and

2 2
|||P*u||L2(M,pu)_Hu||L2(X,mun)|

n

Z </U u? (i) pdp — / miu2(xi)du)

i=1

< Z/ (i |P p(z:) + p(zi) m¢|d,u

< allm = pllse +Lp) | P ul 72 -
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To prove the last part of the lemma we notice that

n

. 2(1 4+ al ) &
1Pl iy = 2o e? [ ot)dutn) < 2R S ugan o,

n :
=1 =1

= 2(1+ aLye)lull 22 (x mp,)-
The next lemma is a straightforward generalization of [6, Lemma 4.2].
Lemma 12 (cf. [6, Lemma 4.2]) For every f € L?>(M) we have
. 2 2
IP*PFl ooy < (L4 20Lpe) [ F I 2 (a0

In addition, there exists a universal constant C' > 0 such that

C(1+ mOszs)mZm/za}/2
n(1/2)wm

[N

1f =P Pfllrem <

D(f)
for all f € HY(M).

Proof The first assertion follows from Jensen’s inequality and the Lipschitz
continuity of p:

/M (P PA ) ple)ints) < 3 /U | /U 0 ()i

< (1+2aLps)Z /U | /U | nf(y)*p(y)du(y)du(z)
— (1+2aL,e) /M )2 p(w)dn(y).

For the second assertion we can use Lemma 5] Lemma [6] and Assumptions
on h, to obtain

. 2 2(1 + CmKr?)

||f -P Pf”LQ(M}y,) S 77(1/2)wm(’r o 6)mE2T(f)
C(1+2aL,r)20, 1™

- n2wm (r—g)™

r*D(f)

rm

W is bounded

for any r € (e,2h). When choosing r = (m+1)e the quotient
by 3 and the assertion follows.

The next lemma is a generalization of [6, Lemma 4.3].

Lemma 13 (cf. [6, Lemma 4.3]) The following assertions hold:
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(i) For every f € HY(M),

2 2 2
Pz (x ey = 122t 0 | S0(llm = pllo + € L) 12 (pt,pp
~ 1
+ C'ell fllz2 (Moo D)

where C' has the form

o _ Call+aL,)(1+ maL,)m2m/2g/? (1)
1(1/2)wn ’

for some universal constant C' > 0.
(ii) For every f € HY (M),

b(Pf) < (1+Clh+ Cg% + CLRAD(f),

where the constants Cy, Ch, C} can be written in terms of geometric quantities

as

oM+ (1+al,) 1
! ! n D
¢} = Cal,, 02_c<m+ (172 ) Cl = Cm< RQ),

where C is a universal constant.

Proof Since P* is almost an isometry by Lemma we have

P FIZ x gy = 1122 ot |
< ’||Pf||iz(x,m#n) - ||P*Pf||iz(./\/l,p#)’
+ |||P*Pf||2Lz(M,pu) - ||in2(M,p#)|
<a(lm = plloc + eL)IP P12 i)
+ PPl 2 amppy + I 2 o PP = Fll 22, pp)
<a(|m = pllec +L,) (1 + 20L) | 132 (0t pape

Ca(2 + aL,e)(1 + maL,e)m2m/20)/? 1
+ £ (77(1/2)w L n ellfllz(am,pamyD(f)2

where the last inequality follows from Lemma [12| and from the boundedness
of p. This proves the first assertion.

Regarding the second assertion we follow the proof of [0, Lemma 4.3(ii)]
and obtain that

P (2;) - Pf(: / / () — F(@) Pdp(y)du(z).
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Let h := (1 + 2h?)h. Then, by Proposition 2, Lemma [10{ and by the mono-
tonicity of  we have

DS oz S [ [ (=52 170 - s autauta)
< hm+222 L ( ALY ) 10 Pt

< o /. / ( o )|f<> F (@) Pdu(y)dp(x)
= gnhm+2/ / ( <h+2g))+2Ln;]lBM(x,ﬁ+2g)(y)>

|F(y) = £ (@) dply)dp(z)

1 2L, €
= o2 (Eﬁ+2s(f) + 77(1/772)}132(%25)(]“)) ,

where we refer to Remark [10] to justify the last step. Due to Assumptions
we obtain from Lemma [l that

1 ) 27h? e\
n

h2
< (14 CaLyh)(1 + CmKh?) (1+CmR2+C’m ) D(f),

where the last inequality is obtained from the fact that
3

(I+s)"<14Cs, V0<s<—,

m

for some universal constant C' > 0. Likewise, we obtain

1 2L, e 2mHlr, )
[ ——r——— ) S ——

h? e\ €

The result follows directly from the previous estimates.

We can now establish an upper bound for A;(I") in terms of Ai(M).
Proof (of upper bound of Theorem |4]) Fix k € IN. By the minmax principle

(1.29) we have
b(u)

/\k(F) < o2
ueL\{0} Hu||L2(X,mun)

for every k-dimensional subspace L C L?(X,my,). Following the proof of
[6, Prop 4.4] we denote by W C H'(M) the span of orthonormal (with
respect to the L?(M, pu) inner product) eigenfunctions of A corresponding
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to Ai(M),. .., (M) and we set L := P(W). For every f € W we have
D(f) < )\k(M)”inQ(M’pH). It thus follows from part (i) of Lemmathat

IPFII2 gy = (1= a(lm = plloc + L) = C'/ A (M) FII72 (a1 -
(4.2)

Hence, provided that

a(m + pll o + ELP) +C Ae(M)e <

9

N | =

we can conclude that P is injective on W and therefore dim L = k. Moreover,
in that case by applying part (ii) of Lemma|l3|to u = Pf € L we obtain that

b(u) - (14 Clh+ C3% + C5h?)
[l e gy — 1= alllm = pllo +2L,) — C'/Ap(M)e
< (1 + O+ c;% + 42 + aC(|lm — plloo + £L,) + C’\/Ak(/\/l)e) Ae(M).

Ak (M)

Since the previous inequality holds for every w = Pf with f € W, the desired
estimate now follows.

Lemma 14 (cf. [6, Lemma 6.2]) Suppose that h satisfies Assumptions [3
Then,

(i) For every u € L?(X),

< C"hl|ull 12 (x,mp) - b(w)®

2 2
’||Iu||L2(M,pM)—Hu”p(x,mun)

2
+2a(1+aL,) - (Jm — pllog + Lye) 4l g -

where the constant C" can be written as

~ L,Amw? (1 + aL,)?
C"=Ca(l+aLy)-(14aL,) (14", ¢ ==1—"m P

(ii) For every u € L*(X),

D(Iu) < (1+ C{h +CY <

-+ Gy h?)b(w),

where the constants Cy, CY, C§ have the form

Cy =alL, CY=Cm+Cy), C§f=C1+1/o,)mK.
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Proof First, by Lemma

2 2
H|IU||L2(M,W) - HUHLQ(X,mun)’
2 w112 - 2
< |HIUHL2(M,W) —|P u||L2(M,pu)| + H|P U‘HLQ(M,pM) - Hu||L2(X,mHn)
< (”IUHLQ(MWM) + HP*UHLQ(MWM))”IU o P*UHLQ(MWM)

* 2
+ a(llm — pllos +eLp) [P ull 12 pg,pp)-
(4.3)

Since (m + 2)e < h (by Assumption , we conclude from Lemma [§] that

2
| Ap—2e P*u — P*ul)? Ep_ae(P*u).

* (12 _
Hu—P UHL2(M,W) - = o,hm

for some universal constant C' > 0.
Let us now estimate Ej_o. in terms of b(u). First consider the kernel

7 = 1. We use b and E to denote the discrete Dirichlet form and the
energy E' when using the kernel 7 and we write b, and bi, respectively, to
specify that the forms b and b are being constructed using the value h. We
claim that

= m+2 - N

bh(u) 2 WE},/72E(P U) (44)
Indeed, let T' denote the transportation map introduced in Section [I.3] satis-
fying U; = T (x;), then

b = sz S0 2 () o) e
=X ), [ (h(y)) (P )(@) — (P u)y) () ()

zah% [ (T () - () Pantante)
> [ ( )|<P* (@) — (P*u)(y) Pdpu(y)dpz)
= WEh 2¢ (P u),

where we note that the last inequality follows from the fact that d(T(x), T (y)) >
h implies that d(z,y) > h — 2¢; we have used Remark [1| to rewrite o7 . We
now consider general 7. Since n(t) > n(1/2) > 0 for all ¢ € [0,1/2], it follows
that

anm2m+2

bl S i) )

b (). (4.5)
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On the other hand, by the monotonicity of n and Lemma [10] we obtain

b () > hfm / /
Zahm+2//
L
=/,

h ) |(P*u)(z) — (P*u)(y)*du(y)dp()

(T
(d z,y) + 2
(3

P (o) - (P duaute)

>

n mys)) “u)(x) = (P*u)(y)[*dpu(y)dp()

oy h””“L

3 * *
_ JE / 1wy <n—2ey| (P*u) (@) = (P*u) () Pdpy)dp(x)
1 L e 1 "
— PR Ej_o.(P*u) — R h—2e (P )
* CLn4m(1 tal,)?e 1 - *
> WEh—%(P u) — o B hm+2 E%—QE(P u),

where the last inequality follows after applying Lemma [4] twice. We conclude

from (4.4) that

1 ™ m (1 2
b (1) > CL,2™wm (14 aLy)

e
——Ep 9. (P u) — =
gtz 2 (P*u) (m + 2)o, h

Combining this inequality with (4.5) we deduce that

CLA™w?2 (14 aLy)? e
Y - > - *
(1 + n(1/2)(m+2)2  h n(u) > PSS Ep_o:(P*u)

which can be rewritten as

CLyAmwn (1 +aLy)® e m+2
Ej_9.(P*u) < (1 + n(1/2)(m + 2)° 7 onh b(u). (4.6)
Hence,
Ca? L,4™w? (1 +aL )
_ p*, (2 < * < 2 n 2
[ Hu — P*ul|” < 7]hmEh,gs(P u) < Ca <1+ n(1/2)(m 1 2)2 h)h b(u).

(4.7)
Finally, from Lemma [1] it follows that
o 2 2
1P ul| L2 ppy < 2(1 + aLpe)l[ull 2 (x myp

and from Lemma

Hull L2, ppy = [ An—26 P 0l p2 (o)
< C(1+aLph)'? - (1+ aL,h)" 2| P*ul| 12 (0 pp)
< C(+aLyh) - (1 +aLyh)|ull L2 (x mun)

The assertion (i) follows by inserting all these estimates back in (4.3]).
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Regarding assertion (ii), we conclude from Lemma |§| that

D(Iu) < (1 +aLyh)- (14+C(1+ i)mKhz) L

7 ol = 2eymra n-2e(Pu)

1 € 1 ,
< (1+aLyh)- <1 +C(1+ Un)mKh2> (1 + Cmﬁ) iz Eh—2e(PT)

1
< <1 +aLpyh + C(1+ —)mKh? + C’m€> —
J,r] h O'n

Combining with (4.6) we obtain the desired estimate.

We can now establish a lower bound for A\i(I") in terms of A\i(M).

Proof (of lower bound of Theorem [4)) Let k € IN. It follows from (L1.30) that
for very k-dimensional subspace L C H'(M) we have

A(M) < sup %~
rernioy 1Tz aom)

As in the proof of [6, Prop 6.3] we denote by W C L2(X) the span of or-
thonormal eigenvectors of Ap corresponding to A1(I),..., A\g(I") and we set
L = I(W). Then b(u) < /\k(F)”uHiZ(X,mun) for all u € W. Using this, we
conclude from Lemma

1ul2e iy > (1= 2a(1+ aL,)(Jm — plloc + L) — C"/A(T)1)

, (4.8)
||UHL2(X,mp,n)

for all w € W. It follows that if

N =

20(1 + aLp)([[m — plloc + Lpe) + C"V A (D)h <

then the operator I is injective on W and thus dim L = k; notice that this
inequality is satisfied under condition thanks to the upper bound for
A (L) in terms of A\i(M). It follows from part (ii) of Lemma [14] that for any
f=TITuwithueW,

D(f) _ _ 14+ C{h+Cy% + Cyh?
22 ppry — 1= 201+ aLy)(Im — plloo + Lye) = C"y/Ar(D)h

Ae(I7)

The result now follows from the fact that the above inequality holds for arbi-
trary u € W and the fact that A\;(I") can be bounded from above by a constant
multiple of A\ (M).
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5 Approximation of eigenfunctions

In this section we are concerned with the convergence of eigenvectors of Ap.
We start by showing that the discretization and interpolation operators P and
I are almost inverse of one another.

Lemma 15 (cf. [6, Lemma 6.4]) Under Assumptions[3, there exists a con-
stant C"" only depending on m, o, n, Ly, L, such that

(i) ITPf = fll 2oy < C"RD(f)% for all f € H(M).
Moreover, if
alm — plle +eL, < %, then,
(it) |PTu = ull 1 x ) < C"hb(w)? for all u € L*(X).
Proof By definition of I we have
HHPf = fIl < | An—2e(P*Pf = f)]| + [Ap—2cf — [l

From Lemmas[§and [I2] and from Assumptions[3] we know that for a constant
C"” > 0, depending on 7, m, Ly, L, and «,

| An—2-(P*Pf = Pl 2 aappy < C7IP*PF = fllp2(an ) < C7eD(f)?.

Likewise, from Lemma [§] and Lemma
17

mEh72a(f) S Cl/h2D(f)7

2
|Ap—2ef — f||L2(M,PH) =

and from this we deduce assertion (i).
Regarding assertion (ii), if we assume that a|m — plle + €L, < 1, we
obtain from Lemma [[1] that

[1PIu = ull 2 g, ppy < AP (PIu = )l 2 pg )
< A4||P*Plu— Iu”Lz(M,p,u) + 4| Tu — P*UHLQ(M,py)'

From Lemmas [12] and [14] and from Assumptions [3] we obtain that
1P PIu— Tul 12 0. < C'eD(I)? < C'eb(u)*

for a constant C’ depending on n, m, L,, L, and «. Moreover, by (4.7) we
know there exists C"”" > 0 (depending on 7, m, L,, L, and «) such that

11w = P ul| p2 g py < C" hb(u)?.

This implies assertion (ii).
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Now we adopt some additional notation from [6, Section 7]. For a value
A € R we denote by Hy(M) the linear span in H'(M) of all eigenfunctions
of A corresponding to eigenvalues in the interval (—oo, ). Similarly we define
Hy(X) as the linear span of eigenvectors of Ap corresponding to eigenvalues
in (—oo, ). We write P for both, the orthogonal projection onto Hy (M) and
Hy\(X).

Lemma 16 (cf. [6, Lemma 7.1]) Suppose that h satisfies Assumptions @
and that

—_

allm = plloc + 2L, < =

[\

Then, for every A > 0 we have
(i) b(Pf)F > (1 — (VAC" + CIYh — C.
(ii) D(Iu)% > (1 — (VAC" + C})h — Cy< —C{,,hQ) b(u)}

for all f € Hx(M) and uw € Hx\(X). The constants Cy,CY,CY are as in
Lemma C1,CL,C% are as in Lemma and the constant C"' is as in
Lemma [13.

§5 — Cyh?) D(f)3.

Proof Fix some A > 0. First note that the projection Py does not increase the
Dirichlet energy (neither the graph one nor the continuum one) and hence we
conclude that

D(IPf)? > D(PAIPf)? > D(f)*/? — D(PAIPf — f)!/2.
From Lemma [15] (i) it follows that,
D(PAIPf—f)? = D(PA(IPf—£))* < VAP~ 12(agp < C”"VARD(f)?
for all f € Hyx(M). Hence,
D(IPf)? > (1-C"hVA)D(f)?.
Moreover, we know from Lemma [14] (ii) that
DPH < (1+Clh+ Y- ~+Cih B b(P 1)t

and thus

l—C”/h\A
1" "e " 2D(f)
14+ C/h+CY% + Cih

(1 _ (\/XCW-FC{/) C//E . é/hQ) D(f)%

[N

b(Pf)% >

v

for all f € H\(M) as claimed in (i). Regarding assertion (ii) we proceed
similarly. First, we obtain that

b(PIu)? > b(u)"/? — b(PA\PIu — u)'/?
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for u € Hy(X). Since
b(PA(PTu—u))? < VAIPIu— ]l 1y < VAC" hb(u)?
by part (ii) of Lemma [15] we have
b(PIu)® > (1 — C""V/Ah)b(u)?.
Moreover, we know from part (ii) of Lemma [13| that
b(PIu)? < (1 +Clh+ c;% + cg;ﬂ) D(Iu)?.
Therefore,

1— C///\/Xh
1+ Clh+ Ch5 + C5h?

(1 — (C""VX+ C))h — c;% - cgz«ﬂ) b(u)?,

Nl
Nl

D(Iu)2 > b(u)

Y

which proves assertion (ii).

Proof ( Theorem@ This theorem can now be proven word-for-word as [6, The-
orem 4] together with the required Lemmas [6] Lemma 7.2, 7.3, 7.4] by replac-
ing every application of Lemma 4.3, 6.2, 7.1 and Theorem 1 therein with the
previously proven Lemmas and Theorem [4] respectively.

We now focus on establishing Theorem [6] To simplify our computations
we set

0:= <;+(1+\/W)h+<K+]%2>h2+||m—p||oo).

In the setting of Theorem [5| we have

Pru— f|| < ||P*u— Tu| + |[Tu— f gC’hbul/Q—kLH
9k
P

C

9k.pp

0

= C'h/ (D) +

where the second inequality follows from (4.7). From Theorem [4] for h small
enough we have

C

9k.pp

[P u— f|| < C"ha/ A (M) + 0, (5.1)
Therefore, every extension of u that approximates P*u in L?(M, pu) (or equiv-
alently in L?(M, 1)) is also an approximation of the eigenfunction f.

We recall the definition of sets U; € M in (1.21]), Euclidean Voronoi cells
Vi in , and of the extended vector @ from . Concerning the measure
of such a Voronoi cell, we obtain the following bound.
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Lemma 17 For every B > 1 there exists a constant C' > 0 depending on m

and on ¢ from (L.14)) such that

< C-log™P™n = C(n)

foralli=1,...,n and alln € IN with probability at least 1—Cg voi(r),m,igT

Proof We first show that V; C {x € M : |z — x;| < €}. To this end, suppose
x € M such that |[x—x;| > €. Then also d(z, z;) > €. Since the balls By (z;,€)
cover M by the choice of ¢, there exists x; such that d(x,x;) < e. Therefore,
|z —z;| < e < |z — ;] and thus x ¢ V;. This proves the claim.

Now we assume that the assertion of Theoremholds. For e < % it follows
from Proposition 2] that V; is contained in the ball B(x;, 3¢). Thus, we obtain

from the bounds on the distortion of metric by the exponential map (1.35]) that

p(Bm(wi;32)) _ awm(3e)™C

I (77 B V7

= Caw, 3™ logP™ ™ (n)

where ¢ defined in (|1.14]), and C > 0 is a universal constant.

Proof ( Theorem@ Let u € L*(X) be a normalized eigenvector of A corre-
sponding to Ai(I") and let f a normalized eigenfunction of A corresponding

to A\ (M) as in Theorem [5| (or as in (5.1))). Let

= 5= £ gan = Z / ju) — (@) Pd(y)

and

/m o) du(x).

n
i=1

Then, by Lemma and (5.1)),

VU < /C) - |IP*u — fll 2 < V/C(n) (C’h Ae(M) + < 9) :
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On the other hand,

B n wlz:) — Qdu SL’ ZdM(x)

\% U\SZM(V) ‘| (i) /‘ )= @l
luls 22) ) du(z)

= Zlu, |u 1’1 )| | ( 1) f( )| ),LL(Vl) M(Ui)

= Z” F@)(fx) = fy) + (f(2) = f(y)?)

<8|Vf||ooe<2u<w> [ [ e - s >|d“d<x)>+16||w|2
=1

i U;

= 8V floce (ZW» | ey -1

< 8|V flloceVU + 16|V f|[3€>

H

Z
) + 16V f|%.€?

where in the second equality we have used the fact that for all y € V; and all
x €U, d(z,y) < d(z,z;) + d(x;,y) < 3e + ¢; the last inequality follows from
Jensen’s inequality. Thus,

VS|V —U[+U <16(e]|V oo+ VT)?,
and from this it follows that

lla — f”L?(M,M) =VV < 4e||V flloo + 4VU.

Using [22] we know that

+1

IV Flloo < Carde (M) =T M) = Crde(M) 75,

for a constant C'aq > 0 that depends on the manifold M. Putting everything
together we deduce that

= s < Cate) 2 4+ Cy/ET) (VAT + ).,
P

which is the desired estimate.
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A Kernel density estimates via transportation

Here we use the estimates on infinity transportation distance established in Section@to show
the kernel density estimates we need. While the estimates we prove are not optimal, they do
not affect the rate of convergence of eigenvalues and eigenfunctions in our main theorems. We
chose to present the proof below as it highlights how the optimal transportation estimates
can be used to provide general kernel density estimates in a simple and direct way.

Lemma 18 Consider n : R — R, nonincerasing, supported on [0, 1] and normalized:

Jgm n(|zl)dz = 1. Consider h > 0 satisfying Assumptzon@ Then holds. That is
there exists a universal constant C' > 0 such that

1
max |m; —p(x;)| < CLph + Com(O)mwm + Cam (K + —) h2, (A1)
i=1,...,n h R2

where € is the co-OT distance between upn and p (see Section @

The weights m are defined by

1 n |:177;—:Ej|
m; = —— — |, i=1,...,n,
i nhm;n< h

p is the density of p with respect to M’s volume form. We remark that we do not require
71 to be Lipschitz on [0, 1].

Proof First, notice that for every i,j with |z; — ;| < h we have |z; — x;| < £ and hence
Proposition |2 l implies that

8 2
i) < fou = o)+ slos =y < (14 55 ) o= oyl
Therefore, for every 4, j and every y € Uj,

n(\xi;xﬂ) Sn(d(z};xj)) S"(%),

where we recall that ¢ is the co-OT distance between u, and g and where h:=h+

From this it follows that
d(x;, €
= (( Lot D ) p(y)dVol(y)

= e S ()
(p(zs) + 10Lph)him /M n (W) dVol(y),

J
(A.2)

27h3

I/\

IN

where the last inequality follows using the Lipschitz continuity of p, the fact that e < h and
the fact that h < % (so that in particular h 4+ ¢ < 10h). Now,

hm/ ((dml,y) ))dv - L B(ME)W(@)MW

N n (M) Jo, (2)dz
h™ JB(h+e) h

" ((lz\ j€)+) dz,
h™ JB(h+te) h

IN

IN

1+ CmKh2)
(A3)
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where C' is a universal constant. The last integral above can be estimated as follows

1 (|z\—a)+) em 1 (\z|—5)
— n| —————)dz=n0)wn— + — n - dz
™ Jgm ( h ©) h™ R J B(hte)\B(e) h

m iLm 1 m—1
= n(O)me—m + W/, mwm (r + %) n(r)dr
em 16mh? 1 e\m—1
< n(O)wmhfm + (1 + 2 ) /0 MU, (r + E) n(r)dr
(A4)
Using the binomial theorem we obtain
1 N 1 T m— 1y ek 1
el < m—1 b
mwm/o (7“ + h> n(r)dr < mwm/o r n(r)dr + mwmn(0) ,; ( k ) (h> p—
m—1 m ek
e () )
e\m em
:1+wmn(0)((1+ﬁ> —1—h—m)
€ em
<1+ QWW(O)WmE - W(O)Wmhim

where in the first equality we have used the fact that n was assumed to be normalized and
in the last inequality we have used

1
(14s)™<1+4+2ms whenever 0 <s< —.
m

Combining (A.2)), (A.3) and (A.4) we conclude that

i = ple0) < p(a:) + CLyh + Can(Omun = + Cam (K + 7 ) 12

for a universal constant C' > 0.
In a similar fashion we can find an upper bound for p(z;) — m;. Indeed, observe that
for every 4,5 and y € U; we have

. (w) . (d(xi’;m]‘)) >n (d(%:) +a)

and so
mg > hi (%) p(y)dVol(y)
> L / (F=22) (wlo) ~ Lyt m)avaity) (A.5)
>

(p(zi) — Lph)ﬁ /M n (%) dVol(y).

The above integral can be estimated from below by

d(:):“y + e 1 |z|+€>
dVol(y) = — L (2)d
— / ( ) Vol(y) = 5. B(H)n( LE) oy (2)az

1 |z| +a)
e U] dz A6
h™ JB(h—e) ( h (A.6)

1
= (1 — CmKh?) // mwmn(r)(r — %)m_ld?‘
e/h

%

(1 — CmKh?)
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where the second equality follows using polar coordinates and a change of variables; the last
inequality follows from the fact that n is assumed to be normalized. In turn,

1

1 geym—1 1 €
/ mwmn(r) (7" — 7> dr > / MW n(r)r™ " dr — mwm, — / (m — D)n(r)r™2dr
e/h h e/h h e/h

€

>1-— 2n(0)mwmﬁ,
where we have used the fact that n was assumed to be normalized. Combining the above
inequalities we deduce that

p(z;) — mi < Lph 4+ Camw, Kh? + Camwmn(O)%.
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