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Introduction

The basic ingredients of gradient flows

» A functional ® : X — R function defined in some ambient space X (initially
X :=R? for simplicity).

> (metric) Velocity: some norm || - || to measure the velocity (and the
length/energy) of the curves w: ¢t € (a,b) — w; € X.

velocity | we]|,
b b
length Llw] ::/ ||[we||dt, energy E[w] ::/ || || dt

Typically || - || is the euclidean norm, but it could be a general one and it
could also depend on the point (Riemannian/Finsler structure).
It is strictly related to a distance by the formulae

distance d(wo,w1) := inf {E['w] rw(a) = wo, w(b) = wl}

d(we, w
metric velocity |we| := lim dwr, wiin)

= ||we]|.
Jim S o




Introduction

Heuristics: drection of maximal dissipation rate
Let D® € X* denotes the differential of ®.
Dissipation along a curve and chain rule: if w:t € (a,b) — w; € X is a

smooth curve with time derivative w; := %'wt then

d
Dissipation rate of ® along w := —a@(wt) = —(D®(wy), we).

Basic rule: choose the direction of maximal dissipation rate with respect
to the given velocity among all the curves trough a point w:

Slope  |0®|(w) := sup{ P(wr) wp = w, Wi # O}
thll

By the chain rule, the slope of ® is the dual norm of its differential:
P(w) — &(2)

d(w,z)
A direction v = 4 is of maximal slope if it realizes the “sup“, i

—(D®(u),v) = [lv]| - || = D ()]

By introducing the duality map J := D(%H -112)

Slope = |0®|(w) = || — D®(w)||« = limsup

v has the same direction of J~!(—D®(u)).

When || - || is euclidean J is linear and J~1D® = V&,
v has the same direction of — V®(u). %

In this case we usually identify X with its dual, and D® with the gradient V®.



Introduction

The choice of the speed

[The velocity v =14 has the same direction of Jﬁl(—DCI’(u)).]

To provide a complete description the speed (the norm of v) has to be prescribed.
In general, one can introduce an

increasing homeomorphism (3 : [0, 4+o00) — [0, +00)

and ask for

| 8(11vll) = stope = [00](w) = [DS(w)]|.

Simplest (and typical) choice: ‘ﬁ(r) = r, velocity=slope, ||v|| = || — D®|(w)]|«.

More generally
T T 1
)= [ B ds, v [ B
0 0
* is the (dual, conjugate) Legendre transform of 1),

B(lloll) =l =De[(wl« <« vl = De(w)ll« = ¢(|lv]) + ¢ (| - D(w)]+)-

The complete condition reads

DU (i) = —Dd(w)

where

U (v) :=¢(||v|]) is the “dissipation potential” @



Introduction

Doubly nonlinear evolution equation
DU (i) = —D®(uw)

» Functional ®.

> Velocity of a curve ||v¢| = ||2e]|.
“ : aald . ” _c%é(wt)
> Slope || — D®(ut)||« = “maximal dissipation rate” = sup {W}
> Speed function 8, its primitive 1, the dissipation potential ¥(v) := ¥(||v||)

Problem

Find a curve u starting from ug whose direction at each time realizes the
mazimal dissipation rate of ® and whose speed is linked to the slope by the
equation B([[a]l) = || — DP(us)]].

Along such a curve
d . . *
— 3 2ue) = N[ | = D (ur)ll+ = ¢ (|lwe]]) + 97 (] — DO(ue)]+)
= U(ut) + T*(—DP(uy)).
Along any cuve w:
d . - *
— 3 2(we) < [loe]l || = D2(we)lls < h(lloe]l) + 47 (Il = D@ (we)ll+)

= U(wy) + U (~DB(wy)). D

De Giorgi characterization of curves of maximal slope.



Main estimates

The “simplest” case: gradient flows

Norm velocity || - || ~ | - | is euclidean like, J is a linear isometry || - ||« ~ | - |,

Vo = J7HD®), B(r) = r, (r) = ¢*(r) = Lr2.

MAIN PROBLEM: find w: [0,+00) — X such that

—u = —VP(u) tE[0,+00); U, = U0 (GF)

» Starting level: X ~ R, finite dimensional euclidean space
® is of class C2, D2® > AL
» Slight variants: ®(u) ~> ®¢(u) := ®(u) — (ft, u), time dependent forcing
term
X ~ M¢, smooth Riemannian manifold.
» Applications to PDE’s: X := Hilbert (typically L3-like),
®: X — (—00,+00] A-convex and just lower-semicontinuous
V& ~» 0P, multivalued subdifferential of ®, differential inclusions.
» Relax A-convexity assumption

» Further step: from linear to metric structures...



Main estimates

Main Estimate I: energy identity

d
S =~ V() (GF)

Evaluating the dissipation rate of ®

_%‘I’(w) = | |? = |V (ur)[? (M

Integrating in time

) + [ e ds = @)

1 1
“De Giorgi splitting”: |u|? = §|u|2 <k §|V<I>(u)|2 (recall Y(r) =¢*(r) =

Curves of maximal slope

t
(o) — B (ur) = /0 (Ghissl? + 51V ds )

Along any other curve w

®(wp) — D(wy) = /Ot VP (ws) - ws dsg/ot (%lwsﬁ n %\vqws)p) ds

10



Main estimates

Energy identity and variational characterization of (GF)

If a Lipschitz curve u : [0,400) — X satisfies the differential inequality
d 1 1
—® < —Zligl? — 2| VB(ur)|? 1
() < — 5 linf> — [V ()] M
even in the weaker integrated form
2T 2
O(u) + [ (Glasl? + 51V(w)?) ds < (uo) (2)
0

then w 1s a solution of the Gradient Flow

%ut = —V<I>(ut). (GF)
Proof: Chain rule:
®(ur) +/0 (= VP(us), s} ds = P (up) 3)

Subtracting (3) to (2) we get

[ Gl + 39 = (- Vot a)) ds = [ fi + vo(u)

2 ds <0 ®

11



Main estimates

Exploting convexity
Convexity inequality: wy = (1 — 0)wo + w1,

D(wy) < (1 —0)P(wp) + 0P(w1) for every wo, w1 € X, 6 € [0,1]

Hessian inequality: D2® > 0
Subgradient property:

(VO(w), v — u) < B(v) — (w)

®(v)

P(v) — P(u)

B(u) b va),o - u)
\_

Gradient monotonicity:

(VO(u) — Ve(v),u—v) >0 @



Main estimates

A-convexity

Hessian inequality
D2®(w) > Al ie. (D?®(w)E, &) > A|£|?  for every & € RY.
A-convexity inequality: wy := (1 — 0)wo + 6ws, 6 € [0,1],
D(wy) < (1 —0)P(wo) + 9<I>(w1)—%9(1 —0)|wo — w1 |?

Sub-gradient inequality

2

A A
(V@(wl),w17wg)75|w17wo|2 > P(wy)—P(wo) > (V@(wo),w17w0)+5|w17wo
A-monotonicity of Vo

(V®(wo) — V& (w1), wo — wi) > Awy — wn |2

Minimizer and Distance-Energy-Slope bounds for A > 0
When A > 0 then ® has a unique minimizer Uiy with |0®|(wm:n) = 0 and

A 1
§|'u, — umm|2 < CI)(’U,) - (b(umin) < 5|a€b‘2(u)




Main estimates

Basic estimates (convex case, A = 0)

Contraction: if %ut = —VP&(uy), %wt = —V®(wy) then
1d s ..
ia‘ut - 'wt| = <ut — Wt, Ut — ’UJt> = —<V<I>(ut) — V@(wt),ut — wt> S 0.

Contraction properties: uniqueness and stability

If u, w are two trajectories with initial data ug, wo then

|ug —wi| < |uog — wol

Lyapunov functionals Take 7 : X — R and evaluate the derivative along GF:
d

Main choices:

F(u) = @(u) ~> %ﬂut) = —|i]* = - Vo (u)|? @
F(u) = %|u— w\Q ~ %%Wﬁ — w|2 = <V<1>(ut),v — ut> (I1)
F(u) = %|V®(u)\2 ~ %%|V¢'(ut)|2 = — (D%®(us) VO (), VO(ur))

(111

14



Main estimates

Estimate II: Evolution variational inequality for the distance

1 1d
F(u) = §|'u,— w]? ~ 3 dt‘ut —w|* = (Ve(ur), w — us) )
(by the subgradient inequality:) < P(w) — P(ur)

Evolution variational Inequality (EVI): differential form

% d lug — w|? < S(w) — P(ur) (EVI)

Integrating in time from 0 to ¢

1 21 2 ¢
5|ut —wl|* — §|uo —wl* < /0 (<I>(w) — @(us)) ds

(since s — ®(uy) is nonincreasing) < t(q)('w) — <I>('u,f,)>

Evolution variational Inequality (EVI): integrated form

1 1 .
5\11.,5 — w4 (t—9)B(w) < 5\11.5 —w|? 4 (t—s)®(w) forevery 0<s<t, we X. @

15



Main estimates

Estimate III: decay of slope and velocity

F(u) = %|V<I>(u)|2 ~ %%\mp(ut)ﬁ = —(D?®(u)VO(ur), VO (ur)) (1)

(D*® > 0) <0

Decay of the slope

d d, . .
E\V‘I’(uz)l2 = a\ﬂt\z <0 [VO(u)| = || < [VE(uo)l, (111)




Main estimates

Regularizing estimates
Linear combination: IT +t-1 + %tQ 11T <0.

2
%(%Wt —w|? + t(P(ur) — P(w)) + %\V@(uﬂﬁ) <0

Proof:

A~ wf? < — (@ () — B(w))

S (@) 0(w))) < (Bae) — B(w)) — 11V B(w0)

d ,t?
5 (5IVe@0P) < o).

Weighted estimate

1 t2 1
Sl = wl® +1(B() = 2(w)) + [ VR()|* < Juo — wf?

Consequences: istantaneous regularization. For every w € X

1
V@) < o5 o — wf? + V(W)

1
Dlur) < o — wf? + B(w)

If w = wpin is @ minimizer of ® then %

B (ur) — ®(Umin) < C/t, |VO(w)| < C/t2.




Main estimates

A-convexity (A > 0) and asymptotic behaviour
If ® is A-convex with A > 0, we have a refined EVI:

d1 A
E§|ut —w|? —|—5|ut —w|? < d(w) — d(ur).

and an exponential decay of the slope

d
5\8@2(%) < 2209 (u) = |02 (ut) < e™2*|0d|% (uo)

On the other hand, ® has a unique minimizer w%m;, and A-convexity yields

A 1
E‘w - umin|2 < @(w) — P(Umin) < 5'861)‘2(1”)

Choosing w := Uiy we get

d1

a§|ut7umin‘2+ A|'u't - umin|2 S 0 = ‘ |ut - umin|2 S e_2>\t|u0 - umin‘z ‘
d 2
= (@) = @(wan) = ~109P (ur) < ~22(@(ur) = D(20in) )

so that

() — P (thmin) < 0 (D(up) — P (tnin) ) @

1K



Main estimates

Summary

Energy identity: ®(u¢) +/ \us|2 7|V¢>(us)|2> ds = ®(up)

1d
EVI: 5&'1“ — |2 < ®(v) — d(ur)

d
Slope decay: t+— |[V®(u)|? = | |? = faq)(ut) is nonincreasing.
Contraction: |u; — we| < |ug — wo|
L. 1 5 t2 1 5
Regularization: 5\ut —w|? 4+ t(®(u) — ®(w)) + 5|V<I>(ut)\ 5|uo —w

Asymptotic decay, A >0
[t — min]? < 62 [ug — Ui |2
(we) — ®(tmin) < €2 (@ (20) — P(min) )
109|2(ur) < e™*X[99|? (uo)



Infinite dimension

Infinite dimension and non-smoothness
Applications in infinite dimensional Hilbert spaces X introduce new technical
difficulties:
> & can take the value +oo and its proper domain
D(®) :={x € X : &(x) < +o0} has empty interior.
> & is just lower semicontinuous and nowhere differentiable in the classical
sense.

» The gradient V& has to be replaced by the (Fréchet) subgradient 9% whose
domain D(0®) is often a proper subset of D(®).

> 0P can be locally unbounded and multivalued.

Main example: integral functional in X := L? (©2), © being an open domain
of R™, and

D(w) ::/ »(z, u, Du) dz
Q
where ¢ : (x,u,p) € Q X R x R™ s o(x,u,p) € [0,400) is a C-function, convex
w.r.t. p. The first variation of ® is

5o
Sa Oup(z, u,Du) — V - dpp(z, u, Du)
u

and we want to solve the PDE

21

[}
Btu—&—é—:o in [0,400) X Q
ou

with some boundary conditions on 9.



Infinite dimension

Gradient flows in L?-spaces

The PDE 50
du+ — =0 in QX [0,400)
ou

is the “formal” gradient flow of ® in L?(Q).
Assuming e.g. 0 boundary condition and considering a smooth curve
t€[0,T] — us € CH(Q)

%fb(ut) :/ (8,“0(:5,11,, Dau)diu + Opp(z, u, Dwu)DBtu) dx
Q

0P
= / <8u<p(:p,u, Dyu)diu — V - (8p<p(x, u, Dzu))atu> dz = / —Orudx
Q Q ‘u

If we choose the L2-velocity ||8tu||L2(Q>, then we can easily get the upper bound
for the dissipation rate

d
— () < H = Sl 10z )

L2

with equality iff
oru=——, |09|(
LU 3 |0®|(

u) = H du llL2(Q)

29



Infinite dimension

The simplest example: Dirichlet integral in L?

Consider X := L?(R™) and the integral functional

1

D(u) = B /Rm Du?de ifue W&’Q(Rm); D(u) := oo otherwise.

In this case ® is just lower semicontinuous (w.r.t. convergence in L?(R™)) and its
proper domain

d
D(®) = Wh2(®R™) “C° L2 (R™)
is the Sobolev space W&’Q(Rm) which is dense in L?(Q2) but has empty interior.
When u € W2:2(R™) N W&’2(R7”) its first variation is

0D

— = —Au
ou

and the gradient flow of ® in X = L2(Q) should be a solution of the Heat equation

tu—Au=0 1in [0,+00) x R™.

5
if we can identify 5—9 with “V®(u)” or better with 90 (w), which is defined in the
u
even smaller domain D(9D) = W22(R™) N Wy % (R™).

29



Subgradients and slope for convex functionals
Recall that in the smooth case
£=Ve(u) <= P(w)=2>o(u)+(w—u) +o|w—ul)
Suppose that & : X — (—o00, +00] is convex and lower semicontinuous with proper
domain D(®).
> The subgradient of ® 0¥ : X = X is defined by
£€0d(u) <= ueD(®), P(w)=P(u)+({§w—u) +o|w—ul)
By convexity we also have

£coP(u) & uwueD(®), P(w)>P(u)+ (&, w—u) foreveryweX.

» The proper domain of 8 is D(8®) := {u € D(®) : 9P (u) # 0}.
The minimal selection 9°® is the element of minimal norm in 0®(u).
» The slope of ® is

v

|0®|(u) = limsupw — sup w

wou flw — ]l N

Th

4

slope w +— |0P|(u) is a lower semicontinuous functional ssatisfying

[0°@(w)]| i ue D©OP)

0P = ’
‘ \(u) {—I—oo otherwise @




Infinite dimension

Subgradient formulation of GF in the convex case

A locally absolutely continuous curve u : (0, +00) — X is a Gradient Flow for ® is

d
aut =wv, v € —0P(uy) for ae. t>0. (GF)

Proposition Let u: (0,+00) — X be a locally absolutely continuous curve; GF is
equivalent to the following equivalent properties:

1. EVI (linear):

(g, ug —w) < P(w) — ®(ur) a.e. in (0,+00) for every w € D(®)

2. EVI (Metric): d(u,w) = |u — w|

d1
— —d?(ur, w) < B(w) — B(wy) a.e. in (0,400), for every w € D(®)

3. Maximal slope: us € D(®) fort >0 and

2 (o + 100 ) dr < @) — (a0

oK



Infinite dimension

Main generation result: gradient flows of convex functionals in
Hilbert spaces

Theorem (Komura, Kato, Crandall-Pazy, Brezis, etc...)

For every ug € D(®) there exists a unique curve uy = S¢[ug] solution of (GF)
such that limy| g ur = ug.

> The map t — S¢[-] is a continuous semigroup of contractions in D(P).

> w is locally Lipschitz in (0,+00) and for every t > 0 S¢[ug] € D(0®) C D(P)
and satisfies the regularization estimate

%&mhw+a¢mg—mw»+gm@mgg%&mmw Y € D(®)

> The curves t — w¢ and t — ®(ur) are right differentiable at every t > 0 and
satisfies the minimal selection principle

d

L =00
iy U (ue),

d
t— —dTé(ut) = |'ilt+|2 = \8<I>|2(ut) 18 nonincreasing.
+

A similar property holds for t =0 if ug € D(0®) and for the left derivative, .
except for an at most countable subset T C (0,+00). &fﬁ




Infinite dimension

The Laplace operator as subgradient of ©

Theorem

For every u € D(®) = WL2(R™) the following properties are equivalent

u e W22(R™) and & := —Au € X = L>(R™) (A)

(&, w— u>L2(]Rm) < D(w) — D(u) for every w e X (B)

|0D|(u) = limsupM = sup D) - Dlw) < +o0. (©)
wou  fw—oulx wze w—ullx

In the case of (C) we also have |0D|(u) = ||Aul|p2gm)-

A simple variant: Allen-Cahn equation.
Choose a double-well potential W : R — R with

W' (r) > A, lim r~W/(r) > 0.
r—+oo
1
The functional ®(u) := 5/ |Du|? dz + W(w)dz is A-convex
R™ RM

The L2-gradient flow is ‘ Sru— Au+ W' (u) =0

and applying the generation result one can find for any initial datum
ug € L2(R™) a locally Lipschitz (in time) solution w with u; € W22(R™) with
W'(u¢) € L2(R™) for every t > 0.



Changing the dissipation

A different way to measure the velocity of an evolving family of functions
u:Qx[0,7T]—R:
represent v = Oyu as the Laplacian of a function z and take its W12 -seminorm:

vl := V2l 2qzm) where —Az=wv, zeWy*Q).

We are considering the homogeneous W~12(Q)-norm of 9u.
Choosing z¢ := —A~lv (with homogeneous B.C.) we have

d 0P 0P
Y} —— —— b, dx = — Az d
dt (Ut) /Q 5u te A /Q (S’ll, B

P
ou

5P
_ 7/ vEvade < v V2] 12 gy
o ou !

L2(QR™)

and we thus expect that

0d . 0d 1.9
0 |(u) = HV— , with 2= e wh2(Q
[9%](w) sullzz@amy M 5g €0 @
. o 0
Mazimal dissipation rate ~» z¢:= ——
ou
6P
Gradient flow: oru=A—
ou =

IR



Variational approximation

Construction of the semigroup S: implicit Euler scheme

» Choose a partition of (0,+00) of step size T > 0
u

4 U3
[/‘71 T.
: ~ Ur(t)
0o e U
[ ] —e
U? ur
— T o — e
T T T T
- > ‘ - > ‘ - > ‘ - > ‘ ‘ R t
» Starting from UC := wug find recursively U?, n =1,2,...,
Un — []”*1 d2 ‘;7 Un—l
T L ve(Ur)=0 < U”cargmin % +a(V)
T \% T

» U, is the piecewise constant interpolant of {U},,.
» Uniform Cauchy estimate in the convex case

U, = Us| < (VT + /1) (®(0) — Prnin)-

[Brezis, Crandall-Liggett,. .., Baiocchi, Rulla, Nochetto-S.-Verdi]




Possible applications

BrEzis, CRANDALL, LIGGETT, BENILAN,
Pazy, J.L.LioNs, KATO, BARBU, ... ~’70

DE GIORGI, DEGIOVANNI, MARINO, SACCON,

TOSQUES, ... (’80-790)
LUCKHAUS-STURZENECKER, ALMGREN-
TAYLOR-WANG, ..., JoST, MAYER,...
~’90

LUCKHAUS, VISINTIN, MIELKE-THEIL-
LEvITAS, MIELKE, ROSsI-S., DAL Maso,
SERFATY, ... '90~’10

OTTO, JORDAN, KINDERLEHRER, WALK-
INGTON, AGUEH, GHOSSOUB, CARRILLO-
MCcCANN-VILLANI, AMBROSIO-GIGLI-S.,
’98~710

Contraction semigroups in Hilbert
spaces, quasilinear parabolic P.D.E.’s,
variational inequalities,. . .

Abstract theory of minimizing move-
ments and curves of mazimal slope

Geometric evolution problems, flows of
harmonic maps, . ..

Phase transitions, hystheresis, dou-
bly nonlinear equations, Ginzburg-
Landau, . ..

Diffusion equations, Wasserstein dis-
tance

In general only convergence results possibly up to subsequences are known...

Variational approximation

21



Variational approximation

Different directions...

@ The “weakest” theory: gradient flows are just
limit (up to subsequences) of the Minimizing Movement Method.

Applying lower semicontinuity and compactness arguments, the variational
approximation is useful to construct a candidate solution, which is then
studied by “ad hoc” meethods.

@ Curves of maximal slope: Extends to general metric space the differential
identity

d 1 1
Y — a2 *8‘132
D) = Laal? 4 L1002 ()

and gives more insight on the solution, its stability, and its limit behaviour
It has interesting results also in Hilbert/Banach spaces.

© The Hilbert-like theory: it is modeled on the results for

convex (or A-convex) functionals in Euclidean/Hilbert spaces

and gives the strongest results under restrictive assumptions on the

> functional ¢ ~~ “convexity”
> space ~» “Euclidean like”

Solution are characterized by the Evolution Variational Inequality

%%dQ(ut,'w) < P(w) — P(uy)




Variational approximation

Some general references on nonlinear semigroups in
Hilbert/Banach spaces and applications

[§ M. G. Crandall and T. M. Liggett.
Generation of semi-groups of nonlinear transformations on general Banach
spaces.
Amer. J. Math., 93:265-298, 1971.

[ H. Bréis.
Opérateurs mazimauxr monotones et semi-groupes de contractions dans les
espaces de Hilbert.
North-Holland Publishing Co., Amsterdam, 1973.
North-Holland Mathematics Studies, No. 5. Notas de Matematica (50).

@ Viorel Barbu.
Nonlinear semigroups and differential equations in Banach spaces.
Editura Academiei Republicii Socialiste Roméania, Bucharest, 1976.
Translated from the Romanian.

@ R. E. Showalter.
Monotone operators in Banach space and nonlinear partial differential
equations.

American Mathematical Society, Providence, RI, 199
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Variational approximation

Some references to the metric theory of gradient flows and
minimizing movements

B

B

Ennio De Giorgi, Antonio Marino, and Mario Tosques.

Problems of evolution in metric spaces and maximal decreasing curve.

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68(3):180-187,
1980.

Antonio Marino, Claudio Saccon, and Mario Tosques.

Curves of maximal slope and parabolic variational inequalities on nonconvex
constraints.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16(2):281-330, 1989.

Ennio De Giorgi.

New problems on minimizing movements.

In Claudio Baiocchi and Jacques Louis Lions, editors, Boundary Value
Problems for PDE and Applications, pages 81-98. Masson, 1993.

Luigi Ambrosio.
Minimizing movements.
Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19:191-246, 1995.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré.
Gradient flows in metric spaces and in the space of probability measures.
Lectures in Mathematics ETH Ziirich. Birkhaduser Verlag, Basel, 2005.

Sara Daneri, Giuseppe Savaré.
Lecture notes on gradient flows and optimal transport
“Optimal transportation: Theory and applications”, Grenoble, June 2009.
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