Asset Demand Risk and Demand Discovery Burton Hollifield, Michael Gallmeyer and Duane Seppi

2017 CMU Workshop on Equilibrium Theory

Introduction

- Investors trade dynamically over time
 - Smooth consumption and share risks
 - But exposed to future pricing risk

Sources of future pricing risk

- If future asset demand functions are fixed and common knowledge, then future price function P is known. Only future cash-flow states not known. No asset demand risk.
- If future asset demand functions vary over time due to a common knowledge sentiment factor, then future prices are a function P of future cash-flow and sentiment factors. Asset demand risk but no sentiment inference.
- If future asset demand functions vary over time and sentiment is ex ante private information, then asset demand risk + sentiment inference

New features

- Asset demand risk
- Demand discovery

Asset demand risk and demand discovery are likely

Retail investor asset demand

- Utility functions depend on genetics and life experiences
- Private budget constraints
- Institutional investors and traders
 - Internal incentive structure
 - Internal funding, capital adequacy, and risk-limit constraints
- Utility functions and investment constraints are high dimensional
 - U: $R \rightarrow R$ i.e., maps consumption level \rightarrow utility.
 - Utility functions live in a big space of continuous, increasing, concave functions.
 - Can change over time and can depend

Investors are likely to have better info about self than others

Does need to be perfect self-knowledge, just some is enough.

Questions

- How much preference info is resolved by demand discovery?
 - Full revelation? Pooling?
- How general are equilibrium pooling outcomes?
 - Knife-edge? Strong assumptions?
- Does asset demand risk affect pricing?
 - Are pooling equilibrium prices and trades different from pooling prices and trades?
- Impact on risk premia and asset price volatility?
 - How does asset demand risk affect return volatility?
 - Is there an asset demand risk premium?
 - How does asset demand risk affect cash flow risk premium? Reverse effect?

This paper

General results

- Asset demand uncertainty only possible if market is statically cash-flow incomplete
- Challenge: Even just proving existence of equilibrium can be hard
- Two proof strategies
 - 1. Identify general conditions under which, if equilibrium exists, cannot beFR. Hence, equilibrium must involve asset demand risk.
 - Posit market with well-behaved equilibrium given CK investor preferences. Identify conditions s.t. equilibrium exists with asset demand risk once private preference knowledge.
- Some results
 - 1. FR equilibrium requires set of ex ante possible types Φ to be sufficiently constrained.
 - 2. If set Φ includes a convex subset, then, if equilibrium exists, cannot be FR.
 - 3. Asset demand risk matters generically for asset pricing if the preference uncertainty is not fully revealed by demand discovery.
 - 4. Analytically tractable example model

This paper (2)

Numerical results (in progress)

- Single stock, 3 dates
 - Substantial price volatility from asset demand risk
 - Large shadow risk premium.
- Stock + bill
 - Currently being completed.

Literature

Canonical asset pricing

- Fixed CK investor preferences
 - Lucas [1978], Merton [1973], Duffie and Huang [1985]
- Sentiment-based asset pricing
 - Stochastic but CK investor preferences
 - De Long, Shleifer, Summers and Waldman [1990], Lettau and Wachter [2011]
- Asymmetric information about future cash flows
 - CK investor preferences except for simple noise traders
 - Grossman and Stiglitz [1981]], Wang [1993], Detemple [2002]

Demand discovery

- Investor preferences are private knowledge and change over time
 - Grossman [1988], Kraus and Smith [1989], GHS [2005], Grundy and McNichols [1989]

Model

- Dates 0, 1, ..., T
 - Asset pricing not transactional time scale

Traded securities

- N-1 long-lived traded securities with unit outstanding suppy
- Dividends $d_{1,wt}, \ldots, d_{N-1,wt}$,
- Discrete-time, discrete-state cash-flow state tree
- Generic cash-flow state ω_{t} . Specific state $\omega_{t,j}$.
- Controls current dividends at date t and also future cash-flow subtree.
- Probability $g(\omega_t)$
- 1-period zero-net supply risk-free bill paying d_{N,wt} = 1 at each date t
- P_{wt} is vector of N traded-security prices

Investors

Informed investors

- Unit mass, price-takers
- Lifetime utility

$$v(c_0^I) + \sum_{t=1,\dots,T} \beta^t \operatorname{E}_0^I [\varphi(t,\omega_t) v(c_t^I)]$$

- State contingent preference factor $\varphi(t, w_t)$ in state w_t . Profile $\varphi = \{\varphi(t, w_t)\}$
- Greed/fear? Patience/impatience? Macro wealth effects?
- Uninformed investors
 - Unit mass, price-takers
 - Lifetime utility

$$u(c_0^U) + \sum_{t=1,...,T} \beta^t E_0^U [u(c_t^U)]$$

□ Don't know ϕ . Do know $\phi \in \Phi$ where probability belief is $f(\phi) > 0$

Cash-flow tree & preference uncertainty

. . .

More model

Traded-security holdings

- Informed investor: θ_{wt}^{I}
- Uninformed investor: θ_{wt}^U
- Market clearing

Non-tradable consumption-good endowments

- Informed investor: e_{wt}^I
- Uninformed investor: e_{wt}^U

Traded-security price function

- $\Box \quad \mathsf{P}(\mathsf{t}, \, \mathsf{w}_{\mathsf{t}}, \varphi, \, \theta_{\mathsf{wt}})$
- Cash flow risk: Both investors uncertain about future cash-flow state w_t.
- Asset demand risk:
 - **Uninformed** investors don't know type φ and, thus, do not know P function.
 - **Informed** investors <u>do</u> know φ , and do know P function.

Beliefs

Updated cash-flow probabilities

- $\Box \quad g_{wt}(w_s)$
- Bayes Rule given <u>exogenous</u> cash-flow state dynamics
- Common knowledge

Updated preference types probabilities

- □ f_{wt}(φ)
- Bayes Rule given <u>endogenous</u> information revealed by informed investors via the trading process
- Only uninformed investors learn through demand discovery

Definition

Rational expectations equilibrium (REE) is collection of processes (p, θ) such that

- traded-security price process p clears consumption-good and asset markets and
- the asset-holding processes θ^I and θ^U maximize lifetime expected utility for informed and uninformed investors subject to budget constraints and given rational beliefs about prices given investors' respective information.

Informed investor's problem

FOCs

$$P_0 = \sum_{s=1,\dots,T} \sum_{j=1,\dots,J_s} \beta^t \varphi(s,\omega_{s,j}) \frac{v'(c^I(s,\omega_{s,j},\varphi,\theta_{s-1}))}{v'(c^I(0,\omega_0,\varphi,\theta_{-1}))} g(\omega_{s,j}) d_{\omega_{s,j}}$$

Implicit state prices

$$\pi_0(\omega_{s,j}) = \beta^t \varphi(s, \omega_{s,j}) \frac{v'(c^I(s, \omega_{s,j}, \varphi, \theta_{s-1}))}{v'(c^I(0, \omega_0, \varphi, \theta_{-1}))} g(\omega_{s,j})$$

State price valuation representation

$$P_0 = \sum_{s=1,...,T} \sum_{j=1,...,J_s} \pi_0(\omega_{s,j}) \, d_{\omega_{s,j}}$$

Informed investor's problem (2)

Price process p = {P_{wt}} over time

$$P_{\omega_t} = \sum_{s=t+1,\dots,T} \sum_{j=1,\dots,J_{s|\omega_t}} \pi_{\omega_t}(\omega_{s,j}) d_{\omega_{s,j}}$$

• Conditional state prices $\pi_{wt}(w_s) = \pi_0(w_s) / \pi_0(w_t)$

1st preference learning channel

State price linear algebra channel

- N traded-security prices at any date/state give N equations in J unknown state prices
- Let $\Pi(P_0)$ = set of possible state prices π given prices P_0
- Each of these possible state prices implies a traded-security price process p
- Let $\mathcal{P}(P_0)$ = set of possible traded-security price processes given P_0

Proposition 1

■ If the future traded-security cash flows after each state w_t are linearly independent for all dates t = 0, ..., T - 1 and if $J_{t+1|wt} \ge 2$ (i.e., there are at least two subsequent sub-trees) for all w_t , then simply observing the traded-security price history over time is insufficient, without knowledge of Φ , to infer the equilibrium state prices π_0 exactly at any date t < T - 1.

2nd preference learning channel

Equilibrium beliefs channel

- Uninformed investors know the implied state prices π must be consistent with informed investor's FOCs.
- For each type $\phi \in \Phi$, exists an equilibrium consumption and traded security price process
- Let $\Phi(P_0, \theta_0)$ = set of $\phi \in \Phi$ such that there is a possible informed investor would hold observed θ_0 at observed prices P_0 .
- □ Let Π (P₀, θ_0) = set of π given FOCs for types $\phi \in \Phi(P_0, \theta_0)$
- Let $\mathcal{P}(P_0, \theta_0)$ = set of possible traded-security price processes

Preferences ϕ , state prices π , and price processes p

Uninformed investor problem

FOCs at date 0

$$P_{0} = \sum_{s=1,\dots,T} \sum_{j=1,\dots,J_{s}} \left[\int_{\varphi \in \Phi(P_{0},\theta_{0})} \beta^{s} \frac{u'(c^{U}(s,\omega_{s,j},\varphi,\theta_{s-1}))}{u'(c^{U}(0,\omega_{0},\varphi,\theta_{-1}))} f_{0}(\varphi) \, d\varphi \right] \, g(\omega_{s,j}) \, d_{\omega_{s,j}}$$

$$f_0(\varphi) = \frac{f(\varphi)}{\int_{\varphi \in \Phi(P_0, \theta_0)} f(\varphi) \, d\varphi}$$

FOCs at later dates/states

$$\begin{aligned} P_{\omega_t} &= \\ \sum_{s=t+1,\dots,T} \sum_{j=1,\dots,suc(s,\omega_t)} \left[\int_{\varphi \in \Phi(P_0,\dots,P_{\omega_t},\theta_0,\dots,\theta_{\omega_t})} \beta^{s-t} \frac{u'(c^U(s,\omega_{s,j},\varphi,\theta_{s-1}))}{u'(c^U(t,\omega_t,\varphi,\theta_{t-1}))} f_{\omega_t}(\varphi) \, d\varphi \right] \, g(\omega_{s,j}) \, d_{\omega_{s,j}} \\ f_{\omega_t}(\varphi) &= \frac{f(\varphi)}{\int_{\varphi \in \Phi(P_0,\dots,P_{\omega_t},\theta_0,\dots,\theta_{\omega_t})} f(\varphi) \, d\varphi} \end{aligned}$$

Market incompleteness

Definition

A market is static cash-flow complete if, for each future cash-flow state w_t at each date t, there is a buy-and-hold trading strategy at date 0 using traded securities that replicates an Arrow-Debreu security paying \$1 in cash-flow state w_t.

Proposition 2

 If a market is statically cash-flow complete, then there is no asset demand risk.

FR equilibria and restrictions on Φ

Proposition 3

- A fully-revealing equilibrium does not exist unless the set Φ of possible informed-investor types φ is sufficiently restricted a priori.
- Intuition: Can always construct a type $\hat{\phi}$ who would pool with a type ϕ^* .

$$\hat{\varphi}(t,\omega_{t,j}) = \frac{\hat{\pi}_0(\omega_{t,j})}{g(\omega_{t,j})} \cdot \frac{v'(c_0^{I,\hat{p}})}{v'(c_{t,j}^{I,\hat{p}})}$$

 Requires common knowledge about how uninformed investors will act if they are surprise by a trading outcome in the future

FR equilibria and restrictions on Φ (2)

Proposition 4

- If i) the set Φ of ex ante possible preferences includes a non-degenerate <u>convex subset</u> and ii) if the traded-security cash flows are <u>linearly</u> <u>independent</u> going forward from each date *t* and state w_t , then, if an equilibrium exists in which iii) the uninformed investors' asset demands are <u>continuous</u> in arbitrage-free prices, then it is <u>not</u> a FR equilibrium given trading at date 0.
- Intuition: Again, can always construct a type $\hat{\phi}$ in convex subseq who would pool with a type ϕ^* .

Demand Uncertainty Irrelevance

Definition

 A pooling equilibrium exhibits demand uncertainty irrelevance (DUI) if, for each preference φ in Φ(P0, θ0), the CK equilibrium corresponding to φ clears at the same date-0 prices and trades, P₀ and θ₀, as in the pooling equilibrium.

Proposition 6

Consider a pooling equilibrium with a finite number K(P₀, θ₀) of types φ in the pool Φ(P₀, θ₀) at date 0. Suppose also that this equilibrium becomes fully revealing at date 1. Asset demand risk matters generically for date-0 pricing in that the set U^{DUI} of uninformed preferences leading to DUI-pooling equilibria with N traded securities is a lower-dimensional subset of the set U^{pool} of uninformed preferences that lead to pooling equilibria.

Uninformed investor

Date-0 FOCs in pooling equilibrium

$$P_0 = \sum_{t=1,\dots,T} \sum_{j=1,\dots,J_t} \sum_{\varphi \in \Phi_0} \beta^t m(c_t^U(\varphi,\omega_{t,j}), c_0^U) f(\varphi) g(\omega_{t,j}) d_{\omega_{t,j}}$$

- The m's are MRS for the uninformed investor.
- N equations in J unknowns at date 0.

Uninformed investor

Date-0 FOCs in CK equilibrium

$$P_0^{CK} \, u'(c_0^{U,CK}) = \sum_{t=1,\dots,T} \sum_{j=1,\dots,J_t} \beta^t u'(c_t^{U,CK}(\varphi,\omega_{t,j})) \, g(\omega_{t,j}) \, d_{\omega_{t,j}}$$

If DUI

$$P_{0} = \sum_{t=1,...,T} \sum_{j=1,...,J_{t}} g(\omega_{t,j}) \beta^{t} m(c_{t}^{U,CK}(\varphi,\omega_{t,j}), c_{0}^{U}) d_{\omega_{t,j}}$$

- But since pool is fully revealing at date 1 $m(c_t^{U,CK}(\varphi, \omega_{t,j}), c_0^U) = m(c_t^U(\varphi, \omega_{t,j}), c_0^U)$
 - N* K(P₀, θ_0) equations in J unknowns.
 - Thus, DUI uninformed-investor preferences are in a lower-dimensional linear subspace of the pooling uninformed-investor preferences

Example

Assumptions

- Single stock, no risk-free bill
- Log preferences
- Restrictions on consumption endowments
- Three dates 0, 1, and 2
- Model can be solved explicitly in closed-form

FOCs

Using FOCs + market-clearing at date 1 gives

$$P_{1} = \frac{\beta \left(e_{1}^{U} + d_{1} \left(1 - \theta_{0}^{I}\right)\right) + E_{1}^{I}[\xi_{2}] \left(\beta \left(e_{1}^{U} + e_{1}^{I} + d_{1}\right) + e_{1}^{I} + d_{1}\theta_{0}^{I}\right)}{1 + \beta \theta_{0}^{I} + E_{1}^{I}[\xi_{2}] \left(1 - \theta_{0}^{I}\right)}$$

$$\theta_1^I = \frac{\mathbf{E}_1^I[\xi_2] \left(\left[(1+\beta)d_1 + \beta e_1^U \right] \theta_0^I + e_1^I \left(1+\beta \theta_0^I \right) \right)}{\beta \left[e_1^U + d_1 \left(1-\theta_0^I \right) \right] + \mathbf{E}_1^I[\xi_2] \left(\beta \left[e_1^U + e_1^I + d_1 \right] + e_1^I + d_1 \theta_0^I \right)}$$

FOCs with market clearing at date 0

$$\frac{P_0}{e_0^I + P_0(\theta_{-1}^I - \theta_0^I)} = E_0^I \left[\varphi_1 \frac{(1+\beta)d_1 + \beta e_1^U + [(1+\beta)(d_1 + e_1^I) + \beta e_1^U] E_1^I[\xi_2]}{e_1^I + [(1+\beta)d_1 + \beta(e_1^I + e_1^U)] \theta_0^I} \right]$$

$$\frac{P_0}{e_0^U + P_0(\theta_0^I - \theta_{-1}^I)} = \beta E_0^U \left[\frac{\left[(1+\beta)d_1 + \beta e_1^U \right] (1+E_1^I[\xi_2]) + (1+\beta) e_1^I E_1^I[\xi_2]}{d_1(1-\theta_0^I) + e_1^U + (1-\theta_0^I)(d_1+e_1^I + e_1^U) E_1^I[\xi_2]} \right]$$

Numerical results

Conclusions

- Asset demand risk and demand discovery seem like plausible and generic features of dynamic financial markets
- Generically, asset demand risk should matter for pricing and should be priced with a risk premium
- Lots of interesting extensions
 - Currently working on numerical models with non-log preferences and multiple traded securities
 - Make cash-flow state space continuous too
 - Symmetric investor type uncertainty & more than 2 groups

$$g_0^A v'(c_0^I(g_0^A, \theta_0)) = \beta \varphi_1^A \sum_{j=1,\dots,J_1} v'(c_1^I(\theta_0, \omega_{1,j}, \xi^A)) g(\omega_{1,j}) [d_{\omega_{1,j}} + P_1(\theta_0, \omega_{1,j}, \xi^A)]$$

$$g_0^B v'(c_0^I(g_0^B, \theta_0)) = \beta \varphi_1^B \sum_{j=1,\dots,J_1} v'(c_1^I(\theta_0, \omega_{1,j}, \xi^B)) g(\omega_{1,j}) [d_{\omega_{1,j}} + P_1(\theta_0, \omega_{1,j}, \xi^B)]$$

$$\varphi_1^B(\theta_0, \varphi_1^A) = \varphi_1^A h(\theta_0)$$

$$h(\theta_0) = \frac{\sum_{j=1,\dots,J_1} g(\omega_{1,j}) \, v'(c_1^I(\theta_0,\omega_t,\xi^A)) \left[d_{\omega_{1,j}} + P_1(\theta_0,\omega_t,\xi^A)\right]}{\sum_{j=1,\dots,J_1} g(\omega_{1,j}) \, v'(c_1^I(\theta_0,\omega_t,\xi^B)) \left[d_{\omega_{1,j}} + P_1(\theta_0,\omega_t,\xi^B)\right]}$$

$$g_0^{U,pool} u'(c_0^U(g_0^{U,pool}, 1-\theta_0)) = \frac{f_a f(\varphi_1^A) G^A(\theta_0) + (1-f_a) f(\varphi_1^B(\theta_0, \varphi_1^A)) G^B(\theta_0)}{f_a f(\varphi_1^A) + (1-f_a) f(\varphi_1^B(\theta_0, \varphi_1^A))}$$

$$G^{A}(\theta_{0}) = \sum_{j=1,...,J_{1}} \beta u'(c_{1}^{U}(\theta_{0},\omega_{t},\xi^{A})) g(\omega_{1,j}) [d_{\omega_{1,j}} + P_{1}(\theta_{0},\omega_{1,j},\xi^{A})]$$

 $G^{B}(\theta_{0}) = \sum_{j=1,...,J_{1}} \beta u'(c_{1}^{U}(\theta_{0},\omega_{t},\xi^{B})) g(\omega_{1,j}) \left[d_{\omega_{1,j}} + P_{1}(\theta_{0},\omega_{1,j},\xi^{B})\right]$

Binomial/continuous equilibrium outcome

