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Abstract

In this paper we study the in~uence of latent heat on kinetics of martensitic phase transitions
and derive a relation between the velocity of an adiabatic phase boundary and the corresponding
driving force "kinetic relation#[ Inside the phase transition front we adopt a non!isothermal
version of the viscosity!capillarity model[ We show that if the latent heat is di}erent from zero\
a _nite value of the driving force must be reached\ before the transition front can move^ this
e}ect of thermal trapping may contribute to martensitic hysteresis[ In the adiabatic case the
kinetic relations are non!monotone and non!single!valued\ reproducing some _ne features of
the kinetic relations obtained previously for purely mechanical discrete models with bi!stable
elements[ We show that in its gross features\ our kinetic model is similar to the conventional
model of dry friction[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Keywords] A[ Phase transformation^ A[ Thermomechanical process^ A[ Dynamic fracture^ B[ Stress waves^
C[ Kinetic relations

0[ Introduction

The interest in dynamics of phase boundaries in elastic solids is stimulated by the
necessity to understand the constitutive rate sensitivity of shape memory alloys[
Materials of this type primarily deform through the correlated migration of mar!
tensitic phase boundaries and it has become common to model their peculiar behavior
in the framework of elasticity theory with non "quasi# convex stored energy[ Physically\
the non!convexity of elastic energy re~ects bi!stability of the constitutive elements[
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Propagation of the phase boundary may then be viewed as an auto!catalytic process
of internal buckling or ~ipping over of these elements^ high mobility of the {switching|
waves is a result of the continuity of atomic lattice "no slip# and the associated
smallness of the energy barriers[

The objective of the present paper is to study the adiabatic phase boundary propa!
gation in a thermo!elastic bar[ The one!dimensional continuum model used for the
description of the internal structure of the transitional region includes three coupled
partial di}erential equations\ representing the conservation of energy\ linear momen!
tum and mass "strain compatibility#[ The material is considered to be heat conducting\
additional dispersive terms are added as in strain gradient elasticity\ and non!thermal
dissipation is described by Kelvin viscoelasticity "Slemrod\ 0872\ 0873^ Truskinovsky\
0871\ 0874#[ We focus on the traveling wave solutions and obtain an explicit necessary
condition of admissibility for subsonic phase boundaries "kinks#[ This condition\
which does not follow from the overall balances on the jump discontinuity\ is often
referred to as a kinetic relation and has its well known counterpart in dynamic fracture
mechanics "Freund\ 0889^ Truskinovsky\ 0882#[

There exists a considerable literature on dynamics of martensitic phase boundaries
in a purely mechanical setting "e[g[ Abeyaratne and Knowles\ 0880a\b^ Gurtin\ 0882^
Truskinovsky\ 0876\ 0886#[ In this class of models\ it is assumed that the removal of
heat is instantaneous on the time scale of dynamics and that the motion is controlled
by the kinetics of structural transformation[ An alternative approach\ which dates
back to Stefan\ assumes that the motion of the phase boundary is governed by the
removal or supply of latent heat^ in this purely thermal description both structural
transformation and stress relaxation are considered instantaneous at the time scale of
heat propagation "e[g[ Leo et al[\ 0882^ Zhong and Batra\ 0885#[

Recent experiments with shape memory wires "Shaw and Kiriakides\ 0884^ Shield
et al[\ 0886# demonstrated unambiguously the in~uence of thermal e}ects on the
overall rate of phase transformation as well as on the size "and shape# of the hysteresis
loop[ The theoretical models\ based on Stefan|s approach\ brought some interesting
results[ Thus\ analysis of the traveling waves by Bruno et al[ "0884# "see also Malomed
and Rumanov\ 0874#\ showed that\ in the absence of convective heat exchange with
the environment\ an isolated interface will be stationary until a certain threshold is
reached^ then at a critical driving force the interface can move arbitrarily fast[ With
the convection term included\ purely thermal theory successfully reproduces
su.ciently slow!rate experiments[ At the same time\ the in_nite speed of trans!
formation at a critical stress is incompatible with the quasistatic approximation which
suggests that at least for the simulation of high!strain!rate tests the mechanical
description has to be re_ned[

It is therefore of interest to analyze the dynamics of phase boundaries from the
perspective of a more general model of martensitic phase transition which treats
simultaneously inertia and heat release[ In the realistic case where the thermal bound!
ary layer is much smaller than the size of the body\ a phase boundary can be treated
as thermally isolated or adiabatic[ Although in this approximation heat conductivity
is considered only inside the transformation front\ the overall kinetics is strongly
a}ected by the rate of redistribution of the latent heat[
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Phenomenological kinetic relations for the adiabatic case can be formally con!
sidered in a form identical to the case of isothermal phase boundaries "e[g[ Abeyaratne
and Knowles\ 0883b#[ In an attempt to derive kinetic relations from a micromodel\
Slemrod "0873# and Truskinovsky "0874# studied the structure of the adiabatic phase
transition waves in the framework of a non!isothermal viscosityÐcapillarity model
under the assumption that the coe.cient of heat conductivity is large^ Turteltaub
"0886# has recently obtained an exact solution in this limiting case for a tri!linear
elastic material[ Some mathematical results concerning the existence of adiabatic
travelling waves outside this asymptotics can be found in the papers by Grinfeld
"0878# and Garcke "0884#^ the topological methods used\ however\ provided little
information about the resulting kinetic relations[

In the present paper we adopt a speci_c nonlinear stressÐstrain!temperature model
for the two!phase elastic material and study both analytically and numerically the
adiabatic kinetic relations in a wide range of nondimensional parameters charac!
terising dissipative and dispersive properties of the material[ While we observe a lot
of similarities between the isothermal and the adiabatic kinetics\ several new important
features emerge[

First\ in the case of non!zero latent heat\ a _nite value of the driving force must be
reached before the transition front can move "thermal trapping#[ Second\ the relation
between the phase boundary velocity and the corresponding driving force turns
out to be generically non!monotone[ In particular\ we observe that\ similar to the
conventional models of dry friction\ the velocity of su.ciently slow phase boundaries
may be a decreasing function of the generalized force[ This result is interesting in
view of a recent paper of Rosakis and Knowles "0886# who showed that the non!
monotinicity of the kinetic relation can lead to a stick!slip mode of propagation[ For
the special case of {in_nite| heat conductivity\ similar non!monotonicity of the kinetic
relations in the viscosity capillarity model was also observed by Turteltaub "0886#[
In the closely related non!isothermal GinzburgÐLandau model\ the non!monotone
character of the relation between the driving force and the interface velocity has been
long known "Patashinsky and Chertkov\ 0889^ Umantzev\ 0880#[

The most unexpected and previously unnoticed feature of the kinetic relations\
originating from the non!isothermal viscosity!capillarity model\ is their multi!
valuedness at low velocities[ Thus\ for a given state ahead of the transition front we
obtain several travelling wave solutions with internal pro_les di}ering by a number
of _nite oscillations in the front structure[ It is quite remarkable that our adiabatic
kinetic relations show close qualitative resemblance to the multi!valued {forceÐ~ux|
curves calculated numerically for the {failure waves| in bi!stable discrete lattices
"Slepyan and Troyankina\ 0873^ Marder and Gross\ 0884#[ Although the latter\ purely
mechanical models\ were developed to simulate radiational aspects of the propagation
of cracks\ an analogy between fracture and martensitic phase transitions\ having its
origin in the non!convexity of the elastic energy\ makes these discrete calculations
extremely relevant for our problem "e[g[ Truskinovsky\ 0885#[ The fact that the
above multivaluedness in the continuum model disappears when the latent heat of
transformation is put equal to zero\ suggests an intriguing relation between the
discreteness and thermodynamics[



S[!C[ N`an\ L[ Truskinovsky:Journal of the Mechanics and Physics of Solids 36 "0888# 030Ð061033

The outline of the paper is as follows[ In Section 0 we give the motivation of this
work and discuss the necessity of kinetic relations[ The equations of the regularized
model are derived in Section 1[ We then study the traveling wave solutions^ the
mathematical problem consists of _nding a heteroclinic trajectory for the system of
ordinary di}erential equations in 2D phase space[ Some interesting special cases that
can be studied analytically are considered in Section 2[ Numerical results for the
general case can be found in Section 3[ In Section 4 we reformulate our results in
terms of the functional dependence of the rate of dissipation upon the phase boundary
velocity[ Finally in Section 5 we give conclusions and discuss possible implications
for dynamic fracture[

1[ Motivation

Consider a simplest longitudinal deformation of a homogeneous bar with unit cross
section and let u"x\ t# be displacement of a reference point x at time t[ Introduce strain
w� ux and particle velocity n� ut\ where the subscripts indicate partial derivatives[
The standard balance of mass\ linear momentum and energy for adiabatic motions
take the form

wt � nx\ nt �sx\ et �snx\ "0[0#

where e"w\ s# is the speci_c internal energy "s is the speci_c entropy# and

s�ew"w\s#

is the stress[ The referential density is assumed to be equal to unity[ When sw"w\ s#× 9\
the system "0[0# is hyperbolic with three characteristic speeds

l� "9\2zsw"w\s##

and one cannot expect solutions to stay smooth[ On the discontinuities\ the system
"0[0# must be supplemented by the RankineÐHugoniot jump conditions

DðwŁ¦ðnŁ� 9\ DðnŁ¦ðsŁ� 9\ Dðe¦0
1
n1Ł¦ðsnŁ� 9\ "0[1#

where ð Ł� " #¦−" #− and D is the Lagrangian speed of propagation of the disconti!
nuity[ A convenient form of the jump conditions "0[1# can be obtained if particle
velocities are eliminated[ Then we get either

ðsŁ−D1ðwŁ� 9\ ðeŁ−"s#ðwŁ� 9\ "0[2#

where " #� 0
1
"" #¦¦" #−#\ or

D� 9\ ðsŁ� 9\ ðnŁ� 9[ "0[3#

The "degenerate# jumps of the second type\ given by eqn "0[3#\ are called contact
discontinuities[

To illustrate relation "0[2#\ suppose the stress and the strain in front of the dis!
continuity are prescribed\ say "s¦\w¦#[ Then eqn "0[2# describes two sets of points on
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the "s¦\w¦# plane called the Rayleigh line and the Hugoniot adiabat^ the two curves
intersect at "s¦\w¦# and possibly at one or several other points[ As it follows from
eqn "0[3# the jump transitions described by the contact discontinuities do not have to
belong to the same Hugoniot adiabat[

We will characterize material undergoing martensitic phase transformation by the
structure of its Hugoniot adiabat and assume that the Rayleigh line and the Hugoniot
adiabat may have up to three points of intersection[ This con_guration is schematically
shown in Fig[ 0[ One can show that when the speci_c heat at constant strain\

c�TsT"w\T#0 1e"w\s"w\T##:1T× 9\

is su.ciently large\ this assumption is a direct consequence of the nonconvexity of
the elastic free energy of the material as a function of strain[

For the particular con_guration shown in Fig[ 0\ one can consider two types of
jump discontinuities w¦ :ws

− and w¦ :wk
−[ Neither of them can be excluded based

on the entropy criterion\ which reads$

−DðsŁ− 9[

Fig[ 0[ Hugoniot adiabat for the two!phase material exhibiting both shocks w¦ : ws
− and kinks w¦ : wk

−[
The con_gurations of characteristics in the xÐt plane are shown in the inserts[

$ De_ne DA as a signed area between the Rayleigh line and the Hugoniot curve^ one can show that
DA � Ðs

−
s¦

Tds\ where T � es"w\ s# is the temperature and the integral is taken along the Hugoniot curve[
Then\ according to the entropy criterion\ it is necessary that DA − 9 "for D − 9#[
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There is\ however\ an important di}erence between the two types of jumps[ The _rst
discontinuity w¦ :ws

−\ which we call a shock\ satis_es the Lax criterion "Lax\ 0860#[

a− −D− a¦\

where

a�zsw"w\s#

is the adiabatic velocity of acoustic waves and

D1 � "s−−s¦#:"w−−w¦#

is the velocity of the shock[ In our case\ the Lax condition is equivalent to the
statement that four characteristics are entering and two are leaving the shock\ which
means stable interaction of the discontinuity with acoustic waves "see the insert in
Fig[ 0#[ The second transition w¦ :wk

−\ which we call a kink\ and which is sometimes
referred to as non!evolutionary or under!compressive shock\ violates the Lax criterion
since

a− −D and a¦ −D[

This means that three characteristics are entering and three are leaving which results
in an instability unless an additional jump condition is prescribed "see\ for instance\
Kulikovsky\ 0865#[

To check the Lax criterion one can use the following relation between the slope of
the Hugoniot adiabat and the adiabatic sound speed

0
ds

dw1H

−D1 � "a1−D1#00¦
w−w¦

1aT
a1−b1

b1 1
−0

[

Here the derivative on the left is calculated along the Hugoniot adiabat and we
introduced

a�wT"s\T#\

the coe.cient of thermal expansion and

b�zsw"w\T#\

the isothermal acoustic velocity which is always smaller than the adiabatic acoustic
velocity since

a1 �b1"0¦b1a1T:c#[

In the most general form\ the additional jump relation for kinks can be written as

c"w¦\w−\n¦\n−\T¦\T−\D#� 9[

The RankineÐHugoniot conditions and Galilean invariance allow one to reduce this
formula\ at least locally\ to a relation among only three variables\ say

c¹ "w¦\T¦\D#� 9[ "0[4#
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At the phenomenological level\ one can interpret this condition as a postulate about
the rate of entropy production at a jump discontinuity[% The explicit expression for
the dissipation is often formulated in terms of a relation between the thermodynamic
{force|

G0−ðsŁ

and the conjugate {~ux| D\ for example

D�H"G#^ "0[5#

moreover\ it is sometimes assumed that the function H is linear in D and the dissipative
function is quadratic*theory of {normal growth| "Truskinovsky\ 0876\ 0883a#[ Being
too special in view of eqn "0[4#\ a kinetic relation in the form of eqn "0[5# is sometimes
modi_ed by the introduction of an explicit dependence on average temperature\ say

D�H"G"T## "0[6#

or more generically

D�H"G"T#\"T##\

"see\ for instance\ Abeyaratne and Knowles\ 0883a\b#[ One of the goals of the present
paper is to derive a relation in the form of eqn "0[4# from the analysis of the internal
structure of the discontinuity and to check the validity of the special phenomenological
models leading to eqns "0[5# or "0[6#[

2[ The model

A purely dissipative regularization is su.cient to describe the structure of shocks[
In the case of kinks there exists an additional energetic barrier which material particles
have to overcome on their way from one phase to another[ In order to describe the
process of barrier crossing\ one needs a regularization\ which contains dispersive
terms "Truskinovsky\ 0886#[

In our model dispersion will be introduced through a strain gradient contribution
to the internal energy

e�e"w\wx\s#[

Then\ instead of eqn "0[0# we get

wt � nx\ nt � "s−mx#x\ et �snx¦mnxx−qx[

%The di.culty with the phenomenological approach arises from the fact that the additional jump
condition cannot be universally applicable to all jump discontinuities and must di}erentiate between shocks
and kinks[ Physically\ in the case of shocks\ the rate of dissipation is not constrained by the internal process\
which only controls the thickness of the interface[ Kinks\ on the contrary\ constitute a class of discontinuities
for which the internal structure has less ~exibility and the rate of dissipation cannot be prescribed arbitrarily
"see Truskinovsky\ 0886\ for more details#[



S[!C[ N`an\ L[ Truskinovsky:Journal of the Mechanics and Physics of Solids 36 "0888# 030Ð061037

Here

s�ew"w\wx\s#

is the stress\

m�ewx
"w\wx\s#

is the hyperstress "moment# and

q�−kTx

is the Fourier heat ~ux "k is the coe.cient of heat conductivity#[ The particular strain
gradient contribution will be taken in the form

e"w\s#�e"w\s#¦ow1
x\

where o is a positive parameter which characterizes the degree of nonlocality[
Suppose that in addition to heat conductivity\ there exists another dissipative

process of kinetic origin inside the transition region\ which we will model by a standard
"Kelvin# viscosity[ This brings an additional contribution to stress in the form

t� hnx\

where h is the viscosity coe.cient[ With these assumptions\ the system "0[0# reads

wt � nx\ nt � "s"w\s#−1owxx¦hnx#x\

"e"w\s#¦ow1
x¦

0
1
n1#t � ""s"w\s#−1owxx¦hnx#n#x¦1o"nxwx#x¦kTxx[ "1[0#

These equations constitute a non!isothermal extension of the viscosityÐcapillarity
model "e[g[ Slemrod\ 0873#[

As a _rst test of the model\ consider stability of a homogenous state[ Following the
standard procedure\ we look for solutions in the form expi"kx−vt#[ The dispersion
relation reads

p2¦p100¦
h

d1¦p0
h

d
¦

1o

d1
¦

a1

k1d11¦0
1o

d1
¦

b1

k1d11� 9\

where d�k:c is thermal di}usivity and p� iv:"k1d# is the growth increment[ The
Hurwitz criterion gives a necessary and su.cient condition of stability[ If k� 9 we
get

b1 −−1ok1\

which\ in particular\ means that for the in_nite domain the state is stable if and only
if the isothermal acoustic velocity is real\ b1 − 9[ A similar result for the case of
heat conducting media without viscosity and spatial dispersion was obtained by
Abeyaratne and Knowles "0883b#[ If the coe.cient of heat conductivity is identically
zero\ k�9\ it is the adiabatic acoustic speed that has to be real for stability] a1 − 9[
Since always a1 − b1\ the criterion based on isothermal sound speed is su.cient[
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To model the internal structure of the moving interface\ consider a special solution
of the system "1[0# in the form of a traveling wave

w�w"z#\ n� n"z#\ T�T"z#\

where z�x−Dt[ These three functions must satisfy the following system of ODEs

−Dw?� n?\ −Dv?� "s¦hn?−1owý#?\

−D0e¦ow?1¦
0
1
n11

?

� ""s¦hn?−1owý#n#?¦1o"n?w?#?¦kTý\ "1[1#

where prime denotes di}erentiation in z[ The system "1[1# is considered in the in_nite
domain with the following boundary conditions]

w"2�#�w2\ n"2�#� n2\ T"2�#�T2[

After integrating once\ eliminating velocity n and introducing instead a new variable
y�w? one can rewrite the system "1[1# in the form

w?�y\ y?�
0
1o

ðs"w\T#−s¦−hDy−D1"w−w¦#Ł\

T?�−
D
k 6e"w\T#−e¦−

0
1
D1"w−w¦#1−oy1−s¦"w−w¦#7[ "1[2#

We are interested in heteroclinic trajectories of the system "1[2# and the main problem
is to _nd restrictions on the set of boundary values w2\ n2\ T2\ D\ which guarantees
the existence of such a solution[ After the solution is known\ the rate of entropy
production can be calculated from

−DðsŁ� Ð�
−�"k"T?:T#1¦"h:T#"n?#1#dz[

We begin with the characterization of the critical points of the dynamical system
"1[2#[ The coordinates of these points satisfy the RankineÐHugoniot jump conditions
"see eqn "0[1##[ The corresponding matrix of the linearized system can be written
explicitly

A� &
9 0 9

"b1−D1#:1o −hD:1o −ab1:1o

−ab1DT:k 9 −Dc:k '[
The three invariants of A are]

S0"A#� tr"A#�−D"h:1o¦c:k#\

S1"A#� 0
1
""tr"A##1−tr"A1##�−"b1−D1"0¦hc:k##:1o\

S2"A#�det"A#�cD"a1−D1#:1ok[

Without the loss of generality assume D× 9[ By evaluating the three invariants S0\



S[!C[ N`an\ L[ Truskinovsky:Journal of the Mechanics and Physics of Solids 36 "0888# 030Ð061049

S1 and S2 at various intersection points of the Rayleigh line and the Hugoniot curve
from Fig[ 0\ we obtain the following characterization]

, Kinks "w¦ :wk
−#] w¦!saddle with 0D unstable manifold "S0 ³ 9\ S2 × 9#^ w9!stable

node or focus "S0 ³ 9\ S1 × 9\ S2 ³ 9#^ wk
−!saddle with 0D unstable manifold "S0 ³ 9\

S2 × 9#[
, Shocks "w¦ :ws

−#] w¦!stable node or focus "S0 ³ 9\ S1 × 9\ S2 ³ 9#^ ws
−!saddle with

0D unstable manifold "S0 ³ 9\ S2 × 9#[

The fact that kinks correspond to saddleÐsaddle trajectories\ while shocks cor!
respond to saddleÐnode "focus# trajectories is responsible for the di}erence in the
number of admissibility conditions[ Suppose that the state in front of the discontinuity
w�w¦\ T�T¦ is given[ This _xes one of the critical points\ and leaves the position
of the other one at w�w−\ T�T− unspeci_ed until the speed of the jump D is
prescribed[ Now\ the problem of admissibility can be reformulated as a nonlinear
eigenvalue problem with respect to D[ Since the saddle to node transition is structurally
stable\ the spectrum of admissible speeds for the shocks will be continuous[ On the
other hand\ since the saddle to saddle transition is not structurally stable\ one obtains
at most a discrete set of admissible Ds[ The branches of this set constitute what we
call a kinetic curve[

In order to be able to do numerical simulations\ we have to specify the expression
for one of the thermodynamic potentials\ for instance the speci_c free energy f "w\T#[
We make the simplest assumptions]

"i# Isothermal stressÐstrain curve is cubic^
"ii# Maxwell stress is a linear function of temperature\ sM �A¦BT^
"iii# The equilibrium "Maxwell# strains w0 and w1 are independent of temperature[

These assumptions lead to the following stressÐstrain relation

s"w\T#�A¦BT¦K"w−w0#"w−w1#"w−0
1
"w0−w1##

where A\ B and K are positive constants[ If in addition we assume that the speci_c
heat c is constant\ we obtain the following explicit expression for the free energy

f "w\T#�Aw¦BTw¦K6
w3

3
−

0
1
"w0¦w1#w2¦

0
1
w10

w1
0

1
¦1w0w1¦

w1
1

1 1
−w0w10

w0¦w1

1 1w7−cT ln
T
T9

[

Here T9 is some reference temperature[ To demonstrate the physical meaning of the
parameter B\ we calculate expressions for the entropy\

s"w\T#�−Bw¦cln"T:T9#¦c\

and for the equilibrium heat e}ect in the isothermal transformation "latent heat#\

Q�T"s1−s0#�−B"w1−w0#T[
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In case B× 9\ heat is released when material transforms from the low strain phase to
the high strain phase^ this also means that the equilibrium boundary in stressÐ
temperature space has a positive slope

dsM:dT�B− 9[

Now\ we can non!dimensionalize the main system of eqn "1[2#[ Introduce "i# A\ the
scale of stress^ "ii# zo:A\ the scale of length "capillary#^ "iii# A:c\ the scale of tempera!
ture[ Assume for simplicity that A�K which means that the width of the {hysteresis|
is of the order of Maxwell stress[ Then the system of equations will depend on three
main non!dimensional parameters]

W0 �
h

zo
\ W1 �

czo

k
\ W2 �

B
c

\

where W0 is the ratio of viscosity to capillarity\ W1 is the ratio of heat conductivity to
capillarity and W2 is a measure of the latent heat[ After the velocity _eld is eliminated\
the non!dimensionalized equation "1[1# takes the form

wý� 0
1
"s"w\T#−s"w¦\T¦#−W0Dw?−D1"w−w¦##\

T?�−DW1"e"w\T#−e"w¦\T¦#−0
1
D1"w−w¦#1−w?1−s"w¦\T¦#"w−w¦##[

"1[3#

Let us assume for simplicity that

w0 � 9 and w1 � 0[

Then

e"w\T#�w¦0
3
w3−0

1
w2¦0

3
w1¦T−0\ s"w\T#� 0¦W2T¦w"w−0#"w−0

1
#[

"1[4#

Equations "1[3# together with the constitutive relations of eqn "1[4# and the bound!
ary conditions

w"2�#�w2\ T"2�#�T2

will be the main focus of our analysis[ In the next two sections we present the results
of analytical and numerical study of the admissible domains in the "w¦\D# space for
the given T¦ and variable W0\ W1 and W2[

3[ Special cases

In this section we discuss some special cases which give important insights about
the generic behavior of the system[
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3[0[ Athermal medium "W2 �9#

In this most studied special case the temperature can be eliminated from eqn "1[3#
and the problem reduces to a purely mechanical one[ Physically the assumption
W2 �9 means either zero latent heat or in_nite speci_c heat^ in the latter case the
motion is also isothermal[ The relative simplicity of this asymptotics is based on the
fact that the phase space is two dimensional[

In the isothermal limit\ the main system of eqns "1[3# and "1[4# reduces to

w?�y\ y?� 0
1
ð"w−0#"w#"w−0

1
#−"w¦−0#"w¦#"w¦−0

1
#−W0Dy−D1"w−w¦#Ł[

"2[0#

The boundary conditions are

w"−�#�w−\ w"�#�w¦

and the only nondimensional parameter left is W0[ There exists a closed form solution
describing isothermal kinks "e[g[ Truskinovsky\ 0876\ 0883a#

w"z#�
w¦¦w−

1
¦

w¦−w−

1
tanh6

w¦−w−

3
"z−z9#7[ "2[1#

Parameters w−\ w¦ and the velocity D must satisfy the following relations]

"w−−w¦#1¦2"0−01:W1
0#"w¦¦w−−0#1 � 0\ D� 2"w¦¦w−−0#:W0[

"2[2#

Formulas "2[1# and "2[2# provide the desired kinetic relation in a parametric form
"with w− as a parameter\ see eqn "0[4# with T¦ _xed#[ The generic kinetic curve\
shown in Fig[ 1\ begins at point A"w¦\T¦#\ which is given implicitly by Maxwell
conditions

T¦ �T−\ s"w¦\T¦#�s"w−\T−#\

e"w−\T−#−T−s−−e"w¦\T¦#¦T¦s¦ �s"w¦\T¦#"w−−w¦#\ "2[3#

and ends on a sonic line CE[ The sonic line corresponds to "Jouget# shocks that move
with a sonic speed with respect to the state ahead and is given explicitly by the
equation

D�b"w¦#�z2w1
¦−2w¦¦0

1
[

The 0D sub!set of kinks in eqn "2[2# is a part of a bigger admissibility set which
includes both kinks and shocks[ The generic case is shown in Fig[ 1[ We notice that
only some of the Lax shocks are admissible[ In fact\ there exists a subset of shocks
satisfying the Lax criterion "the domain between the lines OB and OE in Fig[ 1# which
do not have a viscosityÐcapillarity structure "see Truskinovsky\ 0883b^ Shearer and
Zang\ 0884#[ The expression for the curve OB\ which separates admissible from non!
admissible shocks\ can be obtained as follows[ We have a point on the curve OB if
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Fig[ 1[ A generic picture of the domain of admissibility for the isothermal case in D−w¦ plane[ The 1D
area bounded by the curve COB corresponds to admissible shocks[ The 0D segment AO corresponds to
kinks[ The area EOB corresponds to the domain of non!admissible Lax shocks[ The representative
discontinuities are shown schematically in the inserts[ The state w¦ is in front of the discontinuity[ In this
_gure W0 � 1[4 and T¦ � 49[

for the given w¦ there exists a state wb ³w¦ and another state wa ×w¦ such that] "i#
the state w¦ is on the Rayleigh line passing through wb and wa^ "ii# there is a heteroclinic
connection from the state wb to the state wa which satis_es eqn "2[2#[ A straightforward
calculation gives the following parametric representation for the relation between w¦

and D along the line OB

wa �
0

−25¦3W1
0

"−25¦2W1
0¦wb"25−1W1

0#

−W0zwb"01W1
0−033#¦w1

b"033−01W1
0#¦W1

0\

w¦ �
2
3
−

wb

1

¦
0

3W0

z033"0−1wa¦w1
a−1wb¦1wawb¦w1

b#¦W1
0¦01wbW1

0−01w1
bW1

0\

D� 2"wa¦wb−0#:W0[

The behavior of the kinetic curves at various values of W0 is illustrated in Fig[ 2[ If
dissipation dominates dispersion "W0 :�#\ the kinetic relation reduces to D�9 and
all Lax shocks become admissible^ this special case was studied by Shearer "0871# and
Pego "0876#[ If dispersion dominates dissipation "W0 : 9#\ shocks disappear while the
kinetic relation for kinks reduces to the {equal area| construction "Truskinovsky\
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Fig[ 2[ Admissibility domains in the isothermal model at di}erent values of w0[ The circles show numerical
solutions of eqn "2[0# corresponding to kinks^ it overlaps with the analytical solution of eqns "2[1# and "2[2#
given by a solid line[ Curve CE is the sonic line[ In this _gure T¦ � 49[

0871\ 0876#[ As was shown by Rosakis "0884#\ the nonlinearity in the constitutive
modelling of the viscoelastic properties of the media inside the transition front\ can
lead to more complicated isothermal kinetic behavior[

3[1[ Non!heat conductin` medium "W1 ��#

When the coe.cient of heat conductivity tends to zero\ the medium becomes non!
heat conducting^ physically this means that the process is adiabatic not only outside\
but also inside the transition region[ Notice that parameter W1 enters eqn "1[3# only
in the combination W1D[ This suggests that in the limit of in_nite W1 two cases have
to be considered separately] D� 9 and D�9[

Suppose _rst that D� 9[ The energy equation reduces to an algebraic formula for
the temperature

T� 6−`"w#¦`"w¦#¦w1
z¦s"w¦\T¦#"w−w¦#¦0

1
D1"w−w¦#17¦T¦\

and the main dynamical system is again two!dimensional

1wý�−W0Dwz¦W2w
1
z−W2"`"w#−`"w¦##¦0

1
W2D

1"w−w¦#1

¦W2s"w¦\T¦#"w−w¦#¦h"w#−h"w¦#−D1"w−w¦#[
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Here

`"w#0w¦0
3
w3−0

1
w2¦0

3
w1\ h"w#0 0¦"w−0#"w#"w−0

1
#[

The structure of the admissibility set in this case is very similar to the one in the
isothermal case up to a shift associated with the transition from isothermal to iso!
entropic stress!strain relation "which is no longer cubic#[ Kinetic curve and the bound!
ary of the domain of shock admissibility can no longer be obtained analytically and
were calculated numerically by a standard shooting procedure[

The results are presented in Fig[ 3[ The point A "w¦\T¦#\ where the kinetic curve
crosses the D�9 axis\ corresponds to the adiabatic analog of the Maxwell condition
"2[3#

s"w−\T−#�s"w¦\T¦#\

e"w−\T−#−e"w¦\T¦#�s"w¦\T¦#"w−−w¦#\

s"w−\T−#�s"w¦\T¦#[ "2[4#

The adiabatic sonic line CE is given by the equation

D�a"w¦\T¦#

and is the analog of the isothermal sonic line discussed in the previous subsection[
Again at the intersection of the kinetic curve AO with the sonic "Jouget# line CE\ the
shock admissibility boundary emerges "line OB#[ The area above COB represents the
domain of admissible shocks\ while the {wedge region| EOB corresponds to the
domain of non!admissible Lax shocks[

Fig[ 3[ A generic admissibility domain for the case of non!heat!conducting medium[ The segment CE is
the adiabatic sonic line\ COB is the domain of admissible shocks\ OAM is the kinetic curve for kinks^ the
segment AM corresponds to stationary kinks "contact discontinuities#[ In this _gure W0 � 3\ W2 � 9[92
and T¦ � 49[
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Now\ consider the limit D: 9 as W1 :�[ Introduce a new parameter j�DW1

and suppose that it is _nite in the limit[ Equation "1[3# can be rewritten in the form

wý� 0
1
"s"w\T#−s"w¦\T¦##\

T?�−j"e"w\T#−e"w¦\T¦#−w?1−s"w¦\T¦#"w−w¦##[ "2[5#

The boundary value problem for the system "2[5# was studied numerically and the
spectrum of admissible j is shown in Fig[ 4[ Heteroclinic trajectories corresponding
to kinks exist in a _nite range of strains w¦ represented in Fig[ 3 by the segment AM^
these kinks are stationary and represent a sub!branch of contact discontinuities[
Contrary to the isothermal case\ where stationary kinks were necessarily Maxwel!
lian*see conditions "2[3#\ now there exists a one!parametric family of stationary
solutions[ These kinks cannot move because of the system|s inability to remove the
latent heat of the transformation] an in_nitesimal heat release leads to an increase
of local temperature and accordingly the transformation stress which blocks the
transformation "thermal trapping#[

From Fig[ 4 one can see that the stationary solution is not unique around point M]
the emerging loops correspond to kinks with non!monotone internal structure[ The
nature of the point M\ whose location depends on W2 only\ and the origin of the
multiplicity of solutions around this point will become more clear from the next
section where the general case is considered[ The exact location of point M is calculated
analytically in the next sub!section[

The variation of the nondimensional parameter W0 causes predictable distortions
of the admissibility domain that can essentially be read from Fig[ 2[ The location of
the points A\ M\ E and C remain unchanged[

Fig[ 4[ The dependence of j � DW1 versus w¦ for stationary kinks in non!heat!conducting medium[ Points
A and M are the same as in Fig[ 3[ Loops around point M correspond to stationary kinks with nonmonotone
internal structure[ In this _gure W0 � 3\ W2 � 9[92 and T¦ � 49[
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3[2[ In_nitely heat!conductive medium "W1 �9#

Now\ consider another important special case when the coe.cient of heat con!
ductivity is large[ This asymptotics\ studied by Slemrod "0873# and Truskinovsky
"0874# in the context of van der Waals ~uids\ and by Turteltaub "0886# for the tri!
linear material\ becomes relevant when the thickness of the thermal boundary layer
is much larger than the internal length scale of the medium[

As was _rst shown by Slemrod "0873#\ in the limit W1 : 9\ the actual phase
transformation takes place almost isothermally in a region scaled with zo\ while the
process of the latent heat redistribution takes place in an adjacent thermal boundary
layer of much larger thickness\ k:c[ To verify this picture\ consider a two!scale
asymptotic expansion of the system "1[3#[ At the scale z½ 9"0# we obtain

wý� 0
1
ðs"w\T#−s"w¦\T¦#−W0Dwz−D1"w−w¦#Ł\ T?� 9[ "2[6#

These equations\ which govern the behavior of the system inside the transition layer\
are identical to eqn "2[0# with the solution available in closed form[ To obtain the
outer expansion\ introduce a stretched coordinate z½ �W1z[ Now\ in the limit
W1 : 9\ the system "1[3# takes the form

9�s"w\T#−s"w¦\T¦#−D1"w−w¦#\

Tz½ �−D"e"w\T#−e"w¦\T¦#−0
1
"s"w¦\T¦#¦s"w\T##"w−w¦##[ "2[7#

This system is one!dimensional and is easy to analyze[ For example\ eqn "2[70# means
that the phase trajectory follows the Rayleigh line\ while eqn "2[71# states that the
temperature is a decreasing or increasing function depending on whether one is above
or below the Hugoniot curve[ The internal structure of the kink moving to the right
"D− 9# is illustrated in Fig[ 5[ The solution consists of an isothermal transition CB
and a thermal boundary layer BA in front of it[

The problem of calculating the kinetic relation is now algebraic[ In fact\ suppose
that the state at z�¦�\ is given*point A with coordinates "w¦\T¦#[ Since the
points A and C in Fig[ 5 represent con_gurations in front and behind the adiabatic
discontinuity\ their coordinates must satisfy the Rankine!Hugoniot conditions

9�e"w−\T−#−e"w¦\T¦#−0
1
"sðw¦\T¦#¦s"w−\T−##"w−\T−#\

9�s"w−\T−#−s"w¦\T¦#−D1"w−−w¦#[ "2[8#

These two equations contain three unknowns[ To obtain a missing condition\ one
simply needs to apply eqn "2[2# which can be rewritten as

D�
2

W06w−¦
0

−25¦3W1
0

"−25¦25w−¦2W1
0−1w−W1

0

2W0z−033w−¦033w1
−¦W1

0¦01w−W1
0−01w1

−W1
0Ł−07[
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Fig[ 5[ A generic structure of a kink in the in_nitely heat conducting medium[ The isothermal segment of
the solution corresponds to the trajectory from point C to point B[ All of the temperature variation occurs
in the second segment\ which starts from point B\ continues along the Rayleigh line\ and ends at point A[
Point C lies on the Hugoniot adiabat originating at point A[

This relation together with eqn "2[8# allows one to _nd the three unknowns w−\ T−

and D[ The calculated admissibility domains at various W0 and W2 are presented in
Fig[ 6[

One can see that kinetic curves corresponding to the same W2 and di}erent W0

intersect the horizontal axis of the w¦−D plane at a single point^ it is not di.cult to

Fig[ 6[ Kinetic curves and admissibility domains for the in_nitely heat conducting medium[ In this _gure
W2 � 9[92"a# and W0 � 0"b#^ T¦ � 49[
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show that this point coincides with the point M mentioned in the previous subsection[
To calculate the coordinates of point M we notice that at D�9 the state behind the
phase boundary must be at the Maxwell stress corresponding to T−[ Therefore\ the
following equation must be satis_ed

s"w−\T−#�s"w¦\T¦#\ e"w−\T−#−e"w¦\T¦#�s"w¦\T¦#"w−−w¦#[

"2[00#

Here w− denotes the displacement gradient in the high strain phase corresponding to
Maxwell stress at temperature T−^ under our constitutive assumptions\ w− �0[ The
system of two eqns "2[00# with the two unknowns w¦ and T− allows one to locate the
point M for any given W2 and T¦[

The internal structure of the kink at D�9 "point M in _g[ 6# can be read from
Fig[ 5[ All three points\ A\ B and C\ are now at zero stress^ moreover\ points B and
C describe two phases in thermodynamic equilibrium[ This suggests that arbitrary
oscillations between the equilibrium "Maxwell# points B and C can be added to the
solution without modifying any of the equations[ As a result\ the con_guration with
a single interface is not unique and phases may mix inside the transition front[ The
implications of this observation are further elaborated in the next section where the
degeneracy of the present asymptotics is removed[

The last observation concerns the passibility of splitting\ as viscosity gets larger\ of
the kinetic curve into two disjoint segments "slow and fast kinks#\ which is
accompanied by a change in the topology of the domain of admissible shocks "see
Fig[ 6#[

4[ General case

In this section we present numerical results for the general case of heat conducting
medium with nonzero latent heat[ We will vary independently the nondimensional
parameters W0\ W1 and W2[

We begin with the parameter W1\ which measures the e}ectiveness of the heat
removal[ As we change W1 from 9 to �\ the structure of the admissibility domain
containing] "i# 0D segment corresponding to kinks "kinetic curve# and "ii# 1D domain
of admissible shocks\ varies continuously from the one discussed earlier for the
in_nitely heat conductive medium "W1 �9#\ to the one for the non!heat conducting
medium "W1 ��#[ A speci_c example is presented in Fig[ 7 where parameters W0

and W2 are held _xed[
One can make the following observations[ For W2 given\ all kinetic curves originate

from the same point M whose exact location has been calculated in the previous
section[ The peculiar status of the limiting case W1 �� becomes more clear] the
singular branch of stationary kinks obtained for non!heat!conducting medium
"W1 ��# becomes a regular part of the 0D set of admissible kinks for 9³W1 ³�
and the corresponding contact discontinuities turn into slowly moving kinks[ As
parameter W1 gets smaller\ the kinetic curve approaches the limit of an in_nitely heat
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Fig[ 7[ The W1 dependence of the admissibility region for the general case of heat conducting medium[ In
this _gure W0 � 0\ W2 � 9[92 and T¦ � 49[

conducting medium which is represented in this case by two disjoint segments[ The
boundary of the shock admissibility region splits accordingly "see Fig[ 7#[

We observe that when the coe.cient of heat conductivity is small\ the low velocity
part of the kinetic curve is non!monotone[ A close look at the structure of the kinetic
curves around point M reveals even more complicated behavior shown in Fig[ 8[
Recall that our analyses in the previous section have provided some indications of
the existence of multiple non!monotone solutions emerging around this point] the
numerical calculations for the general case con_rm that in the vicinity of point M\ there
exists a _nite family of nontrivial kinks[ The loops on the kinetic curve accumulate as
one gets closer to point M "with only few of the loops shown in Fig[ 8#[

The behavior of the corresponding trajectories in the phase space is shown in Fig[
09] nontrivial solutions are characterized by oscillations of strain in the transitional
region and describe mixing of the two phases within the phase boundary structure[
The number of phase switches increases as we go from point P to point R "see Figs 8
and 09#[ The temperature _eld inside the phase boundary is also nonmonotone with the
spikes marking internal transitions between the phases[ Physically\ the phenomenon of
internal mixing originates from the interplay between the tendency towards formation
of the second phase and the blocking in~uence of the heat release[ As heat conductivity
increases\ the loops get smaller] in the limiting case W1 �9 the loops are con_ned to
a single point M[ In the other limiting case\ W1 ��\ the loops are represented by a
family of contact discontinuities[

With parameter W1 decreasing\ the kinetic curve bends in the direction of the
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Fig[ 8[ A fragment of Fig[ 7 showing the multiplicity of kinks and the corresponding loops on the kinetic
curve around point M[ In this _gure W0 � 0\ W1 � 39\ W2 � 9[92 and T¦ � 49[ The detailed structure of
the solutions at points P\ Q and R is shown in Fig[ 09[

sonic line "see Fig[ 8# and eventually touches it[ Simultaneously the line separating
admissible and non!admissible kinks also touches the sonic line at the same point[
The topology of the admissible region changes\ which leads to the formation of two
disjoint branches of kinks "slow and fast# and two disjoint regions of non!admissible
kinks[

The role of parameter W2 is illustrated in Fig[ 00[ The kink!type solutions exist for
a _nite range of W2 only[ When W2 tends to zero\ the kinetic curve approaches the
analytic solution for the isothermal problem[ As parameter W2 increases\ which
happens for instance\ when the speci_c heat decreases\ the Hugoniot adiabat eventu!
ally becomes convex and kinks disappear[ An interesting topological restructuring of
the admissibility domain takes place before that\ when at some value of W2 �W�2
points M and E overlap[ For W2 ×W�2 the kinetic curve does not cross the D�9
axis so that slow kinks cease to exist "see Fig[ 00#[ Beginning from this value of W2\
the kinetic curve begins and ends at the sonic line "see Fig[ 01#[ This behavior di}ers
in a qualitative way from the conventional picture of the isothermal kinetics when
slow kinks obey the so!called {normal growth| law "e[g[ Truskinovsky\ 0883a#[

5[ Mobility curves

As we mentioned in Section 0\ an additional jump condition selecting admissible
kinks is often formulated as a particular functional expression for the rate of entropy
production at a moving interface "e[g[ Abeyaratne and Knowles\ 0880^ Gurtin\ 0882^
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(a)

(b)

Fig[ 09[ Fine structure of the adiabatic kinks corresponding to the points P "a\b\c#\ Q "d\e\f# and R "g\h\i#
from Fig[ 8[ The corresponding heteroclinic trajectory is shown in the 2D phase space TÐw?Ðw[ Also shown
are the two projections into w?Ðw space and into TÐw space[
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(c)

(d)

Fig[ 09[ Continued[
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(e)

(f)

Fig[ 09[ Continued[
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(g)

(h)

Fig[ 09[ Continued[
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(i)

Fig[ 09[ Continued[

Fig[ 00[ Kinetic curves and shock admissibility domains for the general heat conducting medium] the role
of parameter W2[ In _gure "a# W0 � 0\ W1 � 39 and T¦ � 49[ In _gure "b# W0 � 0\ W2 � 9[94 and T¦ � 49[
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Fig[ 01[ Kinetic curves and shock admissibility domains for the general heat conducting medium] the role
of parameter W1[ In this _gure W0 � 3\ W2 � 9[94 and T¦ � 49[

Truskinovsky\ 0876#[ In this section we will adopt this point of view and will reform!
ulate the kinetic relations\ calculated at the _xed W0\ W1 and W2\ in terms of the
relation between G0−ðsŁ\ the {driving force|\ and D\ the conjugate {~ux|[ Kinetic
curves represented in this way will be called mobility curves[ A certain di.culty with
the presentation of the kinetic curves in the DÐG space is related to the fact that the
mapping "D\w¦#: "D\G# is not one!to!one with a fold at sonic line[ We also remark
that our kinetic relations can only be represented in terms of a relation between two
variables when one of the parameters of the ~ow is _xed[ In the discussion below it
will be the temperature ahead of the kink\ T¦[

The W1 dependence of the mobility curves for the general case of heat conducting
medium is shown in Fig[ 02[ We observe that the mobility curves\ corresponding to
di}erent values of W1 converge as D: 9 to point M "same as point M in Fig[ 7#[ The
driving force G at this point is di}erent from zero which means that the rate of
dissipation R�DG "dissipative potential# as a function of D is not quadratic but
rather linear at zero velocities[ At large W1 "small heat conductivity#\ the mobility
curves become non!monotone^ closer examination around point M reveals the already
familiar loop structures[ Since the nonmonotonicity in the DÐG plane re~ects the
nonconvexity of the dissipative function\ the kinks corresponding to the descending
branches of the mobility curve are most probably unstable[ As W1 decreases the
mobility curves shift upward because the rise in thermal conductivity increases thermal
dissipation and higher driving traction is needed to maintain the same phase boundary
velocity[ The same basic trend is observed when parameter W0 is varied[

The structure of the admissibility domain strongly depends on W2[ As W2 increases\
_rst\ slow kinks disappear and the starting point for the mobility curves moves on a
sonic line[ Further increase in W2 results in a complete disappearance of both kinks
and non admissible shocks "see Fig[ 03#[
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Fig[ 02[ Mobility curves at di}erent W1 for the general case of heat conducting medium[ The picture on
the right is a close up view of the loop structures around point M for one of these curves "W1 � 39#[ In this
_gure W0 � 0\ W2 � 9[92 and T¦ � 49[

Fig[ 03[ The structure of the admissibility domain in the DÐG space for a general case of heat conducting
medium[ The region below the sonic line\ except for the shaded area\ corresponds to the domain of
admissible shocks[ In this _gure] "a# W0 � 3\ W1 � 39\ W2 � 9[94 and T¦ � 49^ "b# W0 � 3\ W1 � 09\
W2 � 9[94 and T¦ � 49[

The question that remains concerns the role of the temperature ahead of the
discontinuity^ this parameter was held _xed in all numerical experiments so far[ Our
Fig[ 04 shows how the kinetic curves in the w¦ÐD space and the corresponding
mobility curves in the DÐG space vary as we change the temperatures of the state in
front[ The _gure shows that the in~uence of T¦ is similar to the e}ect of W2 and
cannot be neglected[ The fact that the mobility curves show strong dependence on
the temperature in front suggests that the information about kinetics cannot be
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Fig[ 04[ Kinetic curves and the corresponding mobility curves for the general case of heat conducting
medium] the role of T¦[ Point M	 marks the intersection of the kinetic curve with the sonic line[ In this
_gure W0 � 0\ W1 � 39\ W2 � 9[92[

compressed into a relation of the type in eqn "0[5#[ Our attempts to _nd a relation of
the form of eqn "0[6#\ compatible with the calculated mobility curves\ were also
unsuccessful[

6[ Discussion

In this paper we studied traveling wave solutions in the non!isothermal viscosityÐ
capillarity model\ which includes the Stefan problem\ as well as purely mechanical
inertial problem\ as special cases[ By analyzing the structure of the transition front\
we obtained detailed information about the kinetics of adiabatic phase boundaries[
In particular\ we have demonstrated that the admissible region in the space of par!
ameters has a complicated topology and consists of pieces with di}erent spatial
dimensions[ We have shown that at low velocities the kinetic relations are non!
monotone and non!single!valued[ This result is incompatible with the popular {normal
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growth| type assumptions which are often used to phenomenologically {correct| Ste!
fan|s formulation[

Our interest in the temperature e}ects was independently motivated by numerical
experiments with discrete lattices made of bi!stable elements "Ngan and Truskinovsky\
0887#[ We observed that solutions of discrete models are highly oscillatory so that the
classical waves may be interpreted as weak limits at most[ Analyses of the static
problem have shown that the typical energy landscape of a bi!stable chain is {bumpy|
and possesses multiple isolated local minima "see\ for instance\ Rogers and Trus!
kinovsky\ 0886#[ As a consequence\ in order to move a phase boundary in a discrete
lattice one has to overcome a succession of potential barriers which are formally
absent in the classical elastodynamical setting[ Our numerical experiments dem!
onstrated massive energy transfer from long to short scales as the {switching| wave
propagated through the sample\ the phenomenon studied earlier by Slepyan and
Troyankina "0873# in the context of dynamic fracture[ The presence of elastic radiation
at micro scales suggests that the interaction between continuum and subcontinuum
levels can not be described in terms of purely mechanical variables\ and that it is
essential to consider what one can loosely call {thermal| e}ects "see von Neumann\
0833\ for some early insights#[ Moreover\ an adequate continuum model of phase
transition must also describe inertia\ associated with the activation of an {invisible|
motion at the microlevel[ Simulation of these phenomena is impossible without new
variables describing the level of ~uctuations\ the rate of energy ~ux into the micro!
level and back\ and the rate of irreversible dissipation by radiation[

Comprehensive dynamical homogenization of the bi!stable lattices represents a
highly nontrivial mathematical problem[ Our introduction of a temperature _eld
can be viewed as an attempt to track the energy of the high frequency oscillations
phenomenologically[ Although classical heat conductivity is hardly a universal
description of the propagation of high!frequency vibrations in nonlinear lattices\ our
kinetic relations turn out to be surprisingly similar to the ones obtained by Slepyan
and Trojankina "0873# and Slepyan "0885# from the analysis of the waves that carry
the energy away from the failure front "see also Marder and Gross\ 0884\ for a
discussion of a related model#[ These authors calculated the analogs of kinetic curves
for the kinks in a bi!linear discrete system\ and demonstrated that they possess the
same qualitative features as our mobility curves] nonmonotonicity\ multiplicity of
branches and trapping[ The quantitative comparison depends on the value of the
latent heat of the transformation[ While in the theory of phase transformations\ the
meaning of the latent heat is clear\ it is not at all obvious how to calculate this
parameter for the purely mechanical chain[

What may be most interesting is the extension of these ideas to fracture[ The
analogy suggests the following conclusions]

"i# The macroscopic dynamic fracture cannot be described in purely mechanical
terms[

"ii# In addition to the energy release rate\ there is a nonzero latent heat of fracture[
"iii# {Heat| removal may be a rate limiting process and may even block the propagation

of a crack[



S[!C[ N`an\ L[ Truskinovsky:Journal of the Mechanics and Physics of Solids 36 "0888# 030Ð061 060

The validity of these conjectures can be tested through the careful study of discrete
models as well as through direct measurements of the localized heat e}ects[
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