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Abstract

It has become common to model materials supporting several crystallographic phases as
elastic continua with non (quasi) convex energy. This peculiar property of the energy

originates from the multi-stability of the system at the microlevel associated with the
possibility of several energetically equivalent arrangements of atoms in crystal lattices. In
this paper we study the simplest prototypical discrete systemÐa one-dimensional chain with

a ®nite number of bi-stable elastic elements.
Our main assumption is that the energy of a single spring has two convex wells separated

by a spinodal region where the energy is concave. We neglect the interaction beyond nearest

neighbors and explore in some detail a complicated energy landscape for this mechanical
system. In particular we show that under generic loading the chain possesses a large
number of metastable con®gurations which may contain up to one (snap) spring in the
unstable (spinodal) state. As the loading parameters vary, the system undergoes a number

of bifurcations and we show that the type of a bifurcation may depend crucially on the
details of the concave (spinodal) part of the energy function. In special cases we obtain
explicit formulas for the local and global minima and provide a quantitative description of

the possible quasi-static evolution paths and of the associated hysteresis. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Technological advances in the new electronic and biomedical systems
increasingly rely on the development of new materials that can actively respond to
environmental changes and provide functions such as sensing, processing,
actuation and feedback. In the past, `active' functioning, like sensing and
actuation, was achieved through the use of materials characterized by a linear or
almost linear response at the microlevel; the complexity of the device was due to
the organization of these simple elements into a structure with multiple
equilibrium states. Today thin-®lm micromachinery operates on the parts of a
micron and even nanometer size and the traditional solutions are unacceptable;
the complexity of the behavior at this scale can only be achieved if a multi-stable
`mechanism' is integrated into the material at the molecular level.

The simplest multi-stable molecular-level mechanism is provided by a crystal
phase transition that can be controlled by stress, temperature, electric or magnetic
®elds. As a result of multi-stability, neighboring constitutive elements may
simultaneously occupy di�erent equilibrium states, which leads to highly
inhomogeneous equilibrium con®gurations for the whole body. In particular, one
observes a characteristic microstructure which is represented by a large number of
plane defectsÐphase, twin or domain boundaries; the large strains observed in
active materials are produced by the coordinated migration of these mobile
interfaces in the process of domain `switching'. The arrangement of elements
depends in a crucial way on the history of loading. Because of the nontrivial
energetic exchange between the micro and macro levels, multi-stable materials
exhibit the capacity to hysteretically recover signi®cant deformation with a
controllable amount of energy absorbed in the process.

The main di�erence between the multi-stable and conventional, linear elements
can be traced to the fact that elastic energy of the former is non-convex. After the
pioneering work of Ericksen (1975) it has become clear that the non-convexity of
the elastic energy is of fundamental importance for the hysteretic behavior of the
materials undergoing martensitic phase transformations. Although the recent
adaptation of classical theory of nonlinear thermoelasticity for active materials has
helped to clarify many important aspects of the formation and evolution of the
microstructures, the generic illposedness of the corresponding continuum problems
and the multiplicity of available regularization schemes suggest the necessity to
study directly the mechanical behavior of the discrete models with multi-stability
placed at the microlevel. A deeper understanding of the relation between discrete
systems with multi-stable elements and continuum systems with nonconvex
energies is also crucial for the development of e�cient numerical methods and
control codes for active devices.

The discreteness of the system can be viewed as taking place at the level of the
atomic lattice (crystal structure) or at some meso-scopic level, where it can be
associated with the presence of defects, dislocations, polycrystalline grains, etc. In
fact, several levels of discreteness may be of importance. In the situation when the
energy of the discrete element is non-convex, the relation between the micro and
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the macro (continuum) models becomes nontrivial. Thus, for instance, the discrete
problem presents signi®cantly more local minima than its straightforward `long
wave' approximation; the `bumpiness' of the energy landscape is e�ectively
smoothed out in the corresponding continuum limit. As a result, the evolution of
the discrete system may depend on such factors as `lattice locking' or `pinning'
and generically leads to a hysteretic behavior (Rogers and Truskinovsky, 1997).

The main goal of this paper is to study the energy landscape for the simplest
discrete system with a double-well energy. The approach can be traced back to the
work of Muller and Villaggio (1977), who discretized the 1-D continuum problem
considered by Ericksen (1975), presented the `elastic bar' as a chain of bi-stable
elements, and for the ®rst time demonstrated numerically the nonuniqueness of
metastable equilibria. Later, Fedelich and Zanzotto (1992) re-examined the
problem by considering a bi-linear approximation for the force-elongation relation
which allowed them to present the complete set of equilibrium con®gurations in
the analytical form and assess their stability (see also Muller and Seelecke, 1996).
The bi-linear chain was studied further by Rogers and Truskinovsky (1997) who
added an interaction beyond the nearest-neighbors and provided a comparison
with the corresponding nonlocal continuum model (Ericksen±Timoshenko bar).
Outside the area of phase transitions, a model of a bi-linear chain was employed
by Allinger et al. (1996) in simulation of the softening behavior of sarcomers
composing the ®bers of skeletal muscles. In the context of fracture mechanics, a
discrete chain with non-convex springs of the Lennard±Jones type was used by
Truskinovsky (1996) and Braides et al. (1998) in a study of a non Cauchy±Born
behavior of brittle solids in tension.

The important drawback of most of the above models is the neglect of the
spinodal regionÐa segment of the force-elongation curve with the negative
elasticity. Although the wide use of the `spinodal-free' models is based on the
belief that in metastable con®gurations all elements stay inside the convex energy
wells, one cannot remove a priori a possibility that the individual unstable
elements are stabilized by the surrounding elements with positive elasticity
(Truskinovsky, 1996). A correct description of the spinodal states is also crucial
for the evaluation of the energy barriers separating metastable con®gurations, and
for the discussion of a wide spectrum of issues related to the quasistatic evolution,
bifurcations and hysteresis.

With this focus on the role of the spinodal region, we study in this paper two
representative bi-stable chains with cubic and tri-linear force-elongation relations.
The energy of the cubic spring is described by a fourth order polynomial. In the
tri-linear model the energy function consists of two upward parabolic wells, which
are separated by a spinodal region, where the energy is represented by a
downward parabola. This last model allows one to vary the magnitude of the
negative elastic modulus inside the spinodal region, is amenable to detailed
analytical study and reveals most of the important features of the fully nonlinear
model with smooth energy. The tri-linear approximation has been used recently in
the corresponding continuum problem by Vainshtein et al. (1998). In the discrete
context the tri-linear model was introduced in the paper of Puglisi and
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Truskinovsky (1997), where some preliminary results of the present work have
been announced.

The outline of the present paper is as follows. In section 1 we introduce the
discrete model, formulate the mathematical problem for the chain in the hard and
soft devices and discuss the possible choices for the energy function of a single
spring. In section 2 we study the equilibrium con®gurations and their bifurcations.
We construct a detailed bifurcational diagram for the chains with two and three
bi-stable springs and provide numerical results for the chains with larger number
of elements. The comparison of the chains with cubic and tri-linear springs shows
that the latter model distorts the equilibrium solution only in the vicinity of the
bifurcation points. In section 3 we study the stability of the equilibrium states and
distinguish metastable con®gurations among the saddle points and local maxima.
We conclude with discussion of the main results of the paper.

2. The model

2.1. Mathematical problem

Consider the equilibrium of a 1-D chain which contains N identical nonlinear
elastic springs connected in series. Introduce the undeformed length a and the
elongation Dui=uiÿui ÿ 1 of the i-th spring. Suppose u0=0, uN=D. The total
elastic energy of the chain can be written as

W �
XN
i�1

aw�Ei� �2:1�

where

Ei � Dui=a

is the strain in the i-th spring. Now, since the total elongation of the chain D is
the sum of the elongations Dui of the individual springs, we obtain

�E � Nÿ1
XN
i�1

Ei, �2:2�

where �E � D=�Na� is the total (or average) strain.
If the chain is loaded in a hard device the equilibrium problem reduces to the

constrained minimization of the total elastic energy

min�
Ei,
XN
i�1

Ei�N�E

� XN
i�1
�Ei �: �2:3�
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In the case of a soft device with the force �s prescribed, one has to minimize the
potential energy

min
fEi g

 XN
i�1
�w�Ei � ÿ �sEi �

!
: �2:4�

If the function w(E ) is convex the solutions of problems (2.3) and (2.4) are trivial,
in the sense that the elongations of the springs are identical. This obvious result
constitutes the basis of the continuum approximation for the elastic crystals and is
often formulated as the Cauchy±Born ruleÐa statement that the deformation is
microscopically homogeneous (Ericksen, 1984). In this paper we will be concerned
with the situation when the function w(E ) is non-convex and the corresponding
force-strain relation w '(E ) is non-monotone. In this case, in addition to the trivial,
Cauchy±Born solution, both problems (2.3) and (2.4) allow for a variety of
nontrivial equilibrium con®gurations characterized by the inhomogeneous strain
distribution.

Fig. 1. Energy±strain w(E ) and force±strain s(E ) relations for a single bi-stable spring: (a) cubic (b) tri-

linear. Spinodal region: (ÿ1= ���
3
p

,1=
���
3
p

) in the case of a cubic spring and (ÿt, t ) in the case of a tri-

linear spring. Stable states are shown with bold lines, unstable states with dashed lines.
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2.2. Energy

Consider a `double-well' energy w(E ) and assume that it is convex in two
disjoint intervals. The intervals of convexity (wells) are separated by the spinodal
regionÐan interval where the energy is concave. Under a ®xed load an individual
spring with this energy can be found in up to three equilibrium states, two of
which are stable (bi-stability).

To be speci®c, consider a class of `double-well' energies of the type

�w�E� � c1w�E=c2� � c3E� c4,cir0, i � 1 . . . 4, �2:5�
where

w�E� � 1
4�E2 ÿ 1�2: �2:6�

In this case the forceÐstrain relation s=wÄ '(E ) is given by a cubic polynomial so
we call the corresponding spring cubic; without loss of generality, we shall be
using expression (2.6) directly. To study the role of the spinodal region we also
consider a `tri-parabolic' approximation for w(E )

w�E� �

8>><>>:
1
2 �E� 1�2, E < ÿt

1
2�gE2 � Z�, ÿtRERt

1
2 �Eÿ 1�2, t < E

�2:7�

(tri-linear spring). In (2.7) the parameters

g � 1ÿ tÿ1, Z � 1ÿ t �2:8�
are chosen to make the energy w(E ) smooth (see Fig. 1); the main independent
parameter t $ [0, 1] characterizes the steepness of the force-strain relation inside
the spinodal region. Two special cases of (2.7) deserve special notice: at t= 0 one
obtains a bi-parabolic approximation, and at t = 1 the energy (2.7) reduces to a
convexi®cation of the energy (2.6).

3. Equilibrium states

3.1. Hard device: general case

Suppose that the average strain �E is given and we are interested in ®nding the
strains inside the individual springs. The problem reduces to the study of the
critical points for the following function of N variables

W�E1, . . . EN� �
XN
i�1

aw�Ei �, �3:1�
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where the unknowns Ei, i= 1, . . . , N must satisfy

XN
i�1

Ei � N�E: �3:2�

The system of equilibrium equations takes the form

w 0�Ei � � s, i � 1, . . . ,N, �3:3�
where s is the Lagrange multiplier originating from the constraint (3.2) and
representing a constant force in the chain. The total applied force will be denoted
by �s, and from (3.3) we obtain that s � �s.

For a bi-stable spring each of the Eqs. (3.3) at a given s may have up to three
di�erent solutions, located at the three distinct branches of the inverse function
w 'ÿ1(s ). We shall identify these branches as phases I, II, and III. In the case of
tri-linear springs (2.7), phase I is de®ned in the interval E< ÿt, phase II, in the
interval ÿt R E R t, and phase III, in the interval t < E; the corresponding strain-
force relations can be made explicit

EI � sÿ 1, EII � s=g, EIII � s� 1: �3:4�
In the case of a cubic spring (2.6) the three phases are de®ned in the intervals
E < ÿ1= ���

3
p

, ÿ1= ���
3
p

RER1=
���
3
p

and E > 1=
���
3
p

accordingly and we obtain

EI �
���
33
p ÿ 1���

43
p

Q
ÿ

���
33
p � 1

6
���
23
p Q, EII � ÿ

���
33
p � 1���

43
p

Q
ÿ 1ÿ ���

33
p

6
���
23
p Q,

EIII �
���
23
p

Q
� Q

3
���
23
p ,

�3:5�

where Q � 27s
�������������������������
s2=4ÿ 1=27

p
To parameterize the set of solutions of the system (3.3), introduce three integers k, l,

m = 0, 1, . . . N representing the numbers of springs inside the phases I, II, and III.
Parameters k, l, m must satisfy the constraint k+l+m=N, where N is the total
number of springs. Now, since the total energy W(E1, . . . , EN) is invariant under the
permutation of the indices i = 1, . . . N, one can arrange all the solutions of the
system (3.3) into isoenergetic equivalence classes, speci®ed by the triples (k, l, m ).
In addition to the integers k, l, m, we shall also introduce the `volume fractions'

x � k=N, y � l=N, z � m=N,

x� y� z � 1: �2:6�
The baricentric space of rational triples (x, y, z ) will be used as a con®gurational
space; in the continuum limit a 4 0, N41 the con®gurational space
corresponds to the space of internal variables.

Given x, y, z and the total load �s, the average strain �E can be found from the
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formula

�E� �s� � xEI� �s� � gEII� �s� � zEIII� �s�, �3:7�

where the strains EI, EII and EIII must be taken from either (3.4) or (3.5). For the
tri-linear case (3.5) one can invert (3.7) and obtain the overall force-strain relation

�s��E� � E��Eÿ E0�, �3:8�

where

E � �1ÿ yZÿ1�ÿ1 �3:9�

is the e�ective elastic modulus along the corresponding branch (x, y, z ) and

E0 � zÿ x �3:10�

is the reference strain. The relation (3.8) describes a set of linear segments in a �sÿ
�E plane; for a given point in the con®gurational space, a particular segment �s��E� is
de®ned in the interval with the end points �E� � ÿt� 2z and �E� � tÿ 2x. The
equilibrium energy of the tri-linear chain is then represented by a set of upward
and downward parabolas

�w��E� �W=�Na� � 1
2E��Eÿ E0�2 � 1

2yZ, �3:11�

where Z is given by (2.8). It is easy to check that �s� @w=@E. For the case of cubic
springs (3.5), the analogs of formulas (3.8) and (3.11) can also be written
explicitly. However, they are too long to be presented here.

Notice that the above set of equilibrium con®gurations includes local minima,
maxima and saddle points. The importance of knowing the energy of the saddle
points comes from the fact that the saddles represent the energy barriers between
the local minima; Eq. (3.11) and its analog in the case of cubic springs allow one
to calculate the activation energy for the corresponding transitions.

To illustrate the general formulas, and to compare the case of cubic springs
(2.6) with the tri-linear approximation (2.7), consider in more detail two simple
examples.

3.2. Hard device: N = 2

Suppose ®rst, that the chain consists of only two springs so that the
unconstrained problem is 2-D. With the average strain ®xed, we can eliminate one
of the independent variables and introduce an order parameter f measuring the
deviation from the corresponding Cauchy±Born state

E1 � �Eÿ f, E2 � �E� f: �3:12�

In the new variables, the equilibrium condition reads
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w 0��Eÿ f� � w 0��E� f�: �3:13�
We obtain the following equivalence classes of solutions parameterized by the
integers (k, l, m ):

. (2, 0, 0), (0, 2, 0), (0, 0, 2)Ðtrivial (Cauchy±Born) branches, corresponding to
the homogenous phases I, II, and III;

. (1, 1, 0), (1, 0, 1), (0, 1, 1)Ðnontrivial branches, corresponding to the
inhomogeneous microstructures.

The con®gurational triangle is represented in Fig. 2b.
Consider the case of cubic springs (2.6) ®rst. The trivial branch f=0 becomes

unstable and resumes its stability at the `spinodal points' �E �21=
���
3
p

where
w 00��E� � 0. In the interval ÿ1= ���

3
p

R�ER1=
���
3
p

the nontrivial solution includes two
symmetric con®gurations with f �2

���������������
1ÿ 3�E2
p

. Both bifurcations are pitchfork
and energetically equivalent solutions with f > 0 and f < 0 represent symmetry
related `twins'. The bifurcational diagram is presented in Fig. 2a. The graphs of
the total energy �w��E� and overall force �s��E� are shown in Fig. 3. One can show
that between the two points A and a (points b and B ) in Fig. 3 one of the springs
assumes a con®guration inside the spinodal region and has negative sti�ness. This
phenomenon of stabilization of an unstable spring by the surrounding stable
springs will be discussed in more detail in Section 4.

In the case of tri-linear springs (2.7), the bifurcations leading to the
inhomogeneous con®gurations with f$0 will be either supercritical for
t > t� � 1

2 , or subcritical, for t < t� � 1
2 (see Fig. 4). To illustrate this point,

suppose that we increase the average strain �E from the state with �E < ÿ1 until the

Fig. 2. (a) Bifurcational diagram and (b) baricentric con®gurational space for the chain with two cubic

springs (N= 2). The con®guration is indicated by the numbers of springs in di�erent phases. Absolute

minima are shown with bold lines, unstable states with dashed lines. Points A, B, a, b have the same

meaning as in Fig. 3.
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trivial con®guration (2, 0, 0) becomes unstable at �E � ÿt. The order parameter f
along the nontrivial branch (1, 1, 0) (which includes two symmetry related twin
con®gurations with E1 < E2 and E1 > E2) can be found from the formulas

f �2
�E� t

2tÿ 1
: �3:14�

Along this branch y � 1
2 , and the overall sti�ness equals E � �tÿ 1�=�tÿ 1

2�. We
observe that in the supercritical case, the nontrivial minimizer is characterized by
a negative overall elasticity. The stability properties of the corresponding
con®guration in the subcritical case will be clari®ed in Section 4.

Notice also that the path corresponding to the global minimum of the energy
(Maxwell path) shows a qualitatively di�erent pattern in subcritical and
supercritical cases. Thus for the case of `steep' spinodal region (t < t� � 1

2)the
energy function along the Maxwell path is non-smooth which results in a
discontinuous force elongation curve. In the case of a `gentle' spinodal region
(t > t� � 1

2) the force-strain curve along the Maxwell path is continuous.

3.3. Hard device: N = 3

In the case of three bi-stable springs, the con®gurational triangle (see Fig. 5 d)
shows 10 distinct isoenergetic classes of equilibrium con®gurations. The natural

Fig. 3. Overall energy±strain �w��E� and force±strain �s��E� relations for the case N= 2 (cubic springs).

Absolute minima are shown with bold lines, unstable states with dashed lines. Points A, B, a, b have

the same meaning as in Fig. 2.
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set of order parameters, which automatically respects the constraint, can be
introduced by the formulas

E1 � �E� f�
���
3
p

c,

E2 � �E� fÿ
���
3
p

c,

E3 � �Eÿ 2f: �3:15�

Fig. 4. Overall energy±strain relation �w��E�, force±strain relation �s��E� and bifurcation diagram f��E� for
the case N= 2 (tri-linear springs): (a) subcritical case t < t �; (b) supercritical case t > t �. Absolute

minima are shown with bold lines, metastable states with solid lines, unstable states with dashed lines.

Points A, B, a, b have the same meaning as in Figs. 2 and 3.
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In (3.15) the parameter f measures the degree of `non Cauchy±Born' behavior
when two springs still have equal strains. The other parameter c describes further
reduction of symmetry and characterizes the state with all three springs having
di�erent strains. In the new variables the system of equilibrium equations takes
the form

w 0��E� f�
���
3
p

c� � w 0��E� fÿ
���
3
p

c�, �3:16�

w 0��E� f�
���
3
p

c� � w 0��Eÿ 2f�: �3:17�
With the two order parameters f and c one can represent a complete set of
symmetry related equilibrium con®gurations. Thus, in the space f, c, and �E, a line
f=0, c=0 represents the trivial (Cauchy±Born) branches (3, 0, 0), (0, 3, 0) and
(0, 0, 3) while the three symmetric planes c=0, c �2

���
3
p

f contain partially non
Cauchy±Born branches (2, 1, 0), (2, 0, 1), (0, 2, 1), (0, 1, 2), (1, 0, 2) and (1, 2, 0).
Finally a point on the branch (1, 1, 1) with all three strains di�erent corresponds
to a generic point in the order parameter space with f$0, c$0.

Fig. 5. (a) Bifurcational diagram and (d) con®gurational space for the chain with three cubic springs

(N= 3). A division of the space into tetragonal planes and a particular tetragonal subsection c=0 of

the bifurcational diagram are shown in (c) and (b) accordingly. Points A, B, a, b, a, b have the same

meaning as in Fig. 6.
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Remark. There exists an interesting analogy between this problem and the
problem of classifying weak phase transitions in Bravais lattices with cubic,
tetragonal and orthorhombic symmetries (Ericksen, 1993). This analogy is based on
the isomorphism between the two symmetry groups; crystallographic point group
in the case of crystals and the group of permutations in the case of springs. With
this analogy in mind one can rename our trivial branchÐthe cubic, the branches
with c=0 and c �2

���
3
p

fÐthe tetragonal and the branches with f$0, c$0Ð
the orthorhombic. A generic con®guration of a chain may be represented by one
cubic con®guration, one of the three tetragonal twins or one of the six
orthorhombic twins. Below, we shall be using this language for convenience.

The general solution of Eq. (3.17) for a chain with cubic springs is given by the
formulas

f � 0, c � 0,

c � 0, f � �E
2
2

�����������������
1

3
ÿ 3�E2

4

s
,

c �2
���
3
p

f, f � �E
4
2

1

2

�����������������
1

3
ÿ 3�E2

4

s
: �3:18�

Fig. 6. Overall energy±strain relation �w��E� and force±strain relation �s��E� for the case N= 3 (cubic

springs). Absolute minima are shown with bold lines, metastable states with solid lines, unstable states

with dashed lines. Points A, B, a, b, a, b have the same meaning as in Fig. 5.
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The complete bifurcational diagram is shown in Fig. 5a. In Fig. 5b we present a
subsection c=0 of the whole bifurcational diagram showing the details of the
transition between the cubic phase and one of the tetragonal twins; the
orthorhombic branches intersect the plane c=0 transversely and cannot be seen on
this subsection. By using the results from the crystallographic analysis (Ericksen,
1993), we conclude, that the cubic to tetragonal bifurcation, which takes place at

Fig. 7. Overall energy±strain relation �w��E�, force±strain relation �s��E� and a c=0 subsection of the

bifurcation diagram for the case N= 3 (tri-linear springs): (a) subcritical case t < t �; (b) supercritical
case t > t �. Absolute minima are shown with bold lines, metastable states with solid lines, unstable

states with dashed lines. Points A, B, a, b, a, b have the same meaning as in Figs. 5 and 6.
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the points where w 00��E� � 0, is subcritical while the tetragonal to orthorhombic
bifurcation, which takes place when w 0��E�f� � w 0��Eÿ2f� and w 00��E� f� � 0, is a
pitchfork. The three tetragonal branches are represented on the bifurcational
diagram by the noncoplanar ellipses located inside the planes c=0, c �2

���
3
p

f
(see Fig. 5c), while the orthorhombic con®gurations con®ned to the plane �E � 0
form six connecting (out of the planes) segments.

The graphs of the overall energyÐstrain relation, �w��E�, and the overall force-
strain relation, �s��E�, are shown in Fig. 6. Contrary to the case N = 2, the Maxwell
path is represented on the force-strain plane by a discontinuous curve. One can
show that this path again contains con®gurations with one unstable spring.

To illustrate the nature of the tri-linear approximation, we can now compare
the above pictures with the exact solution for the energy (2.7). The situation here
is similar to what we have already seen in the case N = 2. Thus, one can show
that the bifurcation from the trivial, cubic branch (3, 0, 0) to the tetragonal branch
(2, 1, 0) at �E � ÿt is subcritical for t < t� � 2

3 . The three symmetry related
tetragonal twins of the (2, 1, 0) equivalence class are given by the formulas8>>><>>>:

E1 � E2RE3

f � �E� t

2ÿ 3t

c � 0

8>>>><>>>>:
E1 � E3RE2

f � �E� t

2�3tÿ 2�
c � ÿ ���

3
p

f

8>>>><>>>>:
E2 � E3RE1

f � �E� t

2�3tÿ 2�
c � ���

3
p

f

: �3:19�

The e�ective elastic modulus for the whole chain along these tetragonal branches
E � �tÿ 1�=�tÿ 2

3� is negative in the supercritical case (when the corresponding
branch is globally stable) and is positive in the subcritical case. Both possibilities
are illustrated in Fig. 7; notice the transformation of the ellipses from Fig. 5 into
hexagons in Fig. 7. The Maxwell path on the force-strain plane is continuous in
the supercritical case t > t� � 2

3 (Fig. 7b) and contains con®gurations with one
spring in the spinodal region. In the subcritical case (t < t� � 2

3 , Fig. 7a) the force-
strain Maxwell path is only piece-wise continuous, with no springs in the spinodal
region.

3.4. Hard device: general case

For larger N the picture soon becomes rather complicated. As we show below
in Section 4 the branches without `spinodal springs' (l= 0) and the branches with
l = 1 bifurcating from them are the only candidates as the local minimizers. We
®rst observe that there exist exactly k ÿ 1 branches of the type (kÿl, l, m ),
0 < l < k, bifurcating from the branch (k, 0, m ). In particular, there are N ÿ 1
branches bifurcating from the trivial branch (N, 0, 0) and only one, bifurcating
from the branch (2, 0, N ÿ 2). These bifurcations are subcritical for k> 2l,
supercritical for k< 2l and it is a pitchfork for k = 2l. The bifurcations leading
to the potentially stable branches with only one spring in the spinodal region
(l = 1) are subcritical for all k> 2. For example, in case N = 2, we had a trivial
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branch with k= 2 and the bifurcating nontrivial branch with l= 1 was a
pitchfork. In the second example, N = 3, we had a trivial con®guration with
k = 3 and the bifurcation leading to the con®guration with l = 1 was subcritical.
To illustrate these general conclusions we present in Fig. 8 the overall energy±
strain and force±strain relations for the chain with six cubic springs (N = 6).

Comparison of the cubic model with its tri-linear approximation shows that the
overall behavior is modi®ed only around the bifurcation points. In the tri-linear
case and general N the critical value of t which separates the case when the
bifurcation from the branch l = 0 to the branch l = 1 is subcritical from the case
when it is supercritical is given by the formula

t� � 1ÿNÿ1: �3:20�
For t < t� the Maxwell path in the con®gurational space (x, y, z ) is located on
the edge y = 0, while for t > t� it is represented by a sawtooth curve
approaching, as N 41, a generalized curve. The corresponding path on the
force-strain plane is discontinuous in the subcritical case and is continuous in the
supercritical case. This behavior is illustrated in Fig. 9 where both subcritical and
supercritical cases are presented.

Fig. 8. Overall energyÿstrain relation �w��E� and force±strain relation �s��E� for the chain with six cubic

springs (N= 6). Absolute minima are shown with bold lines, metastable states with solid lines,

unstable states with dashed lines.
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3.5. Soft device: general case

Suppose now that the total force �s acting on the chain is prescribed. The
mathematical problem reduces to the study of the critical points for the total (or
Gibbs') energy

G�E1, . . . EN� �
XN
i�1

a�w�Ei � ÿ �sEi �: �3:21�

The system of equilibrium equations takes the form

Fig. 9. Overall energy±strain relation �w��E�, force±strain relation �s��E� and the baricentric con®gurational

space for the case N= 6 (tri-linear springs): (a) subcritical case t < t �; (b) supercritical case t > t �.
Absolute minima are shown with bold lines, metastable states with solid lines, unstable states with

dashed lines.
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w 0�Ei � � �s, i � 1, . . . ,N: �3:22�
Since the system (3.22) is identical to (3.3), most of the analysis for the chain in a
hard device can be preserved in the case of a soft device. Thus the whole
multiplicity of equilibrium solutions can again be arranged into equivalence classes
and parameterized by the three integers k, l, m satisfying k+ 1+m=N.

In the special case of tri-linear springs (2.7), the strains in the individual phases
are given by the formulas

EI � �sÿ 1, EII � �s=g, EIII � �s� 1: �3:23�
The total strain can now be obtained from

�E� �s� � �s=E� E0, �3:24�
where the parameters E and E0 are given by (3.9) and (3.10). The nontrivial
branches are de®ned in the interval

tÿ 1R �sR1ÿ t: �3:25�
The corresponding energy of the equilibrium chain can then be written as

�g� �s� � G=�Na� � ÿ 1

�2E � �s
2 ÿ �sE0 � 1

2
yZ: �3:26�

We recall that again �E � @g=@s. In the case of cubic springs (2.6) the formulas
analogous to (2.23) and (2.26) are too long to be presented here.

3.6. Soft device: illustrations

Consider the simplest chain with two bi-stable springs (N= 2). Introduce two
order parameters: �E and f such that

E1 � �E� f, E2 � �Eÿ f: �2:27�

Fig. 10. Bifurcational diagram for the chain with two bi-stable springs (N= 2) in a soft device: (a)

cubic springs; (b) tri-linear springs. The trivial branches (f=0) are shown with bold lines, the

nontrivial branches f > 0 (f< 0)Ðwith solid (dashed) lines. Points A, B, a, b have the same meaning

as in Fig. 11.
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The parameter �E� �s� gives the average strain at a given total force �s, and the
parameter f� �s� measures the deviation from the Cauchy±Born rule. The two
symmetry related `twins' correspond to 2f� �s�. For the cubic springs the
bifurcational diagram in the space f, �E, �s is presented in Fig. 10. The
corresponding overall energy-force and strain-force relations are illustrated in Fig.
11; in both ®gures and diagrams for the tri-linear springs are also presented for
comparison. The calculations for a chain with six springs (N= 6) are summarized
in Fig. 12. Notice that, contrary to the case of hard device, in soft loading the
Maxwell (or the global minimum) path does not include any nontrivial (non
Cauchy±Born) con®gurations.

Fig. 11. Overall energy±force relation �g� �s� and strain±force relation �E� �s� for a chain with two springs

(N= 2) in a soft device: (a) cubic case; (b) tri-linear case. Absolute minima are shown with bold lines,

metastable states with solid lines, unstable states with dashed lines. Points A, B, a, b have the same

meaning as in Fig. 10.
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4. Stability

4.1. Hard device: general case

We begin the stability analysis for the chain in a hard device with eliminating
the constraint (2.2) and rewriting the energy as a function of N ÿ 1 variables

Ŵ�E1, . . . ,ENÿ1� �W

 
E1, . . . ,ENÿ1,NEÿ

XNÿ1
i�1

Ei

!
: �4:1�

In the new variables the Hessian matrix of the second derivatives takes the form

H �

��������
E1 � EN EN . . . EN

EN E2 � EN . . . EN

. . . . . . . . . . . .
EN EN . . . ENÿ1 � EN

��������, �4:2�

Fig. 12. Overall energy±force relation �g� �s� and strain±force relation �E� �s� for a chain with six springs

(N= 6) in a soft device: (a) cubic case; (b) tri-linear case. Global minima are shown with bold lines,

metastable states with solid lines, unstable states with dashed lines.
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where Ei=aw0(Ei) and the set Ei i = 1, . . . , N corresponds to a particular critical
point of (4.1). The equilibrium con®guration Ei (�E), i= 1, . . . , N ÿ 1 is a local
minimum of the energy WÃ if the matrix H��E� is positive de®nite. To insure the
positive de®niteness of this matrix, we require

Aj > 0, j � 1, . . . ,Nÿ 1, �4:3�

where

Aj �
 Yj

i�1
Ei

! 
1�

Xj
i�1

EN

Ei

!
�4:4�

are the principal minors of the matrix (4.2).
The class of equivalent equilibrium solutions is characterized by the three

integers k, l, m, however the stability properties of the corresponding equilibrium
con®gurations depend only on lÐthe number of springs in the spinodal region.
Thus, if l= 0, we have a branch of the type k, 0, m, and all the springs are in the
stable states. As a result, we have Ei > 0, for all i = 1, . . . , N, and the matrix
H��E� is obviously positive de®nite. Now, if l> 2, so that the chain contains two or
more springs with negative sti�ness, one can always regroup the springs in such a
way, that the ®rst and the last springs are in the spinodal state. Then E1 < 0 and
EN < 0 and since A1=E1+EN we obtain A1 < 0 which means instability of the
corresponding con®guration. Finally, if l = 1, the equilibrium con®guration
contains exactly one unstable spring and we can always consider that it is the
N ÿ 1th spring, which is in the spinodal state. As a consequence, EN ÿ 1 < 0,
while for all other j = 1, . . . , N ÿ 2, N we have Ej > 0. Then Aj > 0 for j= 1,
. . . , N ÿ 2 and stability depends on the sign of AN ÿ 1.

For the case j=N ÿ 1 the general expression (4.4) can be rewritten as

ANÿ1 �
 YN

i�1
Ei

! XN
i�1

1

Ei

!
, �4:5�

or more explicitly as

ANÿ1 � �E�EI��k�E�EII��l�E�EIII��m
�

k

E�EI� �
l

E�EII� �
m

E�EIII�
�
: �4:6�

Now, since E(EII) < 0, the necessary and su�cient condition for stability yields

k

E�EI� �
1

E�EII� �
m

E�EIII� < 0: �4:7�

The inequality (4.7) has a simple geometrical interpretation. Since the springs are
connected in series we obtain the expression for the e�ective elastic modulus
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@ �s
@ �E
�
 
1

N

XN
i�1

1

Ei

!ÿ1
: �4:8�

Comparison of (4.8) with the stability condition (4.7) shows that the con®guration
with l = 1 is stable if and only if the overall modulus of the whole chain is
negative

@ �s
@ �E

< 0: �4:9�

For the tri-linear springs (2.7), the condition (4.9) can be simpli®ed further

t > 1ÿNÿ1, �4:10�
which can also be rewritten as

t > t�: �4:11�
This inequality suggests that for t < t�, all con®gurations with lr1 are unstable.
The critical value t� coincides with the one de®ned in (3.20) which allows us to
conclude that condition (4.11) is identical to the condition distinguishing the
regime of supercritical bifurcations.

Fig. 13. Absolute minimizers and metastable states for the chain with three springs (N= 3) in a hard

device: (a) subcritical, (b) supercritical cases. Absolute minima are shown with bold lines, metastable

states with solid lines. Points A, B, a, b, a, b have the same meaning as in Fig. 7.
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4.2. Hard device: illustrations

To illustrate the di�erence in stability properties between the supercritical and
the subcritical regimes, consider the chain with three tri-linear elements (N = 3).
According to the criterion (4.11) the tetragonal branches (2, 1, 0), (0, 1, 2) and the
orthorhombic branch (1, 1, 1) are metastable for t > t� � 2

3 and are unstable for
t < t� � 2

3 . The analysis for Fig. 13 shows that in the supercritical case t > 2
3 all

metastable con®gurations are also globally stable. On the contrary, for t < 2
3 the

bifurcations connecting globally stable branches are subcritical and there exist
metastable con®gurations that are not global minimizers with a possibility of
hysteresis in a quasistatic loading.

For a chain with three cubic springs (1.6) the metastable branches are (3, 0, 0),
(0, 0, 3)Ðcubic and (2, 0, 1), (1, 0, 2)Ðtetragonal. The following branches are
unstable: (0, 3, 0)Ðcubic, and (1, 2, 0), (0, 2, 1)Ðtetragonal. The tetragonal
branches (2, 1, 0) and (0, 1, 2) contain stable segments and the degenerate
orthorhombic branch (1, 1, 1) is neutrally stable. The hysteresis is again possible as
in the case of subcritical tri-linear springs (see Fig. 6).

In the case of tri-linear springs and general N, the subcriticality condition t < t�

distinguishes the case when all the branches with l = 1 are unstable. The typical

Fig. 14. Absolute minimizers and metastable states for the chain with ten tri-linear springs (N= 10) in

a hard device: (a) `Maxwell' path; (b) `maximum hysteresis' or `barrier free' path for increasing total

displacement.
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picture for the overall behavior of the chain in this case is represented in Fig. 14,
where we show both the hysteresis-free Maxwell path and the `maximum
quasistatic hysteresis' path, which utilizes local minima and does not involve any
barrier crossing (Puglisi and Truskinovsky, 1998).

4.3. Hard device: non-symmetric energy

Here we also brie¯y comment on another interesting case of the tri-linear
springs with non-equal elastic moduli of the stable phases. In this case a mixed
subcritical±supercritical behavior can be observed. In fact, consider the following
energy function of a single spring

w�E� �

8>><>>:
1
2�E� 1�2, E < ÿt1
1
2�gE2 � lE� Z�, ÿ t1RERt2

1
2d�Eÿ 1�2, t2 < E

, �4:12�

where parameters t1, t2, d, g, Z and l are chosen in such a way that the energy
function is smooth, for instance

t2 � dÿ 1� t1�d� 1�
d� 1� t1�dÿ 1� :

The explicit solution of the equilibrium equations can be obtained similarly to the
case of symmetric energy (2.6). The typical overall energy-strain and the force-
strain relations are illustrated in Fig. 15 where only the metastable con®gurations
are presented. Notice that the system behaves as in the subcritical case (t < t�) on
part of the domain and as in the supercritical case (t > t�) on the other part of
the domain: the energy has multiple local minima in one case and only the
absolute minimum in the other. The mechanical response therefore changes with

Fig. 15. Absolute minimizers and metastable states for the chain in hard device with six (N= 6) tri-

linear springs characterized by nonsymmetric energy wells. Absolute minima are shown with bold lines,

metastable states with solid lines.
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the total strain and the hysteretic behavior may coexist with the reversible
Maxwell behavior.

4.4. Soft device: general case

To study the local stability of the equilibria in the case of a ®xed applied load,
we rewrite the energy function as

G�E1, . . . ENÿ1� �W�E1, . . . EN� ÿ �s
XN
i�1

Ei: �4:13�

Since all variables are independent, the corresponding Hessian matrix takes the
form

Fig. 16. Absolute minimizers and metastable states for the chain with six tri-linear springs (N= 6) in a

soft device: (a) `Maxwell' path and; (b) `maximum hysteresis' path for an increasing total stress.
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H �

��������
E1 0 . . . 0
0 E2 . . . 0
. . . . . . . . . . . .
0 0 . . . EN

��������, �4:14�

where the entries Ei=w0(Ei) are calculated for the equilibrium solution Ei� �s�. The
diagonal matrix H� �s� is positive de®nite if and only if

Ei > 0, i � 1, . . . ,N: �4:14�
This condition excludes con®gurations with springs in the spinodal region (l = 0).
As a result, the only metastable con®gurations in the soft device are the mixtures
of stable phases (k, 0, m ). We remark that in the corresponding continuum
problem studied by Ericksen (1975), the only metastable con®gurations are the
Cauchy±Born ones. To illustrate the role of the local minima for the chain in a
soft device, we present in Fig. 16 the picture of the overall behavior for the chain
with N= 6. Two limiting quasistatic paths are shown; the Maxwell path and the
`maximum hysteresis' paths, notice that both paths involve trivial (Cauchy±Born)
con®gurations only.

5. Discussion

In this paper we studied a role of the spinodal region in the hysteretic behavior
of a discrete chain with bi-stable elements. By varying the magnitude of the
negative modulus in the spinodal region, we observed two di�erent kinds of
constitutive behavior.

In the case of steep force-elongation curve in the spinodal region, the energy
landscape is characterized by multiple local minima and a number of paths are
available to the system in quasistatic evolution. As the springs change phase the
whole chain undergoes a sequence of subcritical bifurcations and the size of the
hysteresis is independent of the number of springs. When the force-elongation
curve in the spinodal region is su�ciently gentle, the energy landscape is di�erent,
all local minima are also global and no hysteresis is possible despite the non-
convexity of the energy. In this case all bifurcations are supercritical and the
system shows stable softening behavior.

An important open question, which is outside the scope of purely static
analysis, concerns the actual strategies for the switching between the local minima
as the loading parameter changes. An understanding of this issue will lead to a
better understanding of the rate-independent hysteresis associated with the
underlying discreteness. In a separate paper (Puglisi and Truskinovsky, 1998) we
investigate how well the discrete model reproduces important paradigms of the
phenomenological Preisach model like `return point memory' and `congruency',
which must be present in any realistic modeling of hysteresis.

Although the behavior of continuum models with nonconvex energies has been
studied rather thoroughly, the relation of these models to their discrete prototypes
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remains basically unexplored. As the comparison of Ericksen's and Muller±
Villagio's models indicate, this relation is highly nontrivial at least in the
prediction of the variety of local minima. Since it is the con®gurations of the local
minima that determine the structure of the hysteresis, the formal extension of the
nonconvexity of the elastic energy from discrete into continuum level is
unsatisfactory. Therefore, the most nontrivial open question concerns the rigorous
homogenized description of the chain in the limit when the number of springs goes
to in®nity. It is already clear that the corresponding limit has little to do with the
straightforward long-wave approximation of the discrete problem and that the
limiting theory will be a variant of a plasticity theory.

Acknowledgements

The work of L.T. was supported by the NSF grant DMS-9501433, the work of
G.P. was supported by COFIN-MURST98 ``Modelli Matematici per la Scienza
dei Materiali''.

References

Alinger, T.L., Epstein, M., Herzog, W., 1996. Stability of muscle ®bers on the descending limb of the

force-length relation. J. Biomechanics 5, 627±633.

Braides, A., Dal, Maso G., Garroni, A. 1998 Variational formulation of softening phenomenon in frac-

ture mechanics. Preprint.

Ericksen, J.L., 1975. Equilibrium of bars. J. Elast. 5, 191±201.

Ericksen, J.L., 1984. The Cauchy and Born hypothesis for crystals. In: Gurtin, M. (Ed.), Phase trans-

formations and material instabilities in solids. Academic Press, Orlando.

Ericksen, J.L., 1993. Local bifurcation theory for thermoelastic Bravais lattices. In: Microstructure and

phase transitions, Lecture Notes in Physics, vol. 344. Springer, Berlin.

Fedelich, B., Zanzotto, G., 1992. Hysteresis in Discrete Systems of Possibly Interacting Elements with a

Double-Well Energy. J. Nonlinear Sci. 2, 319±342.

Muller, I., Seelecke, S. 1996 Thermodynamic aspects of shape memory alloys. Preprint.

Muller, I., Villaggio, P., 1977. A model for an elastic-plastic body. Arch. Rat. Mech. Anal. 65, 25±46.

Puglisi, G., Truskinovsky, L., 1997. First and Second order Phase Transitions in a Discrete System

with Bistable Elements. In: Proceedings of the XIII AIMETA Congress, Sienna, pp. 140±152.

Puglisi, G., Truskinovsky, L. 1998 Hysteresis in a chain with bi-stable elements. To be submitted.

Rogers, R., Truskinovsky, L., 1997. Discretization and hysteresis. Physica B 233, 370±375.

Truskinovsky, L., 1996. Fracture as a phase transition. In: Batra, R.C., Beatty, M.F. (Eds.),

Contemporary research in the mechanics and mathematics of materials. A collection of papers dedi-

cated to the 70th birthday of J.L. Ericksen. CIMNE, Barcelona, pp. 322±332.

Vainshtein, A., Healey, T., Rosakis, P., Truskinovsky, L., 1998. The role of the spinodal in one-dimen-

sional phase transitions microstructures. Physica D 115, 29±48.

G. Puglisi, L. Truskinovsky / J. Mech. Phys. Solids 48 (2000) 1±27 27


