Dislocations at Semi-Coherent interfaces

Silvio Fanzon Joint work with M. Palombaro and M. Ponsiglione

- Polycrystal with two different underlying lattice structures $\Lambda^+ = \alpha \Lambda^- \ (\alpha > 1)$
- Semi-coherent interface corresponds to small misfit $\alpha \approx 1$
- Elastic Energy scales like *R*³ while Dislocation Energy like *R*²
- For large interfaces nucleation of dislocations is energetically preferred and a Periodic Network of Edge Dislocations is observed at the interface

Variational Models

Semi-discrete Model

- We consider an energy $\int_{\Omega_{P}^{+}} W(F(x)) dx$ with $W \colon \mathbb{M}^{3 \times 3} \to [0, +\infty]$
- Ω_R^+ overlayer (equilibrium αI) and Ω_R^- underlayer (assumed rigid)
- Strain is $F \in L^p$ with 1 and

$$\operatorname{curl} F = -\mathbf{b}_{\gamma} \otimes \dot{\gamma} \, d\mathcal{H}^1 \llcorner \gamma$$

with γ dislocation line on interface and \mathbf{b}_{γ} relative Burgers vector

 Minimal dislocation energy is s.t. E_{α,R} ~ R² as R → ∞ (dislocations are energetically preferred) on a Periodic Network of Edge Dislocations

Simplified Continuum Model

- Total Energy consists of an Elastic term plus a Surface term taking into account the total dislocation length
- As $R \to \infty$ dislocations are energetically preferred
- Perform Taylor expansion as $R \to \infty$ of Total Energy (by Γ -convergence)