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Objective

= Variety of variational models in image processing.

= Gradient descent: Curve / surface evolution:
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= Algorithms for finding global minimizers.
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Outline

= Monday: Problems, Models, Basic Facts.

= Tuesday: Diffuse Interface Methods:
=  Phase field
= Threshold dynamics

= Distance function dynamics

= Thursday:
= Level sets

= Redistancing: Fast marching
= Friday: Finding global minima via PDEs.

= Saturday: Network flows and graph cuts.
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Monday

1. Image Segmentation

Snakes: Active Contours
Mumford-Shah Functional

Piecewise Constant Mumford-Shah

H w Npoe

Segmentation with Depth: Nitzberg-Mumford-Shiota Model

2. Image Denoising
1. Mean Curvature Flow of Level Lines
2. Perona-Malik Scheme
3.  Perona-Malik and Mumford-Shah
4,

Rudin-Osher-Fatemi’s Total Variation Model

3. Inpainting.
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Representing Images

= Represent a gray-scale image by a function f(x):

f(x): Q- [0,1]

= Q) isthe image domain = Computer screen (a rectangle).

= Value of f(x) = Gray-scale intensity of pixel at location x.
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Image Segmentation

= Assumption: Image depicts a scene containing several objects.
= Segmentation: Divide image into distinct regions.

=  Mathematically: Partition image domain Q.

J

= Each X; contains an object, and

Zi nZ] — 621 N GZJ

| oz,
j

= Edges in the image:
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Image Segmentation

= Edges in the image: Boundaries of distinct objects.
= Assume: Different objects have different:

= Color

= Grayscale intensity

= Texture

= etc.
= Expect:

= fis discontinuous, or

= |Vf]is very large

at edges.
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Image Segmentation

Hand segmented image from Berkeley database.
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Image Segmentation

Segmentation and edge detection:

Hand segmented image from Berkeley database.
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Segmentation is an ill-posed task.

It is necessary to specify the level of detail desired.
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m

Hand segmented image from Berkeley image database.
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Hand segmented image from Berkeley image database.
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Snakes: Active Contours

= Kaas, Witkin, Terzopoulos (1992); Kichenassamy, Sapiro, Tannenbaum (1996)

= |DEA: Initialize a curve (snake) on the image domain Q.

y(s) = (r1(5),v2(s)):[0,1] - Q.
= Prescribe a normal speed to drive it towards edges.

= Edge detection:
1

1+ VG, *f2

|Vf|large = 0

_lx?

where G, (x) = e 4mc

= |Gradient descent for:

1 1
—[0 110G, = pooE ¥ ©lds
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Snakes: Active Contours

Global minimizer = A point. = Look for a local minimizer.
Start near, containing object of interest. Let curve shrink-wrap it.
Alternatively, start small, in the interior of object of interest.

= Provide an “expansion force”:

1
AreainF=L$-d5=f 1/_1)()/)-)/’(5) ds
0

where

—

1
Y(x,y) = > (v, —x)
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Snakes: Active Contours

Image f
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Snakes: Active Contours
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Snakes: Active Contours
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Gradient Descent: Perimeter

= y(s) arclength parametrization of 0%, oriented counterclockwise.

= Let:

0
T(s) = &y(s) and N(s) = Outward unit normal.

=  We have:

0 d
%T(s) = k(s)N(s) and %N(S) = —k(s)T(s)

so that k(s) < 0 for convex shapes by our convention.

= Consider the perturbation of y(s):
y(s) + tp(s)N(s)
where ¢(s): 0X — R.
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Gradient Descent: Perimeter

=  Compute the length:

L 1
L(y +t¢pN) = j (y' +t¢p'N +tdpN',y" +tdp'N + tpN')2 ds
L ° 1
(T +tdp'N —tpxT, T +tep'N — t¢pkT)2 ds
L 1
(1 — 2tk + t%(p")? + t?Pp*Kk?)2 ds

)
)

= Differentiate w.r.t. t:

o 2 O 2

d L
ZLo+epN)| = fo $(—K) ds

= Thus, we see that

VL = —k
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Gradient Descent: Weighted Perimeter

= Let g(x) be a given positive weight function on Q.

= Define the weighted length

L
L) = | 9(r(®) ds
0

for a curve y(s) parametrized by arclength.

= As before:
L

Ly(y + t¢N) = j gy + toN)(1 — 2tk + t2(¢")? + tquzicz)% ds
0

= We find

L
dt g(V”ﬁbN)‘ f ¢g(¥)(—K) + ¢pVg - N ds
0
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Gradient Descent: Weighted Perimeter

= Thus, we get:

Vig = —gk +Vg-N

= Example: Geodesic active contours:

v, =gk —Vg-N.
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Mumford-Shah Segmentation Model

= Find the best piecewise smooth approximation, in least squares sense, to
the given image:

min] |Vu|? dx + u Length(K) + Aj (f —u)? dx
O\K Q

u(x)
KcQ

= Unknowns of the problem:

" u(x): The piecewise smooth approximation.
Smooth except across “edges” K.

= K: The set of edges across which u(x) is
allowed to be discontinuous.

= A:  Acts as a scale parameter.
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Mumford-Shah Segmentation Model

fQ\KIVuI2 dx: Ensures smoothness away from edges.

= Length(K): Prevents oversegmentation. Allows selection of scale.

- fQ(f — u)? dx: Fidelity terms. Ensures approximation of given image.

Advantages:
= No explicit edge detection needed.

= Does not require presence of prominent transitions f.

= Robust w.r.t. noise.
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Mumford-Shah Segmentation Model

Without the length term, the Mumford-Shah function can be trivially
minimized:

u,K

infj |Vu|? dx+/1j(f—u)2 dx =0
O\K 0
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Mumford-Shah Segmentation Model

Example:

An image and its piecewise smooth approximation found by
minimizing the Mumford-Shah functional.
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Mumford-Shah Segmentation Model

u(x)

minf |Vu|? dx + u Length(K) + A] (f —u)? dx
u) Javk Q

= Consider the limit:

U= U, A= Ags, g- 07,
= |Vul=0inQ\ K.

= Piecewise constant u.

= Model becomes:
: 2
ml_ngz {Length(aZj) + «a 2-(Cj — f) dx}
Cj ] J
= No a priori restriction on number of regions ;.

= However, # of regions bdd. in terms of «a.
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Piecewise Constant Mumford-Shah Model

Chan-Vese (2000):

= Approximate the image by a piecewise constant function.

= Simplest example: A function of two values.

= Any such function can be written as:

u(x) = c;15(x) + c21g\5(x)
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Piecewise Constant Mumford-Shah Model

u(x) = c;15(x) + c21g\5(x)
Then, we have:
1. K=20%,

2, |Vu|? dx = 0,

Jonk
3. Length(K) = Per(Z),

4 Jf—w?dx= [(f-c)*dx+ fQ\Z(f_ Cc,)? dx
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Piecewise Constant Mumford-Shah Model

= The energy becomes:

E(Z,cq,cy) = Per(Z) + A{j (f —c)?dx + (f — cp)? dx}
5

O\Z

= How can we minimize such energies?
= Make an intial guess for 0X.

= Update 0% so that energy decreases as fast as possible.

= SOLVE a PDE describing the motion of 0X.
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Piecewise Constant Mumford-Shah Model
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Piecewise Constant Mumford-Shah Model
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Piecewise Constant Mumford-Shah Model

Computing Interfacial Motions in Imaging and Vision 6/7/2010 32



Piecewise Constant Mumford-Shah Model
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Piecewise Constant Mumford-Shah Model
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Piecewise Constant Mumford-Shah Model

Computing Interfacial Motions in Imaging and Vision 6/7/2010 35



Gradient Descent: Bulk Energy

= Take variation of terms of the form:
AQZ) = fb(x) dx
>

where f(x) is a given function.

= Again, perturb y(s) as y(s) + t¢p(s)N(s). Assume ¢(s) = 0 Vs.

Yy +tpN

A parametrization for AX:

P(s,$) = y(s) + Ep(s)N(s)

where s € [0,L] and ¢ € [0, t].
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Gradient Descent: Bulk Energy

=  \We have:

JAZb dx = fothLb(l/J)IDtplds dé

= Also,
DY = |05 X 0z1)|
=  Furthermore,
oY =T+ tp'N — tpxkT
and
s = ¢N
= That gives:

IDY| = ¢ — tp°k.
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Gradient Descent: Bulk Energy

1 r B 1 t L
_—[JAZb dx = ?]0 jo b(Y) (@ — tp?Kk)ds dé

L
— [ b)) e(s) ds
0
= f' bods .
Jox

= \We thus see that

VA=b>b
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Gradient Descent: Mumford-Shah

= P.C. Mumford-Shah:

E(Z,cq,cy) = Per(Z) + A{j (f —c)?dx + (f —cp)? dx}
s

O\Z

= Rewrite as:

E(Z, cq,c,) = Per(X)
» { L (f — )% dx — L (f — )% dx + jg(f —e,)? dx}

= Normal speed:

Up =K+ A((f — ) —(f — C1)2)
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Segmentation with Depth

= Given: A 2D picture of a scene with various objects in it:
fx): Q- [0,1]

= Goal: Determine automatically the shapes and relative nearness of the objects to the
observer through their occlusion relations:

= We have prejudices: Prefer low curvature, connect T-junctions.
*  Find an algorithm that mimics our prejudices:

= CURVATURE DEPENDENT FUNCTIONALS
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Nitzberg-Mumford-Shiota Model

= Each object lives in a plane perp. to line of sight:
= No self occlusions

= No entanglements.

= Each object may occlude parts of objects behind it:
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Nitzberg-Mumford-Shiota Model

= Strategy: Exhibit the solution as minimizer of an energy.

= Unknowns:

1. Number of objects n,

2. Regions X4, ..., X,, that they occupy.

3. Approximate “color” of each object: ¢4, ..., ¢,
= Notation:

1. j>1 meansZX;isin front of %;.

2. X is the visible part of X;.

j>i

3. K; = Curvature of 0%;.
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Nitzberg-Mumford-Shiota Model

= The Energy:

n

Ex1= Z {L)}l + ¢(x;) ds + L’(f(X) —¢;)? dx}

i=1

where the function ¢ (&) is:
0(5) vs. S

1. =~ & for €| small,
2. = |&] for |€| large,

3. +ve, even, C?, and convex.
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Explanation of Terms

= Length term: faz- ds: Regions should be simple.

= Curvature term: faz- ¢ (x;) ds: Edge contours should have a tendency to
l

continue straight, not make sharp turns.

= Fidelity term: Approximate scene u(x) (assembled from regions X; and the

constants ¢;), given by
n

u() = ) cily ()

i=1

should be faithful to the original image f(x):

f(u(x) — f(x))” dx = Zn: L,(f(x) — ;)% dx
i=1 “i
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Role of Curvature Dependence

Bottom object

Top object
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Role of Curvature Dependence

Fidelity term inactive
in this region.

Minimization w.r.t. X4:

j1 + (k) do + f (ci1y, — F)" dx
ZC

+ r (colzc —f)z dx
ng 1
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Role of Curvature Dependence

e r——

Curvature term will prefer the completion on the right; fidelity term is indifferent
between the two.
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Nitzberg-Mumford-Shiota Model

Original 1mage:

Regions taken as mitial guess:
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Nitzberg-Mumford-Shiota Model

Order guess = AB.
Energy = 29,

Order guess = BA.,
Energy = 41.
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Image Denoising: Heat Equation

GOAL: Remove oscillations from a noisy image.

= Simplest method: Filtering.

f(x) = (Gg * f)(x)

= Equivalent to solving the heat equation:

U = Au

u(x,0) = f(x)

= QOscillations are suppressed: Good.
= Edges are blurred: Bad.
= Generates a one-parameter family of gradually simplifying images.

= Scale space
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Image Denoising: Heat Equation

Heat equation:
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Image Denoising: Heat Equation
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Image Denoising: Mean Curvature Motion

IDEA: Suppress diffusion across edges:

Au = ((D? u)é, &) + ((D*wn, 1)
where €], |n] = 1and & L 7.
Choose:

Vu Viu

—_— — d J—
T A T

Suppress diffusion in Vu direction:

4
ue = ((D*uwn,n) = |Vulv - (ﬁ)

= Motion by mean curvature of level sets of u.
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Image Denoising: Mean Curvature Motion

= Curvature: Let y(s) be an arc-length parametrization of the O-level set:
{v(s):s € R} = {x:u(x) = 0}

= Since u(y(s)) = 0 for all s, we have

d
0=—u(r(s) = | -¥()

and
dZ
0= Eu(y(S)) = ((D*w) ) y(s),7(s))
Hw| 7))

= ((D*w) o~ ) + K|Vul
so that

1 2

K= _W«D u) y(s)n»ﬂ)




Image Denoising: Curvature Motion

In addition,
0
au(y(s, t),t) =u(y(s,t),t) +Vu -y, =0
But,
Vu -y, = [Vuly,
so that
ur = —|Vulvy,

Thus, combining:
u = ((D*wn,n)
= —k|Vu|
= —vp|Vul
which means

v, = K.
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Image Denoising: Mean Curvature Motion

Mean curvature motion:
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Image Denoising: Mean Curvature Motion
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Image Denoising: Ill-Posed Equations

= @Go even further: Reverse diffusion in Vu direction.

ur = V- (g(IVul*)Vuw)

where

1
e.g. g(&) = 1+x

Expand:
V- (gUVul®)Vu) = |Vul*g(|Vul*){(D*w)n, 1)

+ 7ulfg(7ul®) + 29 (7ul)(D?WE,§)

o

+ve for |[Vu| < 1, -ve for |[Vu| > 1
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Image Denoising: Perona-Malik Model

= Perona-Malik Model:
u, = V- (g(Vul*)vu)

Typically implemented as
Up = (R(ux))x + (R(uy))y

where

§
1+¢&2

R(&) =¢&g(&?%) eg R(¢) =
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Image Denoising: Perona-Malik Model

Perona-Malik Evolution
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Image Denoising: Perona-Malik Model

= Perona-Malik Scheme
Uy = (R(ux))x + (R(uy))y

is L? gradient descent for the energy

B = [Gue) +(uy)dudy

where density Y(§) is:

= Convex for |&]| small,
= Concave for [¢| large.

E.g. for R(§¢) = 1:;2,

P(§) = log(1+¢2).
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Image Denoising: Perona-Malik Model

= Perona-Malik is intimately related to Mumford-Shah.

= Consider energy densities of the form

ff 2 iff¢] < |
i .
LE if |€] = N

o \ /

Computing Interfacial Motions in Imaging and Vision 6/7/2010 62



Image Denoising: Perona-Malik Model

= Corresponding discrete energies:

En() = ) ($a(DFw) + (D5}
LJ

= Weak spring model of Geman & Geman (Blake & Zisserman):
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Image Denoising: Perona-Malik Model

= Sendh - 0%:

lim Ep = J |Vul? dx + J dd ~ Mumford—Shah
h—0 O\K K

Explanation:
1. If u is differentiable near (x, y) = (hi, hj), then
Diu;; = 0(1) and Dju;; = 0(1)as h —» 07,
Hence,
(D) + Yp(Dyu) - |Vul® as h - 0%,
2. If u has a vertical edge at (x,y) = (hi, hj), then

1
Diu; ;=0 <ﬁ> as h - 0%,

Hence,

1
Yy (Difu) - . as h - 0%,

Rigorous result: A. Chambolle, SIAM J. Appl. Math (1996)
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Image Denoising: Perona-Malik Model

= For energy densities of the form

W) = (€2 + 12 — 1 where p € (0,1)

If scaled correctly w.r.t. h:

lim Ep = f |Vul? dx + f lut —u~|P d&
h—0 O\K K

N

A\
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Image Denoising: Perona-Malik Model

= An old method for minimizing Mumford-Shah.
= Graduated non-convexity of Blake & Zisserman.

= Gradient descent (Perona-Malik) for energies:
@ = ) (0w +p(D5u)}h
L,j

with gradually less convex y:
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Image Denoising: Total Variation Model

Rudin, Osher, and Fatemi (1992):

E(u) = leuI + A(f —u)? dx

Preserves sharp edges.

Many advantages over Perona-Malik:
= Strictly convex functional: Existence, unigueness of solutions.
= Continuous dependence on data (i.e. f), and parameters (i.e. A).

= Only one parameter to be chosen by user: 1

Still some difficulties:
= Non-differentiable.

= Naive numerical methods slow to converge.

Intimately related to: Piecewise constant Mumford-Shah.
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Total Variation: Basic Facts

To define total variation for possibly discontinuous functions:

= @Given a vector x € R", we can write:

x| = maxx -
%] lyl=1 Y

= Apply this to
f|\7u|dx = fmaxg -Vu dx
lgl=1

=  When u(x) is smooth, can take g(x) to be smooth and compactly
supported, and move “max” outside:

fIVuldx = sup fg - Vu dx
lg(x)|=1
gecs
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Total Variation: Basic Facts

" |ntegrate by parts:

leuldxz sup juV-gdx
lg(x)]=1
gece

= Right hand side can be finite even for discontinuous wu.

= |tis taken to be the definition of total variation:

f|\7u| = sup juV-gdx
lg(x)|=1
gece
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Total Variation: Basic Facts

=  Example:

u(x) = 1z(x)
where X is a compact set with smooth boundary 0%.

= First of all,

juV-gdxsz-gdxzf g-ndaS] do = Length(0ZX)
> % )

= Second: There exists a vector field Y (x) s.t.

1. Y is smooth, compactly supported,
2. |Y(x)| < 1forallx,
3. YP(x) =n(x) forall x € 9%.

= \We have:

juV-gdxzj n-ndo = Length(dX)
)
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Total Variation: Basic Facts

= Hence, we see that

j |V1s(x)| = Length(0X) = Per(%)

when dY is smooth.

= If u(x) is piecewise constant:
N

u(x) = z ¢j1s.(x)

J=1
with ¢j1 > ¢; > 0,%; € X4, and 0Z; smooth for all j, then:

N-1

j|l7u| = Z(cjﬂ — cj)Per(Zj)

j=1
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Total Variation: Basic Facts

= Given any function u € L', approximate by such piecewise constant
functions.

=  Use our formula.
= Pass to the limit.

= You get the co-area formula

f Vu| = jRPer({x tu(x) > u}) du
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Image Denoising: Total Variation Model
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Image Denoising: Total Variation Model
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Image Inpainting

= |mage information missing (scratches, holes) in D c Q.
= |nterpolate image into D.

= Nonstandard requirement: Propagate sharp edges into D.
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Image Inpainting

PDE approach: Originates in the work of Bertalmio, Caselles, Sapiro, et. al.
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Image Inpainting

= More examples (from Bertalmio, Caselles, Sapiro, Ballester):
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Image Inpainting

= |npainting via the Total Variation Model: Work of T. F. Chan and J. Shen.

= Very robust, variational model.

J|7u|+/1 (f —u)? dx
0

Computing Interfacial Motions in Imaging and Vision 6/7/2010 78



Image Inpainting

Caveats of 2"9 order inpainting models:

= No long distance connections between contours:

= Non-smooth, unnatural contour extensions:
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