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Abstract In this paper, we modify the thermodynamically compatible third-grade fluid model by introducing
a shear-rate- and volume-fraction-dependent viscosity into the equation. With this new model, it is possible to
predict not only the normal stress differences, but also the variable viscosity observed in many suspensions.We
study the Couette–Poiseuille flow of such a fluid between two horizontal flat plates. The steady fully developed
flow equations are made dimensionless and are solved numerically; the effects of different dimensionless
numbers are discussed.

Keywords Third-grade fluids · Suspensions · Shear-rate- and volume-fraction-dependent viscosity ·
Continuum mechanics · Non-Newtonian fluids · Granular materials

List of symbols

b Body force vector
D Symmetric part of the velocity gradient
g Acceleration due to gravity
H Characteristic length
l Identity tensor
L Gradient of the velocity vector
t Time
T Cauchy’s stress tensor
U Reference velocity
x Spatial position occupied at time t
y Direction normal to the inclined plane
(Y ) or y Dimensionless y
φ Volume fraction
div Divergence operator
∇ Gradient symbol

1 Introduction

Developing advanced coal-based fuel production with low pollutants is an important element for a cleaner
environment and a more sustainable future. A great deal of effort has been directed toward relating rheological
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properties of coal–water mixtures (CWM) to atomization quality. Rheological properties such as high shear
viscosity, yield stress, viscoelasticity and extensional viscosity have been hypothesized as the key parameters in
predicting slurry atomization quality. Atomization quality, defined in terms of amean spray droplet, varies with
nozzle type and geometry, atomizing air-to-fuel ratio, coal type, particle size distribution and concentration, and
additive type and concentration. By selectively formulating slurries for rheological evaluation and atomization
screening, the key rheological properties can be identified. For many fluids such as polymers, slurries and
suspensions, some generalizations have been made to model shear-dependent viscosities. The most widely
used models are known as the power-law models or the generalized Newtonian fluid models. These models
are deficient in many ways: They cannot predict the normal stress differences or yield stresses; they cannot
capture the memory or history effects. At the same time, the power-law models have been used for a variety
of applications where the shear viscosity is not constant [1,2,12,14,45]. Many suspensions are formed by
adding solid particles to a fluid. As the concentration of the particles increases, the rheological properties
of the fluid change drastically. One of the main areas of interest in energy-related processes, such as power
plants, atomization and alternative fuels, is the use of slurries, specifically coal–water or coal–oil slurries, as
the primary fuel. Some studies indicate that the viscosity of coal–water mixtures depends not only on the
volume fraction of solids and the mean size, and the size distribution of the coal, but also on the shear rate,
since the slurry in many situations behaves as a shear-thinning fluid (see [32,41,50]).

With additional need for fossil fuels, the amount of waste materials and the environmental issues dealing
with their disposal also increase. One of the promising approaches is the development of coal/waste co-firing
technology. For co-firing, biomass has been considered as one of the fuels. Modeling these complex fluids
remains a challenge for both engineers and mathematicians. From an engineering point of view, one could,
for example, consider an effective viscosity for the total medium which is not just the constant viscosity of
the carrier fluid but also depends upon the concentration of the suspended particles (see [10]). In reality, such
systems are composed of a mixture of the carrier fluid and particles which can be spherical, rod-like or irregular
in shape. In general, a homogeneous approximation can be used (see [28]). Many mathematical models have
been proposed to treat the flow of slurries. The idea of modeling suspensions through their material properties
in various contexts is not new and has been used in the past (see [21,33]).

Although we have motivated our studies based on coal–water slurries, our approach is general and the
model that we propose for the suspension of particles infused in a fluid can be used for the cases when the
amount of solid particles in the fluid is not so high that the particle–particle interactions can be ignored and
the suspension can be modeled as a single-component nonlinear fluid. Otherwise, we need to use a two-phase
approach (mixture theory).

In this paper, wemodify the thermodynamically compatible third-grade fluid model by introducing a shear-
rate- and volume-fraction-dependent viscosity into the constitutive equation. We study the Couette–Poiseuille
flow of such a fluid between two horizontal flat plates The steady fully developed flow equations are made
dimensionless and are solved numerically; the effects of different dimensionless numbers are discussed. The
plan of the paper is: In Sect. 2, we present the governing equations, and in Sect. 3, a brief discussion of the
constitutive relation for the stress tensor T is provided. In Sect. 4, the equations of motion for flow between
two flat plates along with the numerical scheme are presented.

2 Governing equations

The balance laws, in the absence of thermochemical and electromagnetic effects, are the conservation of mass,
linear momentum and angular momentum (see [49]). The conservation of mass in the Eulerian form is given
by:

∂ρ

∂t
+ div (ρu) = 0 (1)

where ∂/∂t is the partial derivative with respect to time. The balance of linear momentum is

ρ
du
dt

= divT + ρb (2)

where d/dt is the material time derivative given by d(.)/dt = ∂(.)/∂t + [
grad(.)

]
u, b is the body force, and T

is the Cauchy stress tensor [13]. The balance of angular momentum (in the absence of couple stresses) yields
the result that the Cauchy stress is symmetric. In order to ‘close’ the governing equations, we need constitutive
relations for T.
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The Couette–Poiseuille flow of a suspension modeled 923

3 Constitutive equations

A constitutive relation is an equation which relates the unknowns, such as the stress tensor T to other quantities
such as velocity, displacement and temperature, which are the actual quantities that are to be solved in the
governing equations, or can be measured experimentally. If the unknown quantities, for example, T, are
explicitly related to the kinematical (velocity, or displacement) or thermal (temperature) quantities, then that
constitutive relation is known as an explicit constitutive relation. In general, in the explicit scheme, we start
with equations such as:

T = T (u, grad u, . . .) (3)

where u is the velocity vector. The selection of the dependent variables, i.e., the arguments in the function, is
based on previous experience, if any, intuition or insight, and perhaps experimental observation. Themost well-
known examples for the stress tensor are the Newtonian (Navier–Stokes) fluid T = −pI + (λ tr D) I + 2μD.
In the Newtonian fluid case, p is the unknown pressure, λ and μ are material properties, and D = 1

2

[
L + LT

]

where L = grad u.
If, however, it is not possible to directly relate the unknowns to the knowable (or measurable) quantities,

then we obtain an implicit constitutive relation. Amongst the early examples of implicit constitutive relations
in modern continuum mechanics, one can name Maxwell’s fluid models or Oldroyd’s fluid [30,31] models1

and Truesdell’s hypo-elastic [47,48] model. Rajagopal [34], in a much more generalized context, proposed an
implicit relation for the stress tensor of a fluid where

F(T, D) = 0 (4)

Clearly, from an analytical or computational perspective, explicit constitutive equations are preferred as
they are much easier to deal with; however, from a practical point of view, there are many materials, such as
viscoelastic type with a relaxation time, whose response characteristics require an implicit model.

In this paper, we will use the explicit scheme to model the stress tensor for a suspension composed of
particles infused in a fluid. It should be emphasized that a suspension, in general, can be modeled in at least
two distinct, yet related manners. One is to look at the suspension as a single continuum and model it using
either continuum theories or develop models based on statistical theories or experimental observations. Doing
so, one would obtain macroscopic or global values for terms such as velocity, pressure drop, temperature and
flow rate without knowing anything about the interactions between the particles and the host fluid (see [20]).
The secondmethod is to use the techniques of multi-component materials (also known as multi-phase theories)
and study the governing equations for each component (phase) and propose or derive constitutive relations for
each phase. This methodology, although more complicated, would in theory provide more information about
particle concentration, individual velocities, temperatures, etc. (see [22,23]). In this paper, we shall model the
suspension as a single continuum (a nonlinear fluid).

Briefly, non-Newtonian fluids differ from Newtonian fluids in at least two ways: (1) They exhibit “normal
stress differences,” phenomena such as rod climbing and die swell which are manifestations of the stresses that
develop orthogonal to the planes of shear and (2) they exhibit “shear thinning” or “shear thickening,” which is
the decrease or increase in viscositywith increasing shear rate, respectively. Furthermore,many non-Newtonian
(nonlinear) fluids can exhibit yield stress, memory effects, viscoelastic effects, etc. One of the most widely
used non-Newtonian models in the field of engineering is the “power-law” model (see [2]), which allows for
the viscosity to depend on the velocity gradient. This model has been extensively used in coal–water slurries
(see [44]). However, this model cannot predict the normal stress effects (see [43]). Although the power-law
model adequately fits the shear stress and shear rate measurements for many non-Newtonian fluids, it cannot
always be used to accurately predict the pressure loss data measured during transport of a coal–liquid mixture
in a fuel delivery system (see [6]).

Perhaps the simplest model which can capture the normal stress effects is the second-grade fluid, or the
Rivlin–Ericksen fluid of grade two [35,40,49]. This model has been used and studied extensively [4] and is a
special case of fluids of differential type. One of the recent advances in the theoretical studies in rheology is the
development of generalized differential fluidmodels. The simplicity of the form and the fact that thesemodified
constitutive relations can be used to study shear thinning/thickening, the decrease/increase in viscosity with

1 Morgan [29] suggested that in general, an implicit constitutive equation is a relation between a kinetic tensor (for example
the stress tensor T) and one kinematic tensor (for example B, or D) of the types [see Eqs. (3.5) and (3.6) of that paper]:
G(T, B) = 0; H(T, D) = 0.
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increasing/decreasing shear rate, as well as predicting normal stress differences, have opened the way for the
solution to a series of engineering problems (see [9,16,25,26]). Before we propose the new modified third-
grade fluid, we give a brief review of the third-grade fluid studied in detail by Fosdick and Rajagopal [7]. The
Cauchy stress tensor for such a fluid is given by (see also [5,49]):

T = −pI + μA1 + S2 + S3 (5)

where

S2 = α1A2 + α2A2
1 (6)

S3 = β1A3 + β2 (A2A1 + A1A2) + β3 (trA2) A1 (7)

and An is given by

An = d

dt
An−1 + An−1L + LTAn−1 (8)

Fosdick and Rajagopal [7] showed that for an incompressible thermodynamically compatible fluid of grade
three, this model reduces to

T = −pI + μA1 + α1A2 + α2A2
1 + β3

[
trA2

1

]
A1 (9)

where

μ > 0,

α1 ≥ 0,

|α1 + α2| ≤ √
24μβ3, (10)

β3 ≥ 0

If we rewrite this equation as

T = −pI + (
μ + β3trA2

1

)
A1 + α1A2 + α2A2

1 (11)

it can be seen that this equation can also be considered as a generalization of the standard second-grade fluid
model2 (see [4]) with an effective viscosity, μeff , given by (see [27])

μeff = μ + β3trA2
1 (12)

Mansutti and Rajagopal [18] and Mansutti et al. [19] have used the power-law model, the generalized second-
grade model and the thermodynamically compatible third-grade model to study the steady flows past a porous
plate and also between intersecting plates. It is readily seen from this equation that the third-grade fluid model
can not only predict the normal stress differences but also the shear-thickening effects, which emerges from
the S3 portion of the tensor. It can also be related to a special power-law model, where in a simple shear flow,
the shear stress τ is given by

τ =
[

μ + β3

(
du

dy

)2
]
du

dy
(13)

2 Criminale et al. [3] obtained an expression for T, valid for any laminar shear flow:

T = −pI + β1A1 + β2A2 + β3

(
A2

1 + 1

2
A2

)
; (∗)

where β1, β2 and β3 are functions of 	, where 	 = 1
2 trA

2
1 , and they are given by

β1 = γ1 + 2γ5	 + 4γ7	
2,

β2 = γ2 + 0.5γ3 + 2 (γ4 + γ6) + 4γ8	
2,

β3 = γ3,

γm = αm
(
2	, 0, 4	2, 8	3, 0, 2	2, 0, 4	4) ,

The model given by Eq. (*) is known as CEF model. It can be seen that when β2 = 2β3, this equation reduces to the Reiner–Rivlin
fluid model [38,39]. Now, since β1, β2 and β3 can be assigned arbitrarily as function of 	, in theory, the CEF model can predict
shear-thinning (or thickening) as well as normal stress effects.
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The Couette–Poiseuille flow of a suspension modeled 925

In many suspensions, the effects of particle concentration φ cannot be ignored. We propose the following
modification to the effective coefficient of viscosity:

μeff(φ, A1) = β30
(
1 + aφ + bφ2)	

m
2 (14)

where

	 = 1

2
trA2

1 (15)

where a and b are constants. The function φ(x, t) is called the volume fraction distribution (concentration)
and has the property 0 ≤ φ(x, t) < φmax < 1. The function φ(x, t) is represented as a continuous function of
position and time; in reality, φ(x, t) in such a system is either one or zero at any position and time, depending
upon whether one is pointing to a granule or to the void space at that position. The dependence of the viscosity
term on the volume fraction is based on the numerical simulation studies of [51,52]. Thus, the modified form
of the thermodynamically compatible third-grade fluid where the coefficient of viscosity is a function not only
of volume fraction, but also of shear rate, is:

T = −pI + β30(1 + aφ + bφ2)	
m
2 A1 + α1A2 + α2A2

1 (16)

It is this equation that we will use in our analysis.3 It also needs to be mentioned that when using the grade
fluids the order of differential equations is raised due to the introduction of higher-order derivates into the
equations. As a result, in general, one needs additional boundary conditions.

3.1 Special cases of this model

(i) If, α1 = α2 = 0, then Eq. (16) reduces to

T = −pI + β30
(
1 + aφ + bφ2)	

m
2 A1 (17)

Now, if there are no particles, that is, φ = 0, then Eq. (17) reduces to

T = −pI + β30	
m
2 A1 (18)

which is the standard power-law model, where if m > 0, the suspension is shear thickening, if m < 0, the
suspension is shear thinning, and if m = 0, the fluid behaves as a Navier–Stokes fluid.

(ii) If m = 0, and φ �= 0, then Eq. (17) reduces to

T = −pI + β30
(
1 + aφ + bφ2) A1 (19)

Now, if b = 0 and a = 2.5, this equation would reduce to the classical expression derived by of Einstein,
namely

μeff = β30(1 + 2.5φ) (20)

(iii) Now, if there are no particles, φ = 0, then Eq. (16) reduces to

T = −pI + β30	
m
2 A1 + α1A2 + α2A2

1 (21)

This is the same as a generalization of the second-grade fluid due to [16,17] (for a detailed discussion of
this, see [15,24]). Obviously, when m = 0, this equation reduces to the standard second-grade fluid model.
It also needs to be mentioned that second-grade fluids (or higher-order models) raise the order of differential

3 Note that the simplest expression for the nonlinear behavior of fluids is that of the generalized power-law model where
T = −pI + μ0

(
trA2

1

)m
A1 when m < 0, the fluid is shear thinning, and if m > 0, the fluid is shear thickening. This equation is

a subclass of the model presented here.
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926 M. Massoudi, P. X. Tran

Fig. 1 Configuration of Poiseuille–Couette flow of suspensions between two flat plates. The lower plate is stationary and the
upper plate is moving with a constant velocity U

equations by introducing higher-order derivates into the equations. As a result, in general, one needs additional
boundary conditions; for a discussion of this issue, see Rajagopal [36] and Rajagopal and Kaloni [37]. In the
next section, we shall use Eq. (16) to study the flow of a suspension between two horizontal flat plates.

4 Poiseuille–Couette flow between two flat plates

We are interested in the Poiseuille–Couette flow of a suspension between two long parallel plates (see Fig. 1).
For the problem under consideration, we make the following assumptions:

(i) The motion is steady,
(ii) The constitutive equation for the stress tensor is given by Eq. (16),
(iii) The volume fraction and the velocity fields are of the form.

φ = φ (y) (22a)

u = u(y)i (22b)

In the absence of the body forces, andwith the above assumptions, the conservation ofmass is automatically
satisfied and the momentum equations are given by

∂

∂x

[

−p + α2

(
du

dy

)2
]

+ ∂

∂y

⎡

⎣β30
(
1 + aφ + bφ2)

(∣
∣∣
∣
du

dy

∣
∣∣
∣

2
)m/2

du

dy

⎤

⎦ = 0 (23)

∂

∂x

⎡

⎣β30
(
1 + aφ + bφ2)

(∣∣
∣∣
du

dy

∣∣
∣∣

2
)m/2

du

dy

⎤

⎦ + ∂

∂y

[

−p + (2α1 + α2)

(
du

dy

)2
]

= 0 (24)

∂p

∂z
= 0 (25)

Let us define

− p̂ = −p + (2α1 + α2)

(
du

dy

)2

(26)

Since φ and u depend on y only, the first term of Eq. (24) is equal to zero and Eq. (24) reduces to

∂

∂y

[

−p + (2α1 + α2)

(
du

dy

)2
]

= ∂ p̂

∂y
= 0 (27)

And Eq. (23) reduces to

∂ p̂

∂x
= ∂

∂y

⎡

⎣β30
(
1 + aφ + bφ2)

(∣
∣∣∣
du

dy

∣
∣∣∣

2
)m/2

du

dy

⎤

⎦ (28)

where ∂ p̂/∂x is the prescribed pressure gradient. These equations are subject to the boundary conditions,

at y = 0 : u = 0 (29a)

at y = H : u = U (29b)
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The Couette–Poiseuille flow of a suspension modeled 927

Let us define the dimensionless distance ȳ, the velocity ū and the viscosity μ̄ by the following equations (see
[9]):

ȳ = y

H
; (30a)

ū = u

U
; (30b)

μ̄ = β30

μ0
(30c)

where U is the velocity of the upper plate, μ0 is a reference viscosity, and H is the distance between the two
plates. With these definitions, the dimensionless form of Eq. (28) becomes

d

d ȳ

⎡

⎣
(
1 + aφ + bφ2)

(∣∣
∣∣
dū

d ȳ

∣∣
∣∣

2
)m/2

dū

d ȳ

⎤

⎦ = C (31)

where C is a parameter representing the effects of the upper plate velocity, the plate gap, the pressure gradient
and the suspension viscosity and is given by

C = 1

μ̄

∂ p̂

∂x

(
H

μo

)[
H

U

]m+1

(32)

The dimensionless boundary conditions are

at ȳ = 0 : ū = 0 (33a)

at ȳ = 1 : ū = 1 (33b)

Equation (31) can be rewritten as

d2ū

d ȳ2
=

C + (a + 2bφ)
dφ
d ȳ

(
− dū

d ȳ

)m+1

(
1 + aφ + bφ2

)
(m + 1)

(
− dū

d ȳ

)m ; when
dū

d ȳ
≺ 0 (34)

d2ū

d ȳ2
=

C − (a + 2bφ)
dφ
d ȳ

(
dū
d ȳ

)m+1

(
1 + aφ + bφ2

)
(m + 1)

(
dū
d ȳ

)m ; when
dū

d ȳ
� 0 (35)

Equations (34) and (35) describe the dimensionless velocity for the Poiseuille–Couette flow of a suspension
between two flat plates. To integrate these equations, one needs to either calculate (based on other equations
or methods) or know (based on experiments) the volume fraction distribution. From an engineering point of
view, generally, the volume fraction (or concentration) profile is determined via experiments (see, e.g., [8],
p. 662). However, depending on the loading of the particles, that is, how high or low the particle concentration
is, one can also model the complex fluid using various approaches. For example, Phillips et al. [33] suggested
a Convection–Diffusion type equation for calculating the concentration. At higher concentration, methods in
bulk transport (see [46]) can be used.

Kabir et al. [11] used the explicit finite element method to simulate a dense flow of steel particles and
titanium oxide (TiO2) powder in a rough gravity-free Couette shear cell with no externally applied load. They
reported that the flow was dilute near the walls with the moving wall having the least solid fraction due to
the high-energy particle–wall collisions. The particles continuously had their kinetic energy dissipated by the
inelastic collisions in the internal region of the cell, which lead to stagnant particles and a denser (i.e., high
solid fraction) granular field. For the present work, we express their calculated data using Eq. (36) as shown
in Fig. 2.

φ = 0.6351 + 1.555 ȳ − 5.5829 ȳ2 + 8.108 ȳ3 − 4.197 ȳ4 (36)

In our present calculations, we simply use Eq. (36) as an example for the solid fraction distribution. We
also let b = 0 and a = 2.5 which is the classical Einstein model for the suspension viscosity. We, therefore,
concentrate our attention only on the effects of the non-Newtonian nature of the suspension and the competition
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928 M. Massoudi, P. X. Tran

Fig. 2 Distribution of the solid fraction across the gap between two flat plates; the lower plate is stationary and the upper plate
is moving

between the pressure gradient and the shear thinning or thickening on the velocity field. We use two values
for m (m = 1 and m = −2), and we vary C from −6.5 to 6.5. In most engineering applications, the volume
fraction profile is obtained via some experiments, and in the suspension approach, it is rarely calculated. What
we have done in this study, is to use the numerical simulation of a similar problem (see [11]) and obtain a
correlation for the volume fraction which is used in our study. Alternatively, if we had used a more complicated
scheme such as the multi-phase approach (see [22,23]), we would have been able to actually solve for the
volume fraction. The results are presented in the next section.

5 Results and discussion

Figure 3 shows typical velocity profiles for various values of C and for m = 1 (the shear-thickening case) and
m = −2.0 (the shear-thinning case). The positive values of C represent the cases where the pressure gradient
is against the direction of the shearing velocity, while the negative values are for the case in which the pressure
gradient is in the direction as the shearing velocity. WhenC = 0, that is, when no pressure gradient is imposed
and the flow is driven only by the upper plate, the velocity distribution is linear. This is the typical Couette flow
between two flat plates where the velocity profile is the same for both Newtonian and non-Newtonian fluids.
When C is not equal to zero, the flow is driven by the pressure gradient as well as the upper moving plate. As a
result, since C represents the competition between the pressure gradient and the shearing motion, the velocity
profiles become nonlinear and dependent on the magnitude of C . Thus, for C < ±1, the effect of the moving
plate is more significant, and the velocity profiles still retain their linearity throughout the gap. When C > 1,
the effect of the pressure gradient becomes more significant. For the shear-thickening fluid (m > 0), the flow
becomes faster, and the fluid near the upper plate moves faster than the upper plate velocity as C increases
negatively. On the other hand, as C increases positively, the flow near the lower plate is retarded and a reversed
flow could prevail for high values ofC . For the shear-thinning case, (m < 0), the results on the velocity profiles
are reversed, that is, the retarded flow occurs if the values of C increase positively. If C increases negatively,
the flow becomes faster. For the range of the values used for C , however, both the reversed flow and the faster
flow (than the moving plate) did not occur.

The effect ofC on the flow can be clearly seen in Fig. 4 where the derivatives of the velocity at the lower and
upper plates as a function of C are given. It can be seen that as C increases in a positive sense, the derivatives
of the velocity with shear-thickening behavior decrease, indicating that the flow is retarded near the lower plate
while for a shear-thinning fluid the flow is faster as indicated by the decrease in the derivative of the velocity at
the upper plate. As C increases negatively, the effect is reversed, that is, the flow of fluid with shear-thickening
behavior becomes faster, while that of a shear-thinning fluid becomes retarded.
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The Couette–Poiseuille flow of a suspension modeled 929

Fig. 3 a Typical dimensionless velocity profiles for various values of C (m = 1.5). b Typical dimensionless velocity profiles for
various values of C (m = −2)

Fig. 4 Derivatives of the dimensionless velocity at the plate surfaces as a function of C (a, c derivative at the surface of the lower
plate; b, d derivative at the surface of the upper plate)

Flow behaviors similar to those described above are also obtained when b �= 0. Since b is the coefficient
that describes the dependence of the viscosity on the volume fraction of the particles and C is the parameter
that represents the competition between the pressure gradient and the shearing velocity, varying values of b
would result in changing the magnitude of C at which the flow is reversed or becomes faster than the velocity
of the moving upper plate. For example, from Fig. 4a, b it is clear that with b = 0, (dū/dȳ)ȳ=0 becomes
negative when C is about 6.5 while for b = 2 this occurs for C up to 8.5. On the other hand, as C increases
negatively, the flow becomes faster, (dū/dȳ)ȳ=1 < 0, at C = −6.75 when b = 0, and this occurred when the
value of C was about −9.5 for the case when b = 2.
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Fig. 5 Effects of parameter C on the dimensionless velocity profiles of Poiseuille–Couette flow of a Newtonian fluid

If in Eq. 31 we set a = b = m = 0, we obtain the following analytical solution for the dimensionless
velocity

ū = C
ȳ2

2
+

(
1 − C

2

)
ȳ (37)

This is the velocity profile for the generalized Couette flow problem for a Navier–Stokes fluid (see Schlichting
([42], p. 85). We have plotted the results in Fig. 5 to show that in the limiting case, our equations reduce to the
standard version of the Navier–Stokes equation.

6 Conclusions

In this paper, we modify the constitutive relation for a thermodynamically compatible third-grade fluid by
suggesting that the shear viscosity can depend on the shear rate and the volume fraction of particles suspended
in the fluid. For the concentration (volume fraction) field, we use the numerical simulation of Kabir et al.
[11] to obtain a polynomial expression. The Couette–Poiseuille flow of this suspension is studied, and the
dimensionless forms of the governing equations are solved numerically. Qualitatively, we can see that since
we have assumed these parameters to be functions of the volume fraction, there is a strong nonlinearity in the
equations, and therefore, numerically it will be more difficult to obtain solutions. This simple boundary value
problem with all the basic assumptions specified should serve as a limiting case for more complicated flow
geometries and flow conditions.

The positive values of C represent the cases where the pressure gradient is against the direction of the
shearing velocity, while the negative values are for the case in which the pressure gradient is in the direction
as the shearing velocity. When C = 0, that is, when no pressure gradient is imposed and the flow is driven
only by the upper plate, the velocity distribution is linear. This is the typical Couette flow between two flat
plates where the velocity profile is the same for both Newtonian and non-Newtonian fluids. When C is not
equal to zero, the flow is driven by the pressure gradient as well as the upper moving plate. As a result, since C
represents the competition between the pressure gradient and the shearing motion, the velocity profiles become
nonlinear and dependent on the magnitude of C . Obviously, the effects of slip at the wall, particle shape, etc.
are important issues which need to be studied.

Finally, since we have non-dimensionalized our equations, we cannot really compare the simulation with
any given suspension of coal slurries as the material parameters have been absorbed into the dimensionless
numbers. The current study was not intended to be an engineering-type modeling; instead, it is a parametric
study into this nonlinear model. The main reason for doing a parametric study via non-dimensionalizing the
equations of motion is that we can gain some insight into a class of problems.
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