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Level Set Method

= Represent the interface dX c R™ as the 0-level set of a function
¢:R" - R
=  Example:
X ={(x,y) : x> +y? =r?} c R?
can be represented by
¢p(x,y) =1 —x? +y?
or

¢(X,y)=T—VX2+y2

= = Representation is not unique.



Level Set Method

Convention:

¥ = {x:p(x) > 0}
Basic Set Operations:
= Taking unions:

{x: 1 (x) > 0} U {x: 9o (x) > 0} = {x: max{¢p, (x), p,(x)} > 0}
= Taking intersections:
{x:p1(x) > 0} N {x: o (x) > 0} = {x: min{¢, P, } > 0}

= Taking complements:

(o) > 03)" = (x: —¢p(x) > 0}




Level Set Method

= |Indicator function:

15(x) = H(¢p(x))

Unit outer normal:

__Ve
AT
= Area of {x: ¢p(x) > 0}:
fH(gb)dx
Q

Perimeter of {x: ¢p(x) > 0}:

jQ|v(H(¢>)| dx



Level Set Method

Denote the unit normal and tangent vector fields as:

_ve _re
N(x) = 2] and T(x) = 7o)

Let y(s) be an arc-length parametrization of the O-level set:
(s):s € R} = {x:¢(x) = 0}

Then, curvature of the curve at p = y(0) is:

d —_—
TN )| _ =x@TE)

But we have:
d |
N )| _ =0 \p 7(0)
=N | T®)



Level Set Method

= Thus:
@) = (oM | TE)TR)
= Note that
V-N = trace(DN)
= ((DN)N,N) + ((DN)T,T)
=  But,
1
((DN)N,N) = (N,(DN)"N) = E(N,DINF) =0
= Hence,
\7¢ Note: In n-dims,
K_V'N_V'(w> V-N=(n-1H
where H = Mean curvature.




Level Set Method

= Particularly useful for moving interfaces:

Outward normal speed = v,

= Lety(s,t) be a parametrization of the O-level set of ¢p(x, t):

{v(s,t):s € R} = {x:p(x,t) = 0}

so that
d

—y-N=—

ot

= Then, we have

d
agb(y(s, t),t) =0 forall (s,t)

= We also have:
—¢(V(S t),t) =V -

meaning that:

o Vo

ot’ ' vgl

V + ¢ = V|
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Level Set Method

= Example: Motion by mean curvature.

_ (e
o= o ()

= Discretization: Typically, expand the curvature term:

o = ¢xx¢321 - 2¢x¢y¢xy + Qbyygb%
V|

= Use centered differences, e.g.

_Girrj — Pio

Px 2h
b~ Pir1,j — 2¢ij t Pi1
xx =~ h2

etc.



Level Set Method

= However, there can be issues:

Shrinks to a point,
but the point never
disappears!




Level Set Method

= Some difference quotients:

D;jd) _ gb(x + he}i) — ¢(x)

D;jqb _ P(x) — gbh(x - he]-)

qb(x + hej) — gb(x — hej)
2h

DE ¢ =



Level Set Method

More reliable: Start with a discretization of
- Vu
|Vul
J|\7u| dx

Start with a discretization of the energy:
2 + 2 + Z
z h \/(Dx ul-j) + (Dy ul-j) + 6
ij

Take variation of the discrete energy.

= Arises as L? derivative of




Level Set Method

= One gets:

+ 4k +pk
K ~ Dy D ® +D; Dy #
J(D;¢)2 + (D )" +6 \/(D;qs)z +(Dyp)" +6

= Then:

¢k+1 _ ¢k
ot
DeK] {0( D p* . Dy( Dy ¢* )}
\/(D;gb)z + (D;gb)2 +65 \/(D,‘{c/))z -+ (D;qb)2 +6
where

Deg¥] = 08 )2 + (D5)’ + &




Level Set Method

= For small enough 6t, decreases discrete TV for sure.

= CFL condition:
ot < O(hz)

= Analogue of convexity splitting: P. Smereka (2002):

¢k+1 . d)k ( Vd)k )
= |Vok|V - + Akt — Ak, smoothing
ot | ¢ | |‘7§bk| ¢ ¢ operator

= At every time step, solve

P*tt = ¢k + (68)(I — (6)A) |V Pp*|V - ( e )
) |V o¥]

= Appears to be unconditionally stable.



A Word on Flow Networks

and Their Application to Segmentation:

Some basic notions.



Flow Networks

= G=(V,E) is a directed graph.
= V = Vertices of the graph.
= E = Edges of the graph:
EcV XV
= If(u,v) €E,then (v,u) ¢ E.
= There are two distinguished vertices:
= Source: s
= Sink: t
= Each v € V lies on a path from sto t (= G is connected).

= Noloops: (u,u) € E foranyu € V.



Flow Networks




Flow Networks

= Each edge (u,v) € E is assigned a non-negative capacity c(u, v):
c:E - R*

= Extend c to all pairs (u,v) €V X V:
c(u,v) =0 if (u,v) € E.




Flow Networks

= The restriction

(u,v) €EE = (v,u)¢E
can sometimes be alleviated:




Flow Networks

= A flow on G: A real valued function
VXV ->NR

with the interpretation
f(u,v) = Flow from vertex u to vertex v

conforming to the following constraints:

1. Capacity constraint: Forallu,v € V,
0<f(uv)<cluv)

D f@w= ) fuw)

Total flow into u/ VeV WEV

Total flow out of u
2. Flow conservation:

(Note: If (u,v) & E, then f(u,v) = 0).



Flow Networks

Example of a valid flow. Edges (1,4), (3,t), (2,4), and (4,t) are saturated.

3/5




Flow Networks

= Value of a flow:

12 Fw- ) fws)

Total flow out of source Total flow into source

=  Max flow problem: Given the network G = (E, V) and capacity function c,
find the flow f on G such that

|f| is maximum.



Cuts of Flow Networks

= Acut(S,T) of a flow network G=(V,E) is a partition of V into sets
ScVandT=V\S
such that:
seS andteT.

= (Capacity of a cut (S,T) is
c(S,T) = z c(u,v)
UES, vVET

= Note: Only edges from S to T are counted.

= Minimum cut problem: Given the network ¢ = (V, E') and capacity function c,
find a cut (S, T) of G such that:

c(S,T) is minimum.



Cuts of Flow Networks

c(S,T)=4+3+3=10.



Cuts of Flow Networks

Net flow f(S,T) across a cut (S,T) is

FED= ) fuw- ) fww

UES, veET UEeS ,veT

= (Flow from Sto T)
—(Flow from T to S).

Claim: Let f be a flow in a flow network G, and let (S,T) be a cut of G. Then:

8T = Ifl

i.e. net flow across any cut is the same.




Cuts of Flow Networks

=  Proof:

We have:

and

FED= ) fav- ) fouw

uesS,veT ues,veT

> S =) fsmH ) f@)
UES,VET VET ues\{s}
VET

> fww =) [ Y fow
UES,VET VET ues\{s}
VET




Cuts of Flow Networks

Foreachu € S\ {s}, we have

D fawy= ) fww

vev

wev

by the flow conservation constraint. Summing overu € S \ {s},

DD fww= ) fww

ueS\{s} wev

uesS\{s} vev

Split the inner sums usingV =SUT = (S\ {s}) U{s}UT:

D D fwwy= ) fus)+

uesS\{s} vev u€esS\{s}

> Y fww= Y fewt )

uesS\{s} wev ues\{s}

z z Fluv) 4

ueS\{s} vesS\{s}

ueS\{s} wesS\{s}

D fnw

these are =

_|_

D D fww)

ueS\{s} verT

D Fww

ueS\{s} wer



Cuts of Flow Networks

We get:

Z fu,v) +

uesS\{s}
VET

Combining:

FST) =) fls,v)+

D, fas)

uesS\{s}

z fw,u) +

uesS\{s}

VET

- fws) -

= Ifl.

WET

). flw

uesS\{s}

). few

ueS\{s}

D f@s)

VET ueS\{s}
=) fv) =) f@s)
vev vev




Cuts of Flow Networks

f(S,T)=2+2+3-2=5



Cuts of Flow Networks

= | Corollary: Let f be a flow on the network G=(V,E). Then:

1= fwo =) f&v)

vev vev
In words,

|f| = Net flow into sink.

= Proof: Take

S=V\{t}
T = {t}.

= Thus, we see that max flow problem is:

Find a flow such that net flow into sink is maximal.



Cuts of Flow Networks

= [Claim: Given a flow network G, any flow f on G, and any cut (S,T) of G, we
have:

Ifl <c(S5,T)
In particular,

Max flow < Min cut.

=  Proof:
FI=fED= ) fan- ) fowu
uesS,veT UueS,veT
< ) fww
UES, VET
< c(u,v) =c(S,T).
uESZv:ET

Note: “=" can be attained only if there is no flow from T to S, and all edges from
S to T are saturated.



Cuts of Flow Networks

= |Theorem: Let G=(V,E) be a flow network. A flow f on G is a maximal flow iff
there exists a cut (S,T) of G such that

fl =¢S5, T).

In particular,

Max. flow = Min. cut

= Proof: Let f be a maximal flow on G. Suppose there is no cut (S,T) of G for
which

fl =¢S5, T).

That means: For any cut (S,T) of G we have:
1. Forsomeu € Sandv € T we have f(u,v) < c(u,v); OR
2. Forsomeu € Sandv € T we have f(v,u) > 0.

Start with:



Cuts of Flow Networks

" Define Ty1 in terms of T}, recursively as:

Tihi1 =T, U{u €Sy :3v e T, with f(u,v) < c(u,v)}
U{u €Sy : Jv € T, with f(v,u) > 0}.

In words: T}, 1 is obtained from T}, by adding vertices u € Sy, s.t.
1. Either (u,v) € E form some v € T}, is unsaturated,

2. Or(v,u) € E for some v € T}, carries flow out of Tj.

= At some point, we will have s € T,.

" That means, 3 a path p on G from s to t of the form:

2/3 2/2 1/4

@



Cuts of Flow Networks

Properties of the path:

= Edges pointing towards t: Unsaturated.

= Edges pointing towards s: Non-zero flow.

3/5 2/3 2/2 1/4

= Flow can be modified along such a path to increase flow into the sink:

~@

=  Both capacity constraint and flow conservation are maintained.

4/5 3/3 1/2 2/4




Cuts of Flow Networks

= |n general, we encounter four types of nodes along such a path:

a/A m b/B a+1/A \/\ b+1/B _
\_/ \_/
a/A \/_\/ b/B a+1/A \f\/ b-1/B
W, — W,
a/A m b/B a1/A /\ b+1/8_
\_/ \_/
CalA TN b/B Ca1/A /7 7\ b1/B
\_/ \_/

= Increase flow towards t in arrow on right; adjust arrow on left.



Flow Network

= We thus see that there has to exist a cut (5, T) of G such that

Ifl =¢S5, T).

= But then, since

Ifl=f(ST)<c(S,T)

for any flow f and cut (S, T), we conclude:
= (§,T)is aminimal cut, and

= Min cut = Max flow.

= Conversely, if there exists a cut (S, T) of G such that

fl=¢c(5,T)

it immediately follows that f is a maximal flow.



Max Flow Algorithms

= There are many.
= We focus on: Ford & Fulkerson algorithm.
= |DEA: Iteratively improve the flow by:
= Constructing the residual network for the flow,
= Finding an augmenting path on the residual network,

= Flow augmentation along the augmenting path.



Ford-Fulkerson Algorithm

= Residual network G corresponding to a flow f on the network G = (V,E) is
constructed as follows:

=  Write Gf = (Vfr Ef)
= Edges:
= If (u,v) €E and f(u,v) < c(u,v), then (u,v) € Ef and
cr(u,v) =c(u,v) — f(u,v).
= If (w,v) €EE and f(u,v) > 0, then (v,u) € Ef and
ce(v,u) = f(u,v).



Ford-Fulkerson Algorithm

1/4

(%1
2/5

1/3




Ford-Fulkerson Algorithm

Find an augmenting path from s to t in the residual network G¢:
A simple path from s to tin G¢.

Existing flow can now be augmented along this path by 1.



Ford-Fulkerson Algorithm

1/4

(%1
2/5




Ford-Fulkerson Algorithm

= Note that it may be necessary to cross the reversed edges:




Ford-Fulkerson Algorithm

4/9

11/14
12
U3
) 7/7
4
1/

Vv



Ford-Fulkerson Algorithm

11/14

12/12

0/9

11/14



Ford-Fulkerson Algorithm

We see that the flow is now maximal; the min cut is shown.



Application to Segmentation

= Many authors: Picard & Ratliff; Grieg & Porteous; Boykov & Kolmogorov; etc.

= Consider the 1D, two-phase segmentation problem:

. N2 Y
mEmPer(Z)+L(f c1) dx+j[0’1]\2(f c,)” dx.

N

N

N~

Vv

Suppose ¢q and ¢, are given and fixed.



Application to Segmentation

Discrete version: Grid points v; = (j — 1) Ax, with Ax = NL-l-l andj =1,..,N.

These are the pixels in the image.

Connect them with edges of capacity 1, left to right.

Interpixel edges will represent the geometric penalty: Per(X).



Application to Segmentation

Discrete version: Grid points v; = (j — 1) Ax, with Ax = NL-l-l andj =1,..,N.

These are the pixels in the image.

Connect them with edges of capacity 1, left to right.
Interpixel edges will represent the geometric penalty: Per(X).

Also connect vy to v4 for periodicity.



Application to Segmentation

e Introduce auxiliary nodes: Source and Sink s and t.
e For each j, introduce edges from s to vj, and from vjtot.

* Edges between pixels (v;) and s or t represent the fidelity term.

e Foracut (S,T) of the graph, we’ll identify:



Application to Segmentation

= Fidelity related edges:
= e(sm) = (fj—c2)”
u e(vj,t) = (f) — Cl)z.




Application to Segmentation




Application to Segmentation

For this cut: £ = {v,, v3}.



