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Abstract. We prove existence in one space dimension of weak solutions for the
Neumann problem for a degenerate parabolic system consisting of a fourth-order
and a second-order equation with singular lower-order terms. This system arises
in the description of phase separation and ordering in binary alloys.

1 Introduction

Our paper is concerned with the Allen-Cahn/Cahn-Hilliard system

= [Q(u, v)(Fu(u, v) = €Uizg)al, (z,t) € Qr

v = —Q(u, v)(Fy(u,v) — €vsg) (z,t) € Qr

(P) < uy =v; = Qu, v)(Fu(u,v) — €Ugy)s =0 (2,t) € St
u(z,0) = ug(x), v(z,0)=vy(z) xz €9

| (u,v) € B z,t) € Qr

where Q CIR is a bounded open interval, "> 0, Qr = Q x (0,T) and Sy = 9Q x (0, 7).
The homogeneous free energy F is assumed here to have the form

Fu,v)=Flu+v)+Flu—v)+F1 - (u+v))+F1 - (u—2))+aou(l —u) — fv?

where F(s) = %slns and © denotes the absolute temperature; the function F is defined
in the square
B={(u,v) eR*:0<u+v<1,0<u—v<l1},

and Q(u,v), the mobility, is nonnegative.

*Key words: nonlinear parabolic systems, degenerate systems, Allen-Cahn and Cahn-Hilliard equa-
tions, phase transitions.
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The system (P) with constant mobility was introduced by Cahn and Novick-Cohen [6]
in the description of simultaneous phase separation and order-disorder transition in a BCC
Fe-Al binary alloy: u and v represent a conserved (typically an average concentration)
and a non-conserved order parameter, respectively. See [6] for earlier relevant references.
In [7], [13], Cahn and Novick-Cohen and Novick-Cohen developed formal asymptotics for
the description of the large time behaviour for this system near the low temperature limit.
The system (P) is also used by Cahn and Novick-Cohen in [8] as a framework in which
to model the effects of solute drag on the motion of antiphase boundaries. In the present
paper we shall make the further assumption that the mobility () is given by

Q) = u(l = u)(§ = o) = Qu(w)Qa(v);

such a form satisfies the physical notion that the mobility should vanish at the pure phases
and also turns out to be analytically convenient to consider.

In the case of nondegenerate mobilities, existence for the Cahn-Hilliard equation has
been obtained by Blowey and Elliott [4] in the deep-quench limit; i.e. with an homoge-
neous free energy of the form

F u(l—u) 0<u<l
u) =
+00 elsewhere,

and by Barrett and Blowey [1] with a logarithmic free energy. The degenerate case has
been studied by Elliott and Garcke [9] and Barrett, Blowey and Garcke [2] under general
assumptions on () and F which include the case

Qu) = u(l —u),
F(u)=F(u)+ F(1 —u)+ au(l —u).

Recently, Elliott and Garcke [10] and Garcke and Novick-Cohen [11] have obtained ex-
istence results for respectively systems of Cahn-Hilliard equations with degenerate mo-
bilities and the limiting geometric motions to which such systems give raise in the long
time, low temperature limit. We mention that systems of Allen-Cahn/Cahn-Hilliard type
with nonsingular lower-order terms and nondegenerate mobilities have been considered
by Brochet, Hilhorst and Novick-Cohen in [5].

In considering Problem (P), some difficulty arises from the constraint (u,v) € B;
indeed, note that the partial derivatives of F can be extended to be continuous functions
with values in RU{£o0} only in B\ {(0,+3), (1,£3)}, and not in B. This difficulty can
be handled in the case of positive mobilities via a-priori estimates in L'(Q7) on the terms

F'lu+v),...,F'(1—(u—0)) (1.1)

which are logarithmic. This estimate implies that (u,v) € B almost everywhere in Qp
in the case of positive mobilities. Some additional difficulty is given by the fact that the
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mobility degenerates only at the vertices of the box B, whereas the derivatives of F are
singular over the whole boundary 0B. Therefore there is no obvious way to bound a-priori
the product of mobilities and derivatives of F. For a single degenerate C-H equation such
difficulties do not arise as the locus of the zeroes of the mobility and the singularities of the
logarithmic terms appearing in the free energy is identical. Thus, this represents a main
difference between the system which we consider here and the case of a single degenerate
C-H equation [9]. On the other hand, the assumed form of @) allows the derivation of an
estimate for v, namely

!(i —v’ﬁ’l(t))ﬂ_1 : C+/ﬁg>’“ it fe 4. (1.2)

Q

This estimate permits control of the degeneracy of the system with respect to the variable
v. It is worth noting that the estimate (1.2) only holds if one knows a-priori that the
range of the solution is contained in the closure of the square. For this reason we first
prove an existence result for the case of nondegenerate mobilities with a logarithmic free
energy, whose solutions can be shown to satisfy (u,v) € B by virtue of the estimates on
terms of the type given in (1.1). Afterwards we derive an estimate in L'(€7) for the terms

u(l —u)vF' (u+v),...,u(l —u)vF'(1 - (u—v)) (1.3)

which holds for arbitrarily positive mobilities and implies that the constraint (u,v) €
BU{(0,0),(1,0)} is satisfied almost everywhere. Indeed, we are not able to exclude the
possibility that the sets in Q7 where (u,v) = (0,0) or (u,v) = (1,0) have positive measure
— a possibility which has also not been excluded in the case of a single degenerate C-H
equation with free energy and mobility of analogous form.

Throughout the paper we make the following assumption on the initial data:

Uy € HI(Q), Uy € HI(Q),

° (1.4)
(Uo,’l)o) € B, Vo € (—1/2,1/2), Ug € (0,1),

where f denotes the mean value of f in € of a given f € £1 (Q). Let us introduce some
notation which we shall use in the sequel. Given u,v € C(27), we define the sets

D,(u) ={(z,t) €Qr:n<u(z,t)<l-—n}, 0<n< %,
B(u,v) = {(z,t) € Qr : (u,v) € B},

with the convention that D(u) = Dy(u). We denote by (-, -) the duality pairing between
(H'(Q)) and H'(Q).
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Let us define our concept of a weak solution for Problem (P) as follows.
Definition 1 A triplet (u,v,w) is called a weak solution of (P) if:

(i) u e C¥25(Qp) N L0, T; HY()),
v e C%1(Qp) N L*(0, T; HY()),
w € L?(Qr);
(1) Uz € Lipo(D(u)), Vaz € Line(D(u));
(11i) uy € L*(0,T; (HY(Q))), v, € L*(Qr);
(iv) (u,v) € B, v € (—1/2,1/2);
(v) Fulu,v) € Lig(D(w)), Fu(u,v) € Ligo(D(u));
(vi) u(zx,0) = up(z), v(z,0) = vo(z);
(viz) Uz|5TnD(u) = vx‘STﬂD(u) =0 in Li,.(St N D(u));
(viii) (u,v,w) solves the system (P) in the following sense:

[twnoydt == [[1Qw, o) Pws, Vo€ 20T H (), (1)

//vt@b = —//Q(u,v)(.ﬂ(u, V) — eVg)¥ Voo € L?(Qr) : suppy CD(u), (1.6)

for all ¢ € L?(0,T; H} () with supp ¢ C D(u).
Remark 1.1 The terms in the Definition are all well defined. In particular:

1. The traces of u,, v, in S N D(u) can be seen to be well defined by the following
argument:
Let K C SrND(u) compact; then K CSrND,(u) for some n > 0. Since u € C(Qr),
we can select ¢ € C*®(Qr) such that 0 < ¢ <1, ¢ =1 in D,(u) and ¢ = 0 in
Qr\Dyj2(u). Then Cu € L*(0,T; H*(Q)) and therefore (Cu).|g, € L*(0,T; L*(012)).
It follows that
um|STﬂK € LQ(ST N K)

The argument for v, is the same.

2. Since (iv) implies that Q2(v) is strictly positive, from (i) it then follows that the
function <[Q(u,v)]1/2¢) has compact support in D(u) and belongs to L?(Q27) for

any ¢ € L?(0,T; H'(Q)) with supp ¢ C D(u). Therefore the integral at the right
hand side of (1.7) makes sense.
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The main result of the paper is the following

Theorem 1 For all ug, vy satisfying (1.4) there exists a weak solution of Problem (P) in
the sense of Definition 1; in addition,

|D(u) \ B(u,v)| = 0.

In Section 2 we obtain (by means of a Galerkin approximation) an existence result for
suitably regularized systems; i.e., for systems with the form of Problem (P) but which
have been made to be uniformly parabolic by assuming sufficient additional regularity
properties for () and F. The proof of Theorem 1 is contained in Section 3, where by
rescaling, without loss of generality we have assumed © = 2: in subsection 3.1 we define
a two-parameter family of approximating regular systems and derive an energy inequality
yielding uniform estimates for the corresponding solutions; in subsection 3.2 we obtain
intermediate results for nondegenerate systems based on a free energy which is now of the
original logarithmic form, F(u,v); in subsection 3.3 we use these approximating solutions
to construct a weak solution of Problem (P).

We observe that most of the results contained in subsection 3.1-3.2 remain valid in
higher space dimensions. Actually it is the continuity of the solution that enables us to
control the boundary of the box B uniformly with respect to the approximating procedure;
however, the need for continuity forces our results to be restricted, up to now, to space
dimension one.

2 Regularized systems

In this section we prove an existence theorem for the Allen-Cahn/Cahn-Hilliard system
under additional regularity and positivity assumptions on the mobility and the homoge-
neous free energy. This result will be used later to construct approximating solutions to
Problem (P).

Consider the following system:

up = [q1(u,v) (f1(u,v) — €Uge)a],  (2,1) € Qp
(PI) Uy = _QZ(U’: U) (fg(u, U) - 5Uzz) (-T, t) € Qr
Vg = Uy = Uggy = 0 x,t) € St

u(z,0) = ug(x), v(z,0)=vo(z) 2z€Q

where ¢;, f; satisfy:
(Hl) qi € C(RQa R+)7 Wlth Gmin S qi S Gmax fOl" some 0 < Gmin S Gmax;
(H2) fi € CY(R*R) and f, € C(R? R), with || fillcr + || f2llco < Fy for some Fy > 0.
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Theorem 2.1 Assuming (H1), (H2) and ug,vo € H* (), there exists a pair of functions
(u,v) such that:

(i) u € L®(0,T; H(Q)) N L2(0,T; H3(Q)) N C(0,T; H*NQ)), A < 1;

(11) v e L*(0,T; HY(Q)) N L2(0,T; H*(Q)) N C(0,T; H}Q)), A < 1;

(1ii) uy € L2(0,T; (HY(Q))), v; € L*(Qr);

(iv) u(0) = uy and v(0) = vy in L*(Q);

(v) Ualg, = valg, =0 in L*(ST);

(vi) (u,v) solves (P') in the following sense:

T

/ (ug, §) dt = — / / 01 (1, 0) (1 (1, 0) — etiag)ede Vo € L2(0,T; HY())

//Uﬂ,b = —//qg(u, v)(fo(u,v) — evge)td VU € L2(Q7).

Proof. We apply a Galerkin approximation. Let us denote by v;, ¢ € IN, the
eigenfunctions of minus the Laplacian with Neumann boundary conditions:

- =Ny T €Q
Y = x € 0N.

Without loss of generality, we assume that the eigenfunctions 1; are orthogonal in H'(f),
orthonormal in L?(2), and that the first eigenvalue is zero (0 = A\; < Ag...). The Galerkin
ansatz for (P’)

t) = ;aﬁv(t)%(l‘), v (z,t) = ;bfv(t)d)i(w)

yields the following initial value problem:

daj-v N N uN N N
. _/ = /fh , U » U )_5Um)wwjz (2.1)

by .
/vt ;= /(]2 (W™, o™ (f2(u", 0™) — vl )1; j=1,...,N (2.2)

dt
a;' (0) = (uo,¥5)r2), b7 (0) = (vo, %)z (2.3)
¥ 0, ¥5)L2(Q), Y; 0, ¥j)L*(Q)- )
The problem has a local solution because the right hand side is continuous with respect
to (al,...,aN,bY, ..., bY). We now derive an a-priori estimate which allows us to infer

global existence Multiplying each equation of (2.1) by —A;a;(t) and summing (that is,
using u ' as a test function), we get

dt2 + 5/(11 :c:c:c = /qlfluug]vvu.:]c\{zw + /qlflvv-i\]ui\;w;
Q Q



R. Dal Passo et al. Allen-Cahn/Cahn-Hilliard System 7

using v2 as a test function in (2.2) we obtain

dt2 +5/Q2 Vpy) =/Q2fzvi\;-
Q

Summing the two identities, using (H1)-(H2), and applying the Cauchy-Schwarz and

Young’s inequalities
/ Ugzs +/ zz <cl+02 / /(Ua]cv)2]’
Q

%l/(u5>2+/<v

from which we obtain by a Gronwall argument
Jwdyz+ [+ [[ @+ [ 2 < (@), (2.4
Q Q Qr Qr

Since 1| = 0, it follows from (2.1) that [u]" = 0; hence, by Poincaré inequality
o)

lu™ || oo o,1; 1 (02y) < ca(T). (2.5)

The relation

1/2 1/2
[ @2 = [[vhaf -l < ( // (W) ( / qS(stv;i)?)

coupled with (2.4) gives
[0 [ 2207y < €5(T), (2.6)

which in turn implies a bound on b (¢). Therefore, using Poincaré inequality and (2.4)
we have

0™ | oo 0,75 10y < €6(T), (2.7)
10" 220,17 20y < c6(T).- (2.8)
From (2.5) and (2.7), it follows that (al',...,ak,bY,...,bY) are uniformly bounded, and

therefore there exists a solution of (2.1)-(2.3) in (0, 7).
In order to derive an estimate for u}', we introduce the projection Iy of L?*(Q) onto
span{yy, ..., ¥n}; for any ¢ € L*(0,T; H'(Q)) we obtain

//uth = / @ (fi — eul)(n)o| < cr(D1Yl 20/ (0)
Or Or

(where (2.4) has been used); it follows that

||U£V||L2(0,T;(H1(Q))’) < (7). (2.9)
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Finally, since

N
=0, 2.10
[ (2.10)
the estimate (2.4), Poincaré’s inequality and (2.5) yield
||UN||L2(0,T;H3(Q)) < cg(T). (2.11)

From the estimates (2.5)-(2.9) and (2.11), by well-known compactness results (see also
[14]) it is possible to select a subsequence (still denoted by (u¥,v")) such that

uV 0N s g v in L>(0,T; H(Q)),
u¥  — u in L?(0,T; H3(2)),
oM — v in L?(0,T; H*()),
up  — w in L2(0,T; (H'(Q))"),
oM — o in L2(Qyp),

uV 0N — wv in C(0,T; HMNQ)), X <1,
uY  — uw in  L%0,T; HNRQ)), A< 3,
oV — v in L%(0,T; HQ)), A< 2.

In particular, the strong convergence in C(0,T; L?(Q2)) implies (iv), and the last two
convergence statements imply (v) in view of the continuous embedding

L*(0,T; H(Q)) C L*(0,T; H2~2(89)), A >0
applied to ul, v} with A < 1. O

Remark 2.2 Note that, using the same arguments as above with some minor modifica-
tions, Theorem 2.1 can be proved in any space dimension.

3 Proof of Theorem 1

3.1 Approximating systems

We shall approximate Problem (P) by regularized systems; i.e., systems with positive
mobility and smooth bulk energy. For § > 0 we introduce positive mobilities Qs(u,v) by
defining (see Fig. 1)

(%-1-5)2—1)2 if vE[O,%—}-g],
Qu(v) =4 & [1+(1+5) (v—%)l] if v>1l49
Q25(—v) if v<0,

Q1s(u) = Qaslu — 3),
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and setting

Qs(u,v) = Q15(u)Q2s(v).

Q26 (v)
// \\\
// \\\
/ \,
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
/ \
// \\
N
149
2 v

Fig. 1. The function Qg5(v).

With this choice we have Q% € Lip(IR) and

2 2
Qis — Qi uniformly in C'(supp [Q4]4).

For o € (0,1/2) we choose F!(s) such that (see Fig. 2)

-1
( [1—%] +1Ino, if s<o,
F(s) = ¢ Ins+1, if 0<s<1-og,
fo(8), if 1-o<s<?2,
\ ]-, if 522,

where f, € C'([1 — 0,2]) has the following properties:
fe <F', [f2 >0,

fa(l - U) = F,(l - U)’ fa(2) = 1;
fo(l=0)=F'(1-0), f5(2)=0.
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Fig. 2. The function F.(s) (the dotted curve is F'(s)).

Defining
1 7,
Fo(s) = =+ [ Fi(€) de,

we have
F, € C*(R), F,(s)<F(s) if 0<s,
F!'>0, F,(s)=F(s)if o<s<1l-o.
Note that F, is defined for all real values of s, whereas F' is defined for s > 0 only. We
also introduce U, V such that

||U||c2(]R) < U, ||V||(12(]R) < W,
Ulw)=ou(l—u) f0<u<l, V@)=-pF?%if —1<v<l
and we define the approximating homogeneous free energies as follows:
Folu,v) = Fo(u+v) + Fo(u —v) + Fo(1 = (u+0)) + Fo(1 = (u—v)) + U(u) + V(v).
We observe that

4 _
~Uy—Vy— - < Fy(u,v) in R? and F,(u,v) <U(u)+V(v) in B. (3.1)
Applying Theorem 2.1, for each 6,0 > 0 there exists a solution (us,, vss) of
up = [Qs (U, V) (Foy (U, V) — €Ugg)4], (z,t) € Qr
®.) v = —Qs(u, V) (Fop(u, v) — €Vzy) (z,t) € Qr
7wy = v, = Qs(u, V) (Fou (U, v) — Ugg) =0 (x,t) € ST
u(z,0) = ug(x), v(z,0)=vy(z) x € Q.
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We shall hereafter denote by (Pj), Problem (Ps,) where F, is replaced by F, and we
shall denote by dg, 0¢ generic positive constants .
First of all we observe that

use (t) =g € (0,1). (3.2)

Lemma 3.1 There exists a constant C independent of §, o such that the following esti-
mates hold for all § < by, 0 < 0y

(i) | uso || Loo 0,7 11 (0)) < Crh,
(ZZ) ||U60||L°°(OT H1(Q)) < (i,
(iti) 1Q5" (Fou = etsous)allizar < Ci,
(iv) 1Q5" (For swm)np (ar) < Ch,
(v) ||U6¢rt||L2(0,T;(H1 n <Oy,
(vi) ||Qg”%aat||mﬂ s Ci,
(vii) | Fo (tsos Vso )l oo 0,13 1 (2)) < Cr-
Proof.  Choosing ¢ = (Fyy — EUsoze) and ¢ = (Fyy — EVsopr) as test functions in the

equations for us, and v, respectlvely, we obtain

2/“5m 2/1)50,35 + /.7: Use (1), vso () +

+//Q6 ou ‘Suda:c:c + //QJ ov 5“(50:5:5) =
:§/u0m+§/UOI+/fg U, V)
Q Q Q

for almost every t € (0,7 (see [9] for a detailed proof). Using (1.4) and (3.1) we obtain
2/u¢50w /Uéaw + /‘7: Uso ) Uso (t))+

+//Q5 ou — EUsogz )y +//Q5 o0 — EVsoaz)” < Co 33)

which implies (i), (iv) and (vii) since —1 < F,. Using Poincaré inequality and (3.2), (i)
is also verified. To prove (vi), we choose ¥ = vs51/Qs(Uss, Vss) as a test function in the
second equation of (P, ), which yields

// Qs( 11);:1)50 _// ov — EVsoax)Vsor < (//QJ ov — EVsozz) ) (// vdot) .

Since Qs < 1 for § small enough, in particular it holds that

/U?U(t) < 2/1}3 + Qt//vgot < ¢19
Q Q Q4
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which together with (3.3) implies (%i). Finally, (v) follows since

[[ues <(//Q5 . ) ( //¢2)

for all ¢ € L*(0,T; H(Q)). O

/2

Arguing in a standard fashion (see [3] for a proof) we have

Corollary 3.2 There exists a constant Cy independent of 0 < 0 < g9, 0 < § < g such
that
~ 027

< Cs.

[[4s61] o

losell_o (34)

1 —
3(QT)
1

3.1

Qr) —
3.2 Systems with positive mobility

Throughout this subsection we fix 6 > 0, and assume the mobility to be given by the
form Q;(u,v) introduced in subsection 3.1. However, we remark that the results in
this subsection are independent of the particular form of the mobility, and hold for any

Q(u,v) € C(R%;TR) with 0 < Quin < Q < Qmax-
By Corollary 3.2 we can extract a subsequence (still denoted by (uss, vs,)) such that

(Uso, Vso) — (ug,vs) uniformly in Qp as o — 0 (35)
us € CY25 (), vy € CO23(Qy).
We now demonstrate that the limit (us,vs) lies within the square B.
Lemma 3.3 For all 0 < § < &y,

Q7 \ B(us,vs5)| = 0.

Proof. Let N denote minus the inverse of the Laplacian with zero Neumann boundary
conditions: given f € (H'(Q))Lu:={f € (H' ()" : (f,1) = 0}, we define Nf € H' ()
as the unique solution of

JONpw = (f.0) Ve e HY@)

Q
!Nfz&

By (3.2) and Lemma 3.1 (3), N (us, (t)—Ts,) is well defined. Choosing ¢ = Q5N (uss —T55)
as a test function in the equation for us,, we have

T

/<u60t7 Q5 'N(uso — Uso)) dt =

0
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= _// ou — EUdozz z(N(u&f - uJU + // Q(S Uu gu&mmc) QJz -

= —// Uss — Usg) Fyu — //u(m + //Q5 ou — EUsgzz) sz

Choosing 1 = Qj;'vs, as a test function in the equation for vs,,
//levéavdat = _//’U(Saj:av - 5//’0201-
Qr Qr Qr

Summing the two above identities, we obtain

// (Use — Uso) Fou + //Uao]:ov =
O Gr

T
= - / (101, Q5" N (s — W37}t — & / / ul,, +
+//Q5 ou 5“601:1: Q(Sm _/ Q5 Vo Vot — //Uggx

The estimates in Lemma 3.1, the lower bound for Q)s, the fact that ||Qs||c: < 2 for 6
sufficiently small, and the definition of N imply

// [(Uso — Uoo) Fou + Voo Fou] < c11 (3.6)

(where ¢17 = ¢11(6)). We now exploit the sign property of the integrand at the left hand
side. To this purpose, we observe that the following identity holds for any ¢ € IR:

(u = ¢) Fou(u, v) + vF oy (u,v) = {(u+v) [Fi(u+v) — 1]+ (u — v) [FL(u —v) — 1]+
+(1—(u+0)[Fi(l—(u+v))—1]+
(1= (=) [Fo(l = (u—v)) — 1]} + (3.7)
—cFl(u+v)—cF.(u—v)—(1—¢)F.(1— (u+v)) —
—1—-e)F.(1—(u—2))+ (u—c)U'(u) +vV'(v) + 2

The terms inside the double brackets are bounded from below since

0 < s[F.(s)—1], s <0,

—1-1 < ollno—1]<s[Fi(s)—1]<0, 0<s<go,
—% < slns=s[Fl(s) —1] <0, c0<s<1-og,
-2 < s[Fi(s)—1] <0, 1-0<s5<2,

0 = s[F.(s)—-1], §>2
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for 0 € (0,1/2). Since U’, V' are uniformly bounded, setting ¢ = us, = ug € (0,1) in
(3.7) and noting that F! < 1, it follows from (3.6) that

—// [F (use + v55) + F(Use — V5)+
Qr

+F;(1 - (u&f + UJJ)) + Fé(l - (u&f - Uéa))] < ca.

(3.8)

To complete the proof, suppose by contradiction |Qr \ B(us,vs)| > 0. Since the argument
can be repeated for each side of the box B, we can assume without loss of generality that
the set

A= {(.’L’,t) € Qp:us+v; < 0}

has positive measure. Since F. < 1, the estimate (3.8) gives

- /A F;(uda + véa) S C13.
Note, however, that the uniform convergence of us, and vs, implies that
VA>0do):use +050 <A Ve €A, 0<o0y;

therefore, due to the convexity of F,, F!(us, + vss) < F.(A). Hence

. ! _
e > —lim [[ Fi3) = —|A/tn A+ 1),
which leads to a contradiction for A sufficiently small. O

In the next Lemma we derive additional estimates which will allow us to pass to the limit
as 0 — 0 in Problem (Pj,). To simplify the notation we define the function

¢o(s) = Fy(s) + F7(1 - s),
which is positive in view of the definition of F.

Lemma 3.4 Let § > 0 be fized. Then there exists a constant Cs which is independent of
o such that

(i) | Fov (oo, Vso) || L2(0r) < Cs,
(ZZ) ||u60ww||L2(QT) < 037
(Z”) ||U5¢I$$||L2(QT) < 037

(iv) //soa(uaa + Vs0) (Uss + Vo5 )2 + //%(uaa — V55 ) (Uso — V55 )2 < Cs.
QT QT



R. Dal Passo et al. Allen-Cahn/Cahn-Hilliard System 15

Proof. From Lemma 3.1 (iv) we have

//fazv + 28// (Fa’u)wvdaw + 52//7)?03” < ca. (39)
Qr Qr Qr

Defining Hsy = Foy — EUsozz, SINCE Ugyy| s, =0
JHoo0) = [ Fouluso(0) 030 (1)
Q Q

and from Lemma 3.1 (i),

//Hga:c < 5.

Qr

Hence we can write

//f3u+25//(fUU)zudax+52//u§amx://Hga:
Qr Qp Qr Qp
- [T ([T < [ s [ 7
Qr Qr Qr Qr

where cp denotes the Poincaré coefficient. Summing this inequality with (3.9) we obtain
//fgv + 26// [(Fou)zuéam + (fUU)$v5Ul‘] + Z‘:2// [ugazz + Ugaxx] S C16-
QT QT QT

From this estimate, the Lemma follows recalling that ¢, > 0 and observing that

(fau)wuéax + (fov)xvéaw = Qo (uda + U(Sa')(uda + /U(Sa')i_*"

2 " 2 " 2 (3'10)
+Po (U«Sa - Uéa)(uﬁv - Uéd)z +U (utsa)uém +V (UJU)UJM

and using the definition of U, V and Lemma 3.1 (3),(%) to bound the last two terms. O

We can now state the following result.
Proposition 3.5 For each 0 < § < 0y there exists a triplet (us,vs, ws) such that:

(i) us,vs € L>®(0,T; H'(Q)) uniformly in 6;
(ii) us € C¥25(Qr) and vy € C¥23(Qr) uniformly in 6;
(iii) ug € L*(0,T; (H'(2))') and Qg%v(st € L*(Qr) uniformly in 6;
(iv) Usez, Vsgw € L2 (Q7);
(v) [\ B(us,vs)| = 0;
(vi) Fy(us,vs) € L*(Qr) and F,(us,vs) € L .(D(us));
(vii) ws € L*(Qr) uniformly in 6;
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(U“Z) UJ(.T, O) = uo(x)i ,UJ(xa 0) = ’Uo(af),‘
(ir) Use|g, = Vsalg, =0 in L*(St);
(z) (us,vs, ws) solves (Ps) in the following sense:

(use, ) dt = [ [ Qi (ws, vs)wsoe Vo € LT H'@),  (3:11)
Qr

/ / vath = — / / Qs (s, v5) (F (s, v5) — cvsea) Vb € L2(Qr),  (3.12)

//wwﬁ = —// (Fulus,vs) — €U5m;)(Q§ (us,V5) @) (3.13)

for all ¢ € L*(0,T; HL(Q)) with compact support in D(us).

Proof. Let {(us,vs5,)} be the sequence given in (3.5). By Lemmas 3.1 and 3.4, it can
be seen that

Uso, Voo — Us, Vs in L (0, T; HI(Q)),
Uso, V5o —— U§, Vg in L? (O, T; HQ(Q)),
Usgt — Ut in L2 (0: T; (Hl(Q))I)a
_1 _1
Q5 > (Uso, Voo )Vsot  — Q5 (us,vs)vse in  L*(Qr),
Q(? (u&n ,U(sa)(ftfu - gu(Famm)m — Ws in L2 (QT)

Recalling also Corollary 3.2 and Lemma 3.3, (7)-(v) and (vii) now follow. Lemma 3.4 (3)
implies that
f(m(u&n U&U) —4g in LZ(QT)a

since Fyy (Uso, U5y ) converges pointwise in B(ug, vs) and |Qr \ B(us, vs)| = 0, it follows that
g = Fy(us, vs), which proves the first part of (vi). In order to prove the second part, we
recall that

Fou(u,v) = Fo(u+v) + Fo(u—v) = Fo(1 = (u+v)) = F;(1 = (u—v)) +U'(u)

g

Fou(u,v) = Fi(u+v) — Fl(u—v) — Fi(1 — (u+v))+ FL(1 = (u—v)) + V'(v).

This structure suggests that each term of F,,(uss,vss)) is uniformly bounded in L?(Qr)
away from {us; = 0} and {us = 1}. We prove this in detail for the first term. Let
K CD(us) be compact; then

n

Kc{n<us<1-n}, g<u50<1—§ in K
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for a suitable n > 0 and for o sufficiently small. Let us consider the sets
K, = KN {usy +vs <n/2}, K =K\K,

in K we have

0> Fl(use +v50) — 1> Fo(n/2) — 1> ¢17. (3.14)
In order to estimate F!(us, + vs,) in K., observe that the following relation holds:

0>F(u+v)—1>F.(u+v)+ F.(1—(u—v))—2=
=Fp+ Fi(u—v)+ F.(1— (u4v))=V'(v) —
From its definition, in K! we have us, — vs, > 1/2 and 1 — (us, + vs5) > 1 — n/2; hence
0>Fl(u+v)—1> Fo+F.(n/2)+ F.(1—n/2)—V'(v)—2>
> Fov+cCis

which, together with (3.14), implies

//[F Uso + Vs) — 1]° <019+2//

Repeating the same argument for the other terms, we conclude that

//fgu(uaa,wa) < oo + 8//}‘2
K A

Fau(uéaavda) —_— fu(udavd) in Lloc(D(ud))a (315)

which completes the proof of (vi).
The property (viii) is straightforward; by compactness we have that

use — us in L*(0,T; H>2(Q)), A >0, (3.16)
vse —> vs in L2(0,T; H>2()), A >0, (3.17)

and therefore

which imply (iz).
To prove (z), we pass to the limit as ¢ — 0 in the first equation of (P, ), obtaining

T
[ s, 8) dt = = [[ Q3 (us, vsywsn Vo € L2(0,T5 HA(@));
0 Qr

passing to the limit in the second equation of (Ps,) we have

[ st = = [ [ Qs s, v6) (Folus,vs) = cvsaa) 0o € L(Gr).

To identify ws, we observe that for all ¢ > 0 and all ¢ € L?(0,T; Hy(Q2)) the following
identity holds:

//QJ u&aavdg)(Fau 5”60:5:5 // ou u507 U&U 5“60wx)(@§ (uéaavﬁa)¢)w- (318)

By (3.15), (3.16) and (3.17) we can pass to the limit on the right hand side of (3.18),
provided ¢ is compactly supported in D(us). O
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3.3 The degenerate system

Proposition 3.5 allows us to select a subsequence, which we still denote by (us, vs, ws),

such that _
Ug, Vs — u, v uniformly in Qp,

ue C%8(Qr), ve Chri(Qy), (3.19)
ws — w in L*(Q7).

We already know by Lemma 3.3 that (u,v) € B; in the following Lemma we prove an
estimate which shall enable us to improve these bounds. Let x4 denote the characteristic
function of the set A, and let

G(u,v) =v[In(u —v) +In(1 — (v + v))] Xp>0 — v [In(u + v) + In(1 — (v — v))] Xv<o-

Lemma 3.6 For all 0 < § < &, G(us,v;) € L*(Qr), and for § € (1,4] there exist two
positive constants fy, Cy independent of § such that for any t € (0, T]

7 / Q3" (vs(1)) - 2 / / Qua(us) @55 (v5) G (s, v5)+

(3.20)
+ebo / Qui(us) Q3 (v5), < 5 [ Q57 (w) + €1 + € / Qi (v).
Q

Proof. ~ We choose ¢ = —Q25(v5) P Qhs(vs)X[0,q as a test function in (3.12). Observe
that, since (ug,vs5) € B, we have

Q'5(us) =1 =2us, Qys(vs) = —2vs.

Since vs; € L%(Q7), for all ¢ € (0, T] we obtain

1 1
o7 @5 s(0) = 57 [ Qi () = — [ Q3 Qv =
Q Q Q4

1 1 (3.21)
= =2 [[ Q@i vsF, + 22 [[ Qus Q5 vsvsne.
Qt Qt

From the definition of G and F, we can write the identity
G(us, v5) = —vsFy(us, v5) + vs In(us + v5) Xos>0 — Vs In(us — V5) Xus<ot
—vsIn(1 — (us + v5)) Xog<o + Vs In(1 — (us — v5))Xos>0 + Vs V' (vs)-
Since us > 0, we get
0 > vsIn(us + v5) Xos>0 > Vs In(vs)Xus>0 > —1/e,

and similar inequalities hold for the other logarithmic terms on the right hand side. Hence

4
0> G(u(;, U(;) > —g — ’1)5.7:1,(’&5, U(;) + ’U(;VI(U(;), (3.22)
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which implies that G (us,vs) € L?(Qr). Substituting (3.22) into (3.21), we obtain
1 1-8 1 1-8 <
= [ Q25" (05(t)) = 57— [ Qa5 (v0) <
-1 -1y

= 2//Q1‘5Q§5_BG + 021//Q;gﬂ + 28//@16@%5%51)5”. (3.23)
o8 g, o

It remains to estimate the last integral at the right hand side of (3.23). Integrating by
parts, we write

1— 1—
//Q15Q25 P 050500 = —//Q'm@gg P vstsese +
Q4

Q4

_//QMQQ_&ﬁ [Q2(5 + 2(ﬂ — 1)’[}?] U(?z = ]1 + 12‘
Q4

A straightforward calculation shows that

-11

QQ(U)-FQ(ﬂ—l)UZzﬂO = mln{ﬂT’Z} > 0, _%SUS

N | —

Since, by its definition, Qq5(v) > Q2(v) for v € [—1/2,1/2], it follows therefore that
I, < —50//Q15Q2_5ﬁ7)§z-
Q
Applying Cauchy-Schwarz and Young’s inequalities to I;, we have
[<1 —B,2 1y \2)2—8,2,2
1] < 250 Q15Qa5 Vs T 022 [ [ Q1 (Q'5) Qo V55,
Qt Qt

Since (us,v5) € B, we can make use of the following simple properties of B:

lv| < 2u(l —u)
11— 2u| < 4(; —v?),

(u,v) €§:>{

which imply that

[vs| < 2us(1 — us) < 2Qhs,
(Q15)% = (1 — 2us)? < 16(3 — v3)* < 16Q3%;.

Therefore

1 _ _ 1 _
\11\ < 550//@15@2?”% + 023//|U6|Q35 ﬂuﬁz < 550//@15@25%?;5 + Cos
Qq Qy Q¢
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since § < 4. Collecting the estimates of I; and I, we finally obtain from (3.23)

1 1— 1 1—
5o / Q55" (0s(t) ~ 55 / Q3" () <

g s 5, (3.24)
< a5 +2 [[ QuQi G + e [[ Q" — e [[ Qus Qi 3
(o} Q (o8
which completes the proof of the Lemma. O
Corollary 3.7 There exists a constant d > 0 such that
1 1 _
o(z,1) € [—5 i, - d] V(z, 1) € Or; (3.25)

i addition,

|D(u) \ B(u,v)| = 0.

Proof. Applying a Gronwall argument to (3.20) with # = 3 and noting that G(us, vs) <
0, we obtain

[ @ s(1) = [ Qusls) Q3 (us) Glus, v3) + [[Qus(us)Qa wa)vie < oo (3:26)

Suppose by contradiction that v(zo,to) = —1. The uniform convergence of vs implies that
for any v > 0 there exists d, > 0 such that

1 1
lvs(z, to) + §| <|vs(z,to) — v(z,to)| + |v(z, to) + §| <y 4 Cylz — xo|/?

for all § < 4, z € Q. Therefore, by (3.26) and (3.22)

-2

c >/ Lo >/1 52 (v+ Culz — 2|2 +6) T V5< 6
%> [ (5 v = [(1+8)7 (v +Cilz —zol'”” +6) <4,
Q Q

which implies
Co6 > /(’Y + Cilz — zo|'*) 72
Q

a contradiction for v sufficiently small. Thus v > —% in Q7. Similarly we may show that
v < % in Qr, and the first assertion follows.

To prove the second statement, suppose by contradiction that the set D(u) \ B(u,v)
has positive measure. Without loss of generality we can assume that the set

A={(z,t) €Qr:u+v=0, u>0}

has positive measure. Then, defining A" = AND, (u), we have |A’| > |A|/2 for n sufficiently
small. By (3.19) and Lemma 3.3 it follows that

Vy>0368,>0 st. 0<us+uvs <7y and |us —u| <~y ae. in A, V§<d,; (3.27)
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it is now easy to check that almost everywhere in A’

2n 1 7 n n
§<U5<§+§ and U(5<—§ V’}/E(O,g),5<(57 (328)

From (3.26) and the definition of G, we obtain
//Q15Q2_52|U¢5 In(us + vs)|Xvs<0 < _//QléQQ_JQG(UJa v5) < Cop. (3.29)
QT QT

Since

Q| =

(s In (s 4 v5) Xus>0| < [0 In(v5) Xos>0] <

?

using (3.29) and (3.25) we conclude that

//Q16|U5 In(us + vs)| < cor,

Qr

and a contradiction now follows for 7 sufficiently small, taking (3.28) into account and
arguing as in the proof of Lemma 3.3. O

In order to pass to the limit as § — 0 we need an estimate independent of § on the
second derivatives of ug, vs and for the singular terms F,(us, vs), Fy(us,vs). The next
Lemma provides such an estimate on any compact subset of D(u).

Lemma 3.8 For any K CD(u) compact there ezist positive constants 6k and Ck such
that the following estimates hold for all 6 < 0k

|useall L2y < Cry || Fulus, vs)||2xy < Ck,
|VszallL2x) < Crs | Folus, vs)llr2(x) < Ck-

Proof. Let K C D(u) compact; then K C D, (u) for some n > 0. Since there exists
a positive distance between D, (u) and Qr \ D2 (u), it is possible to select { € C*(Qr)
such that 0 < <1, (= 11in Dy(u), ¢ = 0in Qp \ D,/2(u) and ¢, = 0 over Sy.

Choosing ¥ = [Q5(Use, Vso )] C*seee as a test function in the second equation in (Ps,),

we have
//CZlevﬁawwvtfat = _//CZ(]:(IU - 5”60:6:6)7)60.%.%- (330)
QT QT

By the choice of ¢, Corollary 3.7 and the equicontinuity of {us,} and {vs,}, the following
properties hold for 0 < 6 < 0k and 0 < 0 < o(d):

Uss € [g,l— g] in supp(,
vir € =5+ .5~ -
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Hence

_ 1 (1 d B €
//CQQJ lvéaxxv&rt < ile (g) Qggl <§ - Z) //<2Q5 lvgat + 5 /CQU(?W,
Qr Qr Qr

where we have used the Cauchy-Schwarz and Young’s inequalities. Therefore, it follows
from (3.30) and Lemma 3.1 (vi) that

g[)[g%?amm B 4[42:;'01;’0601;1; <ecp VYV 6<k, 0<0o(d) (3.31)

We now choose ¢ = C2Q15(us0)[Q26 (vs5)] ! as a test function in the first equation of (Pg,),
where Q15(u) is defined by

Q1(5 Q15
obtaining
T
/ Usot, (°Q15Q54' ) d / / Cttsoe(Fou — EUsoas)st
0
T / / Q15G10Q57 Uigtsos Fru — ) (3.32)

_// leJQlJ( ou su&mw) - Il + 12 + I3

It easily follows from the energy estimates in Lemma 3.1 and the definition of ¢ that

T

/<U60ta C2Q16Q2_51> dt

0

+|IQ|+‘I3‘ < ¢y i (5<(5K, O'<O'((5).

Let v > 0 be a constant to be chosen later: integrating I; by parts and using the Cauchy-
Schwarz and Young’s inequalities we find that

I < [2 / C Foutisons — 5 /Q/ e+ 5 /Q / CFL, +2(e+ ) / (T

Note that the last integral on the right hand side is uniformly bounded. Because of the
definition of ¢ and arguing as in the proof of Proposition 3.5, we find that

% / / CPF2. < ey + 4y / / C2F2, (3.33)
Qr Qr
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We now proceed to bound the right hand side of (3.33):

ay [ 272, <8y [ [ A(Far = v30an)? + 806" [ [ 0, <
Gir G Gir
S 8’)/031// ngé(fav - 5U¢SJ$$)2 + 8’762//€21)§o'$$1

QT QT

and therefore, choosing v < 1/(32¢) and recalling Lemma 3.1 (iv) it turns out that
0 [[EF <o+ 5 [[ oo (3.34)

Qr Qr

Summing (3.31) and (3.32) and using the estimates above we have

€ €
5//C2U§aww + Z//C%gom — //42 [Fouwlisore + FovVsozs] < C33- (3.35)
Qr Qr Qr

Integrating by parts the last integral at the left hand side and recalling the identity (3.10),
we obtain

_‘//C2 [Fauuéaxx + fo’v”daxw] = _// (CQ)wzc]:o + //<2 [U”(dea)uggz + V”(U(Sa)vgg-x] +
Qr Qr Qr
+//C2 [(pa(uéa + Uda)(uéa + U&a)i + Qoa(uda - Uéa)(uéa - Udo)i] .
Qr

Since F, is uniformly bounded in L'(Qr) by Lemma 3.1 (vii), the second integral is
uniformly bounded and the third is positive, we obtain

// C2 [fauudaww + favvdaww] S C34.

Qr

Therefore, from (3.35), we can conclude that
€ 2,2 € 2,2
5//C uéau—i-z//( Vipww < C35 ¥V 0 <0k, 0 < ().
Or O

Combining this estimate with (3.34) and (3.33) we obtain, moreover, that

//CQf,?u < c36, and //C2}—3@ < ca7.
QT QT

The assertion now follows by means of the definition of {, the lower semicontinuity of
L?-norms and the arbitrariness of K. O
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Proof of Theorem 1. Let (us,v;5) be the sequence given in (3.19). Using Proposition
3.5 and Lemma 3.8 we have

us,vs  —=  w,v in L*(0,T; H'(Q)),
(),

Uz, Vi — Uy, Uzg in loc(
Ust —_— Uy in L2(0a Ta (Hl(Q)) )7
Vst —_— V¢ n L2 (QT),

and (7)-(ii) follow. Property (iv) is a consequence of Corollary 3.7. From Lemma 3.8 we

obtain
fu(U5,U5) — G in Lloc(D( ))’

Fv(u57v5) — g2 in Lloc(D(u))'

Since |D(u) \ B(u,v)| = 0 and us, vs — u, v uniformly in Qr, we have

Fulug,vs) — Fulu,v) in D

—~

w),

u,v) and (v) is proved.
) compact; then K C D, (u)
such that 0 < (<1,(=1

and therefore g = F,(u,v). By the same argument g, = F,
Property (vi) is straightforward. To prove (vii), let K CD(
for some 1 > 0. Since u € C(Qr), we can select ( € C*®°(Qr
in D, (u) and ¢ = 0in Qr \ D,2(u). Hence we have

\_/gf-\

\|Cus]| 20,3 m2(0)) < €38,
| (Cus)ell2 om0 ()yy < €39,
which implies that
(Cus)y — (Cu), in L2(0,T; H2(Q)), A > 0. (3.36)

The continuous embeddings
1
L2(0,T; H(Q)) CL2(0, T; H2(99)) C L*(0, T; L*(09)), A < 5

yield
(Cus)als, = (Cu)als, in L*(S7)
and therefore u;|g ~x = 0. Now (vii) follows applying the same argument to v,.

Finally we pass to the limit as § — 0 in equations (3.11)-(3.13) to prove (viii). The limit
is straightforward in equations (3.11) and (3.12). With respect to (3.13) we observe that

1 1 1 1 1 1 1 1
(Qg Cb)x = 5@152 Q,15Q225U6x¢ + §Q252 QIQJQfJUsz’ + Qf Ps
and, for all ¢ € L?(0,T; H;(Q2)) with compact support in D(u), each term converges

strongly in L?(Qr) because of (3.36) (with the analogous convergence for v) and the fact
that v € (—3, 5). This completes the proof of the Theorem. O
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