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Starting point: a family of 4th order equations in R¢
We look for non-negative solutions to the nonlinear 4th order evolution PDEs

8tu+div( u D(uo‘_lAuO‘)) =0 in (0,400) x RY, a € [1/2,1],

with the initial condition

0 < u(0,-) = uo € L*(R?), / |z)%up do < +oo.
R4
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We look for non-negative solutions to the nonlinear 4th order evolution PDEs

8tu+div(D(u°‘_1Au°‘)):O in (0,4+00) xRY, o € [1/2,1],

with the initial condition

0 < u(0,-) = uo € L*(R?), / |z)%up do < +oo.
R4

o = 1: thin film Oru + div <D(Au)> =0

Here we focus on the thin film case o = 1 with mobility/diffusion
coefficient uw. The more general equation

O¢u + div(m(uw) D(Au)) =0, where, e.g. m(u) = u™

has been studied (mainly in dimension d = 1,2,3) by many authors:
[BERNIS-FRIEDMAN 90, BERTSCH-DAL PASSO-GARCKE-GRUN '98-’04; review: BECKER-GRUN
’05.; asymptotic behaviour: CARRILLO-T0SCANI '02, CARLEN-ULUSOY '07]
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Starting point: a family of 4th order equations in R¢
We look for non-negative solutions to the nonlinear 4th order evolution PDEs

8tu+div(D(u°‘_1Au°‘)):O in (0,4+00) xRY, o € [1/2,1],

with the initial condition

0 < u(0,-) = uo € L*(R?), / |z)%up do < +oo.
R4

A
a = 1/2: quantum-drift diffusion Oru + div <uD7ﬁ) =0

v

Here we focus on the thin film case o = 1 with mobility/diffusion
coefficient wu.

The quantum
drift-diffusion equation has been introduced by _
DERRIDA-LEBOWITZ-SPEER-SPOHN 91 [and studied by BLEHER-LEBOWITZ-SPEER '94, %ﬁ
JUNGEL with PINNAU "00 and MATTHES '08] =
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Structure of the equation

In the thin film case
Oru + div (uD(Au)) =0

Continuity equation + nonlinear condition

Oru + div (uv) =0, v= 7D(ij>
u
where 5B
— = —Au
ou

The generating functional is

B(u) = %/Rd IDul? do l
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Standard technique: choose a vector field & € C2°(R%; R?) and the flow X

Iy =@, Xo@ =a Moo= (X)pM; [ Saai

d
Wasserstein gradient g = —v : / (g,&)dM = —@(ME)| .
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As usual M < u, M, < u.. In view of the continuity equation, we choose
directly £ = V(:
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The “Wasserstein gradient” of the Dirichlet functional
Standard technique: choose a vector field & € C2°(R%; R?) and the flow X

dt

9 ¥i(@) = 6@, Xo(@) =25 Mz = (Xo)u M;

d
- | M),

d
Wasserstein gradient g = —v : / (g,&)dM = —@(ME)| .
Rd de e=0

As usual M < u, M, < u.. In view of the continuity equation, we choose

directly £ = V(:

d
—&(M.
3. 2(Me)

1

e=0+ 2 Jrd

== [ AZ%¢u?—-2D*Du-Du— Al |Dul?dz

Equation for the velocity: v = —g,

/ div (uv)(dx:—/ (v, V¢udz = 1/ AZ¢ u?—2D?¢D u-Du—A¢ |Dul? dz
R RA 2 Jpd

It corresponds to the weak formulation of the thin film equation

1 1
Oru + §A2(u2) - 8;- z; (Oz; udz; u) — 5A|Du|2 =0

Discrete equation: M < U}

& Oru + div (uDAu) =0

- T n n n n G
/RdC(U,’?—U,’? 1)dm+§/RdA2C(UT)2—2D2(jDU,_ DUP—A¢|DUP |2 dx = o(‘r)J

a
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Main problem

Discrete equation:

/g(U;’—Uffl)der%/ A2<(U_,’_L)2—2D2§DU'T"~DU_?—AC|DU.?|2dx:o(T)J
R4 R4

Strong compactness in W2 in order to pass to the limit in the
quadratic term

/ 2D%¢ DU - DU dz
Rd
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functionals W.
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RECIPE: if the derivative of the (main) functional ® along the (auxiliary)
flow S¥ is negative

then ¥ is a Lyapunov functional for the main flow S¥

Look for good flows S¥ having ® as Lyapunov functional
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First variation along auxiliary flows
MAIN IDEA: take the first variation of the minimum problem

w2(v, Uz

= + (V)

U € argmin
v
along the (Wasserstein) gradient flow SY¥ generated by other “good” auwiliary
functionals .
HEURISTICS: in an euclidean space S%,S¥ corresponds to

ug =S¥ (uo) solves %u = —V®(u), w:= Sy (wo) solves %w = —V¥(w)

If wp = wop then we have the “commutation” identity

d d
—P = —v
de (we) e=0+ de (ue)

- ( = —(V®(wo), V\Il(uo)>)

RECIPE: if the derivative of the (main) functional ® along the (auxiliary)
flow S¥ is negative (up to lower order terms)

then ¥ is a Lyapunov functional for the main flow S¥ (up to lower order
terms).
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A Lyapunov-type estimate at the discrete level in the

Wasserstein space
Suppose that ¥ generates a good flow wy = S;I' (w) satisfying the EVI:
d1
a§W2(Sip(w)7Z) < W(z) — (S (w)) (EVD)
We call D the dissipation of ® along S¥
®(w) — ®(SY
i s B0 = RS (w))
e=0t clo 5
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w2, ur—t)
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A Lyapunov-type estimate at the discrete level in the
Wasserstein space
Suppose that ¥ generates a good flow wy = S;I' (w) satisfying the EVI:
d1

SIWASE (w),2) < ¥(z) - WS} (w) (EV1)

We call D the dissipation of ® along S¥

d
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A Lyapunov-type estimate at the discrete level in the
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Suppose that ¥ generates a good flow wy = S;I' (w) satisfying the EVI:
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Auxiliary flows for the thin film equation (II)
1
P(u) = 5 / |Du|? de decays on the heat flow
RrRd
Ow—Aw=0 <& Gw —div (leogw) =0
with
d
D(w) =~ B(S” (w))| _ = / |Aw|? do = / ID2w|? de
de e=0 Jpd Jrd
The heat equation is the Wasserstein gradient flow of the relative entropy
functional H(w) := / wlog wda.
d

JR
The discrete flow-interchange estimates shows that H is a Lyapunov functional

and satisfies

H(U:)+T/ ID2U” |2 dz < H(U?1). J
RrRa

In term of U; it corresponds to

T
D2U, |? dz dt < C.
d
0 R
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Main result

Assume that the non-negative initial condition ug € L' (R%) satisfies

/ |z|%ug (x) dz < +oo0, H(ug) = / ug logug do < 4o00.
R4 R4
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Main result

Assume that the non-negative initial condition ug € L' (R%) satisfies

/ |z|?uo () dz < 400,  H(ug) = / ug log up dz < 4o00.
R4 R4

Theorem

There exists an infinitesimal subsequence of time steps 1, | 0 such that
U, — u pointwise in L*(RY) and in L2(0,T; W1 2(RY)) as k1 oo

u € CO([0, +o0); LY (RY)) N LZ ([0, +00); W22(R?)) 4s a non-negative global

solution of the weak formulation of thin film equation

1 1
Bu + 5A2(u2) - 02, o; (O, udz;u) — 5A|Du|2 -0
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F(u) = / F(Du) do
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where
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Ma(A),---Mg_1(A), Mg(A) =det A are the minors of A.
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Polyconvex functionals

F(u) = / F(Du) do
Q
where

F(A) = ®(A, M2(A), - ,My_1(A),det A), and ® is convex;
Ma(A),---Mg_1(A), Mg(A) =det A are the minors of A.

If @ is superlinear then the functional .% is lower semicontinuous in L?(£2;R%) [J.
BALL].

‘Well posedness of the variational problems

1
min—/ U — U2 de + Z(U)
U 271 Jo

Nevertheless, no general results are known for gradient flows of polyconvex
functionals and for their variational approximation
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The “simplest” polyconvex functional

F(A) = B(det 4),  F(u) = / ®(det Du(z)) dz
Q
under the additional constraint that

w is a diffeomorphism between 2 and w($2), det Du(z) > 0,
u() is contained in a target open set % .
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Polyconvex functionals

The “simplest” polyconvex functional

F(A) = B(det 4),  F(u) = / ®(det Du(z)) dz
Q
under the additional constraint that

w is a diffeomorphism between 2 and w($2), det Du(z) > 0,
u() is contained in a target open set % .

<D(det Du)

det Du

Difficulties (besides polyconvexity):

lack of coercivity (% controls only det Dw)
lack of lower semicontinuity in L2(Q;%).

&5



The form of the PDE

F(A) = ®(det A), DF(A) = (cof A)" @' (det A),
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Q



The form of the PDE

F(A) = ®(det A), DF(A) = (cof A)" @' (det A),

Odet A
0A:,

= (cof A)Y, where Z Al (cof A), = det ASy; Vi, j.
«@

0.7 (u, &) = / ®'(det Du) cof Du - D€ dx
Q

Gradient flow

Oru — div <<I>/(det Du) cof Du) =0
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A differential approach [Evans, Gangbo, Savin]
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Make the transformation

1 1 1 p
= = = = 4
y=w(@), pely) = Dur(z) — det Duy ™ (W) = ug (£9)

u




Polyconvex functionals

A differential approach [Evans, Gangbo, Savin]

Make the transformation

1 1

y=w(z), pi(y) =g po @ ~ det Du cul(y) = u#(fdm)

u

p solves the nonlinear diffusion PDE

Op — div(pD¢'(p)) =0 in % x (0, +0c0),
p(z,0) = po(z) in %; Onp=0 on 0% x (0,+00)

where | ¢(p) := p2(1/p)
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Recovering u

Step 1: put P(p) := p@(1/p)
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Recovering u

Step 1: put o(p) := p®(1/p)
, . , P
Step 2: solve the PDE Orp —div(pVe'(p)) =0 in %,
p(-,0) = po, Onp=0 on O%
Step 3: Ry ,
build the vector field v, y). = =V (pe(v))
Step 4: Compute the flow Y(t,y)=V(tY(Ey)
Y(0,9)=vy
Step 5 | ult, 2) = Y(t, uo(@)

Main problem:

Prove that the L2-Minimizing Movement scheme converges to this solution
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Transporting the variational problem

F(U) = / ®(det DU) d

R)= [ o(ra

Given U?™1 ~s RP1 ﬁnd U™ ¢ Diff(Q; %) solution of
min 7 (U) +—||U U~ 1||LQQR4

U R= - oU™ L,
det DU

)

min (Lgrgr}? F(U) + —||U Ur. mw))

ngn (%(R) ZHU_ U¢_1HL2(Q;R4)>

Problem: given a density R in % and U?~! ~ R?~1 solve

LI,IEI}%”U_ UZilHi%sz;W)



Polyconvex functionals

Optimal transportation

Minimize / U — Ufrl*l |2 dx under the constraint U ~» R.
Q



Polyconvex functionals

Optimal transportation
Minimize / U -un—? |2 dr under the constraint U ~~ R.
Q

Write U=ToU? ', T: % — %, T4(RF ") =R

&5



Polyconvex functionals

Optimal transportation
Minimize / U -un—? |2 dr under the constraint U ~~ R.
Q

Write U=ToU? ', T: % — %, T4(RF ") =R

/|U—U’;*1|2dx:/ Tt —Ur P de
Q Q

= / |T(y) —y|> R (y) dy
%
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A Wasserstein gradient flow

The piecewise constant intepolant R, of the discrete solution of the variational
algorithm
(2;R4)

. 1 —1q2 . 1 _
min F(U) + ——[U = U7 |2 g.z0) = min@(R) + - W3(R, R} )
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A Wasserstein gradient flow

The piecewise constant intepolant R, of the discrete solution of the variational
algorithm

mm F(U) +—||U urt HL2

. 1 _
(QRd) = Hﬁng(R) + ;WQ(Rv Ry

converge to the solution of the nonlinear PDE

Otp +div(pv) =0 in % % (0,+00) (continuity equation)
v=— V¢ (p) (Nonlinear condition)
p(y,0) =po(y),  Onp=0 on 0% x (0, 400).

Optimal error estimate:

sup W2 (R~ (1), (1)) < 7%(po)
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Iterated optimal transport maps

% Tl % T2.3A....n—l % " Y

U’ U'=Y"oU"

1
min/ #(R)dy + —W2(R,R*™ 1) ~» R"
R Jou 2T

R?, solve the PDE. How to pass to the limit?
YY" — YB—I ) ) )
SIS VYD), V= V(R
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Convergence of the iterated maps

Main problem:

d

2 Y (6u)= V(Y (ty), Vo (t,y) = —=V¢' (R (t,y))
asT—0 | 1 1 | ?
SX (t9)= V(Y (t.9), V(ty) = V8 (plt, 1)
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Convergence of the iterated maps

Main problem:

d

E V()= Vet Yo (t0), Vir(ty) = =V (Br ()
asT—0 | 1 ! ! !
1
#Y(t., y)=V(t,Y(t,y)), Vi(t,y) = =V¢'(p(t,y))
Difficulties:

» No regularity estimate for V-
» No lower density bound for R;.

» Only weak convergence of VR; to Vp (DIPERNA-LIONS, AMBROSIO-theory
cannot be applied)

» convergence of the energy:

T T
lim / !VT(t,y)|2R-r(t,y)dydt:// !V(t,y)|2p(t,y)dydt
T10Jo o oJu
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A first result: convergence of flows

Suppose that V., Y ;, ir = pr Z¢ are given with

d

Y EY=VeYr(ty),  pre = (Yt ))gsro

> fir¢ — pt narrowly,

» V.pur — Vypin the distribution sense

T T
3 1 2 (1 — ) 2 1 (1
1;115/0/7/ | V7 (t,y)|” dpr,e(y) dt /0/7/ [V(t,9)|” dpt(y) dt

> V is a “tangent vector field”, i.e. V € {Vy: ¢ € C (%)}
» The limit ODE admits a unique solution for pgp-a.e. y € %.

>

Then there exists a unique flow Y solving
Y(ty)=V(Y(ty), Y(0,y) =y
T

2
lim max ‘YT (t,y) = Y(t,y)| duo(y)=0.
710 Jo t
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Reconstruction of the gradient flow of %

Suppose that po € C(%), 9(po) = / od(po) dy < +o0.
U

» The discrete transports Y- converge to Y in the sense of L2(%; L>°(0,T))

T 2
lim [ max| Y. (ty) ~ Y(ty)| poly) dy = 0.
710 Jo t

and the discrete solutions U~ (t,z) = Y (¢, uo(x)) converge to
’U/(t, I) = Y(t7 ’u,()(I))
» The limit flow Y solves the ODE
Y(t,y) = V(£ Y(ty))
Y(0,y) =y
> p is the unique solution of the nonlinear diffusion equation
Ap —div(pDé'(p)) =0 in %,
p(y,0) =po(y),  Onp=0 ond%

where V(t,y) = =V (pt(y))
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The sticky particle system
m in collaboration with L. Natile
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Starting point: motion of a finite number of particles.

Discrete particle model

N particles P; := (my,zi,v;), i=1,...,N,
with positive mass m; satisfying Zf\;l m; =1
ordered positions z1 < 22 < ... <zny_1 < TN,
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Measure-theoretic description
We thus have:
a (finite) sequence of collision times 0 < t! <2 < ...

in each interval [t?,t"*+1) a finite number N of (suitably relabelled)
particles Py (t), -, Pyn(t), Pi(t) := (mg, ;i (t), v (t)).
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in each interval [t?,t"*+1) a finite number N of (suitably relabelled)
particles Py (t), -, Pyn(t), Pi(t) := (mg, ;i (t), v (t)).

We can introduce the measures

Nh' Nh
pr =Y miby, 1) EPR) (pv)e =D mividy, ) € M(R) if t € [th ")
i=1 =1

They satisfy the 1-dimensional pressureless Euler system in the sense of
distributions

0tp + 0z (pv) =0,
O (

in R x (0,4+00); p = po,
pv) + 0z(pv?) =0, ( ) li=o

U|t:0 = %o,

and the OLEINIK entropy condition

vi(w2) — ve(r1) <

| =

(x2 —x1) for pi-ae. x1,22 € R, 1 < 2.
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Sticky particles

Main problem: continuous limit

Consider a sequence of discrete initial data uf} := (p, pjvjy) converging to
1o = (po, povo) in a suitable measure-theoretic sense and let u}* = (p7, pfvy) be
the (discrete) solution of SPS.
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Main problem: continuous limit

Consider a sequence of discrete initial data uf} := (p, pjvjy) converging to

1o = (po, povo) in a suitable measure-theoretic sense and let u}* = (p7, pfvy) be

the (discrete) solution of SPS.

Problem

>

Prove that the limit py = (pg, prvt) of the SPS pp = (pft, pfof) as n 1 400
exists.

Find a suitable characterization of ut

Show that (pt, ptve) solves the pressureless Euler system

{ Otp + 0z (pv)

=0,
in R x (0,400); p =po, v = vo,
Du(p) + B (pv?) = 0, (O o0); py,g Ji=o

and satisfy Oleinik entropy condition.
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Main contributions

e Existence and convergence:

> GRENIER '95, E-RYKOV-SINAI '96: first existence and convergence result.
> BRENIER-GRENIER '96: Characterization of the limit in terms of a suitable
scalar conservation law, uniqueness.
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Main contributions

e Existence and convergence:

> GRENIER '95, E-RYKOV-SINAI '96: first existence and convergence result.

> BRENIER-GRENIER '96: Characterization of the limit in terms of a suitable
scalar conservation law, uniqueness.

» HUANG-WANG ’01, NGUYEN-TUDORASCU 08, MOUTSINGA ’08: further refinements.

Basic assumptions:
pg — po in the L2-Wasserstein distance,
v = vo is given by a continuous function with (at most) linear growth.

In particular the result cover the case when p{}, po have a common compact
support and p{y — po weakly in the sense of distribution (or, equivalently, in
the duality with continuous functions).

e Different approaches and models:

» BOUCHUT-JAMES '95, POUPAUD-RASCLE 97
> SOBOLEVSKII ‘97, BOUDIN ’00: viscous regularization.
» WOLANSKY ’07: particles with finite size.
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Main contributions

e Existence and convergence:

> GRENIER '95, E-RYKOV-SINAI '96: first existence and convergence result.

> BRENIER-GRENIER '96: Characterization of the limit in terms of a suitable
scalar conservation law, uniqueness.

» HUANG-WANG ’01, NGUYEN-TUDORASCU 08, MOUTSINGA ’08: further refinements.

Basic assumptions:
pg — po in the L2-Wasserstein distance,
v = vo is given by a continuous function with (at most) linear growth.

In particular the result cover the case when p{}, po have a common compact
support and p{y — po weakly in the sense of distribution (or, equivalently, in
the duality with continuous functions).
e Pioneering ideas which lies (more or less explicitly) at the core of the papers
by E-RYKOV-SINAI and BRENIER-GRENIER have been introduced by
> SHNIRELMAN ’86 and further clarified by
> ANDRIEVWSKY-GURBATOV-SOBOELVSKIT "07 in a formal way.
e Different approaches and models:
» BOUCHUT-JAMES '95, POUPAUD-RASCLE 97
> SOBOLEVSKII ‘97, BOUDIN ’00: viscous regularization.
» WOLANSKY ’07: particles with finite size.
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The Brenier-Grenier formulation

For every probability measure p € P(R) we introduce the cumulative
distribution function

Mp(z) = p((—o0,2]), = €R, sothat p=0.M, inZ'(R).
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For every probability measure p € P(R) we introduce the cumulative
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Main idea: study the evolution of M; := M,,, where p; is the solution of the
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The Brenier-Grenier formulation

For every probability measure p € P(R) we introduce the cumulative
distribution function

Mp(z) = p((—o0,2]), = €R, sothat p=0.M, inZ'(R).

Main idea: study the evolution of M; := M,,, where p; is the solution of the
SPS.

Theorem (Brenier-Grenier ’96)

M is the unique entropy solution of the scalar conservation law
WM + 9, A(M)=0 in R x (0,4+00)

where A :[0,1] — R is a continuous fluz function depending only on the initial
data po and vg.
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The Brenier-Grenier formulation

For every probability measure p € P(R) we introduce the cumulative
distribution function

Mp(z) = p((—o0,2]), = €R, sothat p=0.M, inZ'(R).

Main idea: study the evolution of M; := M,,, where p; is the solution of the
SPS.

Theorem (Brenier-Grenier ’96)

M is the unique entropy solution of the scalar conservation law
OeM 4+ 0, A(M) =0 in R x (0,+00)

where A :[0,1] — R is a continuous fluz function depending only on the initial
data po and vg. It is characterized by

A’ (Mo (z)) = vo(z).

1K
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Monotone rearrangement

Point of view of 1-dimensional optimal transport: instead of using the
cumulative distribution function M,(z) = p((—o0,z]), we

represent each probability measure p by its monotone rearrangement
X,:(0,1) = R

X,(w) = inf {x €ER: M,y(z) > w} w € (0,1)

which is the so-called pseudo-inverse of M.
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Monotone rearrangement

Point of view of 1-dimensional optimal transport: instead of using the
cumulative distribution function M,(z) = p((—o0,z]), we

represent each probability measure p by its monotone rearrangement
X,:(0,1) = R

X,(w) = inf {x €ER: M,y(z) > w} w € (0,1)

which is the so-called pseudo-inverse of M.

The map X, is nondecreasing and right-continuous and it pushes the
Lebesgue measure \ := 1 on (0, 1) onto p.

l(0,1)
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Wasserstein distance and the L? isometry

The map p — X, is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment
ma(p) = [ |2|* dp(z) < +oo

and
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The map p — X, is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment
ma(p) = [ |2|* dp(z) < +oo

and

the closed convex cone K of all the nondecreasing function in L?(0,1) (among
which we can always choose the right-continuous representative).
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Wasserstein distance and the L? isometry

The map p — X, is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment
ma(p) = [ |2|* dp(z) < +oo

and

the closed convex cone K of all the nondecreasing function in L?(0,1) (among
which we can always choose the right-continuous representative).

D) 9 9
L“-Wasserstein distance

Wa(pt, p?) between pl, p? € Pa(R):

1
W22(/317P2) = /0 |Xp1 (w) — sz(w)‘2dw = HXp1 - X92H2L2(0,1)
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Wasserstein distance and the L? isometry

The map p — X, is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment
ma(p) = [ |2|* dp(z) < +oo

and

the closed convex cone K of all the nondecreasing function in L?(0,1) (among
which we can always choose the right-continuous representative).

D) 9 9
L“-Wasserstein distance

Wa(pt, p?) between pl, p? € Pa(R):

1
W22(/317P2) = /0 |Xp1 (w) — sz(w)‘2dw = HXp1 - X92H2L2(0,1)

In this way p < X, is an isometry between (Pz(R), W2) and (K, | - [|12(0,1))-
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Sticky particles

A metric space for the measure-momentum couples (p, pv)
We consider the space of couples (p, pv), with p € P2(R) and v € L% (R):

Va(R) = {,u = (p, pv) C P2(R) x M(R) : v € Li(R)}.

thus p is a probability measure and 7 = pv is a finite signed measure in M(R)
with [p [v(2)]? dp(z) < +oo.
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We consider the space of couples (p, pv), with p € P2(R) and v € L% (R):

Va(R) = {,u = (p, pv) C P2(R) x M(R) : v € Li(R)}.
thus p is a probability measure and 7 = pv is a finite signed measure in M(R)

with [p [v(2)]? dp(z) < +oo.
We can introduce a semi-distance Uz in V2 (R):

U3 (ut, 1) :=/R [0} (X1 () = v2(X 2 (w)[* dw = [[o! 0 X0 =02 0 X2 [ 7241

and a distance Do

D3(pt, 1) =W (p", p?) + U3 (', 1i?).
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We consider the space of couples (p, pv), with p € P2(R) and v € L% (R):

Va(R) = {,u = (p, pv) C P2(R) x M(R) : v € Li(R)}.
thus p is a probability measure and 7 = pv is a finite signed measure in M(R)

with [p [v(2)]? dp(z) < +oo.
We can introduce a semi-distance Uz in V2 (R):

U3 (ut, 1) :=/R [0} (X1 () = v2(X 2 (w)[* dw = [[o! 0 X0 =02 0 X2 [ 7241

and a distance Do

D3(pt, 1) =W (p", p?) + U3 (', 1i?).

Theorem (Ambrosio-Gigli-S. ’05)

(V2(R), D2) is a metric space whose topology is stronger than the one induced by
the weak convergence of measures.
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A metric space for the measure-momentum couples (p, pv)
We consider the space of couples (p, pv), with p € P2(R) and v € L% (R):

Va(R) = {,u = (p, pv) C P2(R) x M(R) : v € Li(R)}.
thus p is a probability measure and 7 = pv is a finite signed measure in M(R)

with [p [v(2)]? dp(z) < +oo.
We can introduce a semi-distance Uz in V2 (R):

2 2
U3 (u*, 1?) :=/R [0 (X1 (w) = v (X2 (w))]" dw = [ 0 X1 =0 0 X 2|72 )
and a distance Do

D3(pt, 1) =W (p", p?) + U3 (', 1i?).

Theorem (Ambrosio-Gigli-S. ’05)

(V2(R), D2) is a metric space whose topology is stronger than the one induced by
the weak convergence of measures.
The collection Ygiscr(R) of all the discrete measures

n= (Zfil mibz,, z;N:1 miviéwi) is a dense subset of Va(R).
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A metric space for the measure-momentum couples (p, pv)
We consider the space of couples (p, pv), with p € P2(R) and v € L% (R):

Va(R) = {,u = (p, pv) C P2(R) x M(R) : v € Li(R)}.
thus p is a probability measure and 7 = pv is a finite signed measure in M(R)

with [p [v(2)]? dp(z) < +oo.
We can introduce a semi-distance Uz in V2 (R):

2 2
Uguf,u%:=/ghﬂaxpmuo>fzﬂcxﬂ<w)ﬂ dw = [[o! 0 X1 —v? 0 X[ 12y )
and a distance Do

D3(pt, 1) =W (p", p?) + U3 (', 1i?).

Theorem (Ambrosio-Gigli-S. ’05)

(V2(R), D2) is a metric space whose topology is stronger than the one induced by
the weak convergence of measures.

The collection Ygiscr(R) of all the discrete measures

n= (Zfil mibz,, z;N:1 miviéwi) is a dense subset of Va(R).

tn = (pn, pnn) converges to pu = (p, pv) in V2(R) if and only if

Walpaip) =0, puow = po weakly in ME), [ [oaPdpn — [ [P ap. | @
R R ez
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The fundamental estimate

Let Ygiscr (R) the collection of all the discrete measures in V2(R) and let us denote
by %t  Pdiser (R) — Ygiser (R) the map associating to any discrete initial datum
(po, povo) € Yqiscr the solution (p¢, prve) of the (discrete) sticky-particle system.
Y is a semigroup in Ygisc. (R).
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Let Ygiscr (R) the collection of all the discrete measures in V2(R) and let us denote
by %t  Pdiser (R) — Ygiser (R) the map associating to any discrete initial datum
(po, povo) € Yqiscr the solution (p¢, prve) of the (discrete) sticky-particle system.
Y is a semigroup in Ygisc. (R).

For p € V2(R) we set

W = [ (lof? +10(@)*) dol) = D3 (80, 0)).

Theorem (Stability with respect to the initial data)

Let uf = (o8, phof) = F[ugl, €= 1,2, be the solutions of the (discrete)
sticky-particle system with initial data ,LLS € Yaiser (R).

Wal(pt, p?) < Wa(pg, pg) + tU2(16, 13)s
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The fundamental estimate

Let Ygiscr (R) the collection of all the discrete measures in V2(R) and let us denote
by %t  Pdiser (R) — Ygiser (R) the map associating to any discrete initial datum
(po, povo) € Yqiscr the solution (p¢, prve) of the (discrete) sticky-particle system.
Y is a semigroup in Ygisc. (R).

For p € V2(R) we set

W = [ (lof? +10(@)*) dol) = D3 (80, 0)).

Theorem (Stability with respect to the initial data)

Let uf = (o8, phof) = F[ugl, €= 1,2, be the solutions of the (discrete)
sticky-particle system with initial data ,LLS € Yaiser (R).

Wal(pt, p?) < Wa(pg, pg) + tU2(16, 13)s

t
/0 U3 (o p2)dr < C(1+ t)([ul]z + [M2]2) (WQ(ﬂcl)aﬂ(%) + U2(ué,u3)),

for a suitable “universal” constant C' independent of t and the data.
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Evolution semigroup

Theorem (The evolution semigroup in 72(R))

» The semigroup .+ can be uniquely extended by density to a right-continuous
semigroup (still denoted #;) of strongly-weakly continuous transformations in
¥2(R), thus satisfying

Fortlp] = L[ L]l Vs, t >0, ltlfl(} Da(Ft[p], 1) = 0. (2)

S+ complies with the same discrete stability estimates of the previous
Theorem.
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Evolution semigroup

Theorem (The evolution semigroup in 72(R))

» The semigroup .+ can be uniquely extended by density to a right-continuous
semigroup (still denoted #;) of strongly-weakly continuous transformations in
¥2(R), thus satisfying

Fortlp] = L[ L]l Vs, t >0, ltlfl(} Da(Ft[p], 1) = 0. (2)

S+ complies with the same discrete stability estimates of the previous
Theorem.

> (pt, prve) = Ltlpl, p € #2(R), is a distributional solution of Euler system
satisfying Oleintk entropy condition.
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A gradient flow formulation in P(R)

The semigroup .#; can also be characterized by the (metric) gradient flow ¥,
of the (—1)-geodesically convex functional

P(p) := —%Wf(p,po)

in P2(R).
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A gradient flow formulation in P(R)

The semigroup .#; can also be characterized by the (metric) gradient flow ¥,
of the (—1)-geodesically convex functional

P(p) := —%Wf(p,po)

in P2(R).

Theorem (The gradient flow of the opposite Wasserstein distance)

If pe = (pt, ptve) = 4 (po, povo) is a solution of SPS then the rescaling T = logt,
fr = pt, pr = pe salisfy

Pr+s =9s(pr) or, equivalently p, s = Ys(pt).
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A gradient flow formulation in P(R)

The semigroup .#; can also be characterized by the (metric) gradient flow ¥,
of the (—1)-geodesically convex functional

P(p) := —%Wg(p,po)

in P2(R).

Theorem (The gradient flow of the opposite Wasserstein distance)

If pe = (pt, ptve) = 4 (po, povo) is a solution of SPS then the rescaling T = logt,
fr = pt, pr = pe salisfy

Pr+s =9s(pr) or, equivalently p, s = Ys(pt).

The (rescaled) semigroup ¢ provides a displacement extrapolation, i.e. a
canonical way to extend Wasserstein geodesics after collisions.
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V1.5
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vy
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Non-local effects in the multi-dimensional case
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Non-local effects in the multi-dimensional case
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Non-local interaction can be avoided only in
the 1-dimensional case.




Sticky particles

Extensions

Extensions:




Sticky particles

Extensions

Extensions:

> (in collaboration with W. GANGBO AND M. WESTDICKENBERG) Adding a
force induced by a potential V'

Otp + 0x(pv) =0,

At (pv) + Bx(pov?) = .
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Otp+ 0z(pv) =0,
De(pv) + Bu(pv?) = =pdaV ]
» Adding a force induced by a smooth interaction potential
Otp+ 0z(pv) =0,

Ot (pv) + 0z(pv?) =| —p (p* 0 W)

> Adding a force induced by a non-smooth interaction potential, e.g. the
Euler-Poisson system when W (z) = £|z|.
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Extensions

Extensions:

> (in collaboration with W. GANGBO AND M. WESTDICKENBERG) Adding a
force induced by a potential V'

Otp + 0x(pv) =0,

At (pv) + Bx(pov?) = .

» Adding a force induced by a smooth interaction potential
Otp + 0x(pv) =0,

Ot (pv) + 0z(pv?) =| —p (p* 0 W)

> Adding a force induced by a non-smooth interaction potential, e.g. the
Euler-Poisson system when W (z) = £|z|.

Open problems:
» The SPS in the multidimensional case.

» The displacement-extrapolation problem.

o7
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