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Wasserstein distance

Probability measures and transport maps
P (R™M) is the space of all Borel probability measures p in R™.
' The OregularO case: p= uL ™ has a (nonnegative) density u! L1(R™)
with respect to,the Lebesgue preasure in R™,
The OdiscreteO case: u= ;1" is comb&pation of Dirac masses "x;
concentrated in the points x;j. Here ! ; " 0, i =1
Push-forward: given a Borel map X : R™ # R" we set

#:= Xup! P(RY), #(A):= u(X'*(A) forevery Borel set A ! B(R").

Probabilistic notation:
u= P, X is a (R"-valued) random variable, # = X4 P is the law of X.

O =
#A)= PX ! A

Change of variable formula:

Z Z

L SMIAHY =S 00)du) = ES(X)

Density of the push-forward Let u=uL M and X : R™ # R™ be a Borel map.
X is dilerentiable and injective in D, with uy(R™\ D)=0.

Then #= X4 = vL M is absolutely continuous i! detD X (x) $0 p-a.e.in D.

V= mo !1|X(D) i.e. v(X(x))|detDX (x)| = u(x) for p-a.e.x! D. %
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Wasserstein distance

Weak convergence, lower semicontinuity, and compactness

Debnition (Weak convergence)

A sequence ln ! P (R™) converges weakly to p! P (R™) if
z A
Jim $(x)dpn(x) = $(x)du(x) & ! CP(R™)
n" +# pm RrRM

Test functions $ can be equivalently choosen in CZ(R™) or in C¥ (R™), as
for distributional convergence.

If Xn # X pointwise, then ( Xn)s P% X 4 P.

If & R™ # [0,+' ]is just lower semicontinuous (no boundedness is
required) and pn % P then

z z
liminf &x)dun (x) " &(x) dp(x).
n" +# pm RM

Prokhorov Theorem: Aset" ( P (R™)is weakly relatively compact
il it is tight , i.e.

for every ' > O there exists a compact set K ! R™: p(R™M\K)) ' &u! "

5/32



Wasserstein distance

Wasserstein space:

n

P 2(R™):= u Borel probability measures on R™ s.t.
Couplings between pq,p2 ! P (R™):
measures u ! P 2(R™ * R™) whose

marginals are i, M2, i.e.

WA* R™)= [i(A), W(R™*B)= up(B)"

Equivalently, |! % u=p1,!2u=p; ‘
where

Rm‘

Wasserstein distance (1): the point of view of optimal transport

z
Ix[? dp(x) <+
Rm

[o]

2{

1]
Ph(x1,x2) = x1, ! %(X1,X2) = X2
"(W1,H2) is the collection of all cou- o ——
plings of p1 and po. L
Wasserstein distance:
nZ 0
W3 (111, 12) = min X1+ X212 dp(xa,x2) s ! "(K1,p2)
R™ $ RM
n h i o]
W31, p2)=min  E [X1+ X2[? :(X1)s P= H1, (X2)# P= p2 ®

Simplest example: W 2("x,"y) = d(x,y)



Wasserstein distance

Optimal couplings and triangular inequality
Lower semicontinuity and tightness: the minimum problem

nZ

RT $ R

0
[W%(ul,uz) =min Lt X2 du(xa,xz2)  p ! ul.uz)]

is attained: " (11, H2) denotes the collection (closed, convex set) of all the

optimal couplings in P 2(R™ * R™). In general more than one optimal coupling
could exist.

Connecting a sequence of measures, disintegration and Kolmogorov

theorem:

if Hyo! "o(M1,H2), Hoa! "o(M2,M3), 8@l 41 ! "o(Hj, Hj+1) then there

exists a probability measure P and random variables X1,X2,X3,aaaX;j,Xj+1 ,4aé
such that Py, = (X1,X2)s P,A&&N [ 41 = (X)X 41 )g P.

In particular ) +

WK Hj+1) = EIXG + Xjen 2
(Xh,Xk)# P! "(Up, k) but it is not optimal in general

if h,k are not consecutive.
Application: W is a distance, triangular inequality.

Wo(H1,H3) ) Wa(Ha, H2) +W 2(H2, H3)
0 0 2+(31/2 o 0 2+01/2
Wo(u1,H3) )  E [X1+ Xg| = E|(X1+ X2)+( X2+ X3)|
05 ,u2 Op , w2
) E X1+ Xz + E X2+ X3z =W 2(H1, U2) + W 2(H2, U3)™
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Wasserstein distance

OSoftO properties

Weak convergence +
Convergence with respect to W , convergence of the quadratic
moments.

Completeness  (if one considers all the probability measures in P 2(R™)).
Lower semicontinuity with respect to weak/distributional convergence
Convexity  (but linear segments are not geodesics!)

Existence of (constant speed, minimizing) geodesics connecting arbitrary
measures o, H1: they are curves p:t! [0,1] -# pt s.t.

Wa(Ho, M1) = L[], Wa(us,Ht) = [t+ S|Wa(Ho, p1).
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Wasserstein distance (I1): Kantorovich duality

W is a dual OnegativeO distance, similar to the Sobolev one in W' 1.2

nZ z
W3(u1,p2)=sup  #1(x)dpa(x)+  #2(y)dpa(y)

o
#1(x) + #2(y) )| x+y|?

The analogy is simpler when one considers the L!-Wasserstein distance Wi1:in
this case it is possible to choose

#1=#o=(
and we get
nZ z )
Wi(p1,H2) =sup (()dpa(x)+ () dpa(y) :((x)+ ((y)) | x+y|

nZ 0
=sup ((xX)d(p1 + p2)(x): ( is 1-Lipshitz

Thus the L1-Wasserstein distance is induced by the dual of the Lipschitz norm
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Wasserstein distance

The link between (1) and (II): Brenier theorem

In R™ suppose that p1 = u1 dx,p2 = uz dx are absolutely continuous.
Rm A

The optimal coupling pn ! !o(H1,H2)
u{

H=(i" T u
4

Wi n2)= o Ix# T du ()
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Wasserstein distance

The link between (1) and (II): Brenier theorem

In R™ suppose that p1 = ui dx,p2 = uz dx are absolutely continuous.
Rm A

is concentrated on the graph of a

The optimal coupling p ! To(p1,H2)
H{

cyclically monotone map T: ‘

h=(i Thap
z

W2(1,H2) = - Ix# T (x)I? dp(x)
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Wasserstein distance

The link between (1) and (II): Brenier theorem

In R™ suppose that p1 = ui dx,p2 = uz dx are absolutely continuous.
Rm A

is concentrated on the graph of a

The optimal coupling pn ! !o(H1,H2)
u{

cyclically monotone map T: ‘

w=(i" Teu

d H
W2(H1,u2) = x#T ()12 du(x)

R
T can be recovered by the optimal Kantorovich potentials ! 1 # ! » satisfying

z z
i) # 1 2(y) 8 Ix#y2 Wi(i,u2)=  La()dpa()# ! a(y)dpa(y)
by
01 o 3
TE)=x 1" a0 =" S La(x) 0 SIXIPE Ta(x) s convex.
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Wasserstein gradient Rows

Gradient Bows and Wasserstein distance

8

% Jtu+ div(uv)=0 ( Continuity equation )
3 V= + VT (Nonlinear variational condition )
‘ u@©,d = ug uo! LY(RY, ug" 0.

Here # is an inztegral functional and o is its Euler-Lagrange brst variation

#(u):=  $(x,u, Du)dx, — = $,(x,u, Du) —div$py(x,u, Du)

u

[Jordan-Kinderlehrer-Otto ©980tto  ©01] showed in many interesting cases
that such kind of equations can be interpreted as

the Ogradient RowO of # with respect to the
OWasserstein distanceO
between probability density/measures.

Applications: existence and asymptotic behaviour of solutions, contracton
properties, Logarithmic Sobolev Inequalities, approximation algorithms, ...
[Ambrosio-Gigli-S., Agueh, Brenier, Carrillo, Carlen, McCann, Gangbo, Giacomelli,
Otto , Villani, Westdickenberg, ... ]
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Wasserstein gradient Rows

Examples I: transport, heat, and Fokker-Planck equations
Transport equation:

)tu = div(uDV)
Is generated by the linear functional
z

" (u):= V (x)u(x) dx, — =V(x), v:i=+DV
Rd u

*
E.g. V(x):= E|x|2 gives raise to  )¢u + * div(ux) =

0, ur(x)= €9 ug(e x)

) ) Y Du««
Heat equation: )tu = div Du =div u —

Is generated by the logarithmic entropy:
z

Du
#(u) = ulogudx, —:=logu+1l, v=+—
rd oy

, uv=+Du.

Fokker-Planck equation:

Jtu=$ u+ div(ubV) = div(u(Du—u +D V))

Is generated by the Relative Entropy functional w.r.t. +:=e'Vdx
z z

u(log(u/ € V))dx.
Rd

"(u=  ufogu+ V dx=
Rd

o"“o ‘Du «
=logu+1+ V, v=+D =

T_T+DV
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Wasserstein gradient Rows

Examples II: nonlinear dilusion

. . I R S % 111«
Nonlinear (power-like) dilusion: Jtu=div Du =div u % 1VU' :
b—
z
" . n % i o "
Is generated by (u) = u dx, = ——u ", uDb—=%u .
41 R " %—1 "u
. . — < — - <
General nonlinear dilusion: ’)1u = div DL(u) = div uDF (u)
Is generated by " (u) = F(u)dx, T F'(u), uD e =$ L(u),
Rd

F?) = ul%u).
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Wasserstein gradient Rows

Example IlI: granular Bows and chemotaxis

Granular RBows: Jtu=div uD(W x u)«
The equation is generated by
1 2z -
"(u)= = W(x + y)ux)u(y)dxdy, —=W.u, v=—-DW xu
2 RdgRd "u

)tu=$ u+ div(uDc),
Patlak-Keller-Segel model: z

1
c(x)= + > log [x + ylu(y)dy
N

The system is generated by
z zZ

" (u):= ulogudx +
R2 4

log [x + ylu(x)u(y) dx dy
$ R2

1
q=log u+l+ 2—Iog|é|.u=log u+l+c.
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Examples IV: nonlinear fourth order dilusion equations

> <
Thin PIm equation: )tu = + div uD$ u
1Z
Is generated by ~ #(u)= =  |Du|?dx
2 Rd
0 ¢/ g0
DLSS/quantum drift-dilusion equation: )tu = + div uDﬁ
zZ
1 |Du|? I,
Is generated b "(u)= = —dx = D u|®dx
9 B O T L
g O O g o X 0y u©
= ——, div uD;— = -$%u+ > )
"u VU "u 2 2 i u

=5 )i u)flogu
i
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A formal motivation for the gradient Row structure

)tu + div(uv) =0, v:+DT

z 4 z

# #
+g#(ut)— + )tu dx = d|v(uv) =+ véDWudx

dt
OZ ED %udxouZOZ B/Bzudx

N7 .
© B(/Bzu dxou2
Rd

as the OvelocityO of the moving family u. If we want to decrease # as fast as
possible, we have to choose

Ansatz: interpret

v= —D_ —
u
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Wasserstein gradient Rows

Wasserstein distance: the  Brenier dynamical approach
We interpret u as the density of a (probability) measure | = udx and we consider
a moving family pt = ut dx of probability measures, t! [0, T], satisfying the
continuity equation

)t + div pv)=0; v isthe velocity vector  associated to p

The scalar velocity — at time t is given by
o ~ 02 ) Oy 2
Wi | := OVtO_ 2y, .pey = » [ve(x)]°dpe(x)

The length of the curve p between to and t1
t z t; z t [oY4
Litl:=  |i|dt=

to to

) Oy 2
[ve (x) [~ dpe (x) dt
Rd

Wasserstein distance W, between po and pi:
n

Wa(Ho, pa) :=min  L§[M]: My g = Mo, Wy, = M1

o]

P
EvqutiIQn of discrete measures Ut = i & "xj (1) - If 0 (1) = vj(t),
HV = Fjvi(t)"; () and

« x
Jep+divopy =0, [P = & v (1) =
j

18/32
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Continuity equation

Distributional solutions of the continuity equation

D tpe + divmv) =0 ) in RY* (0,T) §)
t -# yt is a Borel family of probability measures on RY; it is not restrictive to
assume that p is continuous with respect to time ,i.e.
4

t-# e ($) = $dy; is continuous for every $! Cp(RY).
Rd

v i (x,t) # v¢(x) is a Borel vector beld in RY * (0, T) satisfying the integrability
condition z.2

[Ve(x)[dpe(x)dt< +°
Rd

(*) means
Z1Z 0O (o]
)t$+ 1$avy du(x)dt=0 forevery $1 C¥ (RY* (0,T)).
0 Rd
Equivalently
d z Z
—  $dy = 1$4alvidye ae. in(0T) forevery $! C? (RY).
dt gd Rd
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Continuity equation

Characteristics
Suppose that v is bounded and Lipschitz , or, more generally,
Z10 o]
sup|vt| +Lip( vi,B) dt< +' for every compact set B ! RY
0 B
We can then consider the Bow map x -# X¢(x), x ! R4 and t! [0, T] associated to
the characteristic system of ODE

%Xt(x): Vi (Xt(x)) in(0,T), Xo(x)= x.

For every initial measure po we can study the evolution of its push-forward
through the Bow X

: «
Mt = (Xt)g Ho | i.e. Mi(A):= Mo Xt! 1(A) for every Borel set A! B (RY).

. Py M M PN
Main example: Mo :=  jop Mj"x;, m; 0, j=1 M =1.

We have
w
Mt = mj "x,-(t) where | x; (1) == Xt(xj).
j=1
In general, integration with respect to  pt can be evaluated through the Change
of variable formula: 7

&y)du(y) = &(Xt(x))d Ho(x)
Rd Rd

for every nonnegative or bounded Borel function &: RY # R.
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Continuity equation

Representation results

Theorem (Push-forward representation of solutions)

The curve ‘ Mt = ( Xt)# Ho ‘ is the unique solution of the continuity equation

[)tm + div(ptvt)zoj in RY* (0,T). ®)
R; R ,
If o gelVe(X)[¢dpe(x)dt< +'  then
hIi“mow = v %Xy in L?(po;RY).

Proof: pt is a solution of (*). It is easy to see that t -# ¢ is (weakly) continuous
(in particular lim go Mt = Ho) Since
z 4 z z

$(y)dus(y) = $(Xs(x))dHo(x) *# ' $(Xs(x))dpo(x) = $(y)due(y)
Rd Rd Rd Rd

If$1 CZ(RI* (0,T)), since T(X¢(x),1)= )e$+ 18 ave %(X((x),1)

Z:Z 0 o Z1Z 0O o)
)t$+ 1$ave dypdt= )t$ + 1% ave %(Xt(x),t)dpo(x)dt
0 Rd 0 _ Rd
z.2 2"z,

d
= g$(X1(X),t)duo(x)dt = —$(Xt(x),t)dtdpo(x)
70 R dt Rd o dt

22/32
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Transport estimate: the regular case

Corollary

If u is a solution of the continuity equation
Z:2Z
)the + div(peve) =0 with VeO)I? dpe () dt <+
0 Rd

then for every 0) s<t ) T
z,z
WZ(Hs, 1)) (t+s) ] v ()17 dir (x) d,
s R .

[oY4
) = fim ) T o et
Rd

h i

Recall WZ2(us,ut)) E|Y+Z]?, YgP= s, Z4 P= 1.

Choosing P := po, Y := Xs, Z = X, we have
z zZ Z,
W2 (s, Ht) )  Xs* Xt|*duo) (t+s) ] I (x)[2 dr dpo
N4 REoe z,z
=(t+y9) Ve (Xr (X)) |? dpo dr = (t+ s) IVr (Y)1? ditr (y)dr.
s Rd s Rd
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Continuity equation

A probabilistic representation for solution to the continuity
equation with nonsmooth pelds

G‘txt(x)= Vi(Xt(x)) in(0,T), Xo(x)= X-}

When v is not regular, the Bow X cannot be uniquely debPned.
In this case, one can consider

the collection S of all the absolutely continuous trajectories
x:[0,T1# RY which are solution of Zx'(t) = v¢(x(t)) a.e.in (0,T), i.e.

t
X() = x(0)+  v(x(r))dr
0
S is a subset of the separable Banach space "1 := C°([0,T]; RY) and it is possible

to represent any solution of the continuity equation through probability measures
Pin" 1 concentrated on S.

Theorem (Ambrosio)

If 1 is a solution of the continuity equation
Z:2Z
)tHt + div(utve) =0 with Ve ()2 dpe(x)dt <+
0 Rd

then there exists a probability measure P! P (" ) such that P is concentrated on
Sand gt = (e)x P, where e : "+ # RY is the evaluation map e (x) := x(t). &




Continuity equation

A crucial approximation result
If . #(x):=(2 - )" ¥ 2exp(+| x|2/2') and
# # W7f

pE = e wiE () F, v = o
t

then (p#, v¥) is a smooth solution of the continuity equation satisfying the
uniform bound

= =
Z Z

IviIZ duf) [ve|>dp  for every t! (0,T)
Rd Rd

and Z z
limw# = peve,  lim vi2dpf = vi|? dpg.
Wi HtVi an Rdl t 17 dpf Rd| | die
Main point: ~ the map 7
(Wv)-#  |v[Pdu
Rd

can be rewrited in terms of ,' = pv as

4 "
h% dy anditis convex .
Re  dp
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Continuity equation

Transport estimates: the general case
Corollary (Ambrosio-Gigli-S. ©05)

If n is a solution of the continuity equation
Z:2
)the + div(peve) =0 with VeI dpe (x)dt <+
0 Rd

then
z.z
W3 (Hs,ft) ) (t+s) » Ve (x)]? dur (x)dr,
S -

OZ
Walkt Been) Ve (x)]? dm(x)oﬂ i
h Rd

[l (t) := llgm o

Proof: choosing Y = es, Z = e, we have
h i hZ ¢ i hZ ¢ [
WZ (s, He)) E les+ &l® ) (t+ s)E I4r)[>dr =(t+ s)E IVr (x(r))|? dr
Z¢ h i ° Z,Z °
=(t+s) E v (xr)® dr=(t+5s) » Ve () I dir (y) dr.
S S

z z zZ,
WE(us, ko)) les+ P dP() (t+ ) N [¥(r)| dr dP(x)
! S
Tz z, z.z

=(t+s) Ve (X(r)) [>dr dP(X) = (t + 5) Ve (¥)I? dpr (y) dr.
Rd Rd
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Continuity equation

From curves of measures to the continuity equation
Lett! [0,T]-# pt ! P 2(RY) be a Lipschitz curve, i.e.

Wa(us, 1) ) LJt+ s|.
Theorem (Ambrosio-Gigli-S. ©05)
There exists a unique Borel vector beld v : R%* (0,T) # RY such that

Wa (M, He+h)
ll

)tHt + div(peve) =0 in DERY* (0,T)).

2 .pd o= i —
vi ! LM RY),  |uik| = Ir:r"no = O0viOp 2y, rdy

Moreover, among all the admissible velocity vector peld, v is also characterized
by the equivalent properties

A OL%(u;RY) z
vil 1$:$! C# (RY) , vi &z dyy =0 if div(uz)=0
Rd
im Wa(He+n, (i + hvi)g i) -0
h" o |h| '
He+ h f
+
Jim B = v i L RY

if tﬂ:* " is the optimal map pushing pt on Wi+ .
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Continuity equation

Application: Brenier theorem and displacement interpolation

Theorem

For every Ho,H1! P 2(RY) there exists a constant speed minimal geodesic
connecting them, i.e. a Lipschitz curve t! [0,1]" pt with velocity vector vt such
that

Tipe + div(peve) =0
it 2 ey = LI = Wa(Ho, H1),  Wa(ps, M) = [t $ sIW2 (o, H1).

These curves are in a one-to-one correspondence with optimal plan
p ! To(Ho,H1) by the formula

«
He= A$ 0" 4+t 2 p, "Hxa,x2) =x1,  "?(X1,X2) = X2.
/i/—>
M1
.
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Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Optimal transport map T

Initial conbguration




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Uo

Displacement interpolation: Opoints are moving along optimal raysO

ltu+ div(uT)=0




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Ui/4

Displacement interpolation: Opoints are moving along optimal raysO

oru + div(uT)=0




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Uiz

Displacement interpolation: Opoints are moving along optimal raysO

ltu+ div(uT)=0




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Us/a

Displacement interpolation: Opoints are moving along optimal raysO

ltu +divluT) =0




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Displacement interpolation: Opoints are moving along optimal raysO

ltu+ div(uT)=0
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Continuity equation

Displacement interpolation: geodesics in Wasserstein space

uo

The usual linear interpolation: Opoints remain bxedO

ug =2 ! tuog + tug




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Ui/ 4

The usual linear interpolation: Opoints remain bxedO

Ut :(1 ! t)U0+ tuq




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Ui/2

The usual linear interpolation: Opoints remain bxedO

ug =2 ! tuog + tug




Continuity equation

Displacement interpolation: geodesics in Wasserstein space

Usz/a

The usual linear interpolation: Opoints remain bxedO

ug=@Q ! tuog + tug



Continuity equation

Displacement interpolation: geodesics in Wasserstein space

The usual linear interpolation: Opoints remain bxedO

ur =1 —t)ug + tug
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Continuity equation

Application: derivative of the Wasserstein distance along
curves

Let t! [0, T]-# ut ! P 2(RY) be a Lipschitz (or even absolutely continuous) curve
with velocity vector v ! L2(pt; RY) satisfying the continuity equation

)tHe + div(pive) = 0.

Let / ! P(RY) and p; and optimal plan in " o(pt,/ ). The forae. t! (0,T)

z z
d
—WZ(p,/)=2 e (x), x + y3dpy(x,y) =2 2 (x),x + t§, 3due (%),
dt Rd ¢ Rd Rd
the last identity holds if p; is induced by an optimal transport tﬁ[ .

Analogy:
d
a|ut + w2 =220, u + w3
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