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Classical model for a “small” agent

Input: price process S = (S;) for traded stock. Usually, S is a
solution of SDE:

dSt :/L(t, St)dt+0'(t, St)dBt, 50 = X,

where B is a Brownian motion.
Key assumption: trader's actions do not affect S.

Strategy: predictable S-integrable process v = (7¢) of the number
of stocks.

Gain from strategy:

¢
G :/ vdS = (v - S)t.
0
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Model with price impact

Price impact: v — S(7).
Practice & Mathematical Finance: the price impact is postulated
(exogenous).

Financial Economics: the price impact is an output of equilibrium
(endogenous).

Main idea: Let v be stock’s dividend paid at maturity T, so that,

S7(y) = 9. Recall that for the "small” agent model,
(NA) & 3Q0)~P: 5(0)=EXV [y F].
For ~v # 0 we similarly expect to have
Si(v) = E®O [y 7],

where the measure Q(~) ~ P is obtained from an equilibrium.
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Optimal investment

Input: financial market and investor’'s preferences
1. S =(S;): stocks' prices;
2. U(x) = —1e™®, x € R: utility function; a > 0 is investor's
risk-aversion.

Output: optimal process v = () of the number of stocks:

T T
v = arg maxE [U(/ (dS)] =argminE [exp(—a/ CdS)] .
¢ 0 ¢ 0

Martingale characterization: = (~;) is optimal < S is a local
martingale and - S is a Ul martingale under Q given by

dQ T T
—= = const U’(/ +dS) = const exp(—a/ ~dS).
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Price impact model

Input: dividends, market makers' preferences, demand

1. ¢ stocks' dividends paid at maturity T;
2. U(x) = —1e™, x € R: representative utility; a > 0 is
aggregate risk-aversion (harmonic mean),

al0 < market's liquidity T oco.

3. v = (7¢): demand process (number of stocks owned by the
market).

Output: stocks’ prices S = (S;) such that St = ¢ and
T T
~ = arg maxE [U(/ (dS)] =argminE [exp(—a/ CdS)]
¢ 0 ¢ 0

& S; = EQ[¢| F] with 92 = const exp(—a fOT vdS).
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Brownian framework

Assumption
The filtration is generated by a Brownian motion B = (B;):

Fe=FB telo,T]

Stocks’ prices evolve as
dS =oAdt+o0dB, St =1,

where
A = (At): the market price of risk;
o = (o¢): the volatility.

Denote also

.
Re = —%IogE {exp(—a/ vdS)'ft} , tel0,T],
t

the certainty equivalence value (CEV) of remaining gain.
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BSDE for S = 5(v, a,7)

Theorem (K.,Pulido AAP-16)

For dividends 1), risk-aversion a > 0, and demand ~ the following
items are equivalent:

1. S=5(v,a,) is a price process, o is the volatility, \ is the
market price of risk, and R is the CEV process.

2. (R,S,n,0) withn =\ — ao~y and 0 = ao solves the BSDE:

1 T ) ) T
aR; = 3 (10~v]7 — |n|7)ds — ndB,
t t
T T
aS; = ay) — / 0(n+ 0~)ds — / 0dB,
t t

and the products Z(v - S) and ZS are Ul martingales, where

Z2E(-\B)=E(~(n+07) - B).



BMO norms

» For a continuous martingale M with My = 0,

IM|lgmo £ esssup{E [|My — MTIZ} ]:T]}1/27

where the supremum is taken with respect to all stopping
times 7.
» For an integrable random variable £ with E[¢] = 0 set

1€llBMo = [[(E [€] Fi])eepo, 7 llBMO

T 1/2
[¢|lBMo = esssup <E [/ ICs|2ds fTD ’

where the supremum is taken with respect to all stopping
times 7. By Ito's isometry,

I<llBMO = H/CdB\BMO

» For a predictable process ¢ = ((;) set

21



Existence and uniqueness

Theorem (K.,Pulido AAP-16)

There is a constant ¢ > 0 such that if

al[vlleoll¥ — E [¥]llBMmo < €,
then the prices S = S(1, a,~y) exist and unique.

Proposition (K.,Pulido AAP-16)
There are bounded ~ and v such that

a Vel = E[¥]loc = 1

and such that the prices S = S(1, a,~y) either do not exist or are
not unique.

10/21



Asymptotic expansion

Theorem (K.,Pulido JFM-16)
Assume that
[V]loo ¥ — E [¥][lBMO < o0

Then there is a constant K = K(v, ) such that
15(a,7) = (5(0) + as™ (7)) [smo < Ka®, a0,

where

S5:(0) =E[¢| F] =E[¢] + /t o(0)dB  ("small” agent’s model)
0

s() =-E [ /t T02(0)7ds

.7-}] (first-order correction)
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Replication problem

Denote
Exp 2 {¢: E [etlfq < oo, t>0}.

Replication problem: for a contingent claim & € Exp find the initial
wealth p € R and a demand v = (7¢) such that

.
p—/o vdS(y) =¢. (1)

Lemma (uniqueness, easy)
If p and ~y satisfy (1), then

p=EC[], Si(v)=E2[p|F],

where

- const e%.
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Completeness assumption for a =0

Assumption (S(0)-model is complete)

The “small” agent model with price process S:(0) = E [¢| F¢] is
complete, that is, for for every contingent claim £ with E [|£]] < oo
the martingale

P:(0) = E[&] F2],

admits integral representation:

PO -2l + [ 1ds(0),

for some predictable S(0)-integrable process 7.

Example (No existence)

Even if S(0)-model is complete, for any a > 0 one can find not
replicable contingent claims £ such that |£] < 1.
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Approximate replication

Theorem (Approximate replication for fixed a > 0)

Suppose that S(0)-model is complete, that ¢ € L, for some p > 1
and € Exp. Then for every € € (0, %] there are p(¢) € R and a
demand ~y(e) such that

-
alls = (ple) = [ (05T <
Moreover, in this case,

p(e) — p| < 2ep, S — S| <2¢[8],

where

p=EQ[¢], S:=E%[y|F], % = const e,
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Generic replication

Theorem (Generic replication for variable a > 0)

Suppose that S(0)-model is complete, that ¢ € L, for some p > 1
and & € Exp. Then there is at most countable set 7 C (0, 00) such
that for risk-aversions a € T the contingent claim & is replicable:

T
¢ = p(a) —/ v(a)dS"(?,
0
Moreover, in this case,
p(a) =E%@[¢], 5] = 5,(a) = B [y] 7],
where

dQ(a)

= const e%.
dP
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The Martingale Representation Property

We work on a filtered probability space (2, F, (F¢)¢>0, P)
satisfying the usual conditions.

Definition
Let @ ~ P and S be a d-dimensional local martingale under Q.

We say that S has the Martingale Representation Property (MRP)
if every local martingale M under Q is of the form

I\/l:l\/lo+7~5:/\/lo+/7d5,

where v is a predictable S-integrable process with values in RY.
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Classical (forward) results

Let Q@ ~ P and S be a d-dimensional local martingale under Q.
Jacod's theorem (2FTAP): S has MRP if and only if Q is the only
equivalent local martingale measure for S.

Forward dynamics. Suppose that B9 is a n-dimensional Brownian
motion under Q, F; = ftBQ and

t
St = 50+/ 0sdBY,
0

where o = (0}) is a predictable process with values in R"*9,

Then S has the MRP if and only if

rank o¢(w) = n, dt x dP(w) — a.s..

17/21



Density of probability measures with MRP

Let ¢ = (w"),-zl,m,d be a d-dimensional random variable. We
denote by Q(1)) the family of probability measures Q ~ P such
that

1 EQ[jg|] < oo,
2. S2 =EQ[y| Fy], t >0, has the MRP.

Theorem
Suppose that Q(1)) # 0. Then for every R ~ P such that
ER [|1)]] < 0o and every € > 0 there is Q € Q(1)) such that

&=
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Analytic maps with values in a Banach space

Let X be a Banach space and U be an open connected set in R’
We recall that a map x — X(x) of U to X is analytic if for every
y € U there exists € = €(y) > 0 and (Y, = Ya(y))n>0 in X such
that

X(x) =) _Yalx=y)", |y—x|<e
n=0

where the series converges in X.
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Generic property

Theorem

Let U be an open connected set in R!, xo € U, and x — ((x) and
x = £(x) be continuous maps of U U {xp} to L1(R) and L1(RY),
respectively, whose restrictions to U are analytic. For every

x € UU{xo} we assume that ((x) > 0 and define a probability
measure Q(x) and a Q(x)-martingale S(x) by

dQ(x) _ ¢(x) Si(x) = E2W [ﬁ(X)} '

dP E[(x)] <)

If S(xo) has the MRP, then the exception set
Z ={x€ U: S(x) does not have the MRP}

has the Lebesgue measure zero. If, in addition, U is an interval in
R, then the set T is at most countable
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Summary

» We study the continuous-time version of a price impact
model, which goes back to Grossman and Miller (1986);
inverse to optimal investment.

» Stock price S(vy) depend on demand ~ through a solution to a
to multi-dimensional quadratic BSDE.

» While exact replication may not be possible, the model has
approximate and generic completeness properties.

> Prices for contingent claims are quite explicit (= utility-based
prices).

» The model is supported by general results on the existence of
MRP in “backward” setup. Other applications of these results
are forthcoming.
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