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Variational approach

An (incomplete...) list of basic questions

Prove

>

>

>

Existence
Stability

Asymptotic behaviour

of Wasserstein gradient flows.

Some advantages of this approach:

>

>

>

It is natural to deal with “transportation” mechanisms
Non-negativity is for free (interesting for 4-th order problems)

Covers both diffuse and discrete models, measure-valued solutions,
concentration effects

A general approximation scheme is available

It is quite robust with respect to perturbations: second order evolution
equation admits a derivative-free formulation.

Interesting geometric aspects of the underlying space are involved.

Gradient flows are often associated to useful functional inequalities.




Variational approach

The structure of the equations
In the diffuse case, interpret t — u: as the Lebesgue densities of the probability
measures p1; = ue.Z% which evolve according to the continuity equation with

velocity v
Otu +div(uv) =0 (Continuity equation)
&% . o .
v = —Va— (Nonlinear variational condition)
u
u(0,-) = o ug € LY(R?), ug > 0.

[
® is an integral functional and — is its Euler-Lagrange first variation

D(u) := / ¢(z,u,Du) dz, = pu(x, u, Du) — div ppy (x, u, Du)
Rd

Su

We will look for solutions (u, v) with

/OT (/Rd "vt(a:)|2 d#t(m)) dt < 400

and satisfying the continuity equation in the sense of distribution:

T
= oo (md _
/o /Rd (atC +(V¢, Ut>> dpedt =0 for every ¢ € CZ°(R® x (0,7)). %}@



Variational approach

The simplest example: the potential energy and the linear
transport equation

The linear transport equation asociated to a potential V : R — R.

\ du — div(uVV) = 0 \ u(z,0) = up(z). (LTE)

is the gradient flow of the potential energy

<I>:V::/l;‘dV(z)udx:‘/RdV(x)du(x), a:v

When V € C2(R9%) with D2V > AI, the solution can be easily obtained by the
characteristic method: we solve the gradient flow in R¢ generated by V

%Xt(x) = -VV(Xy), Xo(z)== (GF)

and then we represent the solution ut := ut.Z? of (LTE) by the push-forward
formula

we = (X¢) 4o
When A = 0, u¢ solves the Evolution Variational Inequality

%%Wf(ut, o) < V(o) = V(i) for every o € Po(RY). (EVI)



A direct proof of EVI

It is interesting to give a direct proof of (EVI) for the potential energy.
We start from the formula for the derivative of the Wasserstein distance

@wgw,a) =2 @y dm(w,yﬂ

along a solution of J¢ ¢ + div(peve) = 0, where p, is an optimal coupling between

pt and o.

Since v+ = —VV we obtain
S o) = [ (TV@)y - a) duyey)
q22 Mt,0) = e Z),Y —T) AR (X, Y

< [ (Vo) - V@) dule) = Vo) = V)
R4 xRd
where we applied the subgradient inequality for V'

(VV(z),y —z) S V(y) - V(z)

and the fact that p: and o are the marginal of p,.

&



Variational approach

The variational approximation: general strategy
@ The starting point:

construct the gradient flow by the JKO/Minimizing Movement scheme.

Existence of a discrete solution can be proved by the direct method of the
Calculus of Variation, combining lower-semicontinuity and compactness
arguments.

© Euler-Lagrange variation in the Wasserstein setting: try to extract
information by taking suitable first variations of the functional involved,
which should take care of the particular structure of the Wasserstein
distance: this leads to a crucial

“discrete” formulation of the evolution PDE.
© Convergence of dicrete solutions: Two basic situations:
» The functional ¢ is displacement A-convex: one can apply a general
theory, based on the EVI formulation (at continuous and discrete level)
d1l ,
53¢ w) < P(w) — (u) (EVI, A=0)
» The functional P is displacement A-convex: to pass to the limit in
the discrete formulation as 7 | 0, one needs suitable space—time
compactness estimates.
Compactness in “space” (a priori bounds on the functional and its first
variation/Wasserstein slope) and compactness in “time” can be deduced by a
discrete version of the basic Maximal slope inequality

1 1 d
5|’ut\2 + 5|a¢’|2(ut) < —a‘i’(ut)- (MSI)

but often further estimates are needed.



Variational approach

JKO/Minimizing Movement scheme

» Choose a partition of (0,+00) of step size T > 0 and look for

’ measures M? € P5(R%) which approximate ¢ at the time t = nr.

A M3
Ml T T ®
f M (t)
MO T M2
[ ] — e
M2 Mn
—Y o — e
T T T T
to ‘ t1 ‘ to ‘ ts ‘ ta ‘ tn i
Algorithm: starting from M? := pg find recursively M, n=1,2,...,
such that
W2 (M, M1 ,
M minimizes M — % + ®(M) in Po(R?).
T

» M., is the piecewise constant interpolant of {M”},,.




First variation

The discrete equation associated to a single minimization step
Problem: Let M be a minimizer of
WZ(M, MP—1)
—
2T

Which kind of “Euler” equation does M satisfy?
Analogy: If U minimizes in some R™

M +®(M) in Zy(RY) (MM)

U—-U""172 + ¢(U)

Ur— —
2T

we get

_ n—1
L e =0, (EE)

(EE) can be obtained by perturbing U along a direction Z by taking
U: . =U+¢Z
and observing that the function
1 n—12
f(e) ::;‘UE_UT I” + &(Ue) >0,

has a minimum at € = 0, so that

d U-Uupt
—f(€)| >0 < <,Z>+<V¢(Uf),Z) >0 forevery ZeR™. &
de T %@

e=0t —
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First variation

Natural perturbations in the Wasserstein framework
Let M be a minimizer of

[\,,[ — %j\m + ®(M) in P (Rdﬂ (MM)

Main idea [JKO]:
replace “linear” perturbations M + ¢Z with “transport” perturbations.

Choose a smooth vector field £ € C°(R%; R?) and consider the flow
X, : R? — RY associated to the ODE system

CXi(o) =E(Xi@),  Xo() ==,

We perturb the minimizer M by

M. := (Xe)x M

Notice that M is still a probability measure and solves the transport equation
0 M + div(M:€) =0, Mo=M

Again, setting

| WR(Me MpY

d
f(e): P ®(M.) we have @f(s)\sz(ﬁ > 0.
Problem: compute EWQ(M Mr i@(M) %Z%
de 2 € p 5 dz ). 5



First variation

Perturbation of the Wasserstein distance

t? := optimal transport map pushing
M = M” on M?~*

vl ZiTtT := the discrete velocity

) i 5 oM.
W2(M7P~ M.) < [ ¢ — X.|*dM

d /1 n— n
S(mso ), < [(eomam

wioaar ) = [ - er@Pan, wiog <] [ e - xepam
lim e~ (W2 (M, M2™1) = WE(M, M2~1))
el0
<l -1 n o__ 2 _ |gn _ 2
<tim [ = (|tT Xc|? - [t (x) a:|)dM

=2 [ (&2 —a)am =2 [ (g onyam .
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First variation

Perturbation of the functional

9 X(@) = 6(Xe(@)), Xolw)=m: M. = (X)uM; —~ | Lo

dt 3 TMe)) -

Definition (Weak Wasserstein gradient)

Ts a vector field g := 9®(M) € L?(M;R?) satisfying

d
—®(M:) = (g,€)dM for every smooth vector field & € C>° (R%; RY).
dE ‘6 (O R4 c

y

Corollary (Euler equation for the minimizing movement)

W2(M, MP—1)

If M is a minimizer of M — 5
-

+®(M) in P2(RY)

and if for every & € CX°(R%; R?) the function € — ®(M,) is differentiable at
e =0 then

o = —9D(M™) \ in L2(M™;RY).

Proof: take & and —¢£ in the following inequality.

d n— n d @
OS d ( WQ(M57M 1)+¢(ME))|5:O§/]R¢1 <UT7€>dM+ dieé(Ms)lazo'
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The potential energy

M. = (X) g M ~ GEV(ME)E_U :/<8V(M),£) dM]

d
aXz(I) = &(X¢(2)),

The functional is linear

V(M) = /Rd V(w)dM,

\ V(M) = VV \

V(M) = /R V@t = [vex)anm,

VL), = [ (oVE).g



Wasserstein gradient of the interaction energy

d

LX1@) = €Xi(@),  Me = (Xe) M~ [(i@(ME)|E_O :/<aq>(M),g> dM]

The interaction potential: W € C!(R?), even, with bounded derivatives.

® = W(M) = % // W(z—y)dM(z)dM(y), | oW(M) = /W VW (2 — y) dM(y)

W(M.) = %// W(a' — ') dM. (') dM. (/)

= [[ Wexe@) - Xew) ad(@) dn)

)y =5 [[@Wia - ).6@) - W) dM@) antty)

=3 [ [, vWe—vamw) Le@)am

1
5 [ AL, 7w - am@).em) amw)
Rd Rd
Switch the variable « and y in the last integral and use the fact that

—VW(z —y) = VW(y — x).
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Wasserstein Gradient of the logarithmic entropy (I)

d

S Xi(@) = €(Xe(a)), Mz = (Xo)p M Gf(MeNs_o - [ womn.g dM]

The Logarithmic entropy

® = H(M) ::/ Ulog U dz = /log UdM, M=U%?
]Rd

iH(ME) = f/ divEdM.
de Rd

HMe) = [ og (Vo) abe(o) = | tog (U-(Xe(@))) ant

:/ log U dM—/ log (det DXE(x)> dM

Rd R4

thanks to the change of variable formula: U (X¢(x)) det DX (x) = U(z).

In order to calculate the derivative of log ( det DX, (z) ) w.r.t. €, we differentiate
the ODE with respect to x:

%DXt(x) — DE(Xy) - DXy (2), %det DX, (z) = trace(DE(Xt)) det DXy ()

so that d @

38 (det DXt(w)> = div&(Xe(2)) <



Wasserstein gradient of the logarithmic entropy (II)

[(iH(ME) = f/Rd divng]

In order to correctly interpret this fomula, we use the fact that we know a priori
by the minimization scheme that the discrete velocity v satisfies

d
[, wrean = - Lo
Rd de
for every smooth vector field £. It follows that
/ (v2, &) Udex = / diveU dx
R4 Rd

This has two consequences:
» U € WHI(RY), since

/d dive¢Udz = /d (h,&)dz  for every £ € CP(RYGRY)  and h:= Uv? € L*(RY).
R R

» The (distributional) gradient of U is —Uwv?. This is the appropriate
formulation of

vU
vl =— o
In this sense, we can also say that
o
vU
OH(M) = = “V(logU)" %%
. 190




Wasserstein gradient of the internal energy functional

CXul@) = EX(@)), Me = (X)pM ~ @@(Mens_o - [ o g dM]

A convex internal energy functional: choose a smooth convex function
F :[0,400) — [0,400) and the associated integral

F(M) ::/ F(U)dz, M =UZ*
Rd

%]—'(ME) = f/divﬁd:p, L(r) = rF'(r) — F(r).

E.g. F(r)=rlogr ~ L(r)=r, F(r)= 218 ~ L(r)=rP.
)|

71
Notice that | L' (r) = rF"'(r

In this case, the existence of the Wasserstein gradient means

L(U) e WHL(RY), —VL(U) =Uw"

which formally yields

L(U L'(U)VU
v = Y é ) __ (lb2V[ =—-F"(U)VU =|-VF'(U) |

OF =
discrete velocity = —V— e
velocity 5 &

i.e.
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Summary

M is a minimizer in %2 (R%) of

-

W2(M, Mn—1
5 ( ) "

(M
27 (M)
t? := optimal transport map pushing
M” on MP~1

n -t . .
v} := —= := the discrete velocity

For every & € C2°(R%; RY)

[ wrgans + Zo(ceoumr) =0, X-ex) = [vr=-0e()

d=V=[ V(z)dM ~ V(M) =VV
RrRd

@zW://W(m—y)dM(:v)dM(y) s OW(M) = VW * M

VL(U)

TR L(r) =rF'(r) — F(r)

21

@ :.7-':/ F(U)da ~  OF(M) =
RrRd



Limi

Passing to the limit: the continuity equation

M} Mr
MV
T
M2 )
My ;
@ 7
4
M3

Equation for the discrete velocity: at each step | v} = —0®(M]") |.

Limit equation: dip + div(puv) =0, v = —90P(p).
Is there a “discrete” version of the continuity equation?
Distributional formulation of the continuity equation: for every ¢ € CZ°(R%)

G /Rdwc,vt)dut N /Rdédut—/RdCdus:/t(/(VC,vr)dur)dfr

s

[came ~ [canz [, - [eany

/:---dr ~ T zn: /Rdwg,mdm ~ /Rdwc,vﬁ)de

k=m-+1

dt Ja

Try to estimate the difference

/Cdeffch;"fT zn: /Rdwg,vﬁ)dM’;_ 0<m<n ®

k=m-+1 =



Discrete continuity equation

If |D3¢||ooc < H then for every 0 < m < mn

‘/CdM" [eangy S [, (v6 ok ant

<H E W2(ME, MmkE-
k=m+1

k=m+1

Proof. Start from two consecutive steps and use the fact that
(3 —ToR)p MF = MFEL:

[c@anti@ - [cwanttw = [ @ antt@ - [ oo - rok @) dm @)
= [ (¢@) = 6o = rok (@))) a2 (@)
= [ V(@) ok (@) dME (@) + B

where

124 < [ e(e) = ¢a = 7ok (@) = n(VC(@). vk @) drzk(a) < 172 [ ok ant

_H/ |z — tF(2)|? dME = HWZ(ME, ME—1)

24

since tF =4 — ‘rvff. is an optimal map.



Main steps of the convergence proof

@ Show that the piecewise constant or the geodesic interpolant M (t)
converge as 7 | 0 to some curve p, at least along a subsequence:
time-compactness estimate.

@ Show that the discrete velocities converge in a suitable sense to some limit
vector field v and that (u, v) solve the continuity equation

Ot + div(pw) =0

@ Passing to the limit in the (possibly nonlinear) relation for the discrete velcity
v} = —0P(M?): here the structure of the functional plays a crucial
role.

o5



A basic (and very simple...) discrete energy inequality

Start from the minimum problem

WMy, MpY) W (V, My~

oM7) < +a(V)
2T 2T
and choose V := M1
W2 ]\j”’M"_l
S(M™) + T W7, M2T) < @Mr Y
2 72
so that
> $(M!) is non-increasing and bounded by ®(ug)
N -1
Wa(M?, M1y 2 N
> —= T T 7)) <2(® — O(M; <cC
T;( - ) <2(@(uo) - (M) <
if ® is bounded from below.

The coefficient 2 is non-optimal, since in the continuous case one has

T N Wo (M™. M n—1
. 2(;\17,‘/\'17 ) 2
|iag]? At ~> 7 E (7)
0 n=1

.
and

[ til? = (o) ~ v(un) D

26



Applications of the energy estimate

N N |
Wo(M™, M} 2
T E <M> < C if ® is bounded from below.
n=1

T

Recall that M. is the piecewise constant interpolation so that M (t) = M" if
te ((n—1)1,nt].
We also set Vi (t) := o2 if t € (n — 1)1, n7]

» Equi-continuity:
Wo (M, M) < Cy/T(n —m) which in terms of M, yields
Wo (M- (t), M- (s)) <CVt—s+1 if0<s<t

» Tightness: On every fixed finite time interval [0, 7] the measures M (t)
belong to a fixed bounded set of &5 (R?), so that they are tight.

Up to extracting a suitable subsequence, we have My (t) — pt in 2(R?) as 1] 0
and the limit is an absolutely continuous curve in Pa(R%).




Convergence of the velocities and the continuity equation

N " m—1
Wo(M™, M 2
T E (M> < C'if @ is bounded from below.
n=1

T

» L2-bound for the velocities: since

T
W22(ﬂ,f'127]\ff'7f*1):/ [v™[2dM”  we have / / |V (¢)|? d M- (t) dt < C.
R4 0 JRrd

Corollary

Up to extracting a subsequence, the vector measure v = V3 M, converges weakly
in Z(R% x (0,T)) (after a renormalization by T—') to a limit measure v = po.
In particular, for every smooth function ¢

t t
lim/ / (V¢, V-,-}dM,—dr:/ / (V¢,vp) dpr dr
710 Jg RrRd s R4

The limit (p,v) satisfies the continuity equation.

Proof. Pass to the limit in the discrete continuity equation

n k
| [eamz—[canar—r S0 [ (v okyanmt|<H Y whME MET
k=m 41/ R?

k=m-+1

+o0 (@
recalling that Z W2(ME, ME-1Y < Cr
k=0

IR



Equation for the limit velocity: the Fokker-Planck equation

Let us consider the case of the functional
D(p) := H(/.L)+V([.L):/ ulogudx—i—/ Vdp, p=us?
Rd Rd

where V is a C! potential bounded from below such that Z := fle e Vdzx < 4o0.
In this case ® is bounded from below, since ®(u) > —log Z for every
p € 2(RY).

Theorem (JKO ’98)

Let us suppose that ®(po) < +o0o. The discrete solution My of the
JKO/Minimizing Movement scheme converges to the solution p of the
Fokker-Planck equation

Ot — Ap — div(pVV) = 0.

Similar results hold for the other functionals, even if the case of the logarithmic
entropy H is simpler, since gives raise to a linear equation.

20



Proof

M. converges pointwise to p in #(R?) and for every test function
¢ € CX(R? x (0,T)) and for every 0 < s < r

lggg/oT/Rd <vc,w>dMTdr:/oT/Rd <vc,vr>dmdr—/()T/]Rdatcdm,cir)
1

On the other hand, we also know that
/}Rd (o™, &) AM™” = / <div£ —(VV, g>) dM?  for every £ € C°(R%;RY). (2)
In terms of the piecewise constant interpolant (2) is equivalent to
[, vgans = [ (dve—(vv.g)ans, 3)

Choosing & = V(¢ (time dependent) in (3) and integrating with respect to time we
have

/OT /R <V<7V;->dM-r('r‘)dr:/0T [/R <AC*(VV,VC>>dMT(r)] ar

Passing to the limit in the last identity and using (1) we eventually get

_/OT/Rd &Cdurdr:/oT[/Rd (AC—<VV,VC>) dur] dr ®

Y

Y
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