Replication under Price Impact and Martingale Representation Property

Dmitry Kramkov joint work with Sergio Pulido (Évry, Paris)

Carnegie Mellon University

Workshop on Equilibrium Theory, Carnegie Mellon, June 15, 2017

Classical model for a "small" agent

Input: price process $S = (S_t)$ for traded stock. Usually, S is a solution of SDE:

 $dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dB_t, \quad S_0 = x,$

where B is a Brownian motion.

Key assumption: trader's actions do not affect *S*.

Strategy: predictable *S*-integrable process $\gamma = (\gamma_t)$ of the number of stocks.

Gain from strategy:

$$G_t = \int_0^t \gamma dS = (\gamma \cdot S)_t.$$

Model with price impact

Price impact: $\gamma \to S(\gamma)$.

Practice & Mathematical Finance: the price impact is *postulated* (*exogenous*).

Financial Economics: the price impact is an *output* of equilibrium (*endogenous*).

Main idea: Let ψ be stock's dividend paid at maturity T, so that, $S_T(\gamma) = \psi$. Recall that for the "small" agent model,

 $(NA) \quad \Leftrightarrow \quad \exists \mathbb{Q}(0) \sim \mathbb{P}: \quad S_t(0) = \mathbb{E}^{\mathbb{Q}(0)} \left[\psi | \mathcal{F}_t \right].$

For $\gamma \neq \mathbf{0}$ we similarly expect to have

 $S_t(\gamma) = \mathbb{E}^{\mathbb{Q}(\gamma)} [\psi | \mathcal{F}_t],$

where the measure $\mathbb{Q}(\gamma) \sim \mathbb{P}$ is obtained from an equilibrium.

Optimal investment

Input: financial market and investor's preferences

- 1. $S = (S_t)$: stocks' prices;
- 2. $U(x) = -\frac{1}{a}e^{-ax}$, $x \in \mathbb{R}$: utility function; a > 0 is investor's risk-aversion.

Output: optimal process $\gamma = (\gamma_t)$ of the number of stocks:

$$\gamma = \arg \max_{\zeta} \mathbb{E}\left[U(\int_0^T \zeta dS)\right] = \arg \min_{\zeta} \mathbb{E}\left[\exp(-a\int_0^T \zeta dS)\right].$$

Martingale characterization: $\gamma = (\gamma_t)$ is optimal $\Leftrightarrow S$ is a local martingale and $\gamma \cdot S$ is a UI martingale under \mathbb{Q} given by

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const} U'(\int_0^T \gamma dS) = \operatorname{const} \exp(-a \int_0^T \gamma dS).$$

Price impact model

Input: dividends, market makers' preferences, demand

- 1. ψ : stocks' dividends paid at maturity T;
- 2. $U(x) = -\frac{1}{a}e^{-ax}$, $x \in \mathbb{R}$: representative utility; a > 0 is aggregate risk-aversion (harmonic mean),

 $a \downarrow 0 \quad \Leftrightarrow \quad \text{market's liquidity} \quad \uparrow \infty.$

3. $\gamma = (\gamma_t)$: demand process (number of stocks owned by the market).

Output: stocks' prices $S = (S_t)$ such that $S_T = \psi$ and

$$\gamma = \arg\max_{\zeta} \mathbb{E}\left[U(\int_{0}^{T} \zeta dS)\right] = \arg\min_{\zeta} \mathbb{E}\left[\exp(-a\int_{0}^{T} \zeta dS)\right]$$
$$\Leftrightarrow S_{t} = \mathbb{E}^{\mathbb{Q}}\left[\psi \mid \mathcal{F}_{t}\right] \text{ with } \frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const} \exp(-a\int_{0}^{T} \gamma dS).$$

References

Single period: Sanford J. Grossman and Merton H. Miller.
Liquidity and market structure. The Journal of Finance, 1988.
Discrete time: Nicolae Garleanu, Lasse Heje Pedersen, and Allen M. Poteshman. Demand-based option pricing. Rev. Financ.
Stud., 2009.

Simple strategies in continuous time: David German. Pricing in an equilibrium based model for a large investor. Math. Financ. Econ., 2011.

General strategies in continuous time: K. and Sergio Pulido.

- 1. A system of quadratic BSDEs arising in a price impact model. Ann. Appl. Probab., 2016.
- Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model. SIAM J. Financial Math., 2016.

Brownian framework

Assumption

The filtration is generated by a Brownian motion $B = (B_t)$:

 $\mathcal{F}_t = \mathcal{F}_t^B, \quad t \in [0, T].$

Stocks' prices evolve as

$$dS = \sigma \lambda dt + \sigma dB, \quad S_T = \psi,$$

where

$$\lambda = (\lambda_t)$$
: the market price of risk;
 $\sigma = (\sigma_t)$: the volatility.

Denote also

$$R_t = -\frac{1}{a} \log \mathbb{E}\left[\left. \exp(-a \int_t^T \gamma dS) \right| \mathcal{F}_t \right], \quad t \in [0, T],$$

the certainty equivalence value (CEV) of remaining gain.

BSDE for $S = S(\psi, a, \gamma)$

Theorem (K., Pulido AAP-16)

For dividends ψ , risk-aversion a > 0, and demand γ the following items are equivalent:

- 1. $S = S(\psi, a, \gamma)$ is a price process, σ is the volatility, λ is the market price of risk, and R is the CEV process.
- 2. (R, S, η, θ) with $\eta = \lambda a\sigma\gamma$ and $\theta = a\sigma$ solves the BSDE:

$$aR_t = \frac{1}{2} \int_t^T (|\theta\gamma|^2 - |\eta|^2) ds - \int_t^T \eta dB,$$

$$aS_t = a\psi - \int_t^T \theta(\eta + \theta\gamma) ds - \int_t^T \theta dB,$$

and the products $Z(\gamma \cdot S)$ and ZS are UI martingales, where

$$Z \triangleq \mathcal{E}(-\lambda \cdot B) = \mathcal{E}(-(\eta + \theta \gamma) \cdot B).$$

BMO norms

• For a continuous martingale M with $M_0 = 0$,

$$\|\boldsymbol{M}\|_{\text{BMO}} \triangleq \operatorname{ess\,sup} \{\mathbb{E}\left[\left|\boldsymbol{M}_{\mathcal{T}} - \boldsymbol{M}_{\tau}\right|^{2}\right| \mathcal{F}_{\tau}\right]\}^{1/2},$$

where the supremum is taken with respect to all stopping times $\boldsymbol{\tau}.$

For an integrable random variable ξ with E[ξ] = 0 set ||ξ||_{BMO} ≜ ||(E [ξ| F_t])_{t∈[0,T]}||_{BMO}

• For a predictable process
$$\zeta = (\zeta_t)$$
 set

$$\|\zeta\|_{\text{BMO}} \triangleq \operatorname{ess\,sup}_{\tau} \left(\mathbb{E}\left[\int_{\tau}^{T} |\zeta_{s}|^{2} ds \, \middle| \, \mathcal{F}_{\tau} \right] \right)^{1/2},$$

where the supremum is taken with respect to all stopping times τ . By Ito's isometry,

$$\|\zeta\|_{\rm BMO} = \|\int \zeta dB\|_{\rm BMO}.$$

Existence and uniqueness

Theorem (K.,Pulido AAP-16) There is a constant c > 0 such that if

 $a\|\gamma\|_{\infty}\|\psi-\mathbb{E}[\psi]\|_{\mathrm{BMO}}\leq c,$

then the prices $S = S(\psi, a, \gamma)$ exist and unique.

Proposition (K.,Pulido AAP-16) There are bounded γ and ψ such that

 $a\|\gamma\|_{\infty}\|\psi-\mathbb{E}\left[\psi\right]\|_{\infty}=1$

and such that the prices $S = S(\psi, a, \gamma)$ either do not exist or are not unique.

Asymptotic expansion

Theorem (K.,Pulido JFM-16) Assume that

 $\|\gamma\|_{\infty}\|\psi - \mathbb{E}\left[\psi\right]\|_{\text{BMO}} < \infty.$

Then there is a constant $K = K(\psi, \gamma)$ such that

 $\|S(a,\gamma)-(S(0)+aS^{(1)}(\gamma))\|_{\mathrm{BMO}}\leq Ka^2,\quad a
ightarrow 0,$

where

$$S_{t}(0) = \mathbb{E}\left[\psi \middle| \mathcal{F}_{t}\right] = \mathbb{E}\left[\psi\right] + \int_{0}^{t} \sigma(0)dB \quad ("small" agent's model)$$
$$S_{t}^{(1)}(\gamma) = -\mathbb{E}\left[\int_{t}^{T} \sigma^{2}(0)\gamma ds \middle| \mathcal{F}_{t}\right] \quad (first-order \ correction)$$

Replication problem

Denote

$$Exp \triangleq \{\xi : \mathbb{E}\left[e^{t|\xi|}\right] < \infty, \quad t > 0\}.$$

Replication problem: for a contingent claim $\xi \in Exp$ find the initial wealth $p \in \mathbf{R}$ and a demand $\gamma = (\gamma_t)$ such that

$$p - \int_0^T \gamma dS(\gamma) = \xi.$$
 (1)

Lemma (uniqueness, easy) If p and γ satisfy (1), then

$$p = \mathbb{E}^{\mathbb{Q}}[\xi], \quad S_t(\gamma) = \mathbb{E}^{\mathbb{Q}}[\psi|\mathcal{F}_t],$$

where

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \operatorname{const} e^{a\xi}.$$

Completeness assumption for a = 0

Assumption (S(0)-model is complete)

The "small" agent model with price process $S_t(0) = \mathbb{E} [\psi | \mathcal{F}_t]$ is complete, that is, for for every contingent claim ξ with $\mathbb{E} [|\xi|] < \infty$ the martingale

$$P_t(0) = \mathbb{E}\left[\xi | \mathcal{F}_t\right],$$

admits integral representation:

$$P_t(0) = \mathbb{E}\left[\xi\right] + \int_0^t \gamma dS(0),$$

for some predictable S(0)-integrable process γ .

Example (No existence)

Even if S(0)-model is complete, for any a > 0 one can find *not* replicable contingent claims ξ such that $|\xi| \leq 1$.

Approximate replication

Theorem (Approximate replication for fixed a > 0) Suppose that S(0)-model is complete, that $\psi \in \mathcal{L}_p$ for some p > 1and $\xi \in Exp$. Then for every $\epsilon \in (0, \frac{1}{2}]$ there are $p(\epsilon) \in \mathbb{R}$ and a demand $\gamma(\epsilon)$ such that

$$\|a\| \xi - (p(\epsilon) - \int_0^T \gamma(\epsilon) dS^{\gamma(\epsilon)})\|_\infty \leq \epsilon.$$

Moreover, in this case,

$$|p(\epsilon)-p|\leq 2\epsilon p, \quad |S^{\gamma(\epsilon)}-S|\leq 2\epsilon |S|,$$

where

$$onumber
ho = \mathbb{E}^{\mathbb{Q}}\left[\xi
ight], \quad S_t = \mathbb{E}^{\mathbb{Q}}\left[\psi|\,\mathcal{F}_t
ight], \quad rac{d\mathbb{Q}}{d\mathbb{P}} = ext{const}\,e^{a\xi}.$$

Generic replication

Theorem (Generic replication for variable a > 0) Suppose that S(0)-model is complete, that $\psi \in \mathcal{L}_p$ for some p > 1and $\xi \in Exp$. Then there is at most countable set $\mathcal{I} \subset (0, \infty)$ such that for risk-aversions $a \notin \mathcal{I}$ the contingent claim ξ is replicable:

$$\xi = p(a) - \int_0^T \gamma(a) dS^{\gamma(a)}.$$

Moreover, in this case,

$$p(a) = \mathbb{E}^{\mathbb{Q}(a)}[\xi], \quad S_t^{\gamma(a)} = S_t(a) = \mathbb{E}^{\mathbb{Q}(a)}[\psi|\mathcal{F}_t],$$

where

$$\frac{d\mathbb{Q}(a)}{d\mathbb{P}} = \operatorname{const} e^{a\xi}.$$

The Martingale Representation Property

We work on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ satisfying the usual conditions.

Definition

Let $\mathbb{Q} \sim \mathbb{P}$ and S be a *d*-dimensional local martingale under \mathbb{Q} . We say that S has the Martingale Representation Property (MRP) if every local martingale M under \mathbb{Q} is of the form

$$M=M_0+\gamma\cdot S=M_0+\int\gamma\,dS,$$

where γ is a predictable *S*-integrable process with values in \mathbb{R}^d .

Classical (forward) results

Let $\mathbb{Q} \sim \mathbb{P}$ and S be a *d*-dimensional local martingale under \mathbb{Q} .

Jacod's theorem (2FTAP): S has MRP if and only if \mathbb{Q} is the *only* equivalent local martingale measure for S.

Forward dynamics. Suppose that $B^{\mathbb{Q}}$ is a *n*-dimensional Brownian motion under \mathbb{Q} , $\mathcal{F}_t = \mathcal{F}_t^{B^{\mathbb{Q}}}$ and

$$S_t = S_0 + \int_0^t \sigma_s dB_s^{\mathbb{Q}},$$

where $\sigma = (\sigma_t^{ij})$ is a predictable process with values in $\mathbb{R}^{n \times d}$. Then S has the MRP if and only if

 $\operatorname{rank} \sigma_t(\omega) = n, \quad dt \times d\mathbb{P}(\omega) - a.s..$

Density of probability measures with MRP

Let $\psi = (\psi^i)_{i=1,...,d}$ be a *d*-dimensional random variable. We denote by $\mathcal{Q}(\psi)$ the family of probability measures $\mathbb{Q} \sim \mathbb{P}$ such that

$$\begin{split} &1. \ \mathbb{E}^{\mathbb{Q}}\left[|\psi|\right] < \infty, \\ &2. \ S_t^{\mathbb{Q}} = \mathbb{E}^{\mathbb{Q}}\left[\psi| \ \mathcal{F}_t\right], \ t \geq 0, \ \text{has the MRP.} \end{split}$$

Theorem

Suppose that $\mathcal{Q}(\psi) \neq \emptyset$. Then for every $\mathbb{R} \sim \mathbb{P}$ such that $\mathbb{E}^{\mathbb{R}}[|\psi|] < \infty$ and every $\epsilon > 0$ there is $\mathbb{Q} \in \mathcal{Q}(\psi)$ such that

$$\left|\frac{d\mathbb{Q}}{d\mathbb{R}}-1\right| \leq \epsilon.$$

Analytic maps with values in a Banach space

Let **X** be a Banach space and *U* be an open connected set in \mathbb{R}^{I} . We recall that a map $x \mapsto X(x)$ of *U* to **X** is *analytic* if for every $y \in U$ there exists $\epsilon = \epsilon(y) > 0$ and $(Y_n = Y_n(y))_{n \ge 0}$ in **X** such that

$$X(x) = \sum_{n=0}^{\infty} Y_n (x - y)^n, \quad |y - x| < \epsilon$$

where the series converges in X.

Generic property

Theorem

Let U be an open connected set in \mathbb{R}^{l} , $x_{0} \in \overline{U}$, and $x \mapsto \zeta(x)$ and $x \mapsto \xi(x)$ be continuous maps of $U \cup \{x_{0}\}$ to $\mathcal{L}_{1}(\mathbb{R})$ and $\mathcal{L}_{1}(\mathbb{R}^{d})$, respectively, whose restrictions to U are analytic. For every $x \in U \cup \{x_{0}\}$ we assume that $\zeta(x) > 0$ and define a probability measure $\mathbb{Q}(x)$ and a $\mathbb{Q}(x)$ -martingale S(x) by

$$\frac{d\mathbb{Q}(x)}{d\mathbb{P}} = \frac{\zeta(x)}{\mathbb{E}[\zeta(x)]}, \quad S_t(x) = \mathbb{E}_t^{\mathbb{Q}(x)} \left[\frac{\xi(x)}{\zeta(x)} \right]$$

If $S(x_0)$ has the MRP, then the exception set

 $\mathcal{I} = \{x \in U : S(x) \text{ does not have the MRP}\}$

has the Lebesgue measure zero. If, in addition, U is an interval in \mathbf{R} , then the set \mathcal{I} is at most countable

Summary

- We study the continuous-time version of a price impact model, which goes back to Grossman and Miller (1986); inverse to optimal investment.
- Stock price S(γ) depend on demand γ through a solution to a to multi-dimensional quadratic BSDE.
- While exact replication may not be possible, the model has approximate and generic completeness properties.
- Prices for contingent claims are quite explicit (= utility-based prices).
- The model is supported by general results on the existence of MRP in "backward" setup. Other applications of these results are forthcoming.