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Abstract

Peridynamic models that aim to incorporate a given classical local continuum stress-deformation response
function typically start with a nonlocal averaged analog to the deformation gradient as input to the given lo-
cal stress-deformation response function. This approach has been observed to allow unphysical deformations
such as interpenetration and cause loss of linear stability. This paper describes an approach to deal with this
shortcoming. The strategy is based on (1) defining a bond-level analog to the deformation gradient tensor – in
contrast to the usual vector deformation measure in peridynamics – that captures both the average deformation
in the neighborhood of the bond as well as the deviation of the bond stretch from this average deformation, and
(2) using this bond-level deformation gradient in the classical local strain energy response to obtain the energy
of each bond. Compared to the standard approach that applies the energy to the averaged deformation gradient,
this approach instead averages the energy applied to the bond-level deformation gradient.

Keywords: peridynamics, nonlocal, interpenetration, stability

1 Introduction

Peridynamics is a nonlocal continuum model that appears well-suited to model discontinuous deformations such
as occur in fracture, introduced in the foundational article by Silling [Sil00]. It was first formulated in terms of
long-range bonds that connect material particles in a continuum body, with the force in each bond depending only
on the reference and current positions of the material particles that it connects. However, the assumption that
each bond is independent of the other bonds was recognized right in [Sil00] as being very restrictive in the types
of material behavior that can be modeled; e.g., the Poissons ratio is 1/4. A very similar restriction occurs also
in pair-interaction models of atoms. In rough analogy with atomic models, one requires multibody interactions
to be able to describe more complex and realistic material behavior; in essence, the force in a bond depends not
only on the relative displacement of the atoms that it connects, but also on the positions of other atoms in the
local environment [TM11, SPG14]. While extensions of peridynamics provide a framework [SEW+07] that can in
principle account for these multi-body interactions, an important challenge is to develop a nonlocal peridynamic
model that will display a desired stress-deformation response under uniform deformation. Loosely speaking, this
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is an inverse problem: given a classical local continuum stress-deformation response, how does one construct a
peridynamic model that has the same behavior (i.e., stress and energy) under uniform deformation states?

Recent extensions of peridynamics – co-called correspondence models – have aimed to develop a systematic ap-
proach to incorporate classical local continuum stress-deformation response into the nonlocal setting [WSA+09].
Correspondence models loosely work with the following procedure: (1) define a nonlocal averaged quantity that
is analogous to the deformation gradient; (2) use this nonlocal averaged deformation gradient in the local con-
tinuum stress-deformation relations to obtain a stress tensor; and (3) average the stress tensor to obtain the force
density. This approach has been observed to allow unphysical deformations such as interpenetration [TR14], and
loss of linear stability [BLCB16, Sil17]. Key prior efforts towards dealing with interpenetration and linear instabil-
ity are, first, [TR14] who prevent interpenetration through using nonlocal analogs of strain measures that become
singular when the stretch goes to 0; and, second, [Sil17] who applies a quadratic penalty to penalize zero-energy
deformations related to local deviation from the nonlocal average deformation state.

In this article, we present an approach1 to account for these issues, based on (1) defining a bond-level analog to
the deformation gradient that captures both the average deformation in the neighborhood of the bond as well as the
deviation of the bond stretch from this average deformation; and (2) using this bond-level deformation gradient in
the classical local strain energy response to obtain the energy of each bond, and then summing over all bonds in the
body. Together, these elements impose naturally an energetic cost for any deformation that deviates locally from
the average deformation, thus eliminating the linear instability observed in conventional correspondence models. In
addition, when interpenetration occurs, the bond-level deformation gradient will be seen to have zero determinant,
and standard local strain energy functions are typically singular when the argument has zero determinant. The key
distinction from the prior efforts mentioned above is that our formulation is able to prevent both interpenetration as
well as linear instability using a single framework based solely on the classical local strain energy density: we do
not introduce any extra quadratic penalty terms, and interpenetration is forbidden by the use of appropriate standard
local strain energy response functions. That is, we are given a local strain energy density function that we wish to
mimic in peridynamics, and we do not introduce any further parameters besides those related to nonlocality.

1.1 Notation

• Hats denote vectors normalized to have unit magnitude: e.g., ̂̆x− x :=
x̆− x
|x̆− x|

.

• Tildes denote constitutive response functions: e.g., T (x) = T̃ (F (x)).

• Dots denote time derivatives: e.g., ẏ and ÿ.

• The specimen is denoted Ω.

• x and y(x) denote the reference coordinates and deformation. We use x̆,
◦
x as dummy variables of integration

in the reference configuration, and for conciseness we write y̆ ≡ y(x̆),
◦
y≡ y(

◦
x) and similarly for w which

is a test function for the deformation.

• α(x̆−x) = α(|x̆−x|) ≥ 0 is a weight function satisfying the normalization
∫
x̆∈Ω

α(x̆−x) dVx̆ = 1. We

further assume that it has compact support over a region with characteristic lengthscale `. We do not consider
boundaries in this paper to avoid tedious algebraic manipulations that can obscure the key points.

1For clarity, we will refer to the approach proposed in this paper as the bond-level deformation gradient model.
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• From the isotropy of α, it follows that∫
x̆∈Ω

α(x̆− x)(x̆− x) dVx̆ = 0

∫
x̆∈Ω

α(x̆− x)̂̆x− x⊗̂̆x− x dVx̆ =


1

2
I (in 2D)

1

3
I (in 3D)

(1.1)

away from the boundaries.

2 Summary of State-Based Correspondence Models

The original formulation of peridynamics was bond-based, i.e., the interactions between material particles was
assumed to be independent of the deformation of all other material particles [Sil00]. This is closely analogous to
pair-potentials in atomic models, and both bond-based peridynamics and pair-potential atomistics have similar fail-
ings in describing elastic response: for instance, as noted in [Sil00] itself, the Poisson ratio is constrained to be 1/4
in both these models. In the context of inelastic response, for instance bonds that yield at a certain critical stretch,
the application of hydrostatic loads could lead to yield. To remedy these failings, state-based peridynamic models
were introduced in [SEW+07]; in brief, these models incorporate the effect of the local deformation environment
into the interactions between pairs of material particles. In the context of atomistics, these loosely correspond to
multibody atomic potentials.

While the state-based models provide a very general framework, it is challenging to systematically construct models
that display a desired macroscopic behavior, even when focusing exclusively on uniform deformations. This again
parallels the situation in atomic models where there are few systematic methods – beside brute-force fitting –
to develop atomic interaction potentials. But the continuum setting is more challenging in some ways, because
inelastic behavior must also be captured in continuum models, whereas they are expected to appear naturally in
the atomic setting. That is, given an inelastic response model, say from plasticity, how does one construct a
peridynamic model that displays the same behavior at least in the limit of uniform deformations? Correspondence
peridynamic models, first developed in [WSA+09], provided a first attempt to address this issue. As we describe
below, essentially they define a nonlocal analog to the deformation gradient, and then use the nonlocal analog as
the argument for classical local energy or stress response functions. This allows correspondence models to directly
and easily build on the vast literature of available classical local continuum strain energy density functions and
stress response functions. We describe the essence of the correspondence approach below.

The equation of motion from linear momentum balance is:

ρÿ(x) =

∫
x̆∈Ω

α(x̆− x)
[
T (x̆) ·K−1(x̆) + T (x) ·K−1(x)

]
· (x̆− x) dVx̆ + b(x) (2.1)

where
K(x) =

∫
◦
x∈Ω

α(
◦
x −x)

( ◦
x −x

)
⊗
( ◦
x −x

)
dV◦

x
(2.2)

The correspondence stress is given by T (x) = T̃ (Fave(x)) where T̃ is the classical local continuum Piola stress
response function. The nonlocal averaged deformation gradient Fave(x) given by:

Fave(x) =

(∫
◦
x∈Ω

α(
◦
x −x)

( ◦
y −y

)
⊗
( ◦
x −x

)
dV◦

x

)
·K−1(x) (2.3)

Interestingly, similar expressions were proposed in [DO15] and [FJ06] in the context of Structured Deformations
and Objective Structures respectively.
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Notice that we can rewrite the nonlocal term in (2.1) as:∫
x̆∈Ω

α(x̆− x)T (x̆) ·K−1(x̆) · (x̆− x) dVx̆ + T (x) ·K−1(x) ·
∫
x̆∈Ω

α(x̆− x)(x̆− x) dVx̆

=

∫
x̆∈Ω

α(x̆− x)T (x̆) ·K−1(x̆) · (x̆− x) dVx̆

(2.4)

We have used here that
∫
x̆∈Ω

α(x̆− x)(x̆− x) dVx̆ = 0 in the interior, and ignored boundaries.

2.1 Observation of Zero-Energy Modes

We discuss the reason for the appearance of zero-energy modes in correspondence models of peridynamics, fol-
lowing closely [MPD].

Consider the setting of 1D linear elasticity for simplicity. Define the integral operator Dint that acts on the dis-
placement u(x) as follows:

Dintu(x) =
3

2`3

∫ x+`

x−`
(u(x)− u(x̆)) (x− x̆) dx̆ (2.5)

Consider the Taylor expansion u(x) − u(x̆) = (x − x̆)
du

dx
+

1

2
(x − x̆)2d

2u

dx2
+ . . .. Then, Dintu(x) =

du

dx
+

C3`
2d

3u

dx3
+ . . ., where the even derivatives vanish by symmetry. Therefore, Dintu provides a nonlocal approxi-

mation to the strain du/dx when ` – the lengthscale of the nonlocality – and the higher derivatives are sufficiently
small. However, Dintu continues to be well-defined at discontinuities where the derivative is not well-defined.

Geometrically, Dintu can be understood as averaging the slope of u(x) over a neighborhood of x of size `, i.e.,

averaging
u(x)− u(x̆)

x− x̆
. However, to avoid singularities from the denominator, we use the weight (x − x̆)2 in the

process of averaging. When the slope is constant, i.e. a linear function, we recover exactly the derivative; when the
function is slowly varying, we get higher-order contributions; and when the function does not have well-defined
derivatives due to insufficient smoothness, we obtain a finite value that captures some information about the average
slope in the neighborhood.

While Dintu appears to provide an attractive alternative to du/dx, there is one key failing. The classical derivative
du/dx is 0 only when u = const. and not otherwise. However, while Dintu = 0 when u = const., it can also be
0 for numerous other functions: in fact, any function for which the slopes cancel out on averaging. Therefore, one
can have nontrivial displacement fields u(x) with vanishing nonlocal strain, and consequently vanishing energy in
a linear model. The analog of this argument in higher dimensions is precisely the reason for spurious unphysical
zero-energy soft modes in correspondence models of peridynamics.

The possibility of these zero-energy modes had been noted in [TR14] and [Sil17]. In [TR14], they focus particularly
on the possibility of interpenetration, and use a strain measure that becomes singular at interpenetration to prevent
such deformations. In [Sil17], he introduces a quadratic penalty for the zero-energy modes, but this still appears to
allow interpenetration at a finite energy cost.

This paper proposes a different approach. In the simplified 1D setting, we begin by noting that the cancellation
described above can be avoided by averaging a quantity that is constrained to be positive; e.g., a natural quantity
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with this property is the nonlocal analog of the elastic energy density2
(
du

dx

)2

. That is, the operator

D2intu =

∫ x+`

x−`

(
u(x)− u(x̆)

x− x̆

)2

dx̆ (2.6)

provides a nonlocal regularized approximation of the elastic energy density
(
du

dx

)2

up to normalization. The

integrand is always non-negative, thereby not allowing any cancellations. For the nonlocal elastic energy density
D2intu to evaluate to 0, the integrand must be 0 everywhere, ensuring that u = const. is the only possibility. A key
element of our approach described below is a generalization of this idea.

3 Proposed Bond-Level Deformation Gradient and Energy Averaging Model

Our proposed model has two key ingredients: first, a definition of an analog to the deformation gradient for every
pair of material particles, i.e. bond-level, that has information both about the average deformation in a nonlocal
region as well as the deviation of the bond from this average deformation; and, second, the use of this deformation
gradient in the local energy density function without any further extra penalties to account for interpenetration,
linear zero-energy modes, and so on.

We then further include the bond stretch explicitly as an argument in the bond energy density, in addition to its
contribution through the bond-wise deformation gradient. This is to fit our bond-level deformation gradient model
into the framework of fracture in peridynamics that typically is modeled through dependence on bond stretch. We
then find the peridynamic equation of motion for our model consisting of these ingredients.

3.1 Deformation Gradient Defined for Each Bond: Kinematic Augmentation to Detect Deviations
from the Average

The nonlocal averaged deformation gradient Fave(x) gives the average deformation of the neighborhood around x.
As discussed above, this implies that deviations from the mean are not captured in the kinematics. Consequently,
there is no energetic penalty for these deviations thereby permitting zero-energy nontrivial deformations. We aim
to account for the energetics of these deviations as described below. In [Sil17], these deviations are similarly
captured and a quadratic energetic penalty is ascribed to them. Our model and [Sil17] use a similar approach to
identify the deviations, but then we construct a bond-level deformation gradient and use it in the strain energy
density which inherently accounts for deviations. As we discuss further below, our approach also enables us to
account for the energetics of inter-penetration and related deformation modes that were identified to be problematic
in the correspondence models [TR14]. Therefore, our approach builds on the advances of [Sil17] and [TR14] while
eliminating the extraneous quadratic penalty in favor of the strain energy density that is already a part of the model.

Our starting point is to associate a deformation gradient to every bond connected tox that we denote byFbond(x, x̆).
However, a single bond is described only by y̆ − y and x̆ − x, and the simplistic attempt to define a deformation
gradient as (y̆−y)⊗ (x̆−x) leads to a rank-deficient tensor. An alternative that would capture the correct physics
but be very expensive computationally is to start with the expression:

(y̆ − y)⊗ (x̆− x) + (˘̆y − y)⊗ (˘̆x− x) + (
˘̆
y̆ − y)⊗ (

˘̆
x̆− x) (3.1)

where ˘̆
x̆ − x and ˘̆x − x are in the plane normal to x̆ − x, and then average over all ˘̆

x̆ and ˘̆x. This would require
integrations over a different plane for every bond at x, unlike Fave which is computed once and then defined for all
bonds at x.

2[MPD] discusses a similar situation for liquid crystals.
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Motivated by the expression in the previous paragraph but to also balance computational efficiency, we capture
the deviations from uniform deformation through the difference between: (1) the actual stretch of a bond, y̆ − y,
and (2) the stretch that the bond would undergo as a material line element mapped under Fave if the deformation
was uniform. We then use this difference to “correct” Fave for each bond to obtain Fbond that is a useful full-rank
deformation gradient. To perform this correction in a way that captures the physics yet is reasonably efficient,
rather than integrating over an entire plane for each bond, we approximate this operation by starting with Fave and
“correcting” it for each bond by first removing the contribution due to the uniform deformation assumption and
replacing it by the actual deformation. That is, we define Fbond(x, x̆) centered at x as:

Fbond(x, x̆) = Fave(x)−
(
Fave(x) ·̂̆x− x

)
⊗̂̆x− x+

y̆ − y
|x̆− x|

⊗̂̆x− x

= Fave(x)
(
I −̂̆x− x⊗̂̆x− x

)
+
y̆ − y
|x̆− x|

⊗̂̆x− x
(3.2)

This definition satisfies Fbond · (x̆ − x) = y̆ − y. Also Fbond has information about the average deformation in
the plane normal to the bond as well as information about the deviation of the bond from the average in the bond
direction.

Notice that
(
I −̂̆x− x⊗̂̆x− x

)
is a rank-deficient tensor. Therefore, if y̆ − y = 0, implying interpenetration,

then detFbond = 0 and a suitable standard hyperelastic energy density using Fbond as argument will become
singular. Therefore, this kinematics can capture the essential aspects of [TR14], as we discuss further in Section
4.4.

Notice that in general Fave(x) 6= Fave(x̆), implying Fbond(x, x̆) 6= Fbond(x̆,x).

In [Sil17], Fbond · (x̆−x)− (y̆−y) is used as a measure of the deviations from the average deformation. However,
he then directly penalizes this deviation with a quadratic penalty by introducing a stiffness corresponding to the
penalty that is unrelated to the elastic energy density.

3.2 Energetic Nonlocal Averaging Using Classical Local Energy Densities

We consider next the energy associated to each bond. Our development is based on the assumption that a classical
local hyperelastic strain energy density response W̃loc(F ) ≥ 0 is available, well-characterized, and well-behaved
in the classical local continuum setting. Our association of a deformation gradient Fbond to each bond enables
us to simply use W̃loc to find the bond energy3. As discussed in Section 2.1, W̃loc ≥ 0 enables us to avoid the
cancellations that permit zero-energy modes.

Therefore, we define the energy of the bond between x and x̆, centered at x, simply as W̃loc(Fbond(x, x̆)). We
then further define the averaged energy density as:

Wave(x) =
1

2

∫
x̆∈Ω

α(x̆− x)W̃loc(Fbond(x, x̆)) dVx̆ (3.3)

where the factor of
1

2
accounts for splitting the energy equally between x and x̆. The free energy of the body is

then:

E[y] =

∫
x∈Ω

(
1

2

∫
x̆∈Ω

α(x̆− x)W̃loc(Fbond(x, x̆)) dVx̆

)
− b · y dVx (3.4)

3For dimensional consistency, the hyperelastic volume energy density must be divided by a characteristic volume `3 to obtain a bond
energy density, but we do not write this explicitly for clarity of notation.
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3.3 Bond Stretch Dependence for Fracture

While Section 3.2 provides an approach to incorporate classical local strain energy density response functions
into peridynamics, that model alone is insufficient to permit fracture. In particular, standard local elastic energies
Wloc(F ) typically have superlinear growth as |F | → ∞ to obtain good mathematical properties of solutions, e.g.
[Ant13, Cia88]. One approach to introduce the ability to fracture may be to relax this growth condition. However,
a far more popular approach in peridynamics is to use the bond stretch as an indicator of failure: as the stretch
increases, the ability of the bond to bear load degrades, e.g. [WOG17, FSC11, Lip14, Lip16] and numerous others.
This degradation may be sharp or gradual, and is generally irreversible. The irreversibility makes it debatable if
we can implement fracture in an energetic setting in peridynamics; in fact, even inelasticity in a classical local
setting is often not well-described in an energy framework. However, we nonetheless do this here because the
energy provides a simple approach to obtaining the equations of motion and restrictions on various quantities
(e.g., Sections 4.2, 4.1); once we have these equations, we can use stress-response functions with the appropriate
restrictions for inelastic settings.

Therefore, we begin with an elastic energy density W̃loc(Fbond(x, x̆),x, x̆, y̆ − y), where the first argument is as
discussed above, the second and third arguments represent inhomogeneity if present, and the fourth argument repre-
sents the bond stretch explicitly. Alternatively, one could use a stress response function T̃ (Fbond(x, x̆),x, x̆, y̆−y),
and incorporate failure through the form:

T̃ (Fbond(x, x̆),x, x̆, y̆ − y) = T̃loc(Fbond(x, x̆),x, x̆) · f(y̆ − y,Fbond(x, x̆),x, x̆) (3.5)

where T̃loc is the classical local Piola stress response function, and f is a function that is 1 when the bond stretch
is small and 0 when the bond stretch is large. The functional form of f defines the failure, and it can in general be
inhomogeneous as well as depend on the state of strain in the neighborhood through Fbond.

3.4 Equation of Motion

We obtain the balance of linear momentum from the first variation of E with respect to y from (3.4), but with the
additional arguments in W̃loc(Fbond(x, x̆),x, x̆, y̆ − y).

We begin with y 7→ y + εw, implying

Fave(x) 7→ Fave(x) + ε

∫
◦
x∈Ω

α(x− ◦x)
( ◦
w −w

)
⊗
( ◦
x −x

)
dV◦

x
·K−1(x) (3.6)

and

(Fbond(x, x̆))ij 7→(Fbond(x, x̆))ij + ε
(w̆ − w)i
|x̆− x|

̂(x̆− x)j

+ ε(K−1(x))lk

(
δkj − ̂(x̆− x)k

̂(x̆− x)j

)∫
◦
x∈Ω

α(x− ◦x)
( ◦
w −w

)
i

(◦
x −x

)
l
dV◦

x

(3.7)

The variation of E up to linear order in ε is therefore:

E 7→ E + ε

∫
x∈Ω

wibi +
ε

2

∫
x∈Ω

∫
x̆∈Ω

α(x̆− x)
∂W̃loc

∂(y̆ − y) i
(w̆ − w)i dVx dVx̆

+
ε

2

∫
x∈Ω

∫
x̆∈Ω

α(x̆− x)(Tbond(x, x̆))ij
(w̆ − w)i
|x̆− x|

̂(x̆− x)j dVx dVx̆

+
ε

2

∫
x∈Ω

∫
x̆∈Ω

α(x̆− x)(Tbond(x, x̆))ij(K
−1(x))lkδkj

∫
◦
x∈Ω

α(x− ◦x)
( ◦
w −w

)
i

(◦
x −x

)
l
dV◦

x
dVx̆ dVx

− ε

2

∫
x∈Ω

∫
x̆∈Ω

α(x̆− x)(Tbond(x, x̆))ij(K
−1(x))lk ̂(x̆− x)k

̂(x̆− x)j

∫
◦
x∈Ω

α(x− ◦x)
( ◦
w −w

)
i

(◦
x −x

)
l
dV◦

x
dVx̆ dVx

(3.8)
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We have defined the bond Piola stress Tbond(x, x̂) =
∂W̃loc

∂F
(F )

∣∣∣∣∣
F=Fbond(x,x̂)

. Note the difference in physical

dimension from the classical Piola stress.

We now relabel in the standard way and rearrange to reach the form for
dE

dε

∣∣∣∣
ε=0

:

∫
x∈Ω

wi



∫
x̆∈Ω

α(x̆− x)
∂W̃loc

∂(y − y̆) i
dVx̆

+

∫
x̆∈Ω

α(x̆− x)
1

2
(Tbond(x, x̆) + Tbond(x̆,x))ij

̂(x̆− x)j
|x̆− x|

dVx̆

− 1

2

∫
x̆∈Ω

∫
◦
x∈Ω

α(x̆− ◦x)α(x− ◦x)(Tbond(
◦
x, x̆))ij(K

−1(
◦
x))lk (̂x̆−

◦
x)k (̂x̆−

◦
x)j

(
x− ◦x

)
l
dV◦

x
dVx̆

+
1

2

∫
x̆∈Ω

∫
◦
x∈Ω

α(x̆− ◦x)α(x− ◦x)(Tbond(
◦
x, x̆))ij(K

−1(
◦
x))lkδkj

(
x− ◦x

)
l
dV◦

x
dVx̆

+ bi


dVx

(3.9)

We have used that
∫
x̆∈Ω

α(x̆ − x)(x̆ − x) dVx̆ = 0 to simplify the third term. For arbitrary w, the expression in

the brackets is the right side of the equation of motion. In static equilibrium this is set to 0, and in dynamics to ρÿ.

We examine the terms in (3.9). The first term is due to the explicit stretch dependence, and closely resembles bond-
based peridynamics. The second and third terms are absent in standard correspondence models of peridynamics,
and arise due to the approach proposed in this paper. The fourth term can be related to the standard correspondence
model in (2.1) by rewriting it as follows:

1

2

∫
◦
x∈Ω

α(x− ◦x)

(∫
x̆∈Ω

α(x̆− ◦x)(Tbond(
◦
x, x̆))ij dVx̆

)
︸ ︷︷ ︸

=: (Tcorr(
◦
x))ij

(K−1(
◦
x))lj

(
x− ◦x

)
l
dV◦

x
(3.10)

The fifth term is the external body force.

4 Characterization of the Bond-Level Deformation Gradient Model

We begin first by noting that the bond-level deformation gradient model satisfies the simple but necessary constraint
that it mimics classical local elasticity in the limit of uniform deformation. Consider the uniform deformation
y = F0 · x where F0 is a constant tensor. This implies Fave = Fbond = F0. Assume that the deformation is not in

the regime where the pairwise stretch-dependence is active. Then, the energy density Wave(x) =
1

2

∫
x̆∈Ω

α(x −

x̆)W̃loc(F0) dVx̆ = W̃loc(F0) recovers the classical continuum expression.

We briefly consider the setting of one dimension. First, as discussed in, for example, Section 2 of [DB06], arbitrary
stress-strain responses can be easily incorporated in pairwise bond interaction peridynamics; there is no need
to use multi-body interactions. Second, the proposed bond-level deformation gradient model is trivial because(
I −̂̆x− x⊗̂̆x− x

)
= 0, and consequently Fbond is simply the stretch of individual bonds; geometrically,

Fbond uses information in Fave in directions orthogonal to the bond direction and corrects along the bond but this
geometric interpretation is of course degenerate in 1D. Third, another interpretation is that all bonds undergo the
same deformation in a homogeneous deformation in 1D, whereas bonds in different directions undergo different
deformations in 2D / 3D.
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The stability and other properties of the bond-level deformation gradient model depend strongly on the properties
of the local strain energy density W̃loc on which it is based. One immediate consequence is that we should not
generally expect stability for all deformations in the finite deformation setting. A simple example is that frame-
indifference requires invariance of the energy under rigid rotations, implying nonconvexity; imposing convexity
could rule out physically-relevant instabilities such as buckling and snap-through altogether [Ant13]4. This is a
key motivation for us to propose the current alternative – based solely on the classical local energy density – to
the approach in [Sil17] using a quadratic penalty. However, we also emphasize that we are to date unaware of any
specific physically-reasonable instabilities that are suppressed by the quadratic penalty approach, and also it does
not violate frame-indifference.

A further example is the use of nonconvex local elastic energy functions to model materials with multiple phases
that can lead to the formation of complex fine microstructures [BJ87]. When the deformation varies over length-
scales much larger than the intrinsic nonlocal lengthscale, the bond-level deformation gradient model mimics the
local model. Consequently, the formation of microstructure with refinement much larger than the intrinsic nonlocal
lengthscale may be expected. It is certainly also a possibility that the bond-level deformation gradient model will
permit the formation of complex microstructure at even smaller scales.

Beyond these well-known examples, nonlinear elasticity leads to an extremely rich and complex structure in terms
of microstructure and stability that is very far from complete characterization [Ant13]. It is reasonable to expect that
the peridynamic bond-level deformation gradient model based on such local energies will be at least as complex,
and we therefore focus below on examining only specific key deformation modes. We characterize the bond-level
deformation gradient model by confirming the consistency with balances of linear and angular momentum, the
energetics of linear perturbations, and the energetics of idealized discontinuous deformations.

4.1 Balance of Linear Momentum

We ensure that the equation of motion implied by (3.9) is consistent with conservation of linear momentum. This
is of course to be anticipated given its energetic basis.

We simply integrate the equation of motion over the body:∫
x∈Ω

ρÿ dVx =

∫
x∈Ω

bi dVx∫
x∈Ω

∫
x̆∈Ω

α(x̆− x)
∂W̃loc

∂(y − y̆) i
dVx̆ dVx

+

∫
x∈Ω

∫
x̆∈Ω

α(x̆− x)
1

2
(Tbond(x, x̆) + Tbond(x̆,x))ij

̂(x̆− x)j
|x̆− x|

dVx̆ dVx

− 1

2

∫
x∈Ω

∫
x̆∈Ω

∫
◦
x∈Ω

α(x̆− ◦x)α(x− ◦x)(Tbond(
◦
x, x̆))ij(K

−1(
◦
x))lk (̂x̆−

◦
x)k (̂x̆−

◦
x)j

(
x− ◦x

)
l
dV◦

x
dVx̆ dVx

+
1

2

∫
x∈Ω

∫
x̆∈Ω

∫
◦
x∈Ω

α(x̆− ◦x)α(x− ◦x)(Tbond(
◦
x, x̆))ij(K

−1(
◦
x))lkδkj

(
x− ◦x

)
l
dV◦

x
dVx̆ dVx

(4.1)

We consider this equation term by term. The second and third terms on the right vanish because the integrand
changes sign under the relabeling x ↔ x̆. The fourth and fifth terms on the right vanish because one can isolate

terms of the form
∫
◦
x∈Ω

α(
◦
x −x)(

◦
x −x) dV◦

x
= 0. This leaves only the term on the left – the rate of change of the

total angular momentum – equal to the first term on the right – the total external force.
4The requirements for general peridynamic energies can be different from classical elasticity [EP14].
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We notice that the Piola stress makes an appearance above. Therefore, to adapt local inelastic models – where the
energy is not meaningful – to peridynamics, we can instead simply treat the equation of motion as the starting point
and use the local stress response function.

We recall that peridynamics has no role for boundary tractions. All external forces are modeled as applied through
b.

4.2 Balance of Angular Momentum

We next ensure that the equation of motion implied by (3.9) is consistent with conservation of angular momentum.
In principle, we could take the cross product of the equation of motion with y and then integrate over the body.
However, this is extremely formidable algebraically, in particular because the bond force need not be directed
along the bond in general peridynamic models. In bond-based peridynamics, bond forces are always directed along
bonds, and this property immediately implies consistency – at the level of each bond – with angular momentum
balance. Therefore, here we instead use Noether’s theorem, following the presentation in [KS72, LM00], to show
this consistency as well as the restrictions required of the constitutive response functions.

One perspective of Noether’s theorem is that continuous invariances imply balance laws. We therefore begin by
showing that the strain energy

U =

∫
x∈Ω

(
1

2

∫
x̆∈Ω

α(x̆− x)W̃loc(Fbond(x, x̆),x, x̆, y̆ − y) dVx̆

)
dVx (4.2)

is invariant under rigid rotations Q acting on the current configuration: y 7→ Q · y. This implies that the bond
stretch transforms as y̆ − y 7→ Q · (y̆ − y), and the average deformation gradient and the bond deformation
gradient both transform as Fave 7→ Q ·Fave,Fbond 7→ Q ·Fave. If the strain energy density is invariant under such
a transformation – i.e., W̃loc(Q ·Fbond(x, x̆),x, x̆,Q · (y̆−y)) = W̃loc(Fbond(x, x̆),x, x̆, y̆−y) – then the strain
energy U is also invariant. The constraints on W̃loc implied by the restriction W̃loc(Q ·Fbond(x, x̆),x, x̆,Q · (y̆−
y)) = W̃loc(Fbond(x, x̆),x, x̆, y̆ − y) in terms of the first argument are standard frame indifference in the local
continuum models, and standard in peridynamics in terms of the fourth argument.

Now consider the family of deformations w(s,x) = Q(s) · y(x) indexed by the parameter s and Q(0) = I . This

implies
dFbond
ds

∣∣∣∣
s=0

=
dQ

ds

∣∣∣∣
s=0

· Fbond. The derivative of the strain energy can be written:

dU

ds
[w(s)]

∣∣∣∣
s=0

=
dQik
ds

∣∣∣∣
s=0

∫
x∈Ω

∫
x̆∈Ω

(
∂W̃loc

∂(Fbond)ij
(Fbond)kj +

∂W̃loc

∂(y̆ − y)i
· (y̆ − y)k

)
dVx̆ dVx

=
dQik
ds

∣∣∣∣
s=0

∫
x∈Ω

yk

∫
x̆∈Ω

(. . . nonlocal terms from the equation of motion (3.9) . . .)i dVx̆ dVx

(4.3)

where the final form is obtained through the usual relabeling. Noting that U is invariant over the family of trans-

formations s, it follows that the expression above is 0. Further, since Q(s) is a rotation, it follows that
dQik
ds

∣∣∣∣
s=0

is a skew tensor, which we can write in terms of an axial vector:
dQik
ds

= εijkωj . Finally, we replace the nonlocal
terms in the final expression above by the inertia and body force terms using (3.9). All of these give us:

ω ·
∫
x∈Ω

y × (ρÿ − b) dVx = 0⇒ d

dt

∫
x∈Ω

y × ρẏ dVx =

∫
x∈Ω

y × b dVx (4.4)

where we have used that ω is arbitrary. That is, the rate of change of angular momentum is equal to the external
applied moment.
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We briefly consider the setting where we do not have a strain energy density but only a stress response function, e.g.
due to inelasticity. The constraint above on W̃loc(Fbond, . . .) that it must be frame indifferent with respect to Fbond
implies that the Piola stress Tbond = T̃bond(Fbond) = Fbond · S̃bond(Fbond), where S̃bond(Fbond) is the analog
to the second Piola Kirchoff stress tensor response function and must return a symmetric tensor. Alternately,
we can use S̃bond(Fbond) = detFbond

(
F−1
bond · σ̃bond(Fbond) · F

−T
bond

)
where σ̃bond(Fbond) is the Cauchy stress

response. These relations have a direct and obvious parallel with large-deformation local constitutive models, e.g.
[Hol00, Ogd97].

4.3 Linear Stability

We consider the linearized setting here. Assume that we have linearized a nonlinear material about an equilibrium
state to examine stability (i.e., “small-on-large”). The linearized material will generally be inhomogeneous with
the local stiffness tensor corresponding to the tangent modulus of the nonlinear energy at that point. If the local
stiffness is everywhere positive definite, then it is immediately apparent from (3.4) that any deformation away from
the equilibrium reference state increases the energy, and hence the material is linearly stable. Therefore, a linear
peridynamic material in the bond-level deformation gradient approach is stable to all perturbations if the underlying
local stiffness tensor is positive-definite for all bonds.

We examine numerically the stability of a homogeneous isotropic 2D linearized model against perturbations in the
form of plane-waves of all wavelengths, i.e. y(x) = Aeı(k·x). Note that this does not probe the stability of uniform
deformations such as biaxial or triaxial stretch, i.e. so-called non-rank-one modes [ADE13, ETS06], but that is in
any case a property of the local energy density function and not the peridynamic model.

We nondimensionalize lengths by the peridynamic nonlocal lengthscale `, and use that α =
1

π
when the argument

is less than 1 and α = 0 otherwise. We use an isotropic local response function W̃loc(ε) =
λ

2
tr(ε)2 + µε : ε, with

λ = µ = 1 and ε is the linearized strain. Because it is isotropic, we need only test in one direction; we therefore
align our coordinate direction such that the wave-vector k = ke1. From symmetry, it is straightforward to see that
the eigenvectors of the peridynamic operator correspond to classical P-waves (A ‖ k) and S-waves (A · k = 0).
We therefore focus on these specific choices ofA as they provide bounds on the energy in other directions.

Fig. 1 shows the total stored energy of a specimen subjected to the deformation y as a function of k. The energy
is computed over a large fixed domain (dimensions� 1) using a fine Cartesian mesh (of size 0.01) for quadrature.
We plot the energy for plane waves with P- and S-polarization for the standard correspondence peridynamic model
and the bond-level deformation gradient model; the former has zero-energy modes – and in fact the energy tends
to zero as k → ∞ – whereas the latter does not have zero-energy modes. The bond-level deformation gradient
model converges to a constant finite energy as |k| → ∞, as expected in peridynamics [Sil00, WA05, Day17]. This
is apparent at larger values of k but we do not plot this as it would obscure the features shown in Fig. 1.

4.4 Interpenetration and Opening Discontinuities

We examine the behavior of the bond-level deformation gradient model for deformation modes with discontinuities,
motivated by [TR14] who studied similar deformations in their approach.

First, we briefly examine what they denote sub-horizon material collapse, namely that a finite volume – with
characteristic dimensions much smaller than ` – of material collapses to a point with zero volume. That is, y̆ = y
for all x̆ within the volume. We notice from (3.2) that Fbond will be rank-deficient and hence detFbond = 0. Many
standard large-deformation elastic energy densities will be singular when the argument has zero determinant.

Next, we consider discontinuous deformation fields of the form y(x) = x+ c(x)ê, with c(x) = 0 if x · n̂ < 0 and
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Figure 1: Total stored energy in a domain as a function of |k| for deformations of the type y(x) = Aeı(k·x).
The curves correspond to a standard correspondence model and a bond-level deformation gradient model,
withA corresponding to P- and S- plane-waves. The material is isotropic with λ = µ = 1. Notice that both
models have the same energy in the long wavelength limit for the P- and S- type waves respectively.

c(x) = C if x · n̂ ≥ 0. We consider a large body and ignore the issues at boundaries. This corresponds to rigid
deformation on either side of the plane x · n̂ = 0, with a rigid translation Cê on the positive side and no translation
on the negative side, thereby causing a discontinuity along the plane. Notice that if ê · n̂ = 0, this deformation
corresponds to relative sliding in a direction tangential the separating plane; we expect this deformation to cost
finite – nonzero and non-infinite – bond energy in peridynamics. If ê ‖ n̂, this deformation corresponds to opening
a gap if C > 0, and interpenetration if C < 0; the former should again cost finite bond energy while the latter
should cause the bond energy to be singular.

We compute Fave for this class of deformations:

Fave =

∫
◦
x∈Ω

α(
◦
x −x)

( ◦
y −y

)
⊗
( ◦
x −x

)
dV◦

x
= I+ ê⊗

∫
◦
x∈Ω

α(
◦
x −x)

(
c(
◦
x)− c(x)

)( ◦
x −x

)
dV◦

x
(4.5)

We consider the quantity r(x) :=

∫
◦
x∈Ω

α(
◦
x −x)

(
c(
◦
x)− c(x)

)( ◦
x −x

)
dV◦

x
. The only distinguished direction

is n̂ and therefore r ‖ n̂; if r were at some nonzero angle to n̂, by symmetry it could equally well be at the negative
of that angle. Alternately, one can reach the same conclusion by noticing that the integrand in the definition of r is
non-zero only when x and

◦
x are on opposite sides of x · n̂ = 0; and

(
c(
◦
x)− c(x)

)
= C in this case. Therefore,

for a given x, the integration over
◦
x on the other side of the plane can be decomposed into integrations over circular

disks with normal n̂ and centered at x + const.n̂. By symmetry, the part of
( ◦
x −x

)
normal to n̂ integrates to 0

over the disk, and only the contribution parallel to n̂ survives. Hence r ‖ n̂, and Fave = I + ê⊗ r.

We next use Fave and the form of y to find Fbond using the definition from (3.2):

Fbond(x, x̆) = (I + ê⊗ r(x)) ·
(
I − x̂− x̆⊗ x̂− x̆

)
+ x̂− x̆⊗ x̂− x̆+

c(x)− c(x̆)

|x− x̆|
ê⊗ x̂− x̆

= I + ê⊗ r(x)−
(
r(x) · x̂− x̆

)
ê⊗ x̂− x̆+

c(x)− c(x̆)

|x− x̆|
ê⊗ x̂− x̆

(4.6)
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Consider now specifically bonds that connect points across the dividing plane; for specificity, consider x on the
positive side and x̆ on the negative side. Further, consider those bonds whose reference directions are normal to the
dividing plane: x̂− x̆ = n̂. For these bonds, using further that r(x) ‖ n̂, the bond deformation gradient reduces
to:

Fbond(x, x̆) = I +
C

|x− x̆|
ê⊗ n̂ (4.7)

Recall the spectral decomposition of I =
∑
i

p̂i ⊗ p̂i, where {p̂1, p̂2, p̂3} are any set of orthonormal vectors; in

particular, we choose p̂1 = ê. We use this to examine three distinguished cases below.

First, consider n̂ ‖ ê with C < 0 which corresponds to interpenetration. We can then write Fbond(x, x̆) =(
1 +

C

|x− x̆|

)
p̂1 ⊗ p̂1 + p̂2 ⊗ p̂2 + p̂3 ⊗ p̂3. For any C < 0, we can find bonds that connect points that

are sufficiently close to the dividing plane such that C < −|x − x̆|. Therefore, there will be bonds with bond-
level deformation gradients having negative determinant, and a standard local energy density will be singular. The
“number” – or more strictly the measure – of singular bonds, and consequently the effect on the total energy, will
depend on the level of interpenetration as measured by C.

Second, consider n̂ ‖ ê with C > 0 which corresponds to opening of a gap. The bond deformation gradient (4.7)
will have the same form as for interpenetration, but with the eigenvalue corresponding to p̂1 being greater than 1.
For a standard large-deformation local energy density that has minimum energy at I , there will be a finite energetic
cost for opening a gap.

Third, consider n̂ · ê = 0 that corresponds to relative sliding between the two sides of the dividing plane. The bond
deformation gradient (4.7) will have the form of a shear and a standard large-deformation local energy density will
again impose a finite energetic cost for this deformation.

Finally, we briefly examine a specific example to show the interplay between the average deformation gradient and
the deviation from the average of the particular bond. Consider in 2D the bond connecting the points x− x̆ = ê1

and with deformation y− y̆ = ê2, where ê1 and ê2 are orthonormal unit vectors. Consider first the case where the
average deformation gradient Fave(x) = I: the bond deformation gradient Fbond(x, x̆) = ê2⊗ ê2 + ê2⊗ ê1 which
has zero determinant and singular energy in a standard local large deformation elastic energy density. Physically,
this corresponds to the bond collapsing to zero volume. Consider next the case where the average deformation
gradient Fave(x) = Qê3,π/2 is a rotation that maps ê1 to ê2. Since this coincides precisely with the deformation
experienced by the bond x − x̆, it follows that Fbond(x, x̆) = Qê3,π/2. Physically, the material element has, on
average, undergone a rigid rotation and the bond has followed this rigid rotation. A standard local large-deformation
frame-indifferent elastic energy density will assign this deformation the same energy as the identity deformation.

5 Concluding Remarks

We have proposed a new approach to incorporate classical local strain energy responses into peridynamics. Un-
like correspondence methods that aim to achieve the similar goal but have issues such as linear instabilities, our
approach is stable to linear perturbations if the underlying local strain energy is stable. In contrast to other sta-
bilization methods, namely [TR14, Sil17] which handle interpenetration and linear instabilities respectively, our
approach handles both these settings in a single framework. In addition, we do not introduce additional penalty
parameters but instead work exclusively through the given local large-deformation elastic energy functions. The
final equations of motion are written in terms of the stress response function, and can form the starting point when
a strain energy function is not available as in inelasticity.

The two key elements of our approach are the definition of a bond-level deformation gradient, and the subsequent
use of this quantity as the argument in a classical local strain energy density that is then averaged to obtain the
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peridynamic energy density. Roughly, the correspondence model first averages and then evaluates the energy,
whereas the bond-level deformation gradient model first evaluates the energy and then averages. These operations
do not commute for standard small- and large-deformation energy density functions. We examine this further
in Appendix A where we also present a simpler version of the bond-level deformation gradient model. A related
perspective on this issue is to notice that the deformation gradient is a 1-form in the notation of differential geometry
[MH94]. Volume and area averages of 1-forms generally do not provide meaningful physical quantities; rather, they
are objects that are naturally integrated along curves, e.g. [AD15].

The bond-level deformation gradient model is more expensive than the usual correspondence models. In the dis-
cretized setting, the usual correspondence models require one integration at each node to find the average deforma-
tion gradient field, and then a further integration at each node to sum over the stresses to find the force density. The
bond-level deformation gradient model requires three such integrations at each node: once to find the average de-
formation gradient field, and two more as can be immediately seen in (3.9). We also note that the linearly-stabilized
model proposed in [Sil17] has a similar level of effort: one integration to find the average deformation gradient in
his (14), a second integration to find the stabilizing stress in his (54), and finally a third integration at each node to
find the force density in his (2). However, we also note that integration is a linear operation, and corresponds to
matrix-vector multiplication operations in a discretized setting. In a uniform discretization, the quadrature weights
are the same at every node and therefore one can store a single, dense but relatively small, matrix that corresponds
to this operation and use it to perform the integrations rapidly.

We notice that sets of zero measure do not contribute to the energy. Loosely speaking, if a single infinitesimal bond
collapses to zero stretch or an infinitesimal material point drifts away from the body, there will be no contribution
to the integral measures of energy. This issue occurs generically in peridynamics and not just in the bond-level
deformation gradient model in this paper. While this is also true in the classical local elasticity setting, the choice
of appropriate standard function spaces for the solution prevents such deformations from occurring there. However,
peridynamics aims to have solutions with reduced smoothness that can model fracture, and then the appropriate
function space that allows fracture but not these more complex and seemingly-unphysical deformations must be
used. Characterizing this and related issues is the focus of much current activity, e.g. [JL17, MD15, BMC14, RTT].
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A A Simplified Bond-Level Deformation Gradient Model

We discuss here a slightly simplified version of the bond-level deformation gradient model. While it has the
advantage of simplicity over the version discussed in the main body of the paper, a minor point is that it does not
precisely fit within the framework of standard correspondence models.

Below, we use the superscript s to denote the simplified redefinition of quantities that have already been introduced.
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We begin by redefining the average deformation gradient as

F s
ave(x) = 3

∫
◦
x∈Ω

α(x− ◦x)

◦
y −y∣∣∣ ◦x −x∣∣∣ ⊗ ◦̂x −x dV◦x (A.1)

Comparing with (2.3), we notice the following differences between F s
ave and Fave: first, the integrand has been

normalized in F s
ave; second, there is a leading factor of 3 corresponding to the 3D setting, which must be replaced

by 2 for the 2D setting, see (1.1); and third, the tensor K accounts for these dimensional factors in the standard
correspondence models but plays no role in this formula, and consequently does not appear at all in the simplified
model5. Also, when the deformation is uniform and given by y = F0 ·x, we have that F s

ave = Fave = F0. Further,
the formula above could alternatively be posed as a redefinition of α to extract factors of

∣∣∣ ◦x −x∣∣∣.
We now redefine the bond-level deformation gradient by using precisely the formula in (3.2), but replacing F s

ave

for Fave:

F s
bond(x, x̆) = F s

ave(x)
(
I −̂̆x− x⊗̂̆x− x

)
+
y̆ − y
|x̆− x|

⊗̂̆x− x (A.2)

These simplified redefinitions give us the satisfying relation that averaging F s
bond(x, x̆) over x̆ ∈ Ω gives F s

ave(x):∫
x̆∈Ω

α(x− x̆)F s
bond(x, x̆) dVx̆

= F s
ave(x)

∫
x̆∈Ω

α(x− x̆) dVx̆ − F s
ave(x) ·

∫
x̆∈Ω

α(x− x̆)̂̆x− x⊗̂̆x− x dVx̆ +

∫
x̆∈Ω

α(x− x̆)
y̆ − y
|x̆− x|

⊗̂̆x− x dVx̆

= F s
ave(x)− F s

ave(x) · I
3

+
1

3
F s
ave(x) = F s

ave(x)

(A.3)

To arrive at the result above, we have used the properties of α from (1.1) corresponding to 3D; in 2D, the factors of
1/3 are replaced by factors of 1/2 giving the same final result.

With these redefinitions, the energy densities per unit volume in the correspondence approach and the bond-level
deformation gradient model are therefore given respectively by:

W (x) = W̃loc

(∫
x̆∈Ω

α(x− x̆)F s
bond(x, x̆) dVx̆

)
︸ ︷︷ ︸

correspondence model

compared to W (x) =

∫
x̆∈Ω

α(x− x̆)W̃loc (F s
bond(x, x̆)) dVx̆︸ ︷︷ ︸

bond-level deformation gradient model
(A.4)

That is, the correspondence model first averages and then evaluates the energy, whereas the bond-level deforma-
tion gradient approach first evaluates the energy and then averages. As noted elsewhere in this manuscript, these
operations do not commute for standard small- and large-deformation energy density functions.

The equation of motion in the simplified bond-level deformation gradient model is given by:

ρÿi =bi +

∫
x̆∈Ω

α(x̆− x)
∂W̃loc

∂(y − y̆) i
dVx̆ +

∫
x̆∈Ω

α(x̆− x)

|x̆− x|
1

2
(T sbond(x, x̆) + T sbond(x̆,x))ij

̂(x̆− x)j dVx̆

+
1

2

∫
x̆∈Ω

∫
◦
x∈Ω

α(x̆− ◦x)
α(x− ◦x)∣∣∣x− ◦x∣∣∣ (T sbond(

◦
x, x̆))ij

̂(
x̆− ◦x

)
j

(
1−

̂(
x̆− ◦x

)
k

̂(
x− ◦x

)
k

)
dV◦

x
dVx̆

(A.5)

5While the use of K would make the current discussion cumbersome, the normalization by K in fact makes it much simpler to deal
with boundaries generally.
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This can be compared with the version in (3.9). Note that T sbond(x, x̂) =
∂W̃loc

∂F
(F )

∣∣∣∣∣
F=F s

bond(x,x̂)

.

We note that various integrands contain
1

|x− x̆|
and similar quantities. The weight function α must be appropri-

ately chosen to for these integrals to converge in principle and be computable efficiently in practice. However, this
issue also arises in the model described in the body of the paper and not just this simplified version.
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