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Market Microstructure (Kyle models)

General information: Market microstructure theory has been and continues to be

an active reasearch area for both academics and practitioners (see e.g., the journals

Journal of Financial Markets and Market Microstructure and Liquidity). While the

formal definition of market mircrostructure may not be universally agreed upon (but

see https://en.wikipedia.org/wiki/Market_microstructure for one such defini-

tion), it is clear that Kyle models and the many variants and extensions hereof play

important roles in said theory. In these lectures we will try to cover the basics of

Kyle’s original model and its extension to multi agent settings.

We will make an effort to keep everything as simple as possible (e.g., we will only

use finite discrete-time so we will not see any local martingales in these lectures...).

The required knowledge to follow these lectures is basic conditional probability such

as problems 1.1 and 1.2 below.

Lecture content:

1. One period Gaussian models: Kyle’s model and Grossman and Stiglitz’s model.

We will follow (7) and (3).

2. Multi-period Kyle models: We will follow (7).

3. Multi-agent extensions of Kyle’s model (see (6), (4), and (5)). We will follow

(5).

Continuous-time papers:

We will not have time to discuss the following papers which constitute general-

izations of the above mentioned papers (note that Kyle’s original paper (7) contains

the Gaussian continuous-time model):

• Continuous-time extensions of Kyle’s model to the non-Gaussian case (see (1)).

• Continuous-time multi-agent extensions of Kyle’s model (see (2)).
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1 Exercises on Kyle’s model

1. We are and will be using the projection theorem for Gaussian random variables:

For zero-mean jointly normals (ṽ, ã) show

E[ṽ|σ(ã)] =
cov(ṽ, ã)

V[ã]
ã.

♦

2. Let A,B, and X be three random variables with (A,X) ⊥ B. Show

E[X|σ(A,B)] = E[X|σ(A)].

♦
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3. Let ṽ be any zero mean and square integrable random variable and let (yn)n∈N

be any sequence of random variables (neither ṽ or (yn)n∈N are necessarily Gaus-

sian). Explain why the function

Σn := E
[(
ṽ − E[ṽ|σ(yn)]

)2]
, n ∈ N,

is non-increasing. Give an example for which Σ∞ > 0 and give a lemma with a

set of sufficient conditions that ensure Σ∞ := limn→∞Σn = 0.

♦

4. Implement the standard Kyle model for the parameters

N := 10, σw := 2, σṽ := 1.

Let us first check that we agree on the code. For these parameters I get the

terminal variance to be ΣN = .11.

♦

5. Increase N and study numerically the limiting behavior of the value function

coefficients (αn)Nn=1. Do you see a facelift in the sense that as N gets bigger and

bigger, α’s slope over the interval [1−∆, 1], i.e.,

αN − αN−1

∆
,

gets steeper and steeper?

♦

6. One can of course view any equilibrium problem as a fixed point problem so

let us try the following policy iteration algorithm: Fix the initial β ∈ RN as

the equilibrium strategy you found in a previous question. Compute (Σ, λ) by

using Kyle’s equations (3.18) and (3.19). Then update the coefficients (α, β)

by using Kyle’s equations (3.15) and (3.17). What happens numerically as you

continue looping?

♦
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7. This question separates the forward component (filtering) from the backward

component (optimization) in Kyle’s standard model. We define

γn := β2
nΣn, n = 1, ..., N − 1, and γN :=

σ2
w

2∆
. (1.1)

Use Kyle’s equations (3.15)-(3.19) to derive the recursion

γn+1 = γnσ
2 (σ2

w − γn∆)2

γ3
n∆3 + 2γ2

n∆2σ2
w − 3γn∆σ4

w + σ6
w

. (1.2)

Similar to Kyle’s original existence argument, this is a 3rd degree polynomial

and we seek a root such that 2γn∆ ∈ (0, σ2
w). In that case, the second-order

condition holds

1 >
(σ2

w − 2γn∆)

2(σ2
w − γn∆)

= αnλn. (1.3)

Given the values γn, the forward component Σn is uniquely determined by Σ0

and Kyle’s equations (3.18) and (3.19).

Implement this idea numerically and check that you get the same results as you

got previously.

♦

8. In Kyle’s 1985 model we replace the risk neutral insider by an insider with the

exponential utility function (Constant Absolute Risk Aversion, CARA)

U(w) := −e−aw, w ∈ R,

where a > 0 is a constant. Set σṽ := σw := 1 and plot numerically as a

function of a > 0 the two constants (β, λ) from this equilibrium together with

the corresponding constants coming from the risk neutral insider equilibrium.

How do you get the risk neutral equilibrium from the risk averse equilibrium?

♦
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2 Exercises on Grossman-Stiglitz’s model

Let us consider the one period setting in Grossman-Stiglitz (1980) where (θ, x, ε) are

independent Gaussian random variables with zero means and say unit variances. The

interest rate is taken to be zero and we define the terminal stock value to be

θ + ε.

There are MI ∈ N informed investors (who know θ and the price p) and MU ∈ N
uninformed investors (who only know the price p). They all have exponential utility

functions given by U(w) := −e−aw for w ∈ R and a > 0. We assume that all initial

holdings of the stock and money market account are zero.

1. Radner : Find equations for constants (α, β) and model parameters restrictions

(if any) such that

p = αx+ βθ

is an equilibrium price where −x denotes the noise trades.

♦

2. Nash: (i) Conjecture the forms for the informed orders A(p−θ) and uninformed

orders Bp for constants (A,B). For p implicitly defined by the market clearing

condition

x = MIA(p− θ) + (MU − 1)Bp+ xU ,

solve the uninformed investor’s problem (who uses the control xU and only sees

p). The condition that the optimal xU should be Bp gives you one equation.

(ii) Similarly, for p implicitly defined by the market clearing condition

x = (MI − 1)A(p− θ) +MUBp+ xI ,

solve the informed investor’s problem (who uses the control xI and sees both

p and θ). The condition that the optimal xI should be A(p − θ) gives you a

second equation.

♦
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3. Find model parameter restrictions under which these two equations produce

an equilibrium described by (A,B) (don’t forget the second order conditions).

Compare the Radner and Nash equilibria whenever they both exist.

♦

3 Exercises on discrete-time multi-agent Kyle ex-

tensions

1. Implement the model introduced in Foster and Viswanathan (1996) numerically

for the parameters

I := 2, σw := 2, ρ := 0.25, σã := 1, N := 10. (3.1)

Plot the trajectories of λn, βn, and αn for the parameter values (3.1).

♦

2. An important feature of Foster and Viswanathan (1996) is the emergence of

negative correlation, i.e.,

ρn := E[(ãi − t̂n)(ãj − t̂n)], i 6= j,

can be negative even though cov(ãi, ãj) > 0. In the setting of Foster and

Viswanathan (1996), prove the following:

∆ρn = ∆Σ1,n, Σ1,n := E[(ãi − t̂n)2].

Plot the trajectory of ρn as well as corr(∆θ1
n,∆θ

2
n) for the parameter values

(3.1). Here (∆θ1
n,∆θ

2
n) denote the optimal strategies in equilibrium.

♦
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3. If you don’t know this result already, you need to prove it: Let (A,B) be jointly

normally distributed with correlation ρ. Show that A ⊥ B if and only if ρ = 0.

Use this to show that in Foster and Viswanathan (1996) we have ∆wi,n ⊥
σ(ãi, wn−1

i ). Subsequently, show that wi,n =
∑n

k=1 ∆wi,k ⊥ ãi.

♦

4. (Nested information and asymmetric information) This model is from Foster and

Viswanathan (1994). We consider a Kyle setting with two informed investors:

Agent I knows (ṽ, ã) whereas Agent L only knows ã. Perform the same analysis

as we did for Foster and Viswanathan (1996). To get started, consider strategies

for the two investors of the forms:

∆θIn = βIn(ṽ − sn−1) + αIn(sn−1 − pn−1), (3.2)

∆θLn = βLn (sn−1 − pn−1), (3.3)

where in equilibrium we wish to have

pn = E[ṽ|σ(yn)], sn = E[ṽ|σ(ã, yn)]. (3.4)

♦

5. (Not nested and asymmetric information) This model is from Appendix C in

Choi, Larsen, and Seppi (2016) and is a variant of Foster and Viswanathan

(1994) we considered in the previous question. We consider a Kyle setting with

two informed investors: Agent I knows ṽ whereas Agent L knows ã. Adjust

your analysis in the previous question to this case.

Hint: Because Agent I cannot observe the process s, Agent I cannot use the

strategy (3.2) unless βI = αI .

♦
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4 Notes on Foster and Viswanathan (1996)

We consider ṽ :=
∑I

i=1 ã
i where ã1, ..., ãI are zero-mean jointly normals with identical

variances and covariances. We assume that ã1, ..., ãI are independent of the Brownian

increments ∆wn ∼ N (0, σ2
w∆). We start by defining the Gaussian hat-processes:

∆θ̂in := βn(ãi − t̂n−1), θ̂i0 := 0, (4.1)

∆ŷn :=
I∑
i=1

∆θ̂in + ∆wn, ŷ0 := 0, (4.2)

∆p̂n := λn∆ŷn, p̂0 := 0, (4.3)

∆t̂n := ζn∆ŷn, t̂0 := 0. (4.4)

Step 1: We wish to have the relations (with t̂ independent of i):

p̂n = E[ṽ|σ(ŷn)] =
∑
j

E[ãi|σ(ŷn)] = It̂n. (4.5)

We define the unconditional expectations

Σ1,n := E[(ãi − t̂n)2], Σ1,0 = σ2
ã, (4.6)

Σ2,n := E[(ãi − t̂n)
I∑
j=1

(ãj − t̂n)], Σ2,0 = σ2
ã + (I − 1)cov(ãi, ãj), (4.7)

Σ3,n := E[(ṽ − p̂n)(ãi − t̂n)]. (4.8)

As we shall see everything can be expressed in terms of only one of these three

quantities. Indeed, by iterated expectations, we have

Σ3,n = E[(
∑
j

ãj − p̂n)(ãi − t̂n)]

=
∑
j

E[ãj(ãi − t̂n)]

=
∑
j

E[(ãj − t̂n)(ãi − t̂n)]

= Σ2,n.
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The ith investor’s innovation process is defined by wi,0 := 0 and

∆wi,n := βn
∑
j

(
ãj − t̂n−1 − E[ãj − t̂n−1|σ(ãi, ŷn−1)]

)
+ ∆wn

= ∆ŷn − βn
∑
j

E[ãj − t̂n−1|σ(ãi, ŷn−1)]

= ∆ŷn − βn
Σ2,n−1

Σ1,n−1

(ãi − t̂n−1).

This should be seen in contrast to Kyle (1985) where ∆w = ∆ŷn−∆θn is the insider’s

innovation process. The market makers’ innovation process is defined by wM,0 := 0

and

∆wM,n := βn
∑
j

(ãj − t̂n−1) + ∆wn

= ∆ŷn.

There are a couple of things to note about the innovation processes:

• They are zero mean Gaussian processes.

• We have σ(ãi, ŷn) = σ(ãi, wni ) and σ(ŷn) = σ(wnM).

• ∆wi,n ⊥ σ(ãi, ŷn−1) because for f ∈ {ãi, ŷ1, ..., ŷn−1} we have

E[∆wi,nf ] = E
[
E[∆wi,nf |σ(ãi, ŷn−1)]

]
= E

[
fE[∆wi,n|σ(ãi, ŷn−1)]

]
.

The claim then follows from the joint normality.

We will next compute the pricing coefficients and we start by noticing:

V[∆wM,n] = β2
nV

[∑
j

(ãj − t̂n−1)

]
+ σ2

w∆

= β2
nIΣ2,n−1 + σ2

w∆.
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The dynamics of the price process can then be found as

∆p̂n = E[ṽ|σ(ŷn)]− p̂n−1

= E[ṽ − p̂n−1|σ(∆wM,n)]

=
E[(ṽ − p̂n−1)∆wM,n]

V[∆wM,n]
∆wM,n.

Because ∆wM,n = ∆ŷn this produces the requirement

λn =
E[(ṽ − p̂n−1)∆wM,n]

V[∆wM,n]

=
βnE[(ṽ − p̂n−1)

∑
j(ã

j − t̂n−1)]

β2
nIΣ2,n−1 + σ2

w∆

=
βnIΣ3,n−1

β2
nIΣ2,n−1 + σ2

w∆
.

In a similar manner we find the representation

∆t̂n =
E[(ãi − t̂n−1)∆wM,n]

V[∆wM,n]
∆wM,n.

So we need

ζn =
βnΣ2,n−1

β2
nIΣ2,n−1 + σ2

w∆
.

Because Σ2 = Σ3 we must have
λn
ζn

= I.
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Finally, we need the filter dynamics

Σ1,n = V[ãi − t̂n−1 −∆t̂n]

= V[ãi − t̂n−1 − ζn∆ŷn]

= V[ãi − t̂n−1 − ζnβn
∑
j

(ãj − t̂n−1)− ζn∆wn]

= Σ1,n−1 + ζ2
nβ

2
nIΣ2,n−1 − 2ζnβnΣ2,n−1 + ζ2

nσ
2
w∆,

Σ2,n = E
[(
ãi − t̂n−1 − ζnβn

∑
j

(ãj − t̂n−1)− ζn∆wn

)
×
∑
k

(
ãk − t̂n−1 − ζnβn

∑
l

(ãl − t̂n−1)− ζn∆wn

)]
= E

[(
ãi − t̂n−1 − ζnβn

∑
j

(ãj − t̂n−1)− ζn∆wn

)
×
(∑

k

(ãk − t̂n−1)− ζnIβn
∑
l

(ãl − t̂n−1)− ζnI∆wn

)]
= Σ2,n−1 − ζnIβnΣ2,n−1 − ζnIβnΣ2,n−1 + ζ2

nI
2β2

nΣ2,n−1 + Iζ2
nσ

2
w∆.

From the latter expression and the expression for ζn we get

Σ2,n =
Σ2,n−1σ

2
w∆

σ2
w∆ + Σ2,n−1Iβ2

n

,

Σ2,n−1 =
Σ2,nσ

2
w∆

σ2
w∆− Σ2,nIβ2

n

,

∆Σ2,n = −IβnζnΣ2,n−1,

ζn =
βnΣ2,n

σ2
w∆

.

We also note that ∆Σ2 = I∆Σ1. This property leads to the following two facts. First,

we have the representation

Σ2,n = Σ2,0 +
∑
k

∆Σ2,k

= Σ2,0 + I
∑
k

∆Σ1,k

= σ2
ã + (I − 1)ρ0 + I(Σ1,n − σ2

ã).
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Second, we define the covariance function

ρn := E[(ãi − t̂n)(ãj − t̂n)]

=
Σ2,n − Σ1,n

I − 1
.

Then we have ∆ρn = ∆Σ1,n because

(I − 1)∆ρn = ∆Σ2,n −∆Σ1,n

= (I − 1)∆Σ1,n.

This observation produces a main feature of the model: Even though ρ0 > 0 we can

have ρn < 0 provided that there are enough time steps.

Step 2: Next, we turn to the optimization problems and we define

∆pn := λn∆yn, p0 := 0, (4.9)

∆tn := ζn∆yn, t0 := 0. (4.10)

Because p0 = p̂0 = 0, t0 = t̂0 = 0, and

∆p̂n −∆pn = λn
∑
j

(∆θ̂jn −∆θjn) = I(∆t̂n −∆tn),

we have

p̂n − pn = I(t̂n − tn).

The ith investor seeks to maximize

E

[
N∑
n=1

(ṽ − pn)∆θin

∣∣∣σ(ãi)

]
, (4.11)

over controls ∆θin ∈ σ(ãi, yn−1). We fix i and we fix the functional form of agent j’s

strategy to be

∆θjn = βn(ãj − tn−1), j 6= i. (4.12)

A couple of things to note:
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• The realization of θj, j 6= i, is not fixed because it depends on the realization

of tn which in turn depends on θi.

• We never use hat-processes when fixing the other agents’ strategies. For exam-

ple, we will never use strategies like

βn(ãj − t̂n−1),

for agent j with j 6= i. If we did that, the realization of Agent j’s control would

be independent of Agent i’s choice of ∆θi.

• We will show next that the optimal strategy for investor i has the form

βn(ãi − t̂n−1) + αn(t̂n−1 − tn−1).

However, we will never include off equilibrium deviation terms like αn(t̂n−1 −
tn−1) for agent j when fixing agent j’s strategy (j 6= i).

To move one, we observe

σ(ãi, yn) = σ(ãi, ŷn) = σ(ãi, wni ).

The latter equality follows by the definition of the innovation process wi. We will

show the first equality by induction. The basis step is true because

σ(ãi, y1) = σ(ãi, β1

∑
j 6=i

ãj + ∆θi1 + ∆w1)

= σ(ãi, β1

∑
j 6=i

ãj + ∆w1)

= σ(ãi, ŷ1).

The next step follows similarly:

σ(ãi, ŷ1, ŷ2) = σ(ãi,∆ŷ1,∆ŷ2)

= σ(ãi, β1

∑
j

ãj + ∆w1, β2

∑
j

(ãj − t̂1) + ∆w2)

= σ(ãi, β1

∑
j 6=i

ãj + ∆w1, β2

∑
j 6=i

ãj + ∆w2).

13



On the other hand, we have

σ(ãi, y1, y2) = σ(ãi,∆y1,∆y2)

= σ(ãi, β1

∑
j 6=i

ãj + ∆θi1 + ∆w1, β2

∑
j 6=i

(ãj − t1) + ∆θi2 + ∆w2)

= σ(ãi, β1

∑
j 6=i

ãj + ∆w1, β2

∑
j 6=i

(ãj − t1) + ∆w2).

The next steps are identical.

For the optimization problem we first note

E[∆p̂n −∆pn|σ(ãi, wn−1
i )]

= λnE

[
I∑
j=1

∆θ̂jn −
∑
j 6=i

∆θjn −∆θin

∣∣∣σ(ãi, wn−1
i )

]

= λnE

[
I∑
j=1

βn(ãj − t̂n−1)−
∑
j 6=i

βn(ãj − tn−1)
∣∣∣σ(ãi, wn−1

i )

]
− λn∆θin

= λn

(
βn(ãi − t̂n−1) + βn(I − 1)(tn−1 − t̂n−1)−∆θin

)
.

From the definition of the ith investor’s innovation process we get the representation

∆p̂n = λn∆ŷn

= λn

(
∆wi,n + βn

Σ2,n−1

Σ1,n−1

(ãi − t̂n−1)
)
.

Based on these two properties we find

E[(ṽ − pn)∆θin|σ(ãi, wn−1
i )]

= ∆θinE[(ṽ − p̂n−1 + p̂n−1 − pn−1 −∆p̂n + ∆p̂n −∆pn)|σ(ãi − t̂n−1)]

= ∆θin

(Σ3,n−1

Σ1,n−1

(ãi − t̂n−1) + I(t̂n−1 − tn−1)− λnβn
Σ2,n−1

Σ1,n−1

(ãi − t̂n−1)

+ λn

(
βn(ãi − t̂n−1) + βn(I − 1)(tn−1 − t̂n−1)−∆θin

))
= ∆θin

(Σ2,n−1

Σ1,n−1

(1− λnβn) + λnβn

)
Y1,n−1 + ∆θin

(
I − λnβn(I − 1)

)
Y2,n−1 − λn(∆θin)2,
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where we have defined the two state processes

Y1,n := ãi − t̂n, Y2,n := t̂n − tn.

The state processes have the following Markovian dynamics

∆Y1,n = −∆t̂n

= −ζn∆ŷn

= −ζn
(

∆wi,n + βn
Σ2,n−1

Σ1,n−1

Y1,n−1

)
,

∆Y2,n = ∆t̂n −∆tn

= ζn(∆ŷn −∆yn)

= ζn

(
βn(ãi − t̂n−1) + βn(I − 1)(tn−1 − t̂n−1)−∆θin

)
= ζn

(
βnY1,n−1 − βn(I − 1)Y2,n−1 −∆θin

)
.

We then conjecture the value function form

sup
∆θk∈σ(ãi,yk−1)

E[
N∑

k=n+1

(ṽ − pk)∆θk|σ(ãi, yn)] = I(0)
n + I(1,1)

n Y 2
1,n + I(1,2)

n Y1,nY2,n + I(2,2)
n Y 2

2,n.

Finally, to use dynamical programming, we need to compute the terms

E[Y 2
1,n|σ(ãi, wn−1

i )], E[Y1,nY2,n|σ(ãi, wn−1
i )], E[Y 2

2,n|σ(ãi, wn−1
i )].

15


