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Abstract  The peculiar behavior of active crystals is due to the presence of evolving phase mixtures
the variety of which depends on the number of coexisting phases and the multiplicity of symmetry-
related variants. According to Gibbs’ phase rule, the number of phases in a single-component crystal is
maximal at a triple point in the p-T phase diagram. In the vicinity of this special point the number of
metastable twinned microstructures will also be the highest — a desired effect for improving
performance of smart materials. To illustrate the complexity of the energy landscape in the neighborhood
of a triple point, and to produce a workable example for numerical simulations, in this paper we
construct a generic Landau strain-energy function for a crystal with the coexisting tetragonal (t),
orthorhombic (o), and monoclinic (m) phases. As a guideline, we utilize the experimental observations
and crystallographic data on the t-o-m transformations of zirconia (ZrO2), a major toughening agent for
ceramics. After studying the kinematics of the t-o-m phase transformations, we re-evaluate the available
experimental data on zirconia polymorphs, and propose a new mechanism for the technologically
important t-m transition. In particular, our proposal entails the softening of a different tetragonal
modulus from the one previously considered in the literature. We derive the simplest expression for the
energy function for a t-o-m crystal with a triple point as the lowest-order polynomial in the relevant
strain components, exhibiting the complete set of wells associated with the t-o-m phases and their
symmetry-related variants. By adding the potential of a hydrostatic loading, we study the p-T phase
diagram and the energy landscape of our crystal in the vicinity of the t-o-m triple point. We show that the
simplest assumptions concerning the order-parameter coupling and the temperature dependence of the
Landau coefficients produce a phase diagram that is in good qualitative agreement with the experimental
diagram of ZrO2.

Key words: A) Phase transformations, triple point ; B) Crystalline material, Zirconia (ZrO2); C) Energy
methods, phase diagrams
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1. Introduction

Symmetry-breaking martensitic transformations are at the origin of the peculiar macroscopic
properties of active crystalline materials, such as shape-memory alloys and transformation-
toughened ceramics. It has been recognized that a detailed understanding of the
transformation mechanisms and the associated optimal microstructures is essential for the
control, improvement and design of the new structures and devices in which these active
materials are utilized.

Since diffusion and ordering do not play a major role in most applications of smart
materials, their macroscopic behavior can be modeled at a phenomenological level within
the framework of nonlinear elasticity theory. The constitutive aspect of such modeling
requires giving an explicit expression for the free energy density of the material, which
typically is a non-quasi-convex function of the strain variables and, possibly, other order
parameters. A comprehensive study of the temperature- and strain-dependent energy
functions suitable for transforming crystals was initiated by Landau and his school (see
[IS90, TD96] for recent reviews). A more recent line of investigation started with the works
of Ericksen (e.g. [E70, E80, E93]) who has brought this approach within the agenda of
nonlinear continuum mechanics, connecting it, on the one hand, to the ‘crystallographic
theory of martensite’ used in metallurgy and materials science (e.g. [WLR53, W64, Chr75,
R78, Kh83]), and, on the other hand, to non-convex variational calculus (e.g. [BJ87, CK88,
BJ92, BFJK94, M98]). In the last years thermoelasticity theory has proven quite successful
in modeling symmetry-breaking transformations that involve finite but not too-large lattice
distortions (see [Lu96, JH00, BJ00, PZ00] for recent reviews).

Crystals with only two phases are typically considered in the models; a general
analysis of the two-phase bifurcations in simple Bravais lattices can be found in [E93,
PZ00]. Active materials, however, often exhibit more than two polymorphs. In fact,
according to Gibbs’ phase rule, even a single-component system may admit three equally
stable phases at an isolated ‘triple point’ in its pressure-temperature phase diagram (e.g.
[DF80]). Due to the large number of energy wells associated with the phase variants in the
vicinity of a such a triple point, the crystal may have a significantly richer class of
equilibrium microstructures, and therefore a higher flexibility in accommodating imposed
loads. Since this property is crucial in numerous applications of smart materials, the
constitutive investigation in the neighborhood of a triple point presents particular interest
(e.g. [WP98]).

In this paper we construct an explicit expression for the free energy function of a
crystal with tetragonal (t), orthorhombic (o), and monoclinic (m) phases. Polymorphs with
these symmetries are observed in many materials, for instance in various transition-metal
oxides. Here we focus on the constitutive modeling of zirconia (ZrO2), the main toughening
agent in transformation-toughened ceramics. In the applications, small zirconia inclusions in
an inert ceramic matrix are used to control and enhance the otherwise low ductility of the
ceramic composites (see for instance [GHS89]). The experimental phase diagram of zirconia
for not too-high pressures and temperatures is shown in Fig. 1. This diagram, which contains
a t-o-m triple point, is fairly well established,1 although the actual mechanism of the t-o-m
transformations in ZrO2 remains somewhat obscure.

                                                
1 See for instance [LTAP93], [OM98], and the references quoted therein. A point of some uncertainty in
Fig. 1 is the slope of the t-o boundary, which is reported as negative in one study [BJP95].
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Fig. 1 Portion of the experimental phase diagram for zirconia exhibiting the tetragonal-orthorhombic-
monoclinic (t-o-m) triple point. The point groups of the phases are specified in Section 3. The corresponding
symmetry-breaking strains are given in Fig. 4.

Previous attempts to model the t-m zirconia transformation within the context of
nonlinear elasticity are reviewed in [BHL83, Cha88, BT93, ST96]; some applications of the
non-hydrostatic phase diagrams for transformation toughening can be found in [ST96] and
the literature quoted therein. In the present paper we revisit the problem by first examining
the potential mechanisms of the pertinent t-o-m transitions. The knowledge of the kinematic
path of a phase change is crucial for writing the correct energy function and for establishing
the metastability ranges in the equilibrium phase diagram. Our kinematic analysis of the t-o-
m symmetry-breaking mechanisms derived from [Z96b] (see also [BLL99, PZ00]), and the
available experimental data on zirconia polymorphs, suggest a t-m transformation path that
is distinct from the one previously considered in the literature; in particular it entails the
softening of a different tetragonal modulus.
 The t-m transformation path considered so far originates from the instability induced
by the (partial) softening of the tetragonal modulus 44C  (e.g. [Cha88]). This mechanism was
adopted by [BT93, ST96], who constructed the corresponding energy function and
investigated the distortion of the p-T phase diagram under the influence of non-hydrostatic
stresses. In spite of the internal consistency of the corresponding model, the t-o orientation
relationships reported experimentally for zirconia by [SMS74, BFV91] indicate that the 44C -
related mechanism may not be the one at work in ZrO2. What is perhaps more important,
this mechanism does not allow for the presence of orthorhombic zirconia, and, ultimately, of
the t-o-m triple point, in the phase diagram of the crystal. On the contrary, the existence of
an orthorhombic polymorph is a natural consequence of the softening of the tetragonal
moduli 1211 CC −  or 66C . Indeed, the corresponding bifurcations do not lead directly to
structures with monoclinic symmetry: each one describes the formation of an orthorhombic
phase with distinct centering. The o-m transformation then results from a second bifurcation
taking place after the t-o symmetry breaking; the well-known first-order t-m transformation
of zirconia thus originates from this underlying ‘double-bifurcation’ mechanism. The
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analysis of the available data on orthorhombic ZrO2 suggests that 1211 CC −  should be the
modulus whose softening triggers the t-o bifurcation.

With this two-stage mechanism in mind, we construct an energy function as the
lowest-order polynomial in finite strains capable of exhibiting a suitable t-o-m triple point.
In the present model, which treats the zirconia crystal as a simple lattice without an internal
motif,2 different strain order parameters are responsible for the t-o and o-m transformations.
The final form of our Landau energy is a sixth-degree polynomial exhibiting the complete
set of wells associated with the t-o-m phases and their symmetry-related variants, one of the
several formal possibilities considered in [SD86, TD96]. By adding the potential of a
hydrostatic loading, we study the p-T phase diagram of the crystal and its energy landscape
near the triple point. Although at this stage we do not attempt the optimal fit of any material
parameters, the resulting phase diagram in Fig. 7 is in good qualitative agreement with the
experimental one in Fig. 1.

This paper is organized as follows. In Section 2 we study the kinematics of the t-o-m
phase transformations, describing the complete set of possible t-o-m symmetry-breaking
mechanisms. In Section 3 we focus on the crystalline structures of zirconia, and critically
evaluate the existing experimental information concerning its orientation relationships,
transformation strains, and phase diagram, against the kinematical results of Section 2.
Based on this analysis, we suggest a new t-m transformation mechanism for ZrO2, and
specify the corresponding order parameters. In Section 4 we write the simplest polynomial
energy with tetragonal symmetry and minimal order parameter coupling, whose minimizers
under varying temperature and pressure describe the (meta)stable configurations with the
correct t-o-m symmetries. In Section 5 we study the relative stability of the t-o-m phases and
specify their coexistence domains. Then, in an explicit example, we compute the phase
diagram indicating the stability boundaries of the different phases, the corresponding
Maxwell lines, and the t-o-m triple point. In the last Section we discuss some possible
applications of our results and indicate some open problems.

2. Kinematics of the tetragonal-orthorhombic-monoclinic (t-o-m) crystals

We study the phase transitions of a crystal whose high-symmetry parent phase is given by a
primitive tetragonal Bravais lattice:

(2.1) Λ(ta) = {x =� aaM t , Ma integers, a = 1, 2, 3}.

The three mutually orthogonal independent vectors ta are shown in Fig. 2, with the
corresponding orthonormal basis ca. In what follows we express any tensors through their
representative matrices in the basis ca, which provides the standard crystallographic indices

                                                
2 We remark that in all the above-mentioned models the zirconia crystal is regarded as a simple Bravais lattice
(called the `skeletal lattice'). In this approximation one disregards the atoms within the unit cell of the skeletal
lattice (these atoms form the `motif' of the crystal). Equivalently, following Born's hypothesis ([B15], [BH54],
[St50]), the motif atoms are assumed to be (istantaneously) equilibrated within the skeletal structure. Energy
functions utilizing motif variables as order parameters have been proposed in the literature for some of the
zirconia transformations (not involving the t-o-m triple point), but have not been studied in detail (see for
instance [ID89, FPF00]).
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for tetragonal lattices. The point group of the lattice Λ(ta) is denoted by T3 (in all the point
groups we only list the elements with positive determinant):

(2.2)            T3 = {1,  Rc1

π, Rc2

π, Rc3

π, π
21 ccR + , π

21 ccR − , 2

3

/π
cR , 2

3

/3π
cR }.

Here Rk
ψ denotes a rotation of angle ψ about the axis k. The elements of the group T3

indicate that the lattice has a four-fold symmetry axis along the unit vector c3, and four two-
fold axes along the directions c1, c2, c1 + c2, and c1 – c2.

Fig. 2. The primitive tetragonal reference cell used to describe the deformations of the t-o-m lattices. The
reference basis ta is shown, where t1 and t2 have equal length, and the ta are mutually orthogonal. (the four-fold
tetragonal axis is along t3).  Also shown is the associated orthonormal basis ca, used for representing any
tensors as matrices.

We assume that the symmetry-breaking phase changes involve the smallest stretches
that produce the observed low-symmetry lattices, that is, we assume the t-o-m
transformations are produced by lattice distortions that are close enough to the identity
tensor 1 (‘weak transformations’, in the terminology of [E89]). The energy function we seek
will then be defined in a neighborhood N of 1 in the six-dimensional space of all the
symmetric, positive-definite tensors. Understanding how the ‘small’ stretches in N act to
deform the reference tetragonal basis ta provides important information on the kinematics of
t-o-m phase changes.

We choose N to be tetragonally invariant (that is, if U ∈  N, then RtUR ∈  N for all R ∈
T3), and sufficiently small. Then, if a stretch U ∈  N is applied to ta we obtain a basis whose
point group is equal to, or is a subgroup of, the point group (2.2) – see for instance [E80,
P84, BJ92, PZ00]. This means that we can analyze the t-o-m symmetry-breaking processes
by studying the group-subgroup relations for the point groups contained in T3. A stretch U in
N is called ‘symmetry preserving’ for ta if the point group of the deformed basis Uta is T3; U
is called ‘symmetry breaking’ if the point group of Uta is a subgroup of T3. To find all the
different kinds of t-o-m symmetry-breaking stretches, we must first list all the subgroups of
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T3 in (2.2) that are themselves point groups of some basis. In T3 there are the two following
orthorhombic subgroups:

(2.3)        O1,2,3 = {1, π
1cR , π

2cR , π
3cR },

(2.4)        O3,1±2 = {1,  Rc3

π, π
21 ccR + , π

21 ccR − }.

Furthermore, in T3 there are five monoclinic subgroups:

(2.5)                               M1 = {1, π
1cR } ,  M2 = {1, π

2cR },

(2.6)                       M3 = {1, π
3cR },

(2.7)                                       M1+2  = {1, π
21 ccR + },   M1–2 = {1, π

21 ccR − }.

Finally, in T3 there is the trivial triclinic subgroup {1}. The two monoclinic groups in (2.5)
and (2.7) form in T3 the conjugacy classes M1,2 and M1±2, respectively, while each one of the
subgroups in (2.3), (2.4), and (2.6), forms a conjugacy class by itself. These inclusion and
conjugacy relations are summarized in Fig. 3.

T3

O123
O3;1�2

M1 M2

M3

M1+2 M1�2

f1g

62 3

5

1

7

4

Fig. 3. Schematic representation of the point groups included in the tetragonal point group 3T . Indicated

are the group-subgroup relations (slanted lines), and the conjugacy classes in 3T  (horizontal lines). The t-
o-m symmetry-breaking paths, numbered as in the text, are indicated by the dotted lines.

If a symmetry-breaking stretch U ∈  N deforms the basis ta in a phase transition, also
any other stretch of the form
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(2.8)     RtUR    for   R ∈  T3,

is as likely to break the symmetry of ta in that phase change. To find all the distinct
symmetry-breaking stretches that produce the subgroups indicated in (2.3)-(2.7) one must
consider the orbits (2.8), also called ‘variant structures’. The distinct stretches (2.8), which
all belong to N, are called the ‘variants’ of U. A standard argument (e.g. [PZ00]) shows that
the number of variants is the ratio of the orders of the point groups of the parent and product
phases. Thus, when U lowers the symmetry of ta to orthorhombic there are two variants,
while for a monoclinic low symmetry phase there are four variants. When different variant
stretches Ui, i = 1,…n , are applied to the basis ta, the point groups of the deformed bases
U1ta, ..., Unta, do not in general coincide, nor are they all distinct; however, a simple check
shows that they are all necessarily conjugate subgroups of T3; that is why the conjugacy
classes are indicated in Fig. 3. In Fig. 4 we give an explicit description of the variants for all
the t-o-m symmetry-breaking stretches, together with the point groups of the deformed
bases.

T3 (1 parent variant) O123 (2 variants) fM1; M2g (4 variants)

O3;1�2 (2 variants) M3 (4 variants)

fM1+2; M1�2g (4 variants)
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u11

u33

� �
u11

u22

u33

�
;

�
u22

u11

u33

� �
u11 u13

u22

u13 u33

�
;

�
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�u13 u33

�

�
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�u13 u33

�
;

�
u22

u11 u13

u13 u33

�

�
u11 u12

u12 u11

u33

�
;

�
u11 �u12

�u12 u11

u33

� �
u11 u12

u12 u22

u33

�
;

�
u11 �u12

�u12 u22

u33

�

�
u22 u12

u12 u11

u33

�
;

�
u22 �u12

�u12 u11

u33

�

�
u11 u12 u13

u12 u11 u13

u13 u13 u33

�
;

�
u11 �u12 �u13

�u12 u11 u13

�u13 u13 u33

�

�
u11 u12 �u13

u12 u11 �u13

�u13 �u13 u33

�
;

�
u11 �u12 u13

�u12 u11 �u13

u13 �u13 u33

�

Fig. 4   The complete list of the t-o-m symmetry-breaking stretches. Indicated are also the point (sub)groups of
T3 that are obtained when such  stretches are applied to the reference tetragonal basis ta.

Now, by inspection of Figs. 3-4 we determine all the kinematically distinct
possibilities for lowering the symmetry of the parent lattice (2.1) from tetragonal, to
orthorhombic, to monoclinic, or directly from tetragonal to monoclinic. At each step the
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symmetry of the reference basis ta is lowered through the application of different sets of
symmetry-breaking stretch variants as in Fig. 4, which produce distinct sets of lower-
symmetry (orthorhombic or monoclinic) lattices with point groups as in (2.3)-(2.7).

There are two essentially distinct t-o transition paths, and four essentially distinct t-o-
m paths3 (a t-o path can be viewed as the first ‘step’ in a t-o-m path). Each path is indicated
by the corresponding point groups of the variant structure produced by a deformation of the
tetragonal basis ta. Each path ‘starts’ from the point group of ta, goes at first ‘through’ the
point group of a set of two orthorhombic variants, and finally reaches the point group(s) —
indeed, the conjugacy class in T3 — of a set of four monoclinic variants:

       path (1) T3  →  O1,2,3  →  M1,2,                 path (2) T3  →  O1,2,3  →  M3,

       path (3) T3  →  O3,1±2  → M3,          path (4) T3  →  O3,1±2  →  M1±2.

One also has the following three direct t-m transition paths:

       path (5)     T3  →  M1,2,       path (6)    T3  →  M3,       path (7)    T3  →  M1± 2

(see Fig. 3). The paths above can all be completed with the final symmetry breaking to a set
of 8 triclinic variants whose point group is the trivial subgroup {1}. The direct tetragonal-to-
triclinic transition T3 → {1} is also possible, but not relevant for our analysis.

We discuss below how some (although not all) of the above kinematic transition
paths can be obtained through symmetry-breaking bifurcations originating from the (partial)
softening of suitable moduli in the tetragonal and orthorhombic crystals.

3. An example: zirconia

As mentioned in the Introduction, the prototype for our general study of t-o-m
crystals with a triple point is zirconia (ZrO2), an important active material exhibiting
tetragonal, orthorhombic and monoclinic phases. Detailed crystallographic descriptions of
the zirconia polymorphs can be found in [KHH89, HKRH90, LTAP93, DL98, Kr98,
FPF00]. We confine ourselves to temperatures and pressures that are not too high; the data
in the literature indicate that the t-o-m polymorphs of ZrO2 can then be described by simple
lattices whose unit cells contain a ‘motif’ with four variously arranged and deformed Zr-O2
units. These lattices are all suitable deformations of the simple Zr lattice obtained by
considering the sole corner atoms in the conventional f.c.c. cell of cubic ZrO2 (not taken into

                                                
3  The two t-o transformation mechanisms differ in how they break the symmetry of the primitive
tetragonal basis ta. The transition 3,2,13 OT →  breaks the equality condition for the lengths of the vectors

t1 and t2, while maintaining them orthogonal. The transition 21,33 ±→ OT , on the other hand, breaks the
orthogonality of these two vectors, while maintaining them of the same length. The first transition produces
a primitive orthorhombic lattice, while the second one produces a base-centered orthorhombic lattice. A
similar analysis can be made for the four t-o-m transition paths (see [Z96, PZ00]).
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account here). Here we disregard the atoms of the motif, and concentrate only on the t-o-m
deformations of this ‘skeletal’ lattice (see [ID89, FPF00] for a discussion of the motif
deformations).
 The structure giving the (most) stable phase of ZrO2 at temperatures around 1000°C
and low pressures has a space group of the primitive tetragonal type (see for instance
[LTAP93, FPF00]). The ‘skeletal’ primitive tetragonal cell that we consider as reference in
(2.1) and Fig. 2 is obtained from the corner Zr atoms of the face-centered tetragonal cell of
tetragonal zirconia.

The (most) stable phase of zirconia at the lower pressures and temperatures has a
primitive monoclinic lattice. A summary of available experimental results regarding the t-m
orientation relationships in zirconia can be found in [FBV90, BFV91, Si97].

A third phase of zirconia, observed to be the most stable at lower temperatures and
higher pressures, has orthorhombic symmetry. This phase is often referred to as 'orthoI' in
the literature – see for instance [HKRH90, LTAP93, DL98]). No experimental study appears
to indicate the orientation relationships for the tetragonal-to-orthoI transition. At higher
pressures and temperatures zirconia also crystallizes in a number of other structures, which
have been only partially investigated; [LTAP93] shows the complete phase diagram – see
also [BJP85, KPA88, KHH89, HKRH90, OYKIN91, DL98, OM98]).

Figure 1 summarizes the above observations. In this portion of the phase diagram of
ZrO2, the equilibrium phase boundaries are fairly well established, as is the location of the t-
o-m triple point. The o-m and t-m lines have negative slopes and are almost parallel to each
other; the t-o line has slightly positive slope and is almost parallel to the pressure axis. The
observations also show hysteresis across the indicated phase boundaries. We take the
diagram in Fig. 1 to be fairly typical of t-o-m crystals with a triple point; the goal of our
study is to construct an energy function that is able to reproduce it.

When phrased in terms of the results of Section 2, the experimental observations on
the t-o-m zirconia polymorphs that we are concerned with can be summarized as follows:

(A) The best-established t-m orientation relationship for ZrO2 indicates that the four-
fold axis of the tetragonal phase is parallel to the two-fold axis of the monoclinic phase (see
[SMS74, BFV91]). This means that monoclinic ZrO2 comes from a variant structure with
point group M3. It should be mentioned that the orientation relationships compatible with the
M1,2-monoclinic variants have also been reported (see for instance [HM90, FBV90, Si97]).

(B) No data seem to indicate whether the orthoI phase of ZrO2 is O1,2,3 or O3,1±2.
However, one can refer to the data on the  positions of the two families of O atoms that, in
the ZrO2 lattice, have coordination 3 and 4 with the Zr atoms (see [KHH89, HKRH90,
LTAP93, DL98, FPF00]); the original configuration of these families in the tetragonal
zirconia phase (in which all the O atoms have the same coordination 4) indicates that the
orthoI phase of ZrO2 should derive from an O1,2,3-orthorhombic variant structure (see also
[HKRH90, Kr98]). The hypothesis of a T3 → O1,2,3 mechanism is also immediately
consistent with the space group reported in the literature for the orthoI phase of zirconia. The
associated crystallography needs some elaborate (although perhaps not impossible) motif
adjustment to be made compatible with a T3 → O3,1±2 mechanism.

 Following the above lines of indirect evidence, we proceed by assuming that the
transformations associated with the triple point in t-o-m crystals are the following (see path
(2) in Section 2):
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(i)   the t-o transition is  T3  →  O1,2,3,

(ii)  the o-m transition is  O1,2,3  →  M3,

(iii) the t-m transition is  T3  →  M3.

In the next Sections we develop a constitutive framework compatible with this
kinematic picture and capable of describing both paths (2) and (3) of Section 2. Only at the
end of Section 5, by making suitable assumptions concerning the order-parameter coupling
and temperature dependence of the energy coefficients, we will select path (2). It is
important to point out that in the previous literature the t-m phase transformation in zirconia
has been mostly regarded to be of a different nature than proposed here. Thus [Cha88, BT93,
ST96], among others, advocated the direct path (5), leading to a model where a subcritical
bifurcation associated with the softening of the tetragonal modulus 44C  drives the t-m phase
transition4. However, as we have seen above, the experimental evidence rather suggests a T3
→ M3 mechanism. As we will see, the T3 → M3 path cannot be obtained through the
softening of any tetragonal modulus. We thus envisage the T3 → M3  phase change as a first-
order transformation resulting from the coexistence of 'distant' energy wells with T3 and M3
symmetry; in this framework the monoclinic wells originate from T3 through two successive
subcritical bifurcations, involving also the O1,2,3-orthorhombic phase (see Fig. 8).

4. The energy function

Consider a crystalline body in a configuration represented by a tetragonal lattice
(2.1). For the phenomena we consider, it is safe to assume that the lattice deformation and
the gross deformation of the crystal agree (this is the ‘Cauchy-Born Rule’, see for instance
[Z96a]). We denote by F the deformation gradient of the macroscopic body, whose reference
configuration we choose to coincide with the unstressed tetragonal configuration assumed by
the crystal at any given temperature T; the temperature thus enters our discussion as a control
parameter. As is usual in elasticity theory, we take the symmetric, positive-definite Cauchy-
Green tensor

(4.1) C = FtF = U2.

as a measure of the local strain in the crystal (here U  is the stretch tensor appearing in the
polar decomposition of F ). All the considerations made in Section 2 for U carry over to C.
The free energy per unit reference volume is assumed to be a function of C and of the
temperature T:

                                                
4 We cannot completely exclude that this mechanism plays a role in the t-m phase change of ZrO2, because the
orientation relationships producing the M1,2-monoclinic variants have indeed been reported in the literature.
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(4.2)         ϕ  =  ),( TCϕ� .

Here C varies in a neighborhood N of the identity tensor 1, as mentioned in Section 2
(assumption of small but finite strains). We assume function ϕ  to have tetragonal
invariance, that is:

(4.3)            ),(),( TT tCRRC ϕϕ =

for all Τ, all C, and all the rotations R in the group T3 introduced in (2.2).

The six components of the Cauchy-Green tensor cab = Cca.cb form a symmetric 3 by
3 matrix, which, following Voigt, is represented by a 6-tuplet (u1, ..., u6):

(4.4)       u1 = c11,    u2 = c22,    u3 = c33,    u4 = c23,    u5 = c13,    u6 = c12.

The variables uA, A = 1, ..., 6, are the coefficients in the representation of the tensor C as a
linear combination of the (orthonormal) tensor basis V1, V2, ..., V6:

(4.5)              C  = AAu V� ,

where

(4.6)           V1 = c1 ⊗ c1  = 
1 0 0
0 0 0
0 0 0

� 

� 
� 
� 

� 

� 
� � ,    ...,  V4 = c2 ⊗ c3 + c3 ⊗ c2 =  

0 0 0
0 0 1
0 1 0

� 

� 
� 
� 

� 

� 
� � ,  ... .

In terms of the six variables uA the free energy in (4.2) writes

(4.7)       ( )TuA ,ϕϕ = .

We introduce the strain tensor E defined by

(4.8)        E  = 2
1 (C −−−− 1) ,�= AAe V

with the corresponding Voigt 6-tuplet eA. The problem now consists in constructing the most
general low-order polynomial expansion of ϕ  in terms of the variables eA, compatible with
the symmetry (4.3) and reproducing the phase diagram in Fig. 1.

Notice that the zero-order term in this expansion depends only on temperature, and
for our purposes can be neglected. Furthermore, since the reference configuration is an
equilibrium one at temperature T, the first-order terms are also absent from the free energy
expansion. We thus begin with the quadratic term

(4.9)       BAABQ eeC2
1=ϕ ,
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where, due to the tetragonal symmetry, in our basis ca we have ([Lo27, LL86]):

(4.10)                             

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

==

66

44

44

33

1311

131211

C
C

C
C
CC
CCC

CC BAAB .

The six material parameters 664433131211 ,,,,, CCCCCC , completely characterize the tetra-
gonal crystal in the limit of linear elasticity, and, in general, are temperature dependent. As
usual, CAB in (4.10) can be regarded as the matrix representation of a symmetric linear
operator with respect to the standard  tensor basis VA in (4.6). A straightforward calculation
shows that for a generic case 013 ≠C , the (mutually orthogonal) eigen-spaces and the
corresponding eigen-values of this operator are as follows:

Eigen-space      Eigen-value (elastic modulus)

B1   =  <V1+V2 + β1V3> λ1

B2  =  <V1+V2 +β2V3>    λ2

B3  =  <V1– V2> 1211 CC −

B4    =  <V4, V5> 44C  (double)

B5  =  <V6>        66C ,

where the four numbers β1 , β2,  λ1 and λ2 are the roots of the following quadratic equations

       ( ) 021
13331211

2 =−−++ − ββ CCCC ,
(4.11)

       ( ) ( ) 02 2
13331211331211

2 =−++++− CCCCCCC λλ .

From the orthogonal decomposition in the eigen-spaces 51 ,...BB , one can obtain a basis of
eigen-strains which diagonalizes the matrix of the elastic constants ABC . However, for the
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purpose of treating hydrostatic loads, we introduce an alternative (orthogonal) tensor basis
WA, as follows

(4.12)                              W1 =  
1
3

(V1 + V2 + V3)  =  
1
3

1,       W2  =  V1 + V2 – 2V3, 

              W3 =  
2

1
(V1 – V2),     Wr  = Vr,      r  = 4, 5, 6.

The new strains W3, ...,W6, are eigen-strains of the elasticity tensor, so that the basis WA

diagonalizes CAB except for the first two directions W1 and W2. By writing

(4.13)                                         E ,�= AAy W

we obtain a new set of strain coordinates yA, whose relation to the original coordinates eA is
given by

,3211 eeey ++=        )2( 3216
1

2 eeey −+= ,       )( 212
1

3 eey −= ,
(4.14)
                                   44 ey = ,             55 ey = ,          66 ey = .

In particular, our new parameter 1y  characterizes dilatation in the linear approximation; the
potential energy of the hydrostatic pressure p can then be approximated by the term py1.

As mentioned above, the new variables yA almost diagonalize the quadratic part of
the energy, giving

(4.15)       BAABQ yyC2
1=ϕ ,

with

(4.16)                         

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−
==

66

44

44

1211

22

1211

C
C

C
CC

A
AA

CC BAAB ,

where the new elastic moduli A11, A12 and A22 are given by

     ( ) ][ 3313121111 429
1 CCCCA +++= ,
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(4.17)         ][ 3313121112 3

2 CCCCA −−+= ,

      ][ 3313121122 242 CCCCA +−+= .

The quadratic part (4.15) of the energy thus writes explicitly:

(4.18)      ( ) ( )[ ]2
666

2
5

2
444

2
31211

2
2222112

2
111 2

2
1 yCyyCyCCyAyyAyAQ +++−+++=ϕ .

We can now clarify the kinematical nature of the variables yA introduced above, and
specify the relevant order parameters (see also [Cha88]). First, notice that the application of
any linear combination of the strains W1 and W2, does not change the T3-symmetry of the
reference basis. The variables y1 and y2 are therefore ‘T3-symmetry-preserving’. During the
t-o-m transition processes these variables follow the evolution of the order parameters and
adjust as necessary to secure equilibrium. Since we are not interested in the modulus
softening associated with any tetragonal-to-tetragonal transformation, we assume that the
matrix AIJ  (I, J = 1, 2) in (4.16) is positive-definite.

Next, we observe that any generic combination of the eigen-strains W4 and W5
produces a triclinic basis with a trivial point group. However, application of either W4 or W5
alone produces a T3 →  M1,2 symmetry breaking, while any of the strains W4 ± W5 produce a
transition T3 →  M1±2. We conclude that these two t-m transitions are linked to the strain
variables y4 and y5, and are caused by the softening of the modulus 44C  (see [E93, PZ00] for
the analysis of the corresponding bifurcations, and [BT93, ST96] for a study of the global
picture). Since we exclude both of these t-m paths, we assume the modulus 44C  to be
positive; notice that our theory must also be compatible with the fact that the value of the
strain variables y4 and y5 must indeed be zero along the chosen t-o-m paths (2) and (3).

Finally, the application of a combination of the eigen-strains y3W3 + y6W6 to the
reference tetragonal basis produces: (i) a basis with O1,2,3-symmetry, if 03 ≠y  and  y6 = 0;
(ii) a basis with O3.1±2-symmetry if y3 = 0 and 06 ≠y ; and (iii) a basis with M3-symmetry if

both y3 and y6 are different from zero. From the form of the elasticity matrix ABC  in (4.16),
we conclude that a softening of the modulus 66C  activates the variable y6 and produces a T3
→  O3,1±2 bifurcation, while a softening of the modulus 1211 CC −  activates y3 and produces
a T3 →  O1,2,3 bifurcation. The relevant t-o-m transition paths (2) and (3) are thus described
by the order parameters  y3 and y6, and our model is essentially two-dimensional.

The non-quadratic part of the free energy density, respecting the symmetry (4.3), can
be expressed as a function of suitable polynomial invariants of the tetragonal group, whose
complete list can be found in [SM58]. In the spirit of Landau theory, we seek the lowest-
order expression for the energy function, with the minimal coupling between the order
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parameters and between the latter and the rest of the strain components. The order of the
polynomial depends on the number of symmetry-related energy wells that must be
considered. In this case we need terms of at least sixth order in y3 and y6; the corresponding
non-quadratic tetragonal invariants are:

(4.19)     y3
4,    y6

4,    y3
2y6

2,    y3
6 ,   y6

6,    y3
4y6

2,    y3
2y6

4.

We keep the first five terms in this list and omit the last two, as the bi-quadratic term
y3

2y6
2 already gives enough order-parameter coupling. Furthermore, following [SD86, BT93,

ST96], and in order to produce a triggering mechanism that allows the hydrostatic pressure p
to influence the behavior of the shear-related order parameters, we consider the following
third-degree tetragonal invariants that couple the dilatation y1 with the shears y3 and y6:

(4.20)                                     y1y3
2,     y1y6

2.

We can now write explicitly our ‘minimal’ proposal for the non-quadratic part of the
free energy density5:

 (4.21)     6
666

16
336

12
6

2
32

14
664

14
334

12
6162

12
3132

1 yKyKyLyyDyDyyHyyHNQ ++++++=ϕ .

By combining (4.18) and (4.21) with the potential of the loading device we obtain the final
expression for the Gibbs energy density:

(4.22)                                      10 ),(),()( pyTyTyTg ANQAQ +++= ϕϕϕ .

Here, )(0 Tϕ  is the energy of the temperature-dependent tetragonal reference state, whose
specific form is not important for the purpose of this study. We remark that the energy (4.21)
belongs to the general class of energies analyzed in [SD86]; due to the loading and the
presence of the triple point, our conclusions will considerably differ from theirs.

5. Equilibria and phase diagram

With the energy expression given by (4.22), the homogeneous equilibrium
configurations of the t-o-m crystal (critical points of g at fixed p and T ) can be found from
the equations (recall (4.17)):
                                                
5 We stress that our present discussion of a t-o-m constitutive framework is ‘minimal’, as some of the
effects that are not relevant for the existence of a triple point are purposefully neglected. Thus, with the
energy as in (4.21), the anisotropy of both the orthorhombic and monoclinic low-symmetry phases is
incomplete; in (4.21) one should add, at least, the coupling terms e4e5e6 and e1e4

2 + e2e5
2, that is, y4y5y6, y1(

y4
2 + y5

2), y2( y4
2 + y5

2), and y3( y4
2 −−−− y5

2) −−−− see (4.8) and (4.14). The latter are necessary to obtain the
correct symmetries in the elastic moduli of the orthorhombic and monoclinic phases.
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02
332

12
662

1
212111 =++++ pyHyHyAyA ,

A12y1 + A22y2  = 0,
(5.1) 0)( 2

63
5

33
3

3331331211 =++++− yLyyKyDyyHyCC ,

    02
36

5
66

3
66616666 =++++ yLyyKyDyyHyC ,

0444 =yC ,
0544 =yC .

This system can be solved for the non-order-parameter strain variables y1, y2, y4, y5, which
enter the energy at most quadratically. We obtain:

         
y1 = −

1
2M

(H3 y3
2 + H6 y6

2 + 2 p)

(5.2)            1
22

12
2 y

A
Ay −= ,

                     y4 = 0,        y5 = 0,

where

0/ 22
2

1211 >−= AAAM

is the effective bulk modulus of the tetragonal phase, which is positive due to the positive-
definiteness of the matrix AIJ in (4.17).

When the order parameters y3 and y6 vanish, the first two equations in (5.2) describe
the anisotropic compressibility of the parent tetragonal phase at temperature Τ and pressure
p. For non-vanishing y3 or y6, the same equations describe how the ‘tetragonal’ variables y1

and y2 adjust in the orthorhombic and monoclinic phases. The trivial solutions for y4 and y5

express the fact that no equilibria in this model have monoclinic point groups of the type
(2.5) or (2.7).

If we now substitute into the Gibbs energy (4.22) the expressions for the equilibrium
values of the non-order-parameter strain variables (5.2), and drop the terms that depend only
on pressure and temperature, we obtain the Landau energy

(5.3)              6
666

16
336

12
6

2
32

14
664

14
334

12
662

12
332

1 ~~~ yKyKyyLyDyDyGyGg L ++++++= ,

where we introduced the renormalized Landau coefficients:
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M
HHLL

2
~ 63−= ,

(5.4)         p
M
HCCG 3

12113 −−= ,     p
M
HCG 6

666 −= ,

              
M

HDD
2

~ 2
3

33 −= ,     
M

HDD
2

~ 2
6

66 −=  .    

In terms of the new coefficients, the equilibrium conditions for y3 and y6 take the form

(5.5)          ( ) 0~~ 4
33

2
33

2
633 =+++ yKyDyLGy ,     ( ) 0~~ 4

66
2

66
2

366 =+++ yKyDyLGy ,

Equations (5.5) describe the families of critical points for the Landau energy, parametrized
by p and Τ. The local minima of the energy (metastable configurations) are selected by the
additional condition that the Hessian matrix 63

2 / yyg L ∂∂∂ is positive-definite. By using (5.3)
we can write the corresponding inequalities explicitly

05~3~ 4
66

2
66

2
36 ≥+++ yKyDyLG ,

(5.6)
           ( )( ) 2

6
2

3
24

33
2

33
2

63
4

66
2

66
2

36
~45~3~5~3~ yyLyKyDyLGyKyDyLG ≥++++++ .

The Hessian determinant vanishes when (5.6)2 holds as an equality: this condition specifies
the stability boundaries of the various phases in the (Τ, p)-space, and provides the locations
for the bifurcation points where distinct branches of extremals intersect.

Since now we are only considering the two-dimensional order-parameter space, and
since the Landau energy function is even in y3, y6, we introduce the new variables

(5.7)                                                     2
3y=ε ,        2

6y=δ ,

and, for uniformity,  re-label the coefficients as follows:

(5.8)                3GG ≡ε ,   6GG ≡δ ,  3
~DD ≡ε ,   6

~DD ≡δ ,   3KK ≡ε ,    6KK ≡δ .

The solutions of the system (5.5), (5.7), are located in the first quadrant of the (ε, δ)-plane,
and have a transparent geometrical interpretation. The intersection of the coordinate axes

(5.9) 0=ε    and   0=δ
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in the (ε,δ)-plane gives the T3-tetragonal (parent) phase, which is always a solution of the
equilibrium equations. Then, any intersections of one of the parabolae

 (5.10)       0~ 2 =+++ δδε δδδ KDLG ,        0~ 2 =+++ εεδ εεε KDLG ,

with the coordinate axis orthogonal to its own axis gives orthorhombic equilibria which are
either O3,1±2 or O1,2,3, depending respectively on whether ε or δ vanish. Finally, any
intersections of the two parabolae (5.8) with each other provide critical points with non-zero
ε and δ, which give M3-monoclinic equilibria (see Fig. 5). All these critical points6 are
(meta)stable or unstable depending on whether conditions (5.6) are satisfied, which in turn
depends on the values of the energy coefficients. Below, we discuss a choice of coefficients
that assures the existence of a t-o-m triple point with the properties discussed in Section 3.

"

�

T3

M3

O
3
;1
�
2

O123

Fig. 5.  The (ε,δ)-plane, where the t-o-m phases are located as follows: T3 is at the origin; O3,1±2 and

O1,2,3 are on the δ- and ε-axes, respectively; M3 is in the interior of the first quadrant. Also shown are the
two parabolae (5.10) whose intersection points between each other and with the coordinate axes (circled
points) give the solutions of the equilibrium equations (5.5), (5.7).

First, for growth (and existence) reasons we assume that

(5.11)             Kε  > 0,          Kδ  > 0.

As we have seen, the trivial solution 0=ε , 0=δ , always exists, providing the T3-parent
phase for all Τ and p. According to (5.6) this solution is (meta)stable if

(5.12) Gε  > 0,          Gδ  > 0.
                                                
6  We recall that our Landau energy  (5.3) depends only on the squares (ε,δ) of the order parameters
(y3, y6), so that each stable root (ε, δ) of the equilibrium equations (5.5-7) actually gives a number of
energy wells in the (y3, y6)-plane that describe a set of symmetry-related phase variants.
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When one of these (p, T)-dependent moduli  passes through zero, the parent phase becomes
unstable. The corresponding lines on the p-T phase diagram mark the bifurcation points
where the tetragonal equilibrium branch is connected with one of the orthorhombic branches
characterized by either 0≠ε  or 0≠δ . Specifically, the equilibria with O1,2,3-symmetry are
the non-trivial solutions of (5.5) with δ = 0 and non-zero ε, which correspond to the
intersection of the parabola (5.8)1 with the axis δ = 0. The values of the order parameters
along this branch are given by:

(5.13)  δ = 0,      ε =
−Dε ± Dε

2 − 4KεGε

2K ε

.

The corresponding orthorhombic energy wells exist in the range of parameters defined by

(5.14)          Gε ≤
Dε

2

4K ε

.

From (5.12-13) one can see that when the coefficient of the forth-order term

(5.15)                      Dε < 0,

there exists a domain of coexistence for the tetragonal and orthorhombic solutions. Notice
that (5.15) will also make bifurcation along parameterized path in the p-T plane subcritical.
The line in the p-T coordinates where (5.14) holds as an  equality corresponds to turning
points on the orthorhombic branch. Since in our system there is experimental evidence of
hysteresis, we assume (5.15) to hold, indicating that the t-o transformation is of the first
order.

The second bifurcation, from the orthorhombic phase O1,2,3 to the monoclinic phase
M3, takes place as the Hessian matrix degenerates once again, when

(5.16)                                                          0~ =+ εδ LG .

Here ε  satisfies (5.13)2. The corresponding boundary in the space of parameters is given by

(5.17)                                                  �
�

�
�
�

� −=
L
GKD

L
GG ~~ δε

ε
δ

ε .

A straightforward analysis shows that a domain of coexistence for o-m phases exists when

(5.18)                                                               Dδ < 0 .

Since there is experimental evidence of hysteresis in the o-m phase change, we assume also
(5.18) to hold (first-order o-m transformation).
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Due to the symmetry between the two order parameters in the Landau energy (5.3),
the solutions with O3,1±2 symmetry and their bifurcations can be discussed along the same
lines. The corresponding critical points and their existence domain are given by formulas
analogous to the above ones; in particular, conditions (5.15) and (5.18) imply that both the
bifurcations T3  →  O3,1±2 and O3,1±2  → M3 are subcritical.    

The M3-monoclinic equilibria of the system correspond to the solutions of (5.9) with
ε and δ different from zero. In the (ε,δ)-plane the two parabolae in (5.9) may have up to four
intersections (see Fig. 5). Their existence range can be found by imposing the condition that
the two parabolae touch at one point and have no other intersections; this means that both
(5.10) and (5.6)2 taken as an equality hold simultaneously. Specifically, we obtain an over-
determined system of three equations

                  0~ 2 =+++ εεδ εεε KDLG ,      0~ 2 =+++ δδε δδδ KDLG ,
(5.19)
                            ( )( ) εδεεδδδε 22

333
2

666
~45~3~5~3~ LKDLGKDLG =++++++ ,

for two unknowns ε and δ. The resulting restriction on the coefficients of the Landau energy
specifies the boundary of the existence domain for the phase M3 in the space of parameters.

We now briefly discuss the stability conditions for the energy extremals described
above. As already mentioned, the parent tetragonal phase T3 is stable when conditions (5.12)
hold. To find where the O1,2,3 equilibria (5.13) are stable (their existence domain is given by
(5.14)), we apply the inequalities (5.6), obtaining

              Gε + 3Dεε + 5K εε
2 ≥ 0,

(5.20)
            0~ ≥+ εδ LG ,

with ε  again given by (5.13)2. The first of the stability conditions (5.20) does not restrict the
coefficients of the Landau energy, but selects as the only stable root the one with the plus
sign in (5.13)2. The second condition in (5.20), taken as an equality, defines a line of
bifurcation points where the O1,2,3-branch with δ = 0 meets the M3-branch with both ε and δ
different from zero −−−− see (5.16-17). Now, before making the stability range of the
orthorhombic phase O1,2,3 explicit, we make the following digression.

In order to have the t-o-m triple point on the phase diagram, we need a domain in
which all three stable phases, T3 , O1,2,3 and M3, coexist. It can be checked that the necessary
and sufficient conditions for this to happen are found by imposing the existence region
(5.12) for the M3-minimizers defined by (5.19) to overlap with the stability region of the T3-
minimizer. The resulting equations are not very explicit; however, a sufficient condition is
easy to obtain. Indeed, by definition ε ≥ 0 when the (metastable) orthorhombic branch (5.13)
exists; furthermore, because of (5.12), we have Gδ ≥ 0  on the stable part of the tetragonal
branch. Then the condition
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(5.21)                                                            0~ ≤L

guarantees that the orthorhombic elastic modulus Gδ + Nε  in (5.20)2 can be zero within the
stability limits of the tetragonal phase. This, together with the fact that both the t-o and the o-
m bifurcations are subcritical due to (5.15) and (5.18), guarantees that the monoclinic
equilibria are stable in a domain where both the two other phases, tetragonal and
orthorhombic, are stable, and thus the possibility that a t-o-m triple point exists.

Granted (5.21), we see from (5.13) and (5.20) that the O1,2,3 phase is stable in the
domain given by

(5.22)            �
�

�
�
�

� −≥
L
GKD

L
GG ~~ δε

ε
δ

ε ,       
ε

ε
δ K

DLG
2

~
≥ .

By combining (5.14) and (5.22) we obtain a complete description of the stability range for
the orthorhombic phase O1,2,3. The procedure to determine the stability range of the
orthorhombic phase  O3,1±2 is completely analogous.

 As we have already seen, the monoclinic equilibria M3 originate at the o-m
bifurcation points (5.17). Within the existence domain of the M3 phase limited by (5.19), the
stable roots can be selected by applying both inequalties (5.6); the resulting conditions in
general are not explicit; we consider an example below.

In order to determine explicitly the structure of the (p, T) phase diagram, we begin, as
usual, with an analysis of the diagram in the space of the coefficients Gε and Gδ. We first fix
the values of the other Landau coefficients, respecting the sign conditions obtained above.
By suitably rescaling the order parameters we can choose the coefficients Dε and Dδ to  be
equal to –1. Then, to consider a simplified (and symmetric) case, we take 1== δε KK , and

L~ = –1. The resulting t-o-m phase diagram in the (Gε, Gδ)-plane is presented in Fig. 6.
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Fig. 6. Phase diagram in the (Gε, Gδ)-plane, obtained numerically from the Landau free energy (5.3) for
coefficients as discussed in Section 5. Indicated are the (co)existence regions for the various phases described
in the text, and the corresponding Maxwell lines (thick lines). The insert shows the level plots of a
representative Landau energy landscape in the area FEDP ′′  where the phases with T

3
, O

1,2,3
, and M

3
symmetries are all (meta)stable, showing a total of seven energy wells. The bifurcation diagram along the t-s
section is shown in Fig. 8.

On the (Gε, Gδ)-plane we can locate the (meta)stability domains for one, two, or three
distinct sets of energy extremals with different symmetries. In particular, the first quadrant
ABC in Fig. 6 is the domain of stability of the tetragonal phase T3.  This ‘tetragonal sector’
is partially overlapped by the two ‘orthorhombic wedges’ DEF  and GHI , shaded in Fig. 6,
where the phases with symmetries O1,2,3 and O3,1±2, respectively, are stable. The domain
where the M3 phase is stable, computed from the system (5.19), is below the curve PQR ,
and it overlaps the stability domains of the three other phases. Fig. 6 shows that in addition
to four single-phase regions, there exist five two-phase regions. The most interesting feature
of the diagram is the presence of two three-phase regions FPDE ′′ and GRIH ′′ , where there
is coexistence and metastability of the phase associations T3+O1,2,3+M3 and T3+O3,1±2+M3,
respectively.

We remark that the domains of metastable phase coexistence are not usually
indicated in the conventional thermodynamic phase diagrams like the one in Fig. 1, which
only report as phase boundaries the ‘Maxwell lines’ separating the domains where the
structure of the global energy minimizer changes. In our (Gε, Gδ)-diagram there are five
Maxwell lines that meet at two t-o-m triple points; each triple point is located inside one of
the three-phase metastability regions mentioned above. The explicit equations for the
Maxwell lines can be obtained directly from the definition, and need not be made explicit
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here. Notice that because the coefficients Kδ and Kδ were chosen equal, the diagram in Fig. 6
is symmetric about the diagonal of the first quadrant; a more generic choice of coefficients
with the above sign restrictions causes distortions of the diagram that do not affect its
general topology7 (see [TD96] for a survey of different topologies compatible with the
energy (5.3)).

In order to transform the formal (Gε, Gδ)-phase diagram into the physical (p, T)-
diagram, we must relate the moduli Gε and Gδ to the environmental parameters p and T.  A
linear pressure dependence is specified by (5.4); we prescribe the temperature dependence of
Gε and Gδ by assuming that the elastic moduli of the tetragonal phase depend linearly on T.
As C11–C12 is the modulus that softens, we set

(5.23)     )(1211 εε TTACC −=− ,        δδ BTAC +=66 ,

so that from (5.4) we obtain

(5.24)                             p
M
H

TTAG 3)( −−= εεε ,  p
M
H

BTAG 6−+= δδδ .

For the tetragonal phase to be stable at high temperatures and zero pressure we require

(5.25)            Aε ≥  0,           Aδ ≥  0.

Now, the experimental t-o-m phase diagram of ZrO2 in Fig. 1 shows that t-m and o-m
Maxwell lines in the (Τ, p)-plane have negative slopes, while the t-o line has a slightly
positive slope. From these conditions, together with (5.4), (5.25) and the fact that the bulk
modulus  M is positive, we find the following restrictions on the coupling parameters H3 and
H6 in (4.21):

(5.26)            H3 ≥ 0,            H6 ≤  0.

In fact, as the t-o line is almost parallel to the pressure axis, we have that δA  and 3H  are
almost zero, which means that the 66C  modulus may be considered temperature independent
and that the dilatation 1y  is coupled to the order parameter 6y  but not to 3y . Due to (5.4)

                                                
7 We remark that with L~ going to zero the two triple points get closer, and the orthorhombic wedges
eventually overlap. This creates a four-phase domain in which all the four phases are metastable. For

0~ =L  (no order-parameter coupling) the two triple points coincide, creating a non-generic (and non-
Gibbsian) quadruple point.
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and (5.21), we also see that the order-parameter coupling coefficient L in (4.21) must be
(sufficiently) negative

(5.27)      0
2
1 63 ≤≤

M
HHL ,

In view of (5.15) and (5.18), similar bounds, which need not be detailed here, can be
obtained for the coefficients D3 and D6 in (4.21). This completes the determination of the set
of restrictions on the energy coefficients, which guarantee the existence of the t-o-m triple
point in the suitable range of temperatures and pressures as in the experimental diagram of
Fig. 1. In fact, under the assumptions formulated above, only the ‘correct’ triple point
T3+O1,2,3+M3 remains in the conventional part of the p-T phase diagram; the other triple point
maps into the half plane where p < 0, and may possibly be observed at tensile stresses and
high temperatures. The result of a suitable mapping (Gε, Gδ) ↔  (Τ, p), as in (5.24)  is shown
in Fig. 7. In this paper, being mostly interested in the demonstration of the existence of the
triple point, we did not try to obtain the energy parameters that best fit the available
experimental data on zirconia. However, we notice that even within our simplified choice of
the Landau parameters, Fig. 7 reproduces well the experimental diagram in Fig. 1, predicting
the correct relation among the slopes for the equilibrium phase boundaries. What is new in
the phase diagram of Fig. 7, comparing to the one presented in Fig. 1, is the indication of the
two and three-phase metastability regions. In particular, we remark that the three-phase
coexistence domain, within which lies the traditional isolated triple point, has a finite area.

M3+O1,2,3

T3+
 M3

T3+M3

T3+
O1,2,3

O1,2,3

T3+O1,2,3
+M3

T3

b a
g

d s

t

M3

P

T

-5

-2.5

0

2.5

5

-4

-2

0

2

4

0

500

1000

1500

-5

-2.5

0

2.5

5
y6

y3



25

Fig. 7. Phase diagram in the (Τ, p)-plane, showing the stability boundaries, the Maxwell lines (thick lines), and
the T3+O1,2,3+M3 triple point (compare with Fig. 1). The straight line t-s is the same path as in Fig. 6, whose
bifurcations are shown in Fig. 8. The insert shows the Landau energy surface, illustrating the variety of wells
existing in the three-phase coexistence region, highlighted in gray.

To illustrate the nature of such a three-phase region, in Figs. 6 and 7 we show the
energy landscape in the order-parameter space 63 , yy , for p-T conditions near the triple
point. In this region the Landau energy surface exhibits a total of seven wells, arranged in
three coexisting variant structures as in (2.8); the wells all have the same depth at the triple
point. As the environmental conditions are varied, these critical points with different
symmetries describe branches that are connected through a variety of bifurcation patterns. In
Figs. 6 and 7 we show a specific path ts −−−−− βαγδ  in the p-T plane, along which we
compute the corresponding bifurcation diagram (compare with Fig. 8); this shows the
sequence of t-o-m bifurcations and illustrates the double-bifurcation mechanism we propose
for the well-known t-m transformation of zirconia. From Fig. 8, we see that the tetragonal
and monoclinic branches are not directly connected, as we have two subcritical bifurcations:
t-o at the point α , and o-m at the point β (with turning points γ  and δ ). We remark that
the first bifurcation and the associated modulus softening is a consequence of the
temperature dependence explicitly assumed for the tetragonal modulus C11–C12 in (5.23).
The second bifurcation, on the other hand, is an effect of the internal coupling between the
order parameters.
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Fig. 8. T-o-m bifurcation diagram. The figure shows the bifurcation pattern along the path indicated by the
straight line t-s in Figs. 6 and 7, to which the rest of the lettering refers; the parameter along this line is τ  (our
vertical axis here)  growing from t to s. The solid and dotted lines indicate respectively the (meta)stable and
unstable portions of the t-o-m equilibrium branches.

6. Conclusions

In this paper we study the energy landscape for a class of elastic crystals exhibiting,
under the combined influence of temperature and pressure, a ‘t-o-m’ sequence of
spontaneous symmetry-breaking phase transformations. We have constructed the minimal
Landau-type energy function displaying a complete set of local and global minima with the
desired symmetries and showing a triple point in its phase diagram. The preliminary analysis
made in Section 2 of the t-o-m transformation mechanisms is necessary for the interpretation
of the available experimental data on zirconia against a background in which no kinematic
possibility is a priori excluded. As a result, we propose for this material a new
transformation mechanism that is different from those previously considered in the literature,
and which is based on a different modulus-softening hypothesis (double-bifurcation
mechanism for the t-m transformation). More data is needed to conduct a direct comparison
of this prediction with experiment.

By using the explicit expression for the energy we have determined the existence and
stability domains for the different phases of the t-o-m crystal with a triple point. Specifically,
in addition to the classical equilibrium Maxwell lines, which intersect at the triple point and
mark the boundaries of stability domains for the global minimizers, we have computed the
co-existence domain boundaries for the different sets of metastable phases. For the single-
component t-o-m crystal, our analysis indicates the location of five two-phase and two three-
phase metastability domains (see Fig. 6 and footnote 7). In the latter the energy exhibits a
total of seven energy wells belonging to three t-o-m sets of symmetry-related configurations.

We emphasize the importance of knowing the location of the domains with a
maximum number of phases. Inside such domains the different energy wells may have non-
equal depths; as a result they stretch beyond the conventional triple points where all the
wells are at the same level. The occurrence of these metastable phase equilibria not
accounted for by Gibbs’ phase rule may help to understand some hysteretic processes in
active crystals where metastability plays a major role. It may also help in the production of
materials with the maximal flexibility of the microstructure; an interesting problem is thus to
obtain criteria for the design of crystals whose phase diagrams exhibit triple-phase domains
in desirable locations. Two ways can be envisaged to displace a triple point or a ‘triple-area’
in a phase diagram: (a) by selecting specific compositions for suitable alloys, and (b) by
means of non-hydrostatic stresses.

The later issue is particularly relevant for the technological applications of zirconia.
Thus a typical zirconia particle in a transformation-toughened ceramic undergoes a phase
change near the tip of a crack; the corresponding non-hydrostatic conditions cannot be
depicted in a conventional p-T phase diagram. It is also known that by imbedding
transforming inclusions into elastic matrices and thus by loading them through a
combination of hard and soft devices, one can stabilize otherwise unstable phases with much
advantage for the applications (e.g. [BT93]). All this suggests the necessity of studying
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systematically non-hydrostatic phase diagrams, which lie outside the scope of classical
thermodynamical methods. On the contrary, our approach is perfectly suitable for this type
of analysis (see also [ST96]). In particular, by using our energy function one can study shear-
induced distortions of the conventional p-T diagram, including the shifting in the location of
the metastable triple areas.

Finally, we remark that in order to obtain a quantitatively sound model of ZrO2, our
analysis should be extended to cover equilibrium configurations with more than three
polymorphs and more than one triple point; in fact, no model of zirconia can be considered
adequate unless the high-temperature face-centered cubic phase is also taken into account.
Regarding the relevance of cubic zirconia, we notice that in the neighborhood of the
(possibly unstable) cubic configuration of ZrO2, there exist three symmetry-related variants
of the tetragonal phase, only one of which is considered in this paper. If such three tetragonal
variants are taken into account, we actually obtain in the vicinity of the t-o-m triple point a
total of 21 energy wells.
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