Activism, Strategic Trading, and Liquidity

Kerry Back Pierre Collin-Dufresne Vyacheslav Fos Tao Li Alexander Ljungqvist

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Efficiency and Liquidity 0000

Examples 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overview

- We analyze a Kyle model in which the strategic trader is a potential activist who can affect the value of a stock by exerting costly effort.
- From The Economist: Between 2010 and 2014, half the companies in the S&P 500 index had an activist shareholder and one in seven were the target of an activist campaign.
- We study the relation between market liquidity and activism.
- Main prior paper: Maug (JF, 1998), a single-period Kyle model with binary activism.

Intro	Model
0	●00000
Activism	Model

Efficiency and Liquidity 0000

Examples 0000000

• Date *T* of activism is fixed exogenously. Effort or lack of effort is publicly observed.

- One potential activist. Her blockholding is not publicly observed prior to *T*.
- The activist's effort is chosen optimally, depending on her blockholding at *T*.
- The cost of the effort required to produce a share value of v is $C(v) \ge 0$. We take $C(v) = \infty$ if v is infeasible.
- Example (binary): C(L) = 0, C(H) = c > 0, C(v) = ∞ if v ∉ {L, H}.
- Example (quadratic): $C(v) = (v v_0)^2/(2\psi)$.

Efficiency and Liquidity 0000

Examples 0000000

- Prior to *T*, the potential activist can trade profitably on private information about her blockholding (and therefore private information about her intentions).
- After *T*, she has no private information and therefore cannot profitably trade. So, we assume trading ends at *T*.
- Trading is continuous during [0, *T*] (for tractability). Follows Kyle (1985) model:
 - $X_t = \text{ large trader's position. } X_0 \sim n(\mu_x, \sigma_x^2).$
 - Noise trades Z = Brownian motion with std dev σ .
 - Risk neutral, competitive market makers.

I neorer
00000

Examples 0000000

Value of Shares at T

• Value of x shares to the activist at T is

$$G(x) \stackrel{\text{def}}{=} \sup_{v} \{vx - C(v)\}.$$

- *G* is a convex function.
- Assume *C* is lower semicontinuous and grows more than linearly:

$$\lim_{v\to-\infty,+\infty}\left|\frac{C(v)}{v}\right|=\infty$$

- Then there is an optimal v for the activist. Let V(x) denote an optimum.
- V(x) is a subgradient of G at x. Almost everywhere,
 G'(x) = V(x) (the marginal value of shares to the activist is the market value this is the envelope theorem).

Intro	Model	
0	000000	

Efficiency and Liquidity 0000

Examples 0000000

Prices before T

- Define Y_t = (X_t X₀) + Z_t. This is the aggregate order process observed by market makers and used by market makers to set prices.
- An equilibrium condition is that the price at each date t < T equal the expected value of V(X_T) conditional on the history of Y until t.
- We look for an equilibrium in which the price at t depends only on Y_t. Let P(t, y) denote the price function.

Efficiency and Liquidity 0000

Examples 0000000

- Assume the potential activist's trades are of order dt (always true in continuous-time Kyle models).
- So, $dX = \theta dt$ for some θ .
- Information of the activist at t is X_0 and history of Z until t (can infer Z from prices). Therefore knows $Y_t = (X_t - X_0) + Z_t$.
- Value function of the potential activist is

$$J(t, x, y) = \sup_{\theta} \mathsf{E}\left[G(X_T) - \int_t^T P(u, Y_u) \theta_u \, \mathrm{d}u \, \middle| \, X_t = x, \, Y_t = y \right]$$

Intro	Model	Theorem	Efficiency and Liquidity
O	ooooo●	000000	
HJB E	quation		

Examples 0000000

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$0 = \sup_{\theta} \left\{ -P\theta + J_t + J_x\theta + J_y\theta + \frac{1}{2}\sigma^2 J_{yy} \right\} \,.$$

Equivalently,

$$\begin{aligned} -P+J_x+J_y&=0\,,\\ J_t+\frac{1}{2}\sigma^2 J_{yy}&=0\,. \end{aligned}$$

ntro	Model
C	000000

Main Theorem

Theorem •00000 Efficiency and Liquidity 0000

Examples 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define

$$\Lambda = 1 + \sqrt{1 + \frac{\sigma_x^2}{\sigma^2 T}}$$

The pricing rule

$$P(t, y) = \mathsf{E}\left[V(\mu_x + \Lambda y + \Lambda(Z_T - Z_t))\right]$$
(1)

and trading strategy

$$\theta_t = \frac{1}{T - t} \left(\frac{X_t - \mu_x - \Lambda Y_t}{\Lambda - 2} \right) \tag{2}$$

constitute an equilibrium.

Intro	Model	Theorem
0	000000	00000

Examples 0000000

Main Theorem continued

• The share price post-activism is

$$P(T, Y_T) = V(\mu_x + \Lambda Y_T) = G'(\mu_x + \Lambda Y_T) = G'(X_T)$$

- The distribution of Y given market makers' information is that of a Brownian motion with zero drift and standard deviation σ (the same law as Z).
- The formula for $P(t, Y_t)$ is the expected value of $P(T, Y_T)$ conditional on Y_t and conditional on Y having the same law as Z.
- Market makers view Y as being a Brownian motion with zero drift and the same std dev as Z because the potential activist's trades are 'inconspicuous' (have zero mean) and because a continuous martingale Y with $(dY)^2 = \sigma^2 dt$ is a Brownian motion with std dev σ

ntro	Model	Theorem
0	000000	000000

Examples 0000000

Main Theorem continued

The value function is

$$J(t, x, y) = \frac{\Lambda - 1}{\Lambda} \mathsf{E} \left[G \left(\frac{\Lambda(x - Z_T) - \mu_x}{\Lambda - 1} \right) \middle| Z_t = y \right] \\ + \frac{1}{\Lambda} \mathsf{E} \left[G(\mu_x + \Lambda Z_T) \middle| Z_t = y \right].$$

The equilibrium price evolves as $dP(t, Y_t) = \lambda(t, Y_t) dY_t$, where Kyle's lambda is

$$\lambda(t,y) = \frac{\partial P(t,y)}{\partial y} \,. \tag{3}$$

Furthermore, $\lambda(t, Y_t)$ is a martingale on $[0, T - \delta]$ for every $\delta > 0$, relative to the market makers' information set.

Intro	Model	Theorem	Efficiency and Liquidity
0	000000	000000	0000

Construction of the Value Function

• To construct the value function, we consider the hypothetical (non-equilibrium) strategy of not trading until just before *T* and then trading until the price equals the marginal value. This value at *T* is

Examples

$$J(T, x, y) \stackrel{\text{def}}{=} G(x) + \sup_{\bar{y}} G(x + \bar{y} - y) - \int_{y}^{\bar{y}} P(T, u) \, \mathrm{d}u$$

The value at t < T is the expectation of J(T, x, Y_T) again viewing Y as a Brownian motion with std dev σ.

١r	itro	
0		

Model 00000 Theorem 0000●0 Efficiency and Liquidity 0000

Examples 0000000

Lemma

Let ε be a standard normal random variable that is independent of Z. Let b be a nonnegative constant, and set $a = \sigma \sqrt{(2b+1)T}$. Then, the solution Y of the stochastic differential equation

$$\mathrm{d}Y_t = \frac{a\varepsilon - bZ_t - (b+1)Y_t}{T-t} \,\mathrm{d}t + \mathrm{d}Z_t$$

on the time interval [0, T) has the following properties:

- Y is a Brownian motion with zero drift and standard deviation σ on its own filtration on [0, T]
- With probability 1,

$$Y_{\mathcal{T}} = \frac{a\varepsilon - bZ_{\mathcal{T}}}{b+1}$$

Remark: The case b = 0 is a Brownian bridge.

Intro	Model	Theorem	Efficiency and Liquidity
0	000000	00000	0000

Examples 0000000

Comparison to the Standard Kyle Model

- In the standard Kyle model,
 - ε = N⁻¹(F(v)) where N is the standard normal cdf, and F is the cdf of v.
 - $a = \sigma \sqrt{T}$
 - *b* = 0
 - $X_T = X_0 + \sigma \sqrt{T} N^{-1}(F(v)) Z_T$

In our model,

•
$$\varepsilon = (X_0 - \mu_x)/\sigma_x$$

• $a = \sigma_x/(\Lambda - 2)$
• $b = 1/(\Lambda - 2)$
• $X_T = \mu_x + \frac{\Lambda}{\Lambda - 1}(X_0 - \mu_x - Z_T) = \mu_x + \Lambda Y_T$

ntro D Model 000000 Theorem 000000 Efficiency and Liquidity •000 Examples 0000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Efficiency

- P(0,0) = E[V(T, Y_T)] reflects the value per share expected to be created by activism.
- We measure economic efficiency by P(0,0).
- We should subtract the cost of activism, but we assume it is small on a per-share basis (activists cover costs from relatively small percentage shareholdings).

Intro	Model
0	000000

Market Liquidity

Efficiency and Liquidity $0 \bullet 00$

Examples 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- We measure market illiquidty by the expected average Kyle's lambda.
- Because lambda is a martingale,

Theorem

$$\lambda(0,0) = \mathsf{E} \int_0^T \lambda(t, Y_t) \, \mathrm{d}t$$

• So, we measure illiquidity by $\lambda(0,0)$.

Intro	Model	Theorem
0	000000	000000

Examples 0000000

Comparative Statics

- Let \overline{P} denote P(0,0) as a function of model parameters. Let $\overline{\lambda}$ denote $\lambda(0,0)$ as a function of model parameters.
- We are interested in the comparative statics:

$$\frac{\partial \bar{P}}{\partial \sigma}, \qquad \frac{\partial \bar{\lambda}}{\partial \sigma}$$

and the same with respect to σ_x , μ_x , and parameters of the cost function C(v).

• We have

 $\bar{P} = \mathsf{E}[V(\mu_x + \Lambda Y_T)], \qquad \bar{\lambda} = \Lambda \mathsf{E}[V'(\mu_x + \Lambda Y_T)]$

Intro	Model	Theor	
0	000000	0000	

Examples 0000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Comparative Statics

- Let \overline{P} denote P(0,0) as a function of model parameters. Let $\overline{\lambda}$ denote $\lambda(0,0)$ as a function of model parameters.
- We are interested in the comparative statics:

$$\frac{\partial \bar{P}}{\partial \sigma}, \qquad \frac{\partial \bar{\lambda}}{\partial \sigma}$$

and the same with respect to σ_x , μ_x , and parameters of the cost function C(v).

• We have

$$ar{P} = \mathsf{E}[V(\mu_x + \Lambda Y_T)], \qquad ar{\lambda} = \Lambda \mathsf{E}[V'(\mu_x + \Lambda Y_T)]$$

Intro	Model	Theorem	Efficiency and Liquidity
0	000000	000000	0000

Comparative Statics: Noise Trading

- $\partial \bar{P} / \partial \sigma \ge 0$ if V is convex and ≤ 0 if V is concave, because an increase in σ is a mean-preserving spread in $\mu_x + \Lambda Y_T$.
- The effect of σ on market liquidity is ambiguous.
- We give an example in which V is affine, other examples in which V is strictly convex, and one example in which V is neither convex nor concave.
- A concave V must be unbounded below, which means that unbounded value destruction is possible.

Intro	Model	Т
0	000000	0

Efficiency and Liquidity 0000

Examples •000000

1. Quadratic Cost

•
$$C(v) = (v - v_0)^2/(2\psi)$$

- Higher ψ means more productive (less cost)
- Activist can destroy value as well as create value
- $V(x) = v_0 + \psi x$ is convex and concave.
- Kyle's lambda is constant over time.
- An increase in σ increases market liquidity but has no effect on efficiency.
- An increase in ψ reduces market liquidity and increases (reduces) efficiency if μ_x > 0 (μ_x < 0)

ntro	Model	Theorem
C	000000	000000

Examples 000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2. Asymmetric Quadratic Cost

- Quadratic for $v > v_0$ and ∞ for $v < v_0$
- $V(x) = v_0 + \psi x^+$
- An increase in σ increases market liquidity and increases efficiency
- Increases in other parameters reduce liquidity and increase efficiency.

Intro	Model	Theorem	Efficiency and Liquidit
0	000000	000000	0000

Examples 0000000

э

Examples 1 and 2 when Noise Traders Buy

Intro	Model	Theorem	Efficiency and Liquidity
0	000000	000000	0000

Examples 0000000

Examples 1 and 2 when Noise Traders Sell

Model

Theorem 000000

Efficiency and Liquidity 0000

Examples 0000000

4. Binary

- $C(v_0) = 0$, $C(v_0 + \Delta) = c$, $C(v) = \infty$ otherwise.
- $V(x) = v_0$ if $x\Delta < c$, $V(x) = v_0 + \Delta$ if $x\Delta > c$
- An increase in σ increases efficiency if $\mu_x \Delta > c$ and reduces efficiency if $\mu_x \Delta < c$ (Maug, 1998)
- An increase in σ can either increase or reduce market liquidity.
- Measure productivity by Δ and ψ = Δ/c. An increase in either reduces market liquidity and increases efficiency.

Model	1
000000	C
	Model

Efficiency and Liquidity 0000

Examples 0000000

Binary Example

Effects of an increase in liquidity trading σ on efficiency \bar{P} and market liquidity $1/\bar{\lambda}$

200

æ

tro Model

0

Theorem 000000 Efficiency and Liquidity 0000

Examples 000000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

- Market liquidity and activism are both endogenous. The cross-sectional relation between them depends on the source of cross-sectional variation and on the activism technology.
- Under a natural convexity assumption, an increase in noise trading increases activism. But it may reduce market liquidity.
- An increase in activist productivity generally increases efficiency and reduces market liquidity.