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Abstract. Implicit Euler approximations of the equations governing the porous flow of two imiscible incom-
pressible fluids are shown to be the Euler–Lagrange equations of a convex function. Tools from convex analysis are
then used to develop robust fully discrete algorithms for their numerical approximation. Existence and uniqueness
of solutions control volume approximations are established.
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1. Introduction. Numerical approximation of the equations modeling the flow of two in-
compressible imiscible fluids in a porous medium is considered. These equations take the form of
conservation laws for the balance of mass of each fluid; letting ρπ, π = 1, 2, denote the mass of
each fluid per unit volume1 of Ω ⊂ Rd,

∂ρπ
∂t

+ div(ρπvπ) = qπ, in (0, T )× Ω.

The velocities are determined from Darcy laws vπ = K̂π(bπ−∇pπ) with body (gravity) forces bπ,
and the phase pressures pπ are determined from the incompressibility condition and a capillary
pressure relation for the difference p1 − p2. Since the fluids are incompressible it is traditional
to write ρπ = ρ̃πsπ where ρ̃π is constant (the mass density of fluid π) and sπ is the saturation
(volume of fluid π per unit volume of Ω).

These equations exhibit significant degeneracy in the spatial terms when one fluid is not present
or displaces another (ρπ = 0), or becomes immobile below a certain saturation (vπ = 0). The
incompressibility constraint gives rise to an additional degeneracy in the temporal term since the
densities (ρ1, ρ2) are not a bijective function of the pressures (p1, p2). In addition, if the porosity
of the medium vanishes (or is small) in a portion of the domain Ω the densities ρπ vanish.

Below it is shown that implicit Euler approximations of these equations can be cast as convex
minimization problems. Implicit Euler approximations of the pair of equations (the simultaneous
solution method [7]) were considered by Douglas et. al. [12] in 1959; however, to date the convex
structure has not been exploited in the numerical context. The following statement from the
survey article [19] by Rockafellar well illustrates the need to rectify this omission.

In fact the great watershed in optimization isn’t between linearity and nonlinearity,
but convexity and nonconvexity. Even for problems that aren’t themselves of
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1Frequently the density is defined to be mass per unit pore volume of Ω. This is poorly defined in regions where
the pore volume vanishes (or is small).
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convex type, convexity may enter, for instance, in setting up subproblems as part
of an iterative numerical scheme.

Below tools from convex analysis are utilized to address the following fundamental issues.

• Existence and stability is established for a broad class of fully discrete schemes for the
two phase problem.
• A detailed analysis of the control volume scheme is presented which for which the degen-

eracies can be completely characterized.
• Schemes for the minimization of degenerate convex problems are considered, and a nu-

merical example presented.

1.1. Background. Porous flow of two imiscible incompressible fluids models the most easily
implemented enhanced oil recovery process. For this reason these equations and their numerical
simulation have been intensely studied in both the engineering and mathematical communities
over the past half century giving rise to a vast body of literature on the topic. In this section
we limit the scope of the discussion to the mathematical structure of these equations and the
structural properties of numerical schemes associated with the degenerate nature of these prob-
lems. The text by Riviere [18] contains a concise synopsis of the two phase problem, and the
monograph [7] provides a comprehensive introduction to both the physical models and numerical
schemes for this problem.

Existence of solutions to the degenerate two phase problem were established by Kroner and
Luckhaus [14] and Alt and DiBenedetto [1]. Essentially all existence results for this problem are
established under the assumption that the permeability matrix K̂π of a phase only vanishes when
the saturation of the phase vanishes (the partially degenerate case below). This precludes the
situation where one phase can not completely displace the other [18]. A common approach for
establishing existence of solutions is to observe that upon adding the equations for each phase
the sum of the temporal derivatives vanishes since the fluids are incompressible. This gives an
equation of the form

div
(
s1v1 + s2v2

)
= q1 + q2.

It is frequently possible to introduce an enigmatic change of variables [1, 2, 5] to get s1v1 +s2v2 =
λ∇p, which results in an elliptic equation for (the “total pressure”) p. The two phase problem
can then be cast at an elliptic equation coupled to a parabolic problem, and this has spawned a
corresponding class of numerical schemes numerical schemes [3, 6, 8, 17].

In order to circumvent degeneracies in the temporal term due to the incompressibility constraint
it is frequently assumed that the fluids are slightly compressible for both the one and two phase
problems, in the mathematical and numerical works e.g. [11, 13]. Posing the problem with
saturations (densities) defined to be the volume (mass) of a phase per unit volume of Ω eliminates
many of the difficulties associated with incompressibility. In this context the incompressibility
constraint becomes s1 + s2 = 1− s0 where s0 : Ω→ [0, 1] is the saturation of the medium [1, 21].
At points where s0(x) = 1 it is immediate that s1 = s2 = 0 and the saturations are determined by
the constraint. Numerical approximation of non–negative variables subject to linear constraints
is a classical topic and are easily accommodated in this context.

2. Two Phase Problem. In this section the equations modeling the porous flow of two
imiscible incompressible fluids are presented and their convexity properties developed. Degener-
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Fig. 2.1. Prototypical relative saturation curves.

acy can preclude rigorous derivations, so the presentation in this section is formal. In the next
section finite dimensionality allows a rigorous treatment of control volume scheme.

2.1. Classical Formulation. When the fluids are incompressible, the mass per unit volume
of the medium takes the form ρπ = ρ̃πsπ where ρ̃π > 0 is constant and sπ = sπ(t, x) is the
saturation; i.e. volume of fluid π per unit volume of Ω. The classical statement of the equations
for the balance of mass for each phase then take the form

∂sπ
∂t
− div

(
Kπ(s)(∇pπ − bπ)

)
= 0, (2.1)

where

• Kπ(s) = sπk̂π(s)K0/µπ, where K0 is the symmetric positive semi–definite permeability
matrix of the medium, µπ is the viscosity and k̂π(s) = k̂π(x, s) ≥ 0 is the relative per-
meability of phase π. The later characterizes the flow properties of the fluid when other
fluids are present; Figure 2.1 illustrates prototypical curves for these coefficients. Note
that Kπ = 0 when sπ = 0 so degeneracy of the equations is unavoidable.
• bπ are the external body forces (force per unit volume). Typically bπ = ρπg where g is

the gravitational force per unit mass.
• The incompressibility constraint then becomes s0 + s1 + s2 = 1, where s0 : Ω → [0, 1] is

the saturation (volume ratio) of the medium so that 1− s0 is the porosity. Also, implicit
in this formulation are the constraints that the saturations must be non–negative.
• The phase pressures take the form p1 = p + pc and p2 = p − pc where p is the Lagrange

multiplier dual to the incompressibility constraint, and pc = pc(x, s) is the capillary
pressure which characterizes the surface tension and wetting properties of the fluid.
• Equation (2.1) does not include terms modeling mass sources and sinks. Naive inclusion

of a non–homogeneous term on the right hand side is not meaningful in the current setting
since the left hand side vanishes in degenerate regions. Clearly solutions will not exist if,
for example, a source term is introduced which extracts fluid from a region where none is
present or injects fluid into a saturated impervious region.
In Section 4 we discuss the additional terms typically included in the mass balances (2.1)
to model wells where fluids are injected and/or extracted and how their presence impacts
the existence and uniqueness properties of the solutions.

Notation 2.1. Below p = (p1, p2) will denote the pair of pressures and s = (s1, s2) the pair of
saturations.
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Fig. 2.2. Prototypical interfacial energy; η ≡ (1− s0 + s1 − s2)/2 ∈ [0, 1− s0]

2.2. Convex Structure. The capillary pressure is a monotone increasing function of the
difference s1 − s2, so can be realized as the derivative of a convex2 function of the difference,
pc(s) = γ′(s1 − s2). More generally, pπ = p + ∂eI/∂sπ where eI = eI(s) is a convex function
modeling the energy (per unit volume of Ω) of the interfaces between the fluids (surface tension)
and of the interfaces between the fluids and medium (wetting).

The pressure–saturation relation at each point x ∈ Ω can be written as p = ∂(IL + Γ)(s), where
IL,Γ : R2 → R ∪ {∞} are the convex functions Γ(s) = γ(s1 − s2) and

IL(s) =

{
0 s1 + s2 = 1− s0(x)
∞ otherwise

with γ(s1 − s2) ≡
{
γ(s1 − s2) |s1 − s2| ≤ 1− s0(x)
∞ otherwise,

and ∂(IL + Γ) denotes the sub–gradient (at each point x ∈ Ω). Here IL is the indicator function
of the set L = {s ∈ R2 | s1 + s2 = 1 − s0} which enforces the equality constraint, and Γ is the
sum of the surface tension function and the indicator of the set {s ∈ R2 | |s1 − s2| ≤ 1 − s0}
which guarantees non–negativity of saturations on the set L.

Expanding the definition of the sub–gradient shows (see Figure 2.2)(
p1

p2

)
∈ p

(
1
1

)
+ (1/2)∂γ(s1 − s2)

(
1
−1

)
.

The inverse saturation–pressure relation is realized as s ∈ ∂(IL + Γ)∗(p) where

(IL + Γ)∗(p) = sup
s∈R2

(
p.s− (IL + Γ)(s)

)
,

is the convex conjugate of IL + Γ. A calculation shows(
s1

s2

)
=

(
0

1− s0

)
+ (γ∗)′(p1 − p2)

(
1
−1

)
. (2.2)

For the porous flow problem γ is smooth on its domain, which is bounded, so γ∗ is finite on all
of the real line and is differentiable, ∂γ∗ = (γ∗)′.

Example: A prototypical Brooks–Corey capillary pressure [4, 18] takes the form pc(s) = −1/(2
√
s1).

Note that s1 = (1− s0 + s1 − s2)/2 ≡ η when s0 + s1 + s2 = 1. Then

γ(η) =
√

1− s0 −
√
η + I[0,1−s0](η), ∂γ(η) =

{ −1
2
√
η η ∈ (0, 1− s0)[

−1
2
√

1−s0
,∞
)

η = 1− s0,

2In the engineering literature the capillary pressure takes the opposite sign. With the choice of sign utilized
here pc can be realized as the derivative of a convex rather than a concave function.
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where I[0,1−s0] is the indicator function of the interval [0, 1− s0]. The conjugate function and its
derivative are

γ∗(ξ) =

 −
√

1− s0 − 1
4ξ ξ ∈

(
−∞, −1

2
√

1−s0

]
(1− s0)ξ ξ ∈

[
−1

2
√

1−s0
,∞
)
,

∂γ∗(ξ) =


1

4ξ2
ξ ∈

(
−∞, −1

2
√

1−s0

]
1− s0 ξ ∈

[
−1

2
√

1−s0
,∞
)
.

These functions take the form shown in Figure 2.2. In general s0 = s0(x) so γ may depend
explicitly upon x ∈ Ω. Since this does not influence the analysis below the dependence upon x
will not be exhibited in the notation.

Using equations (2.2) to eliminate the saturations from equations (2.1) gives a coupled pair of
degenerate diffusion equations for the pressures. Initial data for these equations would be the
saturations at time t = 0, and the natural no–flux boundary conditions take the form Kπ∇pπ =
Kπbπ. Under mild regularity assumptions, the chain rule for sub–gradients [23] states that

p ∈ ∂(IL + Γ)(s) ⇒ (st,p) =
d

dt
(IL + Γ)∗(p),

so the natural a–priori estimate for equations (2.1)–(2.2) with no–flux boundary data is

ˆ
Ω
γ∗(p(t)) +

ˆ t

0

ˆ
Ω

2∑
π=1

|∇pπ|2Kπ =

ˆ
Ω
γ∗(p(0)) +

ˆ t

0

ˆ
Ω

2∑
π=1

(bπ,∇pπ)Kπ . (2.3)

Here (p,q)Kπ = Kπp.q is the semi–inner product on pairs induced by Kπ, and we write γ∗(p) ≡
γ∗(p1 − p2).

2.3. Implicit Euler Approximation. Letting τ > 0 denote a time step, the implicit Euler
approximation of equations (2.1) and (2.2) becomes

snπ − sn−1
π − τ div

(
Kn−1
π (∇pnπ − bn−1

π )
)

= 0, sn ∈ ∂(IL + Γ)∗(pn). (2.4)

In these expressions the superscript indicates the temporal index, snπ ' sπ(nτ) and Kn−1
π =

Kπ(sn−1). Solutions of this scheme with no–flux boundary conditions are minimizers of

Ψ(p) =

ˆ
Ω

{
γ∗(p1 − p2)− sn−1

1 (p1 − p2) +
τ

2

2∑
π=1

|∇pπ − bn−1
π |2

Kn−1
π

}
. (2.5)

Convexity of γ∗ guarantees

(γ∗)′(pn1 − pn2 )
(
(pn1 − pn2 )− (pn−1

1 − pn−1
2 )

)
≥ γ∗(pn1 − pn2 )− γ∗(pn−1

1 − pn−1
2 ),

from which the discrete analog of (2.3) for solutions of of the implicit Euler scheme (2.4) follows,

ˆ
Ω
γ∗(pn) + τ

n∑
m=1

ˆ
Ω

2∑
π=1

|∇pmπ |2Km−1
π
≤
ˆ

Ω
γ∗(p0) + τ

n∑
m=1

ˆ
Ω

2∑
π=1

(∇pmπ ,bm−1
π )Km−1

π
.
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2.4. Degeneracy. The natural space of functions for which Ψ(p) is finite is

Un−1 = {p ∈ L1(Ω)
2 |
ˆ

Ω

2∑
π=1

|∇pπ|2Kn−1
π

<∞};

however, while the permiabilities Kn−1
π are typically bounded they may vanish on large subsets

of Ω. In particular, the spatial term in Ψ is not strictly convex so minimizers are not unique; for
example, pπ is undefined when a phase vanishes. In addition, properties typically available for
Sobolev functions, such as trace theorems, are not available. Non–uniqueness also arises due to
the no–flux boundary condition and saturation of the pores by one fluid; specifically,

1. Ψ(p) is unchanged upon shifting both pressures by the same constant, (p1, p2) 7→ (p1 +
c, p2 + c). As for the classical Neumann problem, this degeneracy may be eliminated by
working on the subspace of functions for which the average of p1 + p2 vanishes.

2. If ξ̂ = ξ̂(x) ∈ R is the first point where (γ∗)′(ξ) attains its maximal value of 1 − s0, the
pressure difference p1− p2 is not determined by the surface tension when p1− p2− ξ̂ ≥ 0.
Specifically, increasing p1 or decreasing p2 does not change the first terms in the formula
of Ψ,

γ∗(p1 − p2)− sn−1
1 (p1 − p2) = γ∗(p1 + c− p2)− sn−1

1 (p1 + c− p2), c ≥ 0,

since the derivative of ξ 7→ γ∗(ξ) − sn−1
1 ξ is constant when ξ ≥ ξ̂. Setting Ωn−1

π = {x ∈
Ω | Kn−1

π (x) = 0} and Ωn−1
0 = Ωn−1

1 ∪ Ωn−1
2 it follows that

Ψ̃(p) ≡ Ψ(p) +

ˆ
Ωn−1

0

(1/2) max(0, p1 − p2 − ξ̂)2 (2.6)

has the same minima as Ψ and at a minimum p2 − p1 = ξ̂ on the degenerate sets.
For the example illustrated in Figure 2.2 the slope at the origin is infinite, γ′(0) = −∞,
so (γ∗)′(ξ) > 0 on (−∞, ξ̂). If γ′(0) were finite then (γ∗)′(ξ) would also vanish on an
interval of the form (−∞, ξ̂), and a term of the form min(0, p1 − p2 + ξ̂)2 would provide
a selection of the pressures on the degenerate sets.

3. If s0 = 1 in a subset of the domain then γ∗(ξ) = 0, s1 = s2 = 0, and both equations
for the balance of mass degenerate to zero. Since s0 is assumed known a–priori this
case can be eliminated by excising these points from the domain; Ω 7→ Ω \ Ω̄0 where
Ω0 = {x ∈ Ω | s0(x) = 1}. Below we assume that s0 < 1; however, in a numerical
context it may be inconvenient to triangulate Ω \ Ω̄0 in which case a term of the form´

Ω0
p2

1 + p2
2 can be included to eliminate this degeneracy.

In the fully discrete setting existence and uniqueness of minimizers of control volume approxima-
tions of Ψ̃ are established.

2.5. Degenerate Convex Minimization. While the implicit Euler approximation of the
two phase problem is degenerate it is not singular. Specifically, Ψh and Ψ̃h have Lipschitz gradi-
ents, and minimizing such functions has, and continues to be, intensely studied in the optimization
community. The numerical examples below utilize the preconditioned Nesterov algorithm with
properties summarized in the following theorem.
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Semi-Smooth Newton(u0)
Initialize: β = 1, ε = 10−8, u = uold = u0, ψold = ψ(u) + 1.
while (|∇ψ(u)| > ε)

if (ψ(u) > ψold)
β = β/2
if (β < ε) then return (FAIL)
u = uold − βδu

else
ψold = ψ(u), uold = u
Solve (D2ψ(u) + εI) δu = ∇ψ(u)
u = u− βδu
β = min(1, 1.25β)

return (u)

Fig. 2.3. Semi–Smooth Newton scheme for solving ∇ψ(u) = 0.

Theorem 2.2 (Nesterov). Let U be a Hilbert space with Reisz map R : U → U ′ and let ψ : U → R
be convex and satisfy (

∇ψ(v)−∇ψ(u), v − u
)
U
≤ ‖v − u‖2U . (2.7)

Define the sequence of real numbers {γn}∞n=0 by

γn =
1− λn
λn+1

, where λ0 = 0 and λn =
1 +

√
1 + 4λ2

n−1

2
, n = 1, 2, . . . ,

and given u1 ∈ U define the sequences {vn}∞n=1 and {un}∞n=1 ⊂ U by v1 = u1 and

vn+1 = un − gn, un+1 = (1− γn)vn+1 + γnvn, with Rgn = ∇ψ(un).

If ψ(u∗) = infu∈U ψ(u) then

ψ(vn)− ψ(u∗) ≤
2‖u1 − u∗‖2U

n2
and ‖gn‖U ≤

4‖u1 − u∗‖U
n

.

The algorithm in this theorem requires inversion of the Reisz map which, in the finite dimensional
context, requires a single LU decomposition of the “stiffness” matrix associated with the inner
product (., .)U . The convex function Ψ in equation (2.5) is quadratic in the spatial terms in which
case a norm with inner product satisfying the hypothesis (2.7) is

‖p‖2U =

ˆ
Ω

β

2
(p1 − p2)2 +

τ

2

2∑
π=1

|∇pπ|2Kn−1
π

,

where β is a bound on the second derivative of γ∗.

The preconditioned Nesterov algorithm is robust and the initial iterates have good descent prop-
erties, so we use it to obtain a good initial guess for the Newton like scheme in Figure 2.3 when
more than a few decimal digits are required. This semi–smooth Newton scheme uses a selection
from the Hessian to compute a Newton descent direction which is then scaled to achieve descent.
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Fig. 3.1. Voronoi regions of interior (left) and boundary (right) nodes.

3. Spatial Approximation. Utilizing a finite dimensional space of functions for the pres-
sures in equation (2.4) gives a fully discrete approximation of the two phase porous flow problem
(2.1)–(2.2). Since the continuity properties of the pressures are problem dependent, and may vary
with time, spaces which admit discontinuous solutions are natural candidates. In order to focus
on the issues that arise with the degeneracies we assume that the permeability matrices Kπ are
diagonal and consider the control volume scheme with piecewise constant pressures. This scheme
inherits stability estimates identical in structure to those presented for the continuous problem
in Section 2.3.

3.1. Control Volume Scheme. Given a Delaunay triangulation, Th, of the domain Ω ⊂ R3,
the control volumes are taken to be the Voronoi regions in Ω associated with each node3 of Th.
The Voronoi edges/faces (2d/3d) bisect, and are perpendicular to, the edges of Th, and the
vertices of the Voronoi regions are the circumcenters of the triangles/tetrahedra containing the
node. We assume that the circum circles/spheres of the edges/triangles on the boundary of Ω do
not contain any nodes in their interior so that the Voronoi regions of nodes on the boundary are
well formed [20]; see Figure 3.1.

Integrating equation (2.1) over a Voronoi cell Ci corresponding to a node of Th indexed by i,
shows ˆ

Ci

(snπ − sn−1)− τ
ˆ
∂Ci

Kn−1
π (∇pπ − bπ).n = 0, π = 1, 2.

LettingNi denote the set of nodes connected to i by an edge in in Th, and assuming that Kπ = kπI
is diagonal, and approximating the integrals with one point quadrature rules and derivatives by
differences [15, 16] gives

|Ci|(snπi − sn−1
πi ) + τ

∑
j∈Ni

A′ijk
n−1
πij

hij

(
pnπi − pnπj + hijb

n−1
πij .nij

)
= 0. (3.1)

In this expression hij is the length of the edge from node i to node j, A′ij the area/length of the

dual Voronoi face/edge in 3d/2d, and kn−1
πij and bn−1

πij are the averages of the permiabilities and
body forces at the two nodes, and nij the unit outward vector parallel to the edge. Equation
(2.2) is used to compute the saturations si from the pressures pi at each node.

Letting Nh denote the node set and Eh the edge set of Th, equations (3.1) are the Euler Lagrange

3We refer to the points of the triangulation as nodes to avoid confusion with the vertices of the graph constructed
below.
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equations of the convex function Ψh : R|Nh| × R|Nh| → R given by

Ψh(p) =
∑
i∈Nh

|Ci|
(
γ∗(p1i − p2i)− sn−1

1i (p1i − p2i)
)

+
τ

2

∑
(i,j)∈Eh

A′ij
hij

2∑
π=1

kn−1
πij

(
pπi − pπj + hijb

n−1
πij .nij

)2
,

which is the discrete analog of the function Ψ in equation (2.5). Solutions of the control volume
(3.1) scheme satisfy the stability estimate

∑
i∈Nh

|Ci|γ∗(pni ) + τ

n∑
m=1

∑
(i,j)∈Eh

A′ij
hij

2∑
π=1

kn−1
πij

(
pmπi − pmπj

)2 ≤ ∑
i∈Nh

|Ci|γ∗(p0
i )

+ τ

n∑
m=1

∑
(i,j)∈Eh

A′ij
hij

2∑
π=1

km−1
πij (pmπi − pmπj)hijbm−1

πij .nij .

As for the continuous problem, Ψh is invariant under translation (p1, p2) 7→ (p1 + c, p2 + c) for
c ∈ R. For the prototypical interfacial energy illustrated in Figure 2.2, the arguments in Section
2.4 for the continuous problem apply verbatim to the current setting to show that the function

Ψ̃h(p) = Ψh(p) +
∑

i∈Nn−1
0h

|Ci|max(0, p1i − p2i − ξ̂i)2, (3.2)

has the same minimum as Ψh, where N n−1
0h = N n−1

1h ∪N
n−1
2h with N n−1

πh = {i | kn−1
πij = 0, j ∈ Ni},

and ξ̂i is the first point were (γ∗)′(ξi) = 1− s0(xi).

3.2. Existence of Solutions. In this section solutions of the control volume scheme (3.1)
are constructed as minima of Ψ̃h. Since Ψ̃h is convex on a finite dimensional space existence follows
from the coercivity condition lim|p|→∞ Ψ̃h(p) = ∞; equivalently, a bound on Ψ̃h(p) implies p
is bounded. Coercivity will be established under the following assumptions which characterize
the prototypical interfacial energies and permiabilities illustrated in Figures 2.1 and 2.2, and the
meshes illustrated in Figure 3.1.

Assumption 3.1. Ω ⊂ Rd is a bounded connected domain.

• s0 : Ω→ [0, 1); specifically, s0(x) < 1 for all x ∈ Ω.
• There exists C > 0 such that the permiabilities kπ : Ω×[0, 1]→ R satisfy 0 ≤ kπ(x, sπ) ≤ C

and kπ(x, 0) = 0. In addition,

k1(x, s1) + k2(x, s2) > 0 when s1 + s2 = 1− s0(x).

• For each x ∈ Ω there exists ξ̂(x) ∈ R such that γ∗(x, .) : R→ R is convex with derivative
strictly increasing on (−∞, ξ̂(x)), and

lim
ξ→−∞

(γ∗)′(x, ξ) = 0, and (γ∗)′(x, ξ) = 1− s0(x), ξ ≥ ξ̂(x).

• Th is a Delaunay triangulation of Ω and the circumballs of boundary simplicies do not
contain any nodes in their interiors.

9



Theorem 3.2. Let the domain, coefficients, and triangulation satisfy Assumptions 3.1 and
Ψ̃h : R|Nh| × R|Nh| → R be the convex function in equation (3.2). Then Ψ̃h is coercive on
{R|Nh| × R|Nh| → R |

∑
i∈Nh |Ci|(p1i + p2i) = 0}; in particular, minimizers of Ψ̃h exist.

Proof. Fix M > 0 and let p : R|Nh| × R|Nh| → R satisfy Ψ̃h(p) ≤M . Assumptions 3.1 guarantee
that the function ξ 7→ γ∗(ξ)− sn−1

1 ξ is bounded below, and since the other terms forming Ψ̃h are
non–negative the bound upon Ψ̃h(p) implies bounds upon each of them. Specifically, each of the
terms

1.
∑

i∈Nh |Ci|
(
γ∗(p1i − p2i)− sn−1

1 (p1i − p2i)
)

2.
∑

i∈Nn−1
2h
|Ci|max(0, p1i − p2i − ξ̂i)2, and

3.
∑

(i,j)∈Eh
A′ij
hij
kn−1
πij (pπi − pπj)2, with π = 1 and 2,

are bounded. Below we show that these bounds guarantees a bound on the differences p1i − p2i

for all i ∈ Nh. Granted this, the elementary identities

|p1i − p1j | ≤ |p1i − p2i|+ |p2i − p2j |+ |p2j − p1j |
|p2i − p2j | ≤ |p2i − p1i|+ |p1i − p1j |+ |p1j − p2j |

show that the semi–norm

|p|2 ≡
∑
i∈Nj

|Ci||p1i − p2i|+ τ

2∑
π=1

∑
(i,j)∈Eh

A′ij
hij

(kn−1
1ij + kn−1

2ij )(pπi − pπj)2

is bounded by a constant depending only uponM = Ψ̃h(p). Under the assumptions Ω is connected
and k1 + k2 > 0 the discrete Poincare inequality shows that this is a norm on the subspace
{p : R|Nh| × R|Nh| → R |

∑
i∈Nh |Ci|(p1i + p2i) = 0}, and coercivity follows.

To establish a bound upon the differences p1i−p2i we consider the two cases, 0 < sn−1
1i < 1−s0(xi)

and sn−1
1i = 1− s0(xi). Note that s1 = (γ∗)′(p1 − p2) > 0, so these two cases are exhaustive.

• If 0 < sn−1
1i < 1− s0(xi) Assumptions 3.1 show

lim
ξ→−∞

d

dξ
(γ∗(ξ)− sn−1

1i ξ) = −sn−1
1i and lim

ξ→∞

d

dξ
(γ∗(ξ)− sn−1

1i ξ) = 1− s0(xi)− sn−1
1i .

It follows that ξ 7→ γ∗(ξ)− sn−1
1i ξ has linear growth at ±∞ so is coercive.

• If sn−1
1i = 1 − s0(xi) then γ∗(ξ) − sn−1

1i ξ has linear growth at −∞ so a bound on this
term bounds the difference p1i− p2i below by a (typically negative) constant. In addition
sn−1

2i = 0 so k2(sn−1
2i ) = 0 and k1(sn−1

1i ) > 0 so kn−1
1ij > 0 for each j ∈ Ni.

To bound the pressure differences above we consider the two cases:
– If kn−1

2ij = 0 for all j ∈ Ni then i ∈ N n−1
2h and the pressure difference is bounded

above by max(0, p1i − p2i − ξ̂i)2.
– If kn−1

2ij > 0 for some j ∈ Ni then sn−1
2j > 0 so sn−1

1j < 1 − s0(xj) and the previous
case then bounds p1j − p2j . The elementary identity

|p1i − p2i| ≤ |p1i − p1j |+ |p1j − p2j |+ |p2j − p2i|
provides a bound on p1i − p2i since kn−1

1ij > 0 and kn−1
2ij > 0.

Note that this argument only requires the additional term in Ψ̃h to include the sum over i ∈ N n−1
2h ;

summing over N n−1
0h = N n−1

1h ∪N n−1
2h is required for the uniqueness arguments below.
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3.3. Uniqueness of Minimizers. In this section it is shown that in many instances the
additional terms included in Ψ̃h are sufficient to select a unique minimum of Ψh. While all
minima are solutions of the control volume scheme (3.1), and uniqueness is not required by
the minimization algorithms presented in Section 2.5, elimination of degeneracy in a numerical
context and repeatability of numerical computations is desirable.

To establish uniqueness we consider two minimizers p and p̃ of Ψ̃h. Expanding the identity

0 = Ψ̃h(p) + Ψ̃h(p̃)− 2Ψ̃h

(
(1/2)(p + p̃)

)
,

which follows from convexity of the set of minimizers, shows

0 =
∑
i∈Nh

|Ci|
(
γ∗(ξi) + γ∗(ξ̃i)− 2γ∗((1/2)(ξi + ξ̃i))

)

+
τ

4

∑
(i,j)∈Eh

A′ij
hij

2∑
π=1

kn−1
πij

(
(pπi − p̃πi)− (pπj − p̃πj)

)2
(3.3)

+
∑

i∈Nn−1
0h

|Ci|
(

max(0, ξi − ξ̂i)2 + max(0, ξ̃i − ξ̂i)2 − 2 max(0, (1/2)(ξi + ξ̃i)− ξ̂i)2
)
,

where ξi = p1i− p2i and ξ̃i = p̃1i− p̃2i. Note that each summand may be identified as a difference
quotient for a second derivative for a convex function, so is non–negative. That each term vanishes
is useful at nodes where the term is strictly convex; at nodes where γ∗ has linear growth it is
necessary to directly compare Ψ̃h(p) and Ψ̃h(p̃).

The following definitions characterize the regions where the spatial terms for each pressure are
strictly convex, and their overlap.

Definition 3.3. Let Th be a triangulation of a domain Ω ⊂ Rd and for π = 1, 2 let kπ : Nh →
[0,∞) be be non–negative functions on the node set of Th, π = 1, 2.

• Two nodes of Th are kπ–connected if there is a path in the edge set of Th which does not
contain two consecutive nodes for which kπ vanishes.
• A kπ–component of Nh is an equivalence class of the equivalence relation kπ–connectedness.
• The non–trivial kπ–components are those which contain at least one node v ∈ Nh for

which kπ(v) > 0, and the set of these components is denoted by Vπ.
• The overlap graph, G corresponding to k1 and k2 is the graph with vertex set V1∪V2, and

(V1, V2) is in the edge set of G if and only if V1 ∩ V2 6= ∅.
Note that each Vπ is a disjoint partition of a subset of Nh, so an edge in G necessarily has one
vertex in V1 and one in V2, so G is bipartite, and vertices Vπ ∈ Vπ are connected in the sense
that for each pair of nodes m, n ∈ Vπ there is path in the edge set of Th from m to n containing
vertices in Vπ. Figure 3.2 illustrates the bipartite structure of G where two copies of Ω are
represented by the upper and lower lines with each partitioned into components and degenerate
regions N n−1

1h and N n−1
2h . A key observation is that adding a constant to all the pressures pπi in

a component Vπ ∈ Vπ does not change middle (gradient) term in equation (3.3); coupling with
the other component of the pressure is through the interfacial energy γ∗.

The following elementary properties of intersecting components will be used below.

Lemma 3.4. Let Th be a triangulation of a domain Ω ⊂ Rd with node set Nh, and G be the
overlap graph of two functions kπ : Nh → [0,∞) for which k1(n) + k2(n) > 0 for every n ∈ Nh.

11



Ω

Ω

V1 ∈ V1

V2 ∈ V2

Fig. 3.2. Diagram of the graph G. Heavy lines indicate components in V1 (upper) and V2 (lower) and light
lines the degenerate regions. Gray areas indicate overlap of non–trivial components.

1. If (V1, V2) is an edge in G, then for π = 1, 2 there exists nπ ∈ V1∩V2 such that kπ(nπ) > 0.
2. If Ω is connected then G is connected.

Proof.

1. By symmetry it suffices to show there exists m ∈ V1 ∩ V2 with k2(m) > 0. If V2 ⊂ V1 the
result is immediate since, being non–degenerate, V2 contains a vertex with this property.
Otherwise, there exists m′ ∈ V1 ∩ V2 and n′ ∈ V2 \ V1, and since V2 is edge–connected in
Th there exists an edge (m,n) of Th on a path from m′ to n′ in V2 for which m ∈ V1 ∩ V2

and n ∈ V2 \ V1. Then k1(m) = 0 since n ∈ V1 otherwise, so k2(m) = k1(m) + k2(m) > 0
by hypothesis.

2. When Ω is connected it is immediate that the nodes of the triangulation are edge connected
in Th. If Vπ, Vπ′ ∈ V1∪V2 are vertices of G, let nπ ∈ Vπ and nπ′ ∈ Vπ′ be nodes of Th. Since
Th is edge–connected there exists a path from nπ to nπ′ in the edge set of Th. Whenever
this path exits a component, say U1 ∈ V1, there is an edge (m1,m2) of Th with m1 ∈ U1

and m2 6∈ U1 in which case k1(m2) = 0, so k2(m2) > 0 whence m2 is in a non–degenerate
component m2 ∈ U2 ∈ V2. In addition, since k2(m2) > 0 it follows that m1 ∈ U2, so
m1 ∈ U1 ∩U2 hence (U1, U2) is an edge in G. Chaining together all such edges in G gives
a path in G from Vπ to Vπ′ .

Corollary 3.5. Let the permiabilities kπ, interfacial energy γ, and triangulation satisfy As-
sumptions 3.1, and let kn−1

π : Nh → R be the functions with values kn−1
πi = kπ(sn−1

πi ). Let Vπ be
the sets of non–trivial kn−1

π components and G denote the corresponding overlap graph.

If (V1, V2) ∈ G and ξ : Nh → R then there exists a unique c ∈ R at which

g(c) =
∑

i∈V1∩V2

γ∗(ξi + c)− sn−1
1i (ξi + c)

is minimal.

Proof. Under Assumptions 3.1 g is continuously differentiable with

lim
c→−∞

g′(c) = −
∑

i∈V1∩V2

sn−1
1i < 0 and lim

c→∞
g′(c) = −

∑
i∈V1∩V2

1− s0i− sn−1
1i =

∑
i∈V1∩V2

sn−1
2i > 0.

The strict inequalities follow since kπ(0) = 0 and the lemma guarantees there are nodes where
0 6= kn−1

πi = kπ(sn−1
πi ) for π = 1 and 2. The intermediate value theorem and convexity of
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g guarantee the existence of an interval [c1, c2] upon which g takes its minimal value and g′

vanishes.

To establish uniqueness it suffices to show that at a minimum there exists i ∈ V1 ∩ V2 for which
ξi+ c < ξ̂i since γ∗(ξi+ c) is strictly convex on (−∞, ξ̂i). This is immediate; if ξi+ c ≥ ξ̂i at every
node, then

g′(c) =
∑

i∈V1∩V2

1− s0i − sn−1
1i =

∑
i∈V1∩V2

sn−1
2i > 0,

contradicting g′(c) = 0.

3.4. Fully Degenerate Case. In the absence of additional assumptions on the permiabili-
ties and surface tension, uniqueness of minimizers of Ψ̃h can be established when the domain Ω
satisfies the geometric hypotheses in the following theorem.

Theorem 3.6. Let Ω ⊂ Rd be a connected domain with Rd \ Ω connected, and let Th be a
simplicial triangulation of Ω with node set Nh. If kπ : Nh → [0,∞) satisfy k1(v) + k2(v) > 0 then
the corresponding overlap graph is a tree.

The proof of this theorem is presented in the appendix.

Theorem 3.7. Let Ω ⊂ Rd be a connected domain with Rd \ Ω connected, and let Th be a
Delaunay triangulation of Ω with node set Nh. If the permiabilities kπ, interfacial energy γ, and
triangulation satisfy Assumptions 3.1, then minima of the function Ψ̃h : R|Nh| × R|Nh| → R in
equation (3.2) are unique.

Proof. Define kn−1
π : Nh → R to be the functions with values kn−1

πi = kπ(sn−1
πi ), and let Vπ

denote the set of non–trivial kn−1
π components and G denote the corresponding overlap graph

characterized in Definition 3.3.

Let p and p̃ be two minima of Ψ̃ and write ξi = p1i − p2i and ξ̃i = pt1i − p̃2i. The hypothesis on
γ∗ and kπ imply kn−1

πij > 0 for every edge (i, j) of Th with nodes i, j ∈ Vπ ∈ Vπ. Since nodes in
the components Vπ are connected by edges in Th it follows from equation (3.3) that:

• The differences pπi − p̃πi are constant on components Vπ ∈ Vπ for π = 1 and 2.
• ξi = ξ̃i on the degenerate set N n−1

0h = N n−1
1h ∪ N n−1

2h . This follows since kn−1
πij = 0 if

i ∈ N n−1
πh in which case pπi and p̃πi are free to minimize ξ 7→ γ∗(ξ)−sn−1

1 ξ+max(0, ξ− ξ̂i)2

which is strictly convex.
Note too that if i ∈ N n−1

πh then kn−1
πi = 0, and since kn−1

1i + kn−1
2i > 0 that i ∈ Vπ′ ∈ Vπ′

where π′ = 1 if π = 2 and visa versa. Thus if pπ′i = p̃π′i on Vπ′ then ξi = ξ̃i implies
pπi = p̃πi; that is, uniqueness on the non–degenerate components implies uniqueness on
the degenerate set.

We show that the differences pπi− p̃πi take the same constant c on every component Vπ ∈ Vπ for
π = 1 and 2. Uniqueness then follows since the averages of p1 + p2 and p̃1 + p̃2 vanish;

0 =
∑
i∈Ni

|Ci|
(
(p1i + p2i)− (p̃1i + p̃2i)

)
= 2

∑
i∈Ni

|Ci|c = 2|Ω|c.

Since the overlap graph is connected, it suffices to show that for each pair of components (V1, V2) ∈
G the constant value of p1i − p̃1i on V1 is equal to the constant value of p2i − p̃2i on V2.

13



Fix (V1, V2) ∈ G and write pπi− p̃πi = cπ for the constant values the differences take on Vπ. Then

ξi − ξ̃i = (p1i − p2i)− (p̃1i − p̃2i) = c1 − c2 ≡ δ, i ∈ V1 ∩ V2.

To show that δ = 0 we verify that the function

g(c; ξ) =
∑

i∈V1∩V2

γ∗(ξi + c)− sn−1
1i (ξi + c)

is minimized when c = 0 and similarly g(c; ξ̃) is minimized when c = 0. Since ξ = ξ̃+ δ on V1∩V2

we find
g(c; ξ) = g(c; ξ̃ + δ) = g(c+ δ; ξ),

and the strict convexity of g(c; ξ) at the minimum established in Corollary 3.5 implies δ = 0.

To show that g(c; ξ) is minimized when c = 0 we use the property that G is a tree and p
minimizes Ψ̃h(p). Since G is a tree, deleting the edge (V1, V2) gives two disconnected sub–trees,
G \ (V1, V2) = GL ∪GR and the subsets of Nh given by

NL =
⋃

(U1,U2)∈GL

U1 ∪ U2 and NR =
⋃

(U1,U2)∈GR

U1 ∪ U2,

have intersection NL ∩NR = V1 ∩ V2. Define q : Nh → R2 by qi = (p1i + c, p2i + c) if i ∈ NR and
qi = pi otherwise. Since shifting q by a constant (q̄, q̄) so that q1 + q2 averages to zero does not
alter Ψ̃h(q), and since p minimizes Ψ̃, it follows that

0 ≤ Ψ̃h(q)− Ψ̃h(p) = g(c; ξ)− g(0; ξ), c ∈ R;

that is, c 7→ g(c; ξ) is minimized at c = 0. Similarly, since p̃ also minimizes Ψ̃h it follows that
c 7→ g(c; ξ̃) is also minimized at c = 0.

3.5. Partially Degenerate Case. The conjugate of the interfacial energy illustrated in
Figure 2.2 is non–negative so that s1 = (γ∗)′(p1 − p2) > 0 is always non–negative. If k1(s1) only
vanishes when s1 = 0, then kn−1

1ij > 0 for all edges (ni, nj) of Th so that V1 consists of a single
component. In this situation the overlap graph G a star so is trivially a tree. The requirement
that Rd \ Ω be connected can then be omitted from the hypothesis of Theorem 3.7.

Theorem 3.8. Let Ω ⊂ Rd be a connected domain and let Th be a Delaunay triangulation of
Ω with node set Nh. Let the permiabilities kπ, interfacial energy γ, and triangulation satisfy
Assumptions 3.1 and assume that k1(s) = 0 if and only if s = 0. Then minima of the function
Ψ̃h : R|Nh| × R|Nh| → R specified in equation (3.2) are unique.

The assumption on k1 may be relaxed if, for example, a maximum principle is available [14] to
establish s1 is bounded below by a constant ŝ1 > 0 for which k1(s) > 0 when s ∈ (ŝ1, 1].

4. Well Models and Non–Homogeneous Equations. Naive inclusion of non–homogeneous
terms on the right hand side of equation (2.1) gives rise to a term of the form q.p in equation
(2.5) for Ψ(p). Since Ψ only has linear growth this can lead to a loss of existence and unique-
ness of minimizers4. In order to model the pressures and fluxes in wells (holes) where fluid may

4The prototypical example is Ψ(p) = |p| − qp for p ∈ R. If |q| < 1 minimizers exist and are unique, if |q| = 1
minimizers exist but are not unique, and when |q| > 1 there are no minimizers.
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Fig. 5.1. Saturations of injected fluid at times t = 1, 1.75, 5.

enter and exit it is common to include a term of the form W (p0 − p) at well locations to the
right hand side of equation (2.1) [7, Chapter 13]. Here W ∈ Rd×d is symmetric and positive
definite and the “bottom hole pressure” p0 is specified. This gives an additional term of the form
Q(p) = (1/2)|p − p0|2W on the right equation (2.5) for Ψ(p). Since this term is non–negative
Ψ + Q is coercive whenever Ψ is, so the existence of solutions follows mutatis mutandis as in
Theorem 3.2. However, proofs of uniqueness exploited the invariance of Ψ under translations of
the form (p1, p2) 7→ (p1 + c, p2 + c) which typically will not hold for Ψ +Q.

5. Numerical Example. A numerical example with prototypical fluid and medium prop-
erties and significant degeneracy is presented to illustrate the robustness of the formulation.
Nondimensionalizing equations (2.1) with characteristic time T = 107s (a year), length L = 103m
(kilometers), and pressure P = 106Pa, gives non–dimensional equations of the same form with
the permeability scaled by TP/L2 = 107. For prototypical geological problems [9] the permeabil-
ity of the medium is K = O(10−10)m2 and fluid viscosities µ = O(10−3)Pa s, so the permeability
k ' K/µ for the non–dimensional equations is of order O(1). With this scaling all computed
quantities are well centered in the floating point range. The following parameters were selected
to model layered medium in a two kilometer square domain, Ω = [−1, 1]2, with an impermeable
depression of radius ln(1.25)/2 ' 0.11 centered at c = (1/4,−1/4). An injection well is located
in the lower left corner (−1, 1) and production at the upper right corner (1, 1).

• Domain: [−1, 1]2 with 0 ≤ t ≤ T = 5.
• Boundary Data: No flux for each fluid.
• Volume ratio of medium: s0(x) = 0.7 + 0.1 sin(2x1 + x2)), porosity φ = 1− s0.
• Medium Permeability: K0/µ = 2.5 max(exp(|x− c|2)−1.25, 0)I with c = (1/4,−1/4) and

the viscosities for each fluid were taken to be the same, µ = µ1 = µ2.
• Phase Permiabilities: Kπ(sπ) = sπ max(0, sπ − 0.1(1− s0))K0.
• Wells: Q(x,p) = (1/2)(p1 − 60)2χB1/8(−1,−1)(x) + (1/2)|p|2χB1/8(1,1)(x).

• Interfacial Energy: With p∗ ≡ −1/(2
√

1− s0) and s0 = s0(x) as above,

γ∗(p1 − p2) =

{
(1− s0)(p1 − p2) p1 − p2 ≤ p∗

−1/(4(p1 − p2))−
√

1− s0 otherwise

This is the conjugate function from Example 2.2.
• Initial Data: s = ∂(IL + Γ)∗(p) with p = (−5, 5) is computed with equation (2.2).
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Fig. A.1. Proof of Lemma A.3: neighborhood of n ∈ A (left) and two adjacent points in A (right).

Figure 5.1 illustrates the saturation of the injected fluid obtained with this data at three times:

• Left: the injected fluid is forced towards the top around the impervious region.
• Middle: The injected fluid reaches the production well (breakout). The layered medium

has porosity in the range 0.2 ≤ 1− s0 ≤ 0.4 and and the injected fluid has saturated the
pores in the lower left portion of the domain.
• Right: At the final time the injection fluid has surrounded the impenetrable region and

is slowly displacing residual amounts of the second fluid from the narrow region on the
right. The injected fluid forms the majority of fluid emanating from the production well.

This solution was computed using 512 time steps (τ = 5/512) on a Delaunay mesh [22] with 1592
vertices (two pressures per vertex), and 3061 triangles. The solution at each step was computed
as a minima of the convex function Φ̃h given in equation (3.2) using 50 Nesterov iterations to
obtain an initial approximation for the semi–smooth Newton scheme of Figure 2.3 which, for this
example, then converged in 3-5 iterations.

Appendix A. Proof of Theorem 3.6.

The proof of the tree property of overlap graphs utilizes multiple notions of connectedness.

Notation A.1. Triangulations of a domain will be denoted by T and the node set by N . We
write K ∈ T if K is a simplex (node, edge, . . . ) of T .

• A ⊂ Rd is connected if it can not be covered by two disjoint open sets. Open sets in Rd are
locally path connected, so if A is open it is connected if and only if it is path connected.
• A ⊂ N is edge connected (in T ) if for any two nodes in A there is a path from one to the

other in the edge set of T with vertices in A.
• Given functions kπ : N → R, the notion of kπ connectedness of Definition 3.3 is utilized.

Note that if A ⊂ N is kπ connected then it is edge connected.

These are all equivalence relations so give rise to disjoint partitions into (maximally)5 connected
components.

The proof of Theorem 3.6 uses the following simple but subtle theorem from algebraic topology
[10].

Theorem A.2. Let A ⊂ Rd be open and connected. The complement Ac = Rd \ A is connected
if and only if the boundary ∂A of A is connected.

5The maximal property of components follows from their definition as equivalence classes. The redundant use
of maximal is used when it is the essential property for an argument.
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The following lemma is a discrete analog of the non–trivial implication of this theorem. In this
lemma the distance d(m,n) between nodes in N is the least number of edges in a path in the
edge set of T connecting them.

Lemma A.3. Let T be a simplicial triangulation of Rd with node set N , and let d(m,n) ∈ N
denote the distance between nodes in the edge set of T . If A ⊂ N is an edge connected set of
nodes and the complement Ac = N \A is also edge connected, then the set of nodes d1(A) ≡ {n ∈
N | d(n,A) = 1} is edge connected. That is, if m, n ∈ d1(A) then there is a path of edges in T
from m to n with nodes in d1(A).

Proof. In order to use Theorem A.2 we define the open set (see Figure A.1)

A = A ∪
⋃
n∈A
{K̊ | n ∈ K, K a simplex in T } ⊂ Rd.

Here K̊ denotes the interior of a simplex (edge, triangle, tetrahedron) K. To show that A and
Ac ≡ Rd \ A are connected we use the property that N ∪K∈T K̊ is a disjoint partition of Rd.
Then,

• If (m,n) is an edge in T with m, n ∈ A, then the segment [m,n] ⊂ A by construction.
Conversely, if m, n ∈ Ac then the open segment (m,n) 6⊂ A, so [m,n] ⊂ Ac. By hypothesis
A is edge connected so any two vertices in A are connected by a path in A, and similarly
two nodes in Ac are connected by a path in Ac.
• Every point x ∈ Rd \ N is in the in the interior of a simplex K ∈ T . If K contains a

node in A then x ∈ K̊ ⊂ A; otherwise, x ∈ K ⊂ Ac. Since K̊ is convex there is a path
[x, n) ⊂ K̊ from x to any node n ∈ ∂K.
• It follows that any two points x, y ∈ A (resp. Ac) can be connected by a path of the form

[x,m) ∪ [m,n] ∪ (n, y] ⊂ A (resp. ⊂ Ac), with m and n nodes of A (resp. Ac).
Theorem A.2 then shows that the (topological) boundary ∂A of A is connected. We next show
that N ∩ ∂A = {n ∈ T | d(n,A) = 1}.
Superset: N ∩ ∂A ⊃ d1(A). If d(n,A) = 1 then there exits an edge [m,n] of T with m ∈ A.
Then [m,n) ⊂ A so n ∈ ∂A.

Containment: N ∩ ∂A ⊂ d1(A). Since A is open it follows that A ∩ ∂A = ∅ so it is immediate
that d(n,A) > 0 when n ∈ N ∩ ∂A; we show d(n,A) < 2.

Let n ∈ N with d(n,A) ≥ 2 and let K be a simplex containing it; n ∈ K ∈ T . Since d(m,n) = 1
for every node m ∈ K it follows from the triangle inequality that m 6∈ A so K̊ 6⊂ A. Then

{n} ∪ {K̊ | n ∈ K, K a simplex in T } ⊂ Ac

is an open neighborhood of n disjoint from A; in particular, n 6∈ ∂A.

To conclude that d1(A) is edge connected it suffices to show {K ⊂ ∂A | K ∈ T } is a triangulation
of ∂A. If x ∈ ∂A \ N , let K ∈ T be the (unique) simplex for which x ∈ K̊.

• K does not have a node in A since otherwise x ∈ K̊ ⊂ A.
• Since x ∈ ∂A every neighborhood of x intersects A; in particular, x ∈ ∂K ′ for some d

simplex with K̊ ′ ⊂ A. (If k̊ ⊂ A and k ⊂ K ′ then K̊ ′ ⊂ A.) Since T is a triangulation it
follows that K ⊂ K ′ (a d simplex contains any sub–simplex that it intersects).
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Fig. A.2. Partition of node set N in the proof of Theorem A.4.

• It follows that K ⊂ Ā and does not contain a vertex of A so K 6⊂ A whence K ⊂ Ā \A =
∂A.

We first prove the tree property when Ω = Rd; the proof of Theorem 3.6 will then be deduced
from this.

Theorem A.4. Let Th be a simplicial triangulation of Rd with node set Nh. If kπ : Nh → [0,∞)
satisfy k1(v) + k2(v) > 0 then the corresponding overlap graph is a tree.

Proof. Suppose to the contrary that G contains a cycle. Then there exist vertices V1, Ṽ1 ∈ V1

of G and paths P and P̃ from V1 to Ṽ1 in G for which the end points are the only vertices in
common. We establish a contradiction by showing that there is a vertex V2 ∈ V2 of G common
to both paths.

Let C1, C2, . . . , CM be the edge connected components of N \V1. Then V1∩ Ṽ1 = ∅ so Ṽ1 ⊂ N \V1

and Ṽ1 is edge connected, so without loss of generality assume Ṽ1 ⊂ C1. Since the components
are pairwise disjoint it follows that

Cc1 ≡ N \ C1 = V1 ∪
M⋃
i=2

Ci;

moreover, this is a disjoint partition (see Figure A.2).

Claim: Cc1 is an edge connected subset of N .

Proof: For any two nodes n ∈ V1 and m ∈ Ci there exists a path p in the edge set of T joining
them. Since the Ci are (maximally) edge connected components there are no edges between any
two of them, thus the sub–path p′ of p starting with the last edge to enter Ci is a path from some
n′ ∈ V1 to m and is contained in V1 ∪ Ci. Since V1 is edge connected it follows there is a path q
from n to n′ in V1. Then q + p′ is a path from n to m in V1 ∪Ci, and since i ≥ 2 is arbitrary the
claim follows. QED

Then C1 and Cc1 are edge connected subsets of N , it follows from the previous lemma that
d1(Cc1) ≡ {n ∈ N | d(n,Cc1) = 1} is edge connected.

Claim: d1(Cc1) ⊂ d1(V1).

Proof If d(n,Cc1) = 1 there exists and edge (m,n) in T for which n ∈ C1 and m ∈ Cc1. Since
{Ci} are (maximally) connected edge components there are no edges between them, in particular,
d(m,n) > 1 for any m ∈ ∪Mi=2Ci. It follows that m ∈ V1. QED

18



To complete the proof, suppose V1 and Ṽ1 ∈ V1 are distinct vertices of G and there exist paths
P and P ′ in the edge set of G connecting them which intersect only at the end points. Since kπ
components are edge connected in T , it follows from the definition of the overlap graph that for
any m ∈ V1 and n ∈ Ṽ1 there exist paths p and p′ in the edge set of T from m to n which only
intersect in V1 and Ṽ1.

Since V1 ⊂ Cc1 and Ṽ1 ⊂ C1, each path p and p′ must exit C1; in particular, there are edges (m,n)
and (m′, n′) on these paths for which m, m′ ∈ C1 and n, n′ 6∈ C1 so that d(n,C1) = d(n′, C1) = 1.

Since V1 is a (maximally) k1–connected component it follows that k1(i) = 0 for any vertex for
which d1(i, V1) = 1, hence k2(i) > 0. In particular, k2(i) > 0 for every vertex i ∈ d1(C1) and
d1(C1) is also edge connected, so d1(C1) ⊂ V2 for some k2 component V2 ∈ V2.

The contradiction now follows since n ∈ V2 and n′ ∈ V2 shows V2 is a vertex of G on each path
from V1 to Ṽ1.

Proof. (of Theorem 3.6) Let T be a triangulation of a connected domain Ω ⊂ Rd and kπ → [0,∞)
satisfy k1(n) + k2(n) > 0 at every node of T , let and G denote the corresponding overlap graph.
Extending T to a triangulation T ′ of Rd setting kπ(n) = 1/2 for nodes n not in T gives a
triangulation and functions satisfying the hypothesis of the previous theorem so that the overlap
graph G′ for the extended triangulation and functions is a tree. Since kπ components of N are
contained in kπ–components of N ′ it follows G is a sub–graph of G′, so is a forest. However,
Lemma 3.4 shows G is connected, so it is a tree.
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