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Abstract. We study the perimeter on the sets Vn of n random, uniformly distributed points in a

Euclidean domain. To define the notion of perimeter on a finite set of points, the set is considered
as a weighted graph, where the weights are assigned to edges connecting pairs of points based on

their distances. The perimeter of An ⊂ Vn is defined by summing the weights of edges between

An and Vn\An. We investigate under which choice of weights do the functionals which assign
the graph perimeter converge to the perimeter in the Euclidean space as the number of points n

goes to infinity. In particular, for ε(n) such that significant weight is given to edges of length up

to ε(n) we investigate under which scaling of ε on n does the convergence hold. We consider this
question in the setting of Γ-convergence and consider it for total-variation functional on graphs

(which extends the notion of the perimeter).

1. Introduction

Our research is motivated by the study of point clouds and the analysis of the information they
contain. By a point cloud we mean a finite set of points in the Euclidean space RN . One standard
approach to exploring the structure of a data cloud is to define a weighted graph to represent it.
Points become vertices, while the distances between them are used to assign weights to edges. In a
variety of tasks such as classification and clustering it is useful to have information about a perimeter
of a subset of the point cloud. To be precise, let V = {X1, . . . , Xn} be a point cloud. Let η be a
kernel, that is, let η : RN → [0,∞) be a radially symmetric, radially decreasing, function decaying
to zero sufficiently fast. Typically the kernel is appropriately rescaled to take into account data
density. In particular, let ηε depend on a length scale ε so that significant weight is given to edges
connecting points up to distance ε. We assign for i, j ∈ {1, . . . , n} the weights by

wi,j = ηε(Xi −Xj)

and define the graph perimeter of A ⊂ V by

(1) Per(A) = 2
∑
Xi∈A

∑
Xj∈V \A

wi,j .

The graph perimeter is also known as the cut capacity, if we thing of cutting the edges between
A and its complement. It can be effectively used as a term in functionals which give a variational
description to classification and clustering tasks [9, 12, 13, 16, 14, 15, 27, 28, 32, 39, 42, 43].

It is important to understand when is the graph perimeter defined above a good notion of a
perimeter in the variational setting, especially for the case that the number of data points is large.
To formulate this question mathematically we assume that the data points are random independent
samples of an underlying measure ρ. In a practical data-analytic setting, the data considered often
have some underlying, lower dimensional, structure. We make the “manifold assumption” that ρ
is supported on a d-dimensional manifold in RN and that ρ has a continuous density with respect
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to volume form on the manifold. The question is if the perimeter computed on the graph based
on point cloud is a good (in a variational sense) approximation of the perimeter on the manifold.
It is important for determining if the minimizers of functionals involving perimeter defined on the
graphs converge, as the number of data points increases (n→∞), to a minimizer of the appropriate
limiting functional in the continuum setting. Further question is to determine for what scaling of ε
on n does the convergence hold. For computational considerations one desires to take ε small, but
the question is how small ε can one choose when n is large, so that the graph structure still contains
enough information for the graph perimeter to keep the needed properties.

In this paper we take the first, but in our opinion crucial step in investigating the above questions
rigorously. Our main result is on a localized version of the above question. Namely we assume that
data belong to (0, 1)d (which can be thought as the coordinate chart for the manifold supporting ρ),
and furthermore that on (0, 1)d the points are drawn with uniform distribution (which is relevant
locally given that we assumed that ρ varies continuously). While one can consider (0, 1)d in a
periodic setting, and thus entirely sidestep discussing the boundary of the domain, we chose to
consider the question on bounded domains D in Euclidean setting. We first consider D = (0, 1)d,
and then extend the result to more general domains.

1.1. Setting and the main results. Consider D = (0, 1)d, the unit cube in Rd, and assume n data
points X1, . . . , Xn (i.i.d. random vectors) are chosen uniformly on D. We construct a graph on the
set of these n data points using an isotropic kernel η : Rd → [0,∞) and a parameter ε > 0 by setting
the weight of the edge between Xi and Xj to be Wi,j := ηε (Xi −Xj), where ηε(z) := 1

εd
η
(
z
ε

)
. The

total variation of a function u defined on a graph is typically defined as

(2)
∑
i,j

Wi,j |u(Xi)− u(Xj)|.

We note that the total variation is a generalization of perimeter since for a set A its perimeter is
nothing but the total variation of χA, the characteristic function of A.

Having limits as n→∞ in mind, we define the graph total variation to be the following rescaled
form of the functional above:

(3) T̃ V n,ε(u) :=
1

ε

1

n2

∑
i,j

Wi,j |u(Xi)− u(Xj)|.

For a given scaling of ε with respect to n, we study the limiting behavior of T̃ V n,ε(n) as the
number of points n→∞. The limit is considered in the variational sense of Γ-convergence. Before
we state it precisely, we have to define the topology with respect to which the Γ-convergence is
considered. To be able to compare functions defined on different sets of random points we define
what we call the TL1 metric space. We discuss this TL1 metric in detail in Section 3. Here we just
give an idea regarding the type of convergence it provides. We denote by ν0 the Lebesgue measure
restricted to the domain D and by νn the empirical measure associated to the first n data points,
that is:

(4) νn :=
1

n

n∑
i=1

δXi ,

It is known that except on a set of probability zero the sequence of measures {νn}n∈N converges
weakly to ν0. By the optimal transportation theory (discussed in Subsection 2.1) there exists a
sequence of Borel maps Tn : D → D with νn = Tn]ν0 (i.e. Tn transports ν0 to νn) such that:

(5) lim
n→∞

∫
D

|x− Tn(x)|dx = 0.
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A sequence of functions {un}n∈N, where un belongs to L1(D, νn), converges to u ∈ L1(D, ν0) in the

TL1 sense if the sequence {un ◦ Tn}n∈N converges in L1(D, ν0) to u. It is worth remarking that

the notion of TL1 convergence is independent of the choice of maps {Tn}n∈N above, as long as (5)
holds. For further details see Section 3 and in particular Proposition 3.6.

Since the kernel η is assumed isotropic, it can be thought to be defined as η(x) := η(|x|) for all
x ∈ Rd, where η : [0,∞)→ [0,∞) is the radial profile. We assume the following properties on η:

(K1) η(0) > 0 and η is continuous at 0.
(K2) η is non-increasing.
(K3) The integral

∫∞
0

η(r) rddr is finite.

We remark that the last assumption on η is equivalent to imposing that the surface tension

(6) ση =

∫
Rd
η(h)|h1|dh

is finite. We note that the class of acceptable kernels is quite broad and includes both Gaussian
kernels and discontinuous kernels like one defined by function η of the form η = 1 for t ≤ 1 and
η = 0 for t > 1.

The total variation in continuum setting, TV : L1(D, ν0)→ [0,∞], is given by

(7) TV (u) = sup

{∫
D

udiv φdx : φ ∈ C∞c (D,Rd) and ‖ |φ| ‖L∞ ≤ 1

}
if the right-hand side is finite and is set to equal infinity otherwise. Here and in the rest of the
paper we use | · | to denote the euclidean norm in Rd. Note that if u is smooth enough then the
total variation can be written as TV (u) =

∫
D
|∇u|dx.

The main result of the paper is:

Theorem 1.1 (Γ-convergence). Let D = (0, 1)d and let X1, . . . , Xn, . . . be a sequence of i.i.d.
random vectors chosen uniformly on D. Let {εn}n∈N be a sequence of positive numbers converging
to 0 and satisfying

lim
n→∞

√
log(log n)

n1/2

1

εn
= 0 if d = 1,

lim
n→∞

(log n)3/4

n1/2

1

εn
= 0 if d = 2,

lim
n→∞

(log n)1/d

n1/d

1

εn
= 0 if d ≥ 3.

(8)

Let η be a function satisfying (K1)-(K3) and consider η : Rd → [0,∞) given by η(x) := η(|x|).

Then, T̃ V n,εn , defined by (3), Γ-converge to σηTV as n→∞ in the TL1 sense, where ση is given
by (6) and TV is the total variation functional on D.

The notion of Γ-convergence in deterministic setting is recalled in Subsection 2.3, where we also
extend it to the probabilistic setting in Definition 2.10. The following compactness result shows
that the TL1 topology is indeed a good topology for the Γ-convergence (see also Proposition 2.9).

Theorem 1.2 (Compactness). Under the assumptions of the theorem above, consider the sequence
of functions un ∈ L1(D, νn), where νn is given by (4). If {un}n∈N have uniformly bounded L1(D, νn)

norms and graph total variations, T̃ V n,εn , then the sequence is precompact in TL1. More precisely
if

sup
n∈N
‖un‖L1(D,νn) <∞,
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and
sup
n∈N

T̃ V n,εn(un) <∞,

then {un}n∈N is TL1-precompact.

When An is a subset of {X1, . . . , Xn}, it holds that T̃ V n,εn(χAn) = 1
n2εn

Per(An), where Per(An)

was defined in (1). Also, when A ⊆ D we can write TV (χA) = Per(A), where Per(A) in this context
is the usual perimeter of A in D. Theorem 1.1 allows us to consider the variational convergence of
the perimeter on the graphs to the perimeter in the domain D, that is:

Corollary 1.3 (Γ-convergence of Perimeter). Under the hypothesis of Theorem 1.1 the conclusions
hold when all of the functionals are restricted to characteristic functions of sets. That is, the graph
perimeters Γ-converge to the continuum perimeter.

The proof of the theorems and of the corollary are presented in Section 5.

Remark 1.4. The notion of Γ-convergence was introduced by De Giorgi in the 70’s and since then it
has been used as the standard notion of variational convergence. With compactness it ensures that
minimizers of approximate functionals converge (along a subsequence) to a minimizer of the limiting
functional. This notion is quite different from the pointwise convergence of functionals, which of
course does not guarantee convergence of minimizers. For extensive exposition of the properties
of Γ-convergence see the books by Braides [10] and Dal Maso [21]. Pointwise convergence of the

functionals T̃ V n,εn to TV (scaled with the appropriate constant) can be obtained from the results

in [7]. In particular if one considers εn converging to zero, such that (logn)1/(d+1)

n1/(d+1)
1
εn

goes to zero as

n → ∞, and if A is a fixed closed regular subset of D then, T̃ V n,εn(χA∩{X1,...,Xn}) → σηTV (χA)
as n → ∞ almost surely. We remark that from the techniques we use in our proofs, it is possible
to establish that with the same scaling for εn as in Theorem 1.1, we get pointwise convergence as
described above (which slightly improves the rate of pointwise convergence). Note that this does
not follow directly from the Γ-convergence.

Remark 1.5. Theorem 1.2 implies that the probability that the weighted graph, with vertices
X1, . . . , Xn and edge weights wi,j = ηεn(Xi −Xj), is connected converges to 1 as n → ∞. Other-
wise there is a sequence nk ↗ ∞ as k → ∞ such that with positive probability, the graph above
is not connected for all k. We can assume that nk = k for all k. Consider a connected component
An ⊂ {X1, . . . , Xn} such that ]An ≤ n/2. Define function un = n

]An
χAn . Note that ‖un‖L1(νn) = 1

and that T̃ V n,εn(un) = 0. By compactness, along a subsequence un converges in TL1 to a function
u ∈ L1(ν0). Thus ‖u‖L1(ν0) = 1. By lower-semicontinuity which follows from Γ-convergence of
Theorem 1.1 it follows that TV (u) = 0 and thus u = 1 on D. But since the values of un are either
0 or greater or equal to 2, it is not possible that un converges to u in TL1. This is a contradiction.

1.2. Optimal scaling of ε(n). If η is compactly supported and d ≥ 3 then the rate presented in
(8) is sharp in terms of scaling. Namely it is known from graph theory (see [35], [24] and [26])

that there exists a constant λ > 0 such that if εn < λ (logn)1/d

n1/d then the weighted graph associated
to X1, . . . , Xn is disconnected with high probability. Therefore, in the light of Remark 1.5, the

compactness property cannot hold if εn < λ (logn)1/d

n1/d .
An interesting question arises if one restricts attention to a class of functions which are also

uniformly bounded in L∞ (for example the set of characteristic functions). In fact, the example of
Remark 1.5 no longer applies. Thus, it is possible that Γ-convergence and compactness hold even

when εn < λ (logn)1/d

n1/d . Determining the optimal scaling on ε(n) for Γ-convergence and compactness
to hold in this setting is an important open problem. One could imagine that the (assymptotic)
connectivity of the random geometric graph is still necessary condition for the Γ-convergence of
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T̃ V n,εn functionals to TV, but it is worth remarking that this is not as simple as it seems. Indeed,
it is known that for a scaling of εn between the connectivity threshold and the thermodynamical
limit threshold a giant component (one containing a positive fraction of all points) appears in the
graph. This component can asymptotically contain all but an asymptotically negligible fraction of
the total number of points in the graph. If the scaling for εn is such that the fraction of points in
the giant component approaches one as n→∞, then the Γ-convergence may still hold.

Nevertheless, it is important to notice that if εn scales like 1/n1/d (so that the expected number
of points per neighborhood is bounded by a constant, that is, nεdn = O(1) ), then even with the
L∞ bound, the Γ-convergence to σηTV together with its compactness result cannot hold, since in
this case the ratio of the cardinality of the biggest component in the graph and the total number
of points n does not approach one as n → ∞ (see Chapter 13 in [36] and [37]) and hence one can
create sets in the discrete setting with zero (discrete) perimeter that approach a set with nonzero
perimeter. For a more complete discussion of random geometric graphs, the giant component, the
thermodynamical limit and the connectivity threshold for a random geometric graph see [36].

1.3. Related works. Background on Γ-convergence of functionals to perimeter. A classical ex-
ample of Γ-convergence of functionals to perimeter is the Modica and Mortola theorem ([33]) that
shows the Γ-convergence of Allen-Cahn (Cahn-Hilliard) free energy to perimeter. In particular they
consider the energy

(9) ε

∫
D

|∇u|2dx+
1

ε

∫
W (u)dx,

where W is a double well potential.
In [3], Alberti and Bellettini study a nonlocal model for phase transitions where the energies do

not have a gradient term as in the setting of Modica and Mortola, but a nonlocal term penalizing
the spatial inhomogeneity of a given function u:

(10) FWε (u) :=
1

ε

∫
D

∫
D

ηε(x− y)|u(x)− u(y)|2dxdy +
1

ε

∫
D

W (u)dx,

In the context of [3] the kernel η is not assumed radially symmetric. However, in the isotropic case,
the results in [3] imply that the Γ-limit is the perimeter (multiplied by a surface tension).

In [40], Savin and Valdinoci consider the energy related to (10) with η(z) = z−(d+2s) for s > 0
and show that for s ∈ (0.5, 1) the functionals Γ-converge to perimeter. For s < 0.5 they show that,
under a somewhat different scaling, the nonlocality is preserved in the limit.

In the discrete setting, works related to the Γ convergence of functionals to continuous functionals
involving perimeter include [11], [47] and [19]. The results by Braides and Yip [11], can be interpreted
as the analogous results in a discrete setting to the ones obtained by Modica and Mortola. They
give the description of the limiting functional (in the sense of Γ-convergence) after appropriately
rescaling the energies. In the discretized version considered, they work on a regular grid. The
gradient term gets replaced by a finite-difference approximation to it that depends on the mesh size
δ. Different limiting functionals are obtained (as ε→ 0 and δ → 0) depending on the regime for the
ratio ε

δ . In particular in the case δ � ε, the limiting functional is, as expected, the perimeter. Van
Gennip and Bertozzi [47] consider a similar problem and obtain analogous results.

In [19], Chambolle, Giacomini and Lussardi consider a very general class of anisotropic perimeters
defined on discrete subsets of a finite lattice of the form δZN . They prove the Γ-convergence of the
functionals as δ → 0 to an anisotropic perimeter defined on a given domain in Rd.

Background on analysis of algorithms on point clouds as n → ∞. In the past years a diverse
set of geometrically based methods has been developed to solve different tasks of data analysis
like classification, regression, dimensionality reduction and clustering. One desirable and important
property that one expects from these methods is consistency. That is, it is desirable that as the
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number of data points tends to infinity the procedure used “converges” to some “limiting” procedure.
Usually this“limiting” procedure involves a continuum functional defined on a domain in a Euclidean
space or more generally on a manifold.

The available consistency results, include the work of Belkin and Niyogi [8] on the convergence
of Laplacian Eigenmaps, the work by Pollard [38] where there are consistency results for the k-
means algorithm used for clustering tasks and the work by von Luxburg, Belkin and Bousquet on
consistency of spectral clustering [49].

The notion of Γ-convergence has been used extensively in the calculus of variations, in particular
in homogenization theory, phase transitions, image processing, and material science. However, to
the best of our knowledge it has not been used in data analysis to establish consistency of algorithms.
It is our intention to introduce this notion in this context. We intend to use the ideas developed in
this paper to explore some consistency problems in subsequent papers.

1.4. Outline of the approach. Since the functions we consider are given only at the data points,
to be able to compare functions given on different data sets (in particular as number of data points
is increasing) we introduce the TLp topology in Section 3. This topology is used to formulate the
Γ-convergence result.

The proof of Γ-convergence has two main steps. One is to compare the the graph total vari-

ation, T̃ V n,εn with a nonlocal continuum functional. In particular we consider the functional
TVε : L1(D, ν0)→ [0,∞] given by:

(11) TVε(u) :=
1

ε

∫
D

∫
D

ηε(x− y)|u(x)− u(y)|dxdy,

Note that the argument of T̃ V n,εn , is a function, un supported on the data points, while the
argument of TVε is an L1 function with respect to the Lebesgue measure. Thus to comare the
functionals one needs to find a suitable L1(ν0) function which, in appropriate sense, approximates
un. We use a transportation map (a notion recalled in Subsection 2.1) between ν0 and νn to define
such ũn ∈ L1(ν0). More precisely we set ũn = un ◦ Tn where Tn is the transportation map which is
constructed in Subsection 2.2. We note that ũn is piecewise constant and takes the same values as
un. The map Tn is what enables going from the discrete to the continuum setting. Once again we
contrast the situation here with the previous works which dealt with functionals on grids. When the
discrete function is given on a grid it is straightforward to define the corresponding L1(ν0) function
by letting it be constant on each grid cell, where it takes the value of a chosen grid point. On the
other hand in the random setting finding the right correspondence was one of the main challenges

(which also led us to introduce the TLp topology). Comparing T̃ V n,εn(un) with TVεn(ũn) relies
on choosing a transportation plan between the Lebesgue measure and the empirical measure which
transports the points as little as possible. The estimates on how far the mass needs to be moved rely
on previous works and are discussed in Subsection 2.2. One of the key properties of TL1 convergence

is that if functions un defined at data points converge to an L1(ν0) function u, un
TL1

−→ u as n→∞,

then ũn
L1(ν0)−→ u as n→∞.

This enables us to reduce the problem to comparing the continuum nonlocal total variation
functional with the total variation. We prove, using results of Alberti and Bellettini [3] on non-local
models for phase transitions, that the energy TVε, Γ-converges in the L1-metric to σηTV . In their
paper, Alberti and Bellettini consider energies FWε of the form (10). It is proven that the functionals
FWε Γ-converge as ε→ 0 (in the L1 sense) to σW,ηTV , where σW,η is the surface tension associated
to the energies FWε , and can be written as the solution to an optimal profile problem. Our result
can be seen as a shape interface Γ-convergence result which parallels the diffuse-interface result of
Alberti and Bellettini.
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The compactness result that accompanies the Γ-convergence in [3] differs with the one we need.
Indeed, the main difference is the L∞ boundedness in [3] which is absent in our situation. The
absence of L∞ boundedness creates additional technical difficulties that we solve by reflecting the
functions considered near the bounday.

The paper is organized as follows. Section 2 contains the notation and preliminary results from
transportation theory and Γ-convergence of functionals on metric spaces. More specifically, in
Subsection 2.1 we introduce the optimal transportation problem and list some basic results. In
Subsection 2.2 we review the results on optimal matching between the empirical measure, νn, and
the Lebesgue measure, ν0. In Subsection 2.3 we recall the notion of Γ-convergence on metric spaces
and introduce the appropriate extension to random setting. In Section 3 we define the metric space
TLp and prove some basic results about it. Section 4 contains the proof of the Γ-convergence of the
nonlocal continuum total variation functional TVε to the TV functional. The main result, the Γ-
convergence of the graph TV functionals to the TV functional is proved in Section 5. In Subsection
5.2 we discuss the extension of the main result to the case when X1, . . . , Xn are not independent,
uniformly distributed points, but are still “close” to describing the Lebesgue measure. In Subsection
5.3 we extend the main results to more general domains D and in Subsection 5.4 we present a simple
example of an application to data clustering.

2. Preliminaries

2.1. Transportation theory. In this section D is an open and bounded domain in Rd. We denote
by B(D) the Borel σ-algebra of D and by P(D) the set of all Borel probability measures on D.
Given 1 ≤ p <∞, the p-OT distance between µ, ν ∈ P(D) (denoted by dp(µ, ν)) is defined by:

(12) dp(µ, ν) := min

{(∫
D×D

|x− y|pdπ(x, y)

)1/p

: π ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) is the set of all couplings between µ and ν, that is, the set of all Borel probability
measures on D×D for which the marginal on the first variable is µ and the marginal on the second
variable is ν. The elements π ∈ Γ(µ, ν) are called transportation plans between µ and ν. When
p = 2 the distance is also known as the Wasserstein distance. The existence of minimizers, which
justifies the definition above, is straightforward to show, see [48]. When p =∞

(13) d∞(µ, ν) := inf {esssupπ{|x− y| : (x, y) ∈ D ×D} : π ∈ Γ(µ, ν)} ,

defines a metric on P(D), which is called the ∞-transportation distance.
It is known that for any 1 ≤ p < ∞, the convergence in OT metric is equivalent to weak

convergence of probability measures and uniform integrability of p-moments. In our setting, the
uniform integrability of p-moments is immediate since the domain D is assumed to be bounded, and
hence for our purposes, convergence in OT metric is equivalent to weak convergence. For details

see for instance [48], [6] and the references within. In particular, µn
w−→ µ (to be read µn converges

weakly to µ) if and only if for any 1 ≤ p < ∞ there is a sequence of transportation plans between
µn and µ, {πn}n∈N, for which:

(14) lim
n→∞

∫∫
D×D

|x− y|pdπn(x, y) = 0.

Actually, note that since D is bounded, (14) is equivalent to limn→∞
∫∫
D×D |x − y|dπn(x, y) = 0.

We say that a sequence of transportation plans, {πn}n∈N (with πn ∈ Γ(µ, µn)), is stagnating if it
satisfies the condition (14). We remark that, since D is bounded, it is straightforward to show that
a sequence of transportation plans is stagnating if and only if πn converges weakly in the space of
probability measures on D ×D to π = (id× id)]µ.
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Given a Borel map T : D → D and µ ∈ P(D) the push-forward of µ by T , denoted by T]µ ∈ P(D)
is given by:

T]µ(A) := µ
(
T−1(A)

)
, A ∈ B(D).

Then for any bounded continuous function ϕ ∈ C(D) the following change of variables in the integral
holds:

(15)

∫
D

ϕ(x) d(T]µ)(x) =

∫
ϕ(T (x)) dµ(x).

We say that a Borel map T : D → D is a transportation map between the measures µ ∈ P(D)
and ν ∈ P(D) if ν = T]µ. In this case, we associate a transportation plan πT ∈ Γ(µ, ν) to T by:

(16) πT := (Id×T )]µ,

where (Id×T ) : D → D × D is given by (Id×T )(x) = (x, T (x)). Then for any c ∈ L1(D ×
D,B (D ×D) , π)

(17)

∫
D×D

c(x, y)dπT (x, y) =

∫
D

c (x, T (x)) dµ(x).

It is well known that when the measure µ ∈ P(D) is absolutely continuous with respect to the
Lebesgue measure, the problem on the right hand side of (12) is equivalent to:

(18) min

{(∫
D

|x− T (x)|pdµ(x)

)1/p

: T]µ = ν

}
,

and when p is strictly greater than 1, the problem (12) has a unique solution which is induced
(via (16)) by a transportation map T solving (18) (see [48]). In particular when the measure µ is

absolutely continuous with respect to the Lebesgue measure, µn
w−→ µ as n → ∞ is equivalent to

the existence of a sequence {Tn}n∈N of transportation maps, (Tn]µ = µn) such that:

(19)

∫
D

|x− Tn(x)|dµ(x)→ 0, as n→∞.

We say that a sequence of transportation maps {Tn}n∈N is stagnating if it satisfies (19).
We consider now the notion of inverse of transportation plans. For π ∈ Γ(µ, ν), the inverse plan

π−1 ∈ Γ(ν, µ) of π is given by:

(20) π−1 := s]π,

where s : D ×D → D ×D is defined as s(x, y) = (y, x). Note that for any c ∈ L1(D ×D,π):∫
D×D

c(x, y)dπ(x, y) =

∫
D×D

c(y, x)dπ−1(x, y).

Let µ, ν, ρ ∈ P(D). The composition of plans π12 ∈ Γ(µ, ν) and π23 ∈ Γ(ν, ρ) was discussed in
[6][Remark 5.3.3]. In particular there exists a probability measure π on D ×D ×D such that the
projection of π to first two variables is π12, and to second and third variables is π23. We consider
π13 to be the projection of π to the first and third variables. We will refer π13 as a composition of
π12 and π23 and write π13 = π23 ◦ π12.

2.2. Optimal matching results. In this section we discuss how to construct the transportation
maps which allow us to make the transition from the functions of the data points to continuum
functions. To obtain good estimates we want to match the Lebesgue measure with the empirical
measure of data points while moving the mass as little as possible.

Consider (Ω,F ,P) a probability space that we assume to be rich enough to support a sequence
of independent random vectors uniformly distributed on the cube (0, 1)d. All the random variables
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that we use are to be understood as functions defined on Ω. We consider X1, . . . , Xn i.i.d. random
vectors uniformly distributed in the cube (0, 1)d.

In the previous section we introduced the notion of stagnating sequence of transportation maps.
In this section we present results by Leighton and Shor [30], and Shor and Yukich [41], that imply
that not only we can find a sequence of transportation maps {Tn}n∈N (with Tn]ν0 = νn) which is
stagnating but also satisfies a stronger condition:

(21) lim
n→∞

‖Id− Tn‖∞ = 0,

where Id is the identity mapping and ‖ · ‖∞ denotes the L∞ norm with respect to the Lebesgue
measure restricted to (0, 1)d. In other words d∞(ν0, νn) → 0 as n → ∞. Moreover, the rates of
convergence of ‖Id − Tn‖∞ are obtained. These results play an important role in the proof of the
main theorem of this paper.

To construct the transportation map between ν0 and νn we first use the results above to match
νn with a discrete measure supported on a regular grid with n points and then match the grid points
with ν0 locally. For that reason we first consider n of the form n = kd for some k ∈ N. Consider
P = {p1, . . . , pn} the set of n points in (0, 1)d of the form ( i12k , . . . ,

in
2k ) for i1, . . . , in odd integers

between 1 and 2k. The points in P form a regular k× · · · × k array in (0, 1)d and in particular each
point in P is the center of a cube with volume 1/n. As in [30] we call the points in P grid points
and the cubes generated by the points in P grid cubes.

First consider the case d = 2. Leighton and Shor [30] showed that there exist c > 0 and C > 0 such
that with very high probability (meaning probability greater than 1 − n−α where α = c1(log n)1/2

for some constant c1 > 0):

(22)
c(log n)3/4

n1/2
≤ min

π
max
i
|pi −Xπ(i)| ≤

C(log n)3/4

n1/2

where π ranges over all permutations of {1, . . . , n}. In other words, when d = 2, with very high
probability the∞-transportation distance between the random points and the grid points is of order
(logn)3/4

n1/2 .
We use the previous result to construct a transportation map Tn. Indeed, consider π minimizing

minπ maxi |Xi − pπ(i)|. We define the map Tn : (0, 1)d → {X1, . . . , Xn} as follows. Any x ∈ (0, 1)d

belongs to a grid cube associated to some pi ∈ P . We set Tn(x) := Xπ(i). Then Tn]ν0 = νn and
(thanks to (22)) there are constants c > 0 and C > 0 such that with very high probability:

(23)
c(log n)3/4

n1/2
≤ ‖Id− Tn‖∞ ≤

C(log n)3/4

n1/2
.

Remark 2.1. For the previous statement, we considered n = k2 for some k ∈ N since the result in
[30] is stated under the assumption that we work with a regular grid. Nevertheless, this is not a
restriction as we now explain. In fact if n is not a square of an integer, so that k2 < n < (k + 1)2

for some k, one can construct {C1, . . . , Cn}, n rectangles covering D with sides parallel to the axis,
each of them with volume 1/n and length of its diagonal below c√

n
where c is a universal constant.

We can consider points p1, . . . , pn in C1, . . . , Cn respectively. From the proof in [30] one can deduce
(22) in this case again (even if n is not a square). The idea is that all probabilistic estimates in the
proof in [30] are independent of the fact whether n is a square or not. The ingredient they needed to
utilize their probabilistic estimates on the regular grid was the Hall’s marriage lemma. The lemma
can be applied to points p1, . . . , pn in a similar way if n is not a square, given the properties of the
rectangles C1, . . . , Cn. Therefore one can take x ∈ D and define Tn(x) = Xπ(i) where x ∈ Ci and π is
the optimal matching between the points X1, . . . , Xn and the points p1, . . . , pn. It is straightforward
to check that Tn]ν0 = νn and that (23) holds.

Using Borel–Cantelli lemma we deduce the following proposition.
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Proposition 2.2. Consider d = 2 and νn given by (4).Then there are constants c > 0 and C > 0
such that for P-a.e. ω ∈ Ω there exists a sequence of transportation maps {Tn}n∈N from ν0 to νn
(Tn]ν0 = νn) and such that:

(24) c ≤ lim inf
n→∞

n1/2‖Id− Tn‖∞
(log n)3/4

≤ lim sup
n→∞

n1/2‖Id− Tn‖∞
(log n)3/4

≤ C.

For d ≥ 3, Shor and Yukich [41] proved the analogous result to (22). As in the case d = 2 one
is not restricted to considering only n = kd for some integer k. An immediate consequence of their
results is the following:

Proposition 2.3. Consider d ≥ 3 and νn given by (4). For P-a.e. ω ∈ Ω there exists a sequence
of transportation maps {Tn}n∈N from ν0 to νn (Tn]ν0 = νn) and constants c > 0, C > 0 (only
depending on d) such that:

(25) c ≤ lim inf
n→∞

n1/d‖Id− Tn‖∞
(log n)1/d

≤ lim sup
n→∞

n1/d‖Id− Tn‖∞
(log n)1/d

≤ C.

One should note that the powers of the log terms are different when d = 2 and when d ≥ 3.
In both cases they are sharp, meaning it is impossible to find transportation maps {Tn}n∈N with

Tn]ν0 = νn and where ||Id−Tn||∞ converges faster to zero than (log(n))1/d

n1/d in case d ≥ 3 or (log(n))3/4

n1/2

in case d = 2.
The basic matching algorithm involving random uniformly distributed points was introduced by

Ajtai, Komlós, and Tusnády in [2]. That algorithm can still be used to obtain results like the ones
above (not quite as sharp for d = 2). It relies on a dyadic decomposition of the cube (0, 1)d and
transporting step by step between levels of the dyadic decomposition. The final matching is obtained
as a composition of the matchings between consecutive levels. For d ≥ 3 the AKT algorithm is the
basic tool used in [41] to prove the analogous result to (22) for d ≥ 3. For d = 2 the AKT algorithm
gives an upper bound with extra log factors, which makes the proof of the sharp bounds more
complicated.

As remarked in [41], there is a crossover in the nature of the matching when d = 2: for d ≥ 3,
the matching length between the random points and the points in the grid is determined by the
behavior of the points locally, for d = 1 on the other hand, the matching length is determined by
the behavior of random points globally, and finally for d = 2 the matching length is determined by
the behavior of the random points at all scales. At the level of the AKT algorithms this means that
for d ≥ 3 the major source of the transportation distance is at the finest scale, for d = 1 at the
coarsest scale, while for d = 2 distances at all scales are of the same size (in terms of how they scale
with n).

Problems related to the ones considered in [30] and [41] were also considered by Talagrand and
Yukich [45] and Talagrand [44]. In particular it is possible to deduce (25) from the results in [44]
and to obtain an upper bound for the asymptotic behavior of ‖Id − Tn‖∞ in the case d = 2 from
the results in [45].

So far we have not discussed the result in case d = 1. In this case we can take advantage of the
classical results by Chung [20] (or Kiefer [29]) on the behaviour of the discrepancy of the measures
νn and ν0 as n→∞. In fact if we consider the points p1, . . . , pn with pi = i/n, and consider random
points X1, . . . , Xn that (after reordering) we assume to be in increasing order, it is not hard to see
that the permutation π that minimizes minπ maxi |pi−Xπ(i)| is precisely the identity, in other words
minπ maxi |pi −Xπ(i)| = maxi |pi −Xi|. The results on [20] can then be used to obtain asymptotic
(as n → ∞) sharp estimates on the value of maxi |pi − Xi|, and in particular deduce that with

probability one maxi |pi −Xi| = O

(√
log log(n)

n

)
. It is an immediate consequence of these results

the following:
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Proposition 2.4. There are constants c > 0 and C > 0 such that for P-a.e. ω ∈ Ω there exists a
sequence of transportation maps {Tn}n∈N (with Tn]ν0 = νn) and such that:

(26) c ≤ lim inf
n→∞

n1/2‖Id− Tn‖∞√
log log(n)

≤ lim sup
n→∞

n1/2‖Id− Tn‖∞√
log log(n)

≤ C.

2.3. Γ-convergence on metric spaces. We recall and discuss the notion of Γ-convergence in
general setting. Let (X, dX) be a metric space. Let Fn : X → [0,∞] be a sequence of functionals.

Definition 2.5. The sequence {Fn}n∈N Γ-converges with respect to metric dX to the functional
F : X → [0,∞] as n→∞ if the following inequalities hold:

1. Liminf inequality: For every x ∈ X and every sequence {xn}n∈N converging to x,

lim inf
n→∞

Fn(xn) ≥ F (x),

2. Limsup inequality: For every x ∈ X there exists a sequence {xn}n∈N converging to x
satisfying

lim sup
n→∞

Fn(xn) ≤ F (x).

We say that F is the Γ-limit of the sequence of functionals {Fn}n∈N (with respect to the metric dX).

Remark 2.6. In most situations one does not prove the limsup inequality for all x ∈ X directly.
Instead, one proves the inequality for all x in a dense subset X ′ of X where it is somewhat easier
to prove, and then deduce from this that the inequality holds for all x ∈ X. To be more precise,
suppose that the limsup inequality is true for every x in a subset X ′ of X and the set X ′ is such that
for every x ∈ X there exists a sequence {xk}k∈N in X ′ converging to x and such that F (xk)→ F (x)
as k → ∞, then the limsup inequality is true for every x ∈ X. It is enough to use a diagonal
argument to deduce this claim.

Definition 2.7. We say that the sequence of nonnegative functionals {Fn}n∈N satisfies the com-
pactness property if the following holds: Given {nk}k∈N an increasing sequence of natural numbers
and {xk}k∈N a bounded sequence in X for which

(27) sup
k∈N

Fnk(xk) <∞

{xk}k∈N is precompact in X.

Remark 2.8. Note that the boundedness assumption of {xk}k∈N in the previous definition is a
necessary condition for precompactness and so it is not restrictive.

The notion of Γ-convergence is particularly useful when the functionals {Fn}n∈N satisfy the
compactness property. This is because it guarantees convergence of minimizers (or approximate
minimizers) of Fn to minimizers of F and it also guarantees convergence of the minimum energy of
Fn to the minimum energy of F (this statement is made precise in the next proposition). This is
the reason why Γ-convergence is said to be a variational type of convergence.

Proposition 2.9. Let Fn : X → [0,∞] be a sequence of nonnegative functionals which are not
identically equal to +∞, satisfying the compactness property and Γ-converging to the functional
F : X → [0,∞] which is not identically equal to +∞. Then,

(28) lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F (x).
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Furthermore every bounded sequence {xn}n∈N in X for which

(29) lim
n→∞

(
Fn(xn)− inf

x∈X
Fn(x)

)
= 0

is precompact and each of its cluster points is a minimizer of F .
In particular, if F has a unique minimizer, then a sequence {xn}n∈N satisfying (29) converges to

the unique minimizer of F .

One can extend the concept of Γ-convergence to families of functionals indexed by real numbers
in a simple way, namely, the family of functionals {Fh}h>0 is said to Γ-converge to F as h → 0
if for every sequence {hn}n∈N with hn → 0 as n → ∞ the sequence {Fhn}n∈N Γ-converges to the
functional F as n → ∞. Similarly one can define the compactness property for the functionals
{Fh}h>0. For more on the notion of Γ-convergence see [10] or [21].

Since the functionals we are most interested in depend on data (and hence are random), we
need to define what it means for a sequence of random functionals to Γ-converge to a deterministic
functional.

Definition 2.10. For {Fn}n∈N a sequence of (random) functionals Fn : X × Ω → [0,∞] and
F a (deterministic) functional F : X → [0,∞], we say that the sequence of functionals {Fn}n∈N
Γ-converges (in the dX metric) to F , if for P-almost every ω ∈ Ω the sequence {Fn(·, ω)}n∈N Γ-
converges to F according to Definition 2.5. Similarly, we say that {Fn}n∈N satisfies the compactness
property if for P-almost every ω ∈ Ω, {Fn(·, ω)}n∈N satisfies the compactness property according to
Definition 2.7.

We do not explicitly write the dependence of Fn on ω and we simply write Fn : X → [0,∞],
understanding that we are always working with a fixed value ω ∈ Ω, and hence with deterministic
functionals.

3. The space TLp

In this section D denotes an open and bounded domain in Rd. Consider the set

TLp(D) := {(µ, f) : µ ∈ P(D), f ∈ Lp(D,µ)}.

For (µ, f) and (ν, g) in TLp we define
(30)

dTLp((µ, f), (ν, g)) = inf
π∈Π(µ,ν)

(∫∫
D×D

|x− y|pdπ(x, y)

) 1
p

+

(∫∫
D×D

|f(x)− g(y)|pdπ(x, y)

) 1
p

The next proposition shows that dTLp is a metric. We remark that formally TLp is a fiber bundle
over P(D). Namely if one considers the Finsler (Riemannian for p = 2) manifold structure on P(D)
provided by the p−OT metric (see [1] for general p and [34, 6] for p = 2) then TLp is, formally, a
fiber bundle. We also remark that one could also change the set and consider a metric where the
powers of the terms in (30) would be different (p and q, instead of p and p and the natural name
for the space in this case would be TLp,q).

Remark 3.1. One can think of the convergence in TLp as a generalization of weak convergence of
measures and convergence in Lp of functions. By this we mean that {µn}n∈N in P(D) converges

weakly (and in p-OT sense for any p since D is bounded) to µ ∈ P(D) if and only if (µn, 1)
TLp−→ (µ, 1)

as n→∞, and that for µ ∈ P(D) a sequence {fn}n∈N in Lp(µ) converges in Lp(µ) to f if and only
if (µ, fn)→TLp (µ, f) as n→∞. The last fact is established in Proposition 3.6.
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Remark 3.2. If one restricts the attention to measures µ and ν which are absolutely continuous with
respect to the Lebesgue measure then

inf
T : T]µ=ν

(∫
D

|x− T (x)|pdµ(x)

) 1
p

+

(∫
D

|f(x)− g(T (x))|pdµ(x)

) 1
p

majorizes dTLp((µ, f), (ν, g)) and furthermore provides a metric (on the subset of TLp) which gives
the same topology as dTLp . The fact that these topologies are the same follows from Proposition
3.6.

Proposition 3.3. dTLp defines a metric on TLp.

Proof. To prove that dTLp ((µ, f), (µ, f)) = 0, note that if we consider π = r]µ where r : D → D×D
is given by r(x) = (x, x), π ∈ Γ(µ, µ) and

∫∫
D×D |x− y|

p + |f(x)− g(y)|pdπ(x, y) = 0.

Suppose now that dTLp ((µ, f), (ν, g)) = 0. In particular it is true that dp(µ, ν) = 0 and so µ = ν.
Thus there exists a sequence {πn}n∈N of transportation plans belonging to Γ(µ, µ) such that:

(31) lim
n→∞

∫∫
D×D

|x− y|pdπn(x, y) +

∫∫
D×D

|g(x)− f(y)|pdπn(x, y) = 0

Note that the sequence {πn}n∈N is tight in P (D ×D), and hence it has a subsequence (that we do
not relabel) that converges weakly to some π ∈ Γ(µ, µ). Using the boundedness of D we conclude
that: ∫∫

D×D
|x− y|pdπ(x, y) = lim

n→∞

∫∫
D×D

|x− y|pdπn(x, y) = 0

Consequently π = r]µ, for r as above. For every ε > 0 there exist f̃ , g̃ functions defined on D which

are continuous and bounded and such that ‖f − f̃‖Lp(µ) < ε/2 and ‖g − g̃‖Lp(µ) < ε/2. Then(∫∫
D×D

∣∣∣f̃(x)− g̃(y)
∣∣∣p dπn(x, y)

)1/p

≤
(∫∫

D×D

∣∣∣f̃(x)− f(x)
∣∣∣p dπn(x, y)

)1/p

+

(∫∫
D×D

|f(x)− g(y)|p dπn(x, y)

)1/p

+

(∫∫
D×D

|g(y)− g̃(y)|p dπn(x, y)

)1/p

<

(∫∫
D×D

|f(x)− g(y)|p dπn(x, y)

)1/p

+ ε

From (31) and the fact that πn
w−→ π we obtain:

‖f̃ − g̃‖Lp(µ) =

(∫∫
D×D

∣∣∣f̃(x)− g̃(y)
∣∣∣p dπ(x, y)

)1/p

= lim
n→∞

(∫∫
D×D

∣∣∣f̃(x)− g̃(y)
∣∣∣p dπn(x, y)

)1/p

< ε

Therefore:

‖f − g‖Lp(µ) ≤ ‖f − f̃‖Lp(µ) + ‖f̃ − g̃‖Lp(µ) + ‖g̃ − g‖Lp(µ) < 3ε.

Since ε was arbitrary, we conclude that f = g, and so dTLp ((µ, f), (ν, g)) = 0 implies (µ, f) = (ν, g).



14 NICOLÁS GARCÍA TRILLOS AND DEJAN SLEPČEV

To prove that dTLp ((µ, f), (ν, g)) = dTLp ((ν, g), (µ, f)) simply note that for every π ∈ Γ(µ, ν)∫∫
D×D

|x− y|pdπ(x, y) =

∫∫
D×D

|x− y|pdπ−1(x, y)∫∫
D×D

|f(x)− g(y)|pdπ(x, y) =

∫∫
D×D

|g(x)− f(y)|pdπ−1(x, y)and

where π−1 ∈ Γ(ν, µ) is the inverse of π as defined in (20).
Finally, consider (µ, f), (ν, g), (σ, h) ∈ TLp. Take π1 ∈ Γ(µ, ν) and π2 ∈ Γ(ν, σ). We now use a

measure π ∈ P(D×D×D) to obtain π2 ◦ π1 ∈ Γ(µ, σ) as mentioned at the end of Subsection 2.1 .
Using Minkowski’s inequality for the measure π, one obtains that:

dTLp ((µ, f), (σ, h)) ≤
(∫∫

D×D
|x− z|pdπ2 ◦ π1(x, z)

) 1
p

+

(∫∫
D×D

|f(x)− h(z)|pdπ2 ◦ π1(x, z)

) 1
p

≤
(∫∫

D×D
|x− y|pdπ1(x, y)

) 1
p

+

(∫∫
D×D

|f(x)− g(y)|pdπ1(x, y)

) 1
p

+

(∫∫
D×D

|y − z|pdπ2(y, z)

) 1
p

+

(∫∫
D×D

|g(y)− h(z)|pdπ2(y, z)

) 1
p

Taking infimum over π1 and over π2 on the previous expression we deduce that dTLp ((µ, f), (σ, h)) ≤
dTLp ((µ, f), (ν, g)) + dTLp ((ν, g), (σ, h)). �

We wish to establish a simple characterization for the convergence in the space TLp. For this,
we need first the following two lemmas.

Lemma 3.4. Fix µ ∈ P(D). For any stagnating sequence of transportation plans {πn}n∈N (with
πn ∈ Γ(µ, µ)) and for any u ∈ Lp(µ):

lim
n→∞

∫∫
D×D

|u(x)− u(y)|pdπn(x, y) = 0

Proof. We prove the case p = 1 since the other cases are similar. Let u ∈ L1(µ) and let {πn}n∈N be
a stagnating sequence of transportation maps with πn ∈ Γ(µ, µ). Since the probability measure µ
is inner regular, we know that the class of Lipschitz and bounded functions on D is dense in L1(µ).
Fix ε > 0, we know there exists a function v : D → R which is Lipschitz and bounded and for which:∫

D

|u(x)− v(x)|dµ(x) <
ε

3

Note that:∫∫
D×D

|v(x)− v(y)|dπn(x, y) ≤ Lip(v)

∫∫
D×D

|x− y|dπn(x, y)→ 0, as n→∞

Hence we can find N ∈ N such that if n ≥ N then
∫∫
D×D |v(x)− v(y)|dπn(x, y) < ε

3 . Therefore, for
n ≥ N , using the triangle inequality, we obtain∫∫

D×D
|u(x)− u(y)|dπn(x, y) ≤

∫∫
D×D

|u(x)− v(x)|dπn(x, y) +

∫∫
D×D

|v(x)− v(y)|dπn(x, y)

+

∫∫
D×D

|v(y)− u(y)|dπn(x, y)

=2

∫
D

|v(x)− u(x)|dµ(x) +

∫∫
D×D

|v(x)− v(y)|dπn(x, y) < ε

This proves the result. �
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Lemma 3.5. Suppose that the sequence {µn}n∈N in P(D) converges weakly to µ ∈ P(D). Let
{un}n∈N be a sequence with un ∈ Lp(µn) and let u ∈ Lp(µ). Consider two sequences of stagnating
transportation plans {πn}n∈N and {π̂n}n∈N (with πn, π̂n ∈ Γ(µ, µn)). Then:

lim
n→∞

∫∫
D×D

|u(x)− un(y)|pdπn(x, y) = 0 ⇔ lim
n→∞

∫∫
D×D

|u(x)− un(y)|pdπ̂n(x, y) = 0(32)

Proof. We present the details for p = 1, as the other cases are similar. Take π̂−1
n ∈ Γ(µn, µ) the

inverse of π̂n defined in (20). We can consider πn ∈ P(D × D × D) as the one mentioned at the
end of Subsection 2.1 (taking π23 = π̂−1

n and π12 = πn). In particular π̂−1
n ◦ πn ∈ Γ(µ, µ). Then∫∫

D×D
|un(y)− u(x)|dπn(x, y) =

∫∫∫
D×D×D

|un(y)− u(x)|dπn(x, y, z),

and ∫∫
D×D

|un(z)− u(y)|dπ̂n(y, z) =

∫∫
D×D

|un(y)− u(z)|dπ̂−1
n (y, z)

=

∫∫∫
D×D×D

|un(y)− u(z)|dπn(x, y, z),

which imply after using the triangle inequality:∣∣∣∣∫∫
D×D

|un(y)− u(x)|dπn(x, y)−
∫∫

D×D
|u(z)− un(y)|dπ̂n(y, z)

∣∣∣∣
≤
∫∫∫

D×D×D
|u(z)− u(x)|dπn(x, y, z) =

∫∫
D×D

|u(z)− u(x)|dπ̂−1
n ◦ πn(x, z)

(33)

Finally note that :∫∫
D×D

|x− z|dπ̂−1
n ◦ πn(x, z) ≤

∫∫
D×D

|x− y|dπn(x, y) +

∫∫
D×D

|y − z|dπ̂n(z, y)→ 0, as n→∞.

The sequence
{
π̂−1
n ◦ πn

}
n∈N satisfies the assumptions of Lemma 3.4, so we can deduce that∫∫

D×D |u(z)− u(x)|dπ̂−1
n ◦ πn(x, z)→ 0 as n→∞. By (33) we get that:

lim
n→∞

∣∣∣∣∫∫
D×D

|un(y)− u(x)|dπn(x, y)−
∫∫

D×D
|un(z)− u(y)|dπ̂n(y, z)

∣∣∣∣ = 0.

This implies the result. �

Proposition 3.6. Let (µ, f) ∈ TLp and let {(µn, fn)}n∈N be a sequence in TLp. The following
statements are equivalent:

1. (µn, fn)
TLp−→ (µ, f) as n→∞.

2. µn
w−→ µ and for every stagnating sequence of transportation plans {πn}n∈N (with πn ∈

Γ(µ, µn))

(34)

∫∫
D×D

|f(x)− fn(y)|p dπn(x, y)→ 0, as n→∞.

3. µn
w−→ µ and there exists a stagnating sequence of transportation plans {πn}n∈N (with

πn ∈ Γ(µ, µn)) for which (34) holds.

Moreover, if the measure µ is absolutely continuous with respect to the Lebesgue measure, the fol-
lowing are equivalent to the previous statements:



16 NICOLÁS GARCÍA TRILLOS AND DEJAN SLEPČEV

4. µn
w−→ µ and there exists a stagnating sequence of transportation maps {Tn}n∈N (with

Tn]µ = µn) such that:

(35)

∫
D

|f(x)− fn (Tn(x))|p dµ(x)→ 0, as n→∞.

5. µn
w−→ µ and for any stagnating sequence of transportation maps {Tn}n∈N (with Tn]µ = µn)

(35) holds.

Proof. By Lemma 3.5, claims 2. and 3. are equivalent. In case µ is absolutely continuous with
respect to the Lebesgue measure, we know that there exists a stagnating sequence of transportation
maps {Tn}n∈N (with Tn]µ = µn). Considering the sequence of transportation plans {πTn}n∈N (as
defined in (16)) and using (17) we see that 2., 3., 4., and 5. are all equivalent. We prove the
equivalence of 1. and 3.

(1. ⇒ 3.) Note that dp(µ, µn) ≤ dTLp ((µ, f) , (µn, fn)) for every n. Hence dp(µ, µn) → 0 as

n→∞ and in particular µn
w−→ µ as n→∞. Also, since dTLp ((µ, f) , (µn, fn))→ 0 as n→∞, in

particular there exists a sequence {π∗n}n∈N of transportation plans (with π∗n ∈ Γ(µ, µn)) such that:

lim
n→∞

∫∫
D×D

|x− y|pdπ∗n(x, y) = 0,

lim
n→∞

∫∫
D×D

|f(x)− fn(y)|pdπ∗n(x, y) = 0.

{π∗n}n∈N is then a stagnating sequence of transportation plans for which (34) holds.

(3. ⇒ 1.) Since µn
w−→ µ as n → ∞ (and since D is bounded), we know that dp(µn, µ) → 0 as

n→∞. In particular, we can find a sequence of transportation plans {πn}n∈N with πn ∈ Γ(µ, µn)
such that:

lim
n→∞

∫∫
D×D

|x− y|pdπn(x, y) = 0

{πn}n∈N is then a stagnating sequence of transportation plans. By the hypothesis we conclude that:

lim
n→∞

∫∫
D×D

|f(x)− fn(y)|pdπn(x, y) = 0

From this we deduce that limn→∞ dTLp ((µ, f), (µn, fn)) = 0. �

Definition 3.7. Suppose {µn}n∈N in P(D) converges weakly to µ ∈ P(D). We say that the sequence
{un}n∈N (with un ∈ Lp(µn)) converges in the TLp sense to u ∈ Lp(µ), if {(µn, un)}n∈N converges

to (µ, u) in the TLp metric. In this case we use a slight abuse of notation and write un
TLp−→ u

as n → ∞. Also, we say the sequence {un}n∈N (with un ∈ Lp(µn)) is precompact in TLp if the
sequence {(µn, un)}n∈N is precompact in TLp.

Remark 3.8. Thanks to Proposition 3.6 when µ is absolutely continuous with respect to the Lebesgue

measure un
TLp−→ u as n → ∞ if and only if for every (or one) {Tn}n∈N stagnating sequence of

transportation maps (with Tn]µ = µn) it is true that un ◦ Tn
Lp(µ)−→ u as n → ∞. Also {un}n∈N is

precompact in TLp if and only if for every (or one) {Tn}n∈N stagnating sequence of transportation
maps (with Tn]µ = µn) it is true that {un ◦ Tn}n∈N is precompact in Lp(µ).

4. Γ-convergence of TVε

Consider an open, bounded domain D in Rd with Lipschitz boundary. Here we prove that
{TVε}ε>0 (defined in (11)) Γ-converges with respect to the L1 metric to σηTV . This result and the
proof we present rely on the work of Alberti and Bellettini [3] and [4]. While a direct approach, which
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bypasses using the diffuse interface functional (36) is possible (see for example [22], [19]), we base our
argument on results of [3] to make the presentation short. The only part which required substantial
new arguments is the proof of compactness, where due to the presence of domain boundary and
lack of L∞ control, new ideas were needed. For this result we impose extra regularity assumptions
on the domain D. As a corollary, we show that if one considers only functions uniformly bounded
in L∞, the compactness holds for open and bounded domains D regardless of its boundary.

Let W (z) = 4z2(1− z)2 and let Wk = kW . We define the functionals:

(36) F (k)
ε (u) :=

1

ε

∫
D×D

ηε(x− y)|u(x)− u(y)|2dxdy +
1

ε

∫
D

Wk(u)dx, u ∈ L1(D).

The double-well potential Wk forces functions with low energy to stay close to the pure states 0
and 1. This tendency becomes stronger as k increases. The first term resembles the functional TVε.
In fact if u is the characteristic function of a measurable subset of D then for every k ∈ N and for
every ε > 0

(37) F (k)
ε (u) = TVε(u).

One of the consequences of the results in [4] is that for fixed k ∈ N, F
(k)
ε Γ-converges in the

L1-metric as ε → 0 to the functional F k defined by σkηTV (u) for all functions u ∈ BV (D, {0, 1})
and extended to +∞ for all functions belonging to L1(D) \ BV (D, {0, 1}), where σkη is the surface

tension associated to η and Wk. We show in Appendix A that σkη converge as k →∞ to ση, defined
in (6).

We recall that the functional TVε is convex and satisfies the generalized coarea formula:

(38) TVε(u) =

∫ ∞
−∞

TVε(χ{u>s})ds,

for every u ∈ L1(D). The coarea formula is obtained by directly computing:∫ ∞
−∞

TVε(χ{u>s})ds =
1

ε

∫ ∞
−∞

∫
D×D

ηε(x− y)|χ{u>s}(x)− χ{u>s}(y)|dxdyds

=
1

ε

∫
D×D

ηε(x− y)

∫ ∞
−∞
|χ{u>s}(x)− χ{u>s}(y)|dsdxdy

=
1

ε

∫
D×D

ηε(x− y)|u(x)− u(y)|dxdy.

Theorem 4.1. For D an open and bounded domain in Rd with Lipschitz boundary and η satisfying
(K1)-(K3):

(39) TVε
Γ−→ σηTV as ε→ 0,

where the Γ limit has to be understood in the L1-sense.

Proof. Let {εn}n∈N be a sequence of positive numbers converging to 0.

Liminf Inequality: Suppose un
L1(D)−→ u as n→∞.

Step 1: Assume first that for every n ∈ N, un := χVn for some measurable subset Vn of D. In

particular u = χV for some V . From the Γ-convergence of the functionals F
(k)
εn and (37), for every

k ∈ N
(40) lim inf

n→∞
TVεn(χVn) = lim inf

n→∞
F (k)
εn (χVn) ≥ σkηTV (χV ).

Since this is true for every k, we can let k →∞ in the previous equation and from (A.2) obtain:

(41) lim inf
n→∞

TVεn(χVn) ≥ σηTV (χV )
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So we conclude that the liminf inequality is true when restricting to characteristic functions.
Step 2: In the general case, we follow the proof in [19]. Indeed, note that:∫

D

|un(x)− u(x)| dx =

∫ ∞
−∞

∫
D

∣∣χ{un>s} − χ{u>s}∣∣ dxds.
So if un

L1(D)−→ u as n → ∞, then (up to a subsequence) we can assume that for a.e. s ∈ R.

χ{un>s}
L1(D)−→ χ{u>s}. Using Step 1, Fatou’s lemma, coarea formula (38) and the coarea formula

for the total variational functional we deduce that:

lim inf
n→∞

TVεn(un) = lim inf
n→∞

∫ ∞
−∞

TVεn(χ{un>s})ds

≥
∫ ∞
−∞

lim inf
n→∞

TVεn(χ{un>s})ds

≥ση
∫ ∞
−∞

TV (χ{u>s})ds

=σηTV (u).

Limsup inequality: We show that for every u ∈ L1(D):

(42) lim sup
n→∞

TVεn(u) ≤ σηTV (u).

This is a stronger statement than necessary to prove the limsup inequality needed for Γ-convergence
(Definition 2.5). We show this statement since we use it is some of the remarks and results that
follow.

It suffices to show (42) for functions u ∈ BV (D), that is, L1 functions on D with finite total
variation. For u ∈ BV (D) we use Proposition 3.21 in [5] which says that there exists an extension
û ∈ BV (Rd) of u to the entire space Rd such that:

(43) |Dû| (∂D) = 0.

Here Dû denotes the distributional derivative of û. Since û is a BV function, |Dû| is a finite measure.
In case that u belongs to the Sobolev space W 1,1(D), û can be taken to be in W 1,1(Rd). We split
the proof of (42) in two cases.

Step 1: Suppose that η has compact support, i.e. assume there is α > 0 such that if |h| ≥ α
then η(h) = 0. We define Dεn :=

{
x ∈ Rd : dist(x,D) < αεn

}
. For v̂ ∈ W 1,1(Dεn) ∩ C∞(Dεn) let

v be its restriction to D. Then

TVεn(v) =
1

εn

∫
D

∫
D∩B(y,αεn)

ηεn(x− y)|v(x)− v(y)|dxdy

=
1

εn

∫
Dεn

∫
B(y,αεn)

ηεn(x− y)

∣∣∣∣∫ 1

0

∇v̂(y + t(x− y)) · (x− y)dt

∣∣∣∣ dxdy
≤ 1

εn

∫
D

∫
B(y,αεn)

∫ 1

0

ηεn(x− y)|∇v̂(y + t(x− y)) · (x− y)|dtdxdy

≤
∫
Dεn

∫
Rd

∫ 1

0

η(h)|∇v̂(z) · h|dtdhdz

=

∫
Dεn

∫
Rd
η(h)|∇v̂(z) · h|dhdz

≤ ση
∫
Dεn

|∇v̂(z)| dz,
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where the second inequality is obtained after using the change of variables (t, y, x) 7→ (t, h, z) where
h = x−y

εn
and z = y + t(x − y), noting that the Jacobian of this transformation is equal to εdn and

that the transformed set D is contained in Dεn ; the last equality obtained thanks to the fact that
η is radially symmetric.

Now suppose u ∈ BV (D) (not necessarily in W 1,1(D)). By Theorem 13.9 in [31], there exists a

sequence {v̂k}k∈N in W 1,1(Dεn)∩C∞(Dεn) such that v̂k
L1(Dεn )−→ û and such that

∫
Dεn
|∇v̂k(z)| dz →

|Dû|(Dεn). This fact, together with continuity of TVεn with respect to L1 convergence, and the
previous calculations implies

TVεn(u) ≤ ση|Dû|(Dεn).

Sending n→∞ in the previous expression and using (43) provides that

(44) lim sup
n→∞

TVεn(u) ≤ ση|Dû|(D) = σηTV (u).

Step 2: Consider η whose support is not compact. The control of η at infinity, which is still
needed for the statement to hold, is provided by the condition (K3). For α > 0 define the kernel
ηα(h) := η(h)χB(0,α)(h), which satisfies the conditions of Step 1. Denote by TV αεn the nonlocal total
variation using the kernel ηα. For a given u ∈ BV (D)

TVεn(u) = TV αεn(u) +
1

εn

∫
D

∫
{x∈D : |x−y|>αεn}

ηεn(x− y)|u(x)− u(y)|dxdy.

The second term on the right-hand side satisfies:

1

εn

∫
D

∫
{x∈D : |x−y|>αεn}

ηεn(x− y)|u(x)− u(y)|dxdy

=
1

εn

∫
D

∫
{x∈D : |x−y|>αεn}

ηεn(x− y)|û(x)− û(y)|dxdy

≤
∫
|h|>α

η(h)|h|
∫
Rd

|û(y)− û(y + εnh)|
εn|h|

dydh

≤ |Dû|(Rd)
∫
|h|>α

η(h)|h|dh,

where the first inequality is obtained using the change of variables h = x−y
εn

and the second inequality

obtained using Lemma 13.33 in [31]. By Step 1 we conclude that:

lim sup
n→∞

TVεn(u) ≤ lim sup
n→∞

TV αεn(u) + |Dû|(Rd)
∫
|h|>α

η(h)|h|dh

≤ σηαTV (u) + |Dû|(Rd)
∫
|h|>α

η(h)|h|dh

Since α was arbitrary, by condition (K3) on η we can send α to infinity and obtain (42). �

Remark 4.2. Note that from the previous proof, we can deduce the pointwise convergence of the
functionals TVε; namely, for every u ∈ L1(D):

lim
ε→0

TVε(u) = σηTV (u)
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4.1. Compactness. We first establish compactness for regular domains and then extend it to more
general ones.

Lemma 4.3. Let D be a bounded open set in Rd, with C2 boundary. Let {εn}n∈N be a sequence of

positive numbers converging to 0 and let {vn}n∈N be a sequence in L1(D) such that:

sup
n∈N
‖vn‖L1(D) <∞,

and

sup
n∈N

1

εn

∫
D

∫
D

ηεn(x− y)|vn(x)− vn(y)|dxdy <∞.(45)

Then, {vn}n∈N is precompact in L1(D).

Proof. Note that thanks to assumption (K1), we can find a > 0 and b > 0 such that the function
η̃ : [0,∞)→ {0, a} defined as η̃(t) = a for t < b and η̃(t) = 0 otherwise, is bounded above by η. In
particular, (45) holds when changing η for η̃ and so there is no loss of generality in assuming that
η has the form of η̃.

We first extend each function vn to Rd. Since ∂D is a compact C2 manifold, there exists δ > 0
such that for every x ∈ Rd for which d(x, ∂D) ≤ δ there exists a unique closest point on ∂D. For all
x ∈ U := {x ∈ Rd : d(x,D) < δ} let Px be the closest point to x in D. We define the local reflection
mapping from U to D by x̂ = 2Px − x. Let ξ be a smooth cut-off function such that ξ(s) = 1 if
s ≤ δ/8 and ξ(s) = 0 if s ≥ δ/4. We define an auxiliary function v̂n on U , by v̂n(x) := vn(x̂) and
the desired extended function ṽn on Rd by ṽn(x) = ξ(|x− Px|)vn(x̂).

We claim that:

(46) sup
n∈N

1

εn

∫
Rd

∫
Rd
ηεn(x− y)|ṽn(x)− ṽn(y)| <∞.

To show the claim we first establish the following geometric properties: Let W := {x ∈ Rd\D :
d(x,D) < δ/4} and V := {x ∈ Rd\D : d(x,D) < δ/8}. For all x ∈W and all y ∈ D
(47) |x̂− y| < 2|x− y|.
Since the mapping x → x̂ is smooth and invertible on W it is bi-Lipschitz. While this would
be enough for our argument, we present an argument which establishes the value of the Lipschitz
constant: for all x, y ∈W

(48)
1

4
|x− y| < |x̂− ŷ| < 4|x− y|.

By definition of δ the domain D satisfies the outside and inside ball conditions with radius δ.
Therefore if x ∈W and z ∈ D ∣∣∣∣z − (Px+ δ

x− Px
|x− Px|

)∣∣∣∣ ≥ δ.
Squaring and straightforward algebra yield

(49) |z − Px|2 ≥ 2δ(z − Px) · x− Px
|x− Px|

.

For x ∈W and y ∈ D, using (49) we obtain

|y − x̂|2 − |y − x|2 = |y − Px+ (x− Px)|2 − |y − Px− (x− Px)|2

= 4(y − Px) · (x− Px) ≤ 2

δ
|y − Px|2 |x− Px|

≤ 1

2
|y − Px|2 ≤ |y − x|2 + |x− Px|2 ≤ 2|y − x|2.
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Therefore |y − x̂|2 ≤ 3|y − x|2, which establishes (47).
For distinct x, y ∈W using (49), with z = Py and with z = Px, follows

|x− y| ≥ (x− y) · Px− Py
|Px− Py|

= (x− Px− (y − Py) + Px− Py) · Px− Py
|Px− Py|

≥ |Px− Py| − 1

2δ
(|x− Px| |Py − Px|+ |y − Py| |Py − Px|)

≥ |Px− Py| 3
4
.

Therefore

|x̂− ŷ| = |2Px− x+ 2Py − y| ≤ 2|Px− Py|+ |x− y| ≤
(

8

3
+ 1

)
|x− y| ≤ 4|x− y|.

Since the roles on x, y and x̂, ŷ can be reversed it follows that |x − y| ≤ 4|x̂ − ŷ|. Combining the
estimates establishes (48).

We now return to proving (46). For εn large

1

εn

∫
Rn\D

∫
D

ηεn(x− y)|ṽn(x)− ṽn(y)|dxdy =
1

εn

∫
V

∫
D

ηεn(x− y)|v̂n(x)− v̂n(y)|dxdy

=
1

εn

∫
V

∫
D

ηεn(x− y)|vn(x̂)− vn(y)|dxdy

≤ 4d

εn

∫
V

∫
D

η4εn(x̂− y)|vn(x)− vn(ŷ)|dxdy

≤ 16d

εn

∫
D

∫
D

η4εn(z − y)|vn(x)− vn(z)|dzdy,

where the first inequality follows from (47) and the second follows from the fact that the change of
variables x 7→ x̂ is bi-Lipschitz as shown in (48). Also,

1

εn

∫
Rd\D

∫
Rd\D

ηεn(x− y)|ṽn(x)− ṽn(y)|dxdy =
1

εn

∫
W

∫
W

ηεn(x− y)|ξ(x)v̂n(x)− ξ(y)v̂n(y)|dxdy

≤ 1

εn

∫
W

∫
W

ηεn(x− y)|ξ(x)− ξ(y)||v̂n(x)|dxdy

+
1

εn

∫
W

∫
W

ηεn(x− y)|v̂n(x)− v̂n(y)||ξ(y)|dxdy.

Note that for all x 6= y, we have
ηεn (x−y)

εn
≤ b
|x−y|ηεn(x− y). Therefore:

1

εn

∫
W

∫
W

ηεn(x− y)|ξ(x)− ξ(y)||v̂n(x)|dxdy ≤ b
∫
W

∫
W

ηεn(x− y)
|ξ(x)− ξ(y)|
|x− y|

|v̂n(x)|dxdy

≤ bLip(ξ)

∫
W

∫
W

ηεn(x− y)|v̂n(x)|dxdy

≤ 4d bLip(ξ)‖vn‖L1(D),

where we used (48) and change of variables to establish the last inequality. Also,

1

εn

∫
W

∫
W

ηεn(x− y)|v̂n(x)− v̂n(y)||ξ(y)|dxdy ≤ 4d

εn

∫
W

∫
W

η4εn(x̂− ŷ)|v̂n(x)− v̂n(y)|dxdy

≤ 43d

εn

∫
D

∫
D

η4εn(x− y)|vn(x)− vn(y)|dxdy.
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The first inequality is obtained thanks to the fact that |ξ(y)| ≤ 1 and (48), while the second
inequality is obtained by a change of variables.

Using that∫
D

∫
D

η4εn(x− y)|vn(x)− vn(y)|dxdy ≤ 4d
∫
D

∫
D

ηεn(x− y)|vn(x)− vn(y)|dxdy

by combining the above inequalities we conclude that

sup
n∈N

1

εn

∫
Rd

∫
Rd
ηεn(x− y)|ṽn(x)− ṽn(y)|

≤ C sup
n∈N

(∫
D

∫
D

ηεn(x− y)|vn(x)− vn(y)|dxdy + ‖vn‖L1(D)

)
<∞.

Using the proof of Proposition 3.1 in [3] we deduce that the sequence {ṽn}n∈N is precompact in
L1(Rd) which implies that the sequence {vn}n∈N is precompact in L1(D). �

Remark 4.4. We remark that the difference between the compactness result we proved above and
the one proved in Proposition 3.1 in [3] is the fact that we consider functions bounded in L1, instead
of bounded in L∞ as was assumed in [3]. Nevertheless, after extending the functions to the entire
Rd as above, one can directly apply the proof in [3] to obtain the desired compactness result.

Proposition 4.5. Let D be a bounded open set in Rd, which is homeomorphic to a C2 domain D̃
via a bi-Lipschits mapping Θ. Let {εn}n∈N be a sequence of positive numbers converging to 0 and

suppose that the sequence of functions {un}n∈N ⊆ L1(D) satisfies:

sup
n∈N
‖un‖L1(D) <∞,

sup
n∈N

TVεn(un) <∞.

Then, {un}n∈N is precompact in L1(D).

We remark that the proposition applies to D = (0, 1)d, for example by using line-wise linear
rescalling.

Proof. Suppose {un}n∈N ⊆ L1(D) is as in the statement. As in Lemma 4.3, we can assume that η
is of the form η(t) = a if t < b and η(t) = 0 for t ≥ b, where a and b are two positive constants. For
every n ∈ N consider the function vn := un ◦Θ and set η̂(s) := η (Lip(Θ) s), s ∈ R.

Since Θ is bi-Lipchitz we can use a change of variables, to conclude that there exists a constant
C > 0 (only depending on Θ) such that:∫

D̃

|vn(x)|dx ≤ C
∫
D

|un(y)|dy,

and

C

εn

∫
D

∫
D

ηεn(x− y) |un(x)− un(y)| dxdy ≥ 1

εn

∫
D̃

∫
D̃

ηεn (Θ(x)−Θ(y)) |vn(x)− vn(y)| dxdy

≥ 1

εn

∫
D̃

∫
D̃

η̂εn(x− y) |vn(x)− vn(y)| dxdy.

We conclude that the sequence {vn}n∈N ⊆ L1(D̃) satisfies the hypothesis of Lemma 4.3 (taking

η := η̂). Therefore, {vn}n∈N is precompact in L1(D̃), which implies that {un}n∈N is precompact in

L1(D). �
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Corollary 4.6. Let D be a bounded open set in Rd. Let {εn}n∈N be a sequence of positive numbers

converging to 0 and suppose that the sequence of functions {un}n∈N ⊆ L1(D) satisfies:

sup
n∈N
‖un‖L1(D) <∞,

sup
n∈N

TVεn(un) <∞.

Then, {un}n∈N is locally precompact in L1(D).
In particular if

sup
n∈N
‖un‖L∞(D) <∞,

then, {un}n∈N is precompact in L1(D).

Proof. If B is a ball compactly contained in D then the pre compactness of {un}n∈N in L1(B)
follows from Lemma 4.3, using that TVεn(un|B) ≤ TVεn(un). We note that if compactness holds on
two sets D1 and D2 compactly contained in D, then it holds on their union. Therefore it holds on
any set compactly contained in D, since it can be covered by finitely many balls contained in D.

The compactness in L1(D) under the L∞ boundedness follows via a diagonal argument. This
can be achieved by approximating D by compact subsets: Dk ⊂ D, D = ∪kDk, and using that
limk→∞ supn∈N ‖un‖L1(D\Dk) = 0.

�

5. Gamma Convergence of Total Variation on Graphs

5.1. Proof Main result. Let D = (0, 1)d and let {εn}n∈N be a sequence of positive numbers
converging to 0 satisfying (8).

Proof of Theorem 1.1. We use the sequence of transportation maps {Tn}n∈N considered in Section
2.2. We work with ω ∈ Ω for which (26), (24), (25) in case d = 1, d = 2 and d ≥ 3 respectively. By
the results in Section 2.2. the complement in Ω of such ω’s is contained in a set of probability zero.

Step 1: Suppose first that η is of the form η(t) = a for t < b and η = 0 for t > b, where a, b are
two positive constants. Note it does not matter what value we give to η at b.

Liminf inequality: Assume that un
TL1

−→ u as n → ∞. Since Tn]ν0 = νn, using the change of
variables (15) it follows that

(50) T̃ V n,εn(un) =
1

εn

∫
D×D

ηεn (Tn(x)− Tn(y)) |un ◦ Tn(x)− un ◦ Tn(y)| dxdy.

The key idea in the proof is that the estimates of the Section 2.2 on transportation maps provide
that the transportation happens on a length scale which is small compared to εn. By taking a kernel
with slightly smaller ”radius” than εn we can then obtain a lower bound, and by taking a slightly
larger radius a matching upper bound on the graph total variation. In particular, note that for
Lebesgue almost every (x, y) ∈ D ×D
(51) |Tn(x)− Tn(y)| > bεn ⇒ |x− y| > bεn − 2‖Id− Tn‖∞.

Thanks to the assumptions on {εn}n∈N and (26), (24), (25) in case d = 1, d = 2 and d ≥ 3
respectively, for large enough n ∈ N:

ε̃n := εn −
2

b
‖Id− Tn‖∞ > 0.

By (51), for large enough n and for almost every (x, y) ∈ D ×D,

η

(
|x− y|
ε̃n

)
≤ η

(
|Tn(x)− Tn(y)|

εn

)
.
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Let ũn = un ◦ Tn. Thanks to the previous inequality and (50), for large enough n

T̃V n,εn(un) ≥ 1

εd+1
n

∫
D×D

η

(
|x− y|
ε̃n

)
|ũn(x)− ũn(y)| dxdy

=

(
ε̃n
εn

)d+1

TVε̃n (ũn) .

Note that ε̃n
εn
→ 1 as n → ∞ and that un

TL1

−→ u implies ũn
L1(D)−→ u as n → ∞. We deduce from

Theorem 4.1 that lim infn→∞ TVε̃n (ũn) ≥ σηTV (u) and hence:

lim inf
n→∞

T̃ V n,εn(un) ≥ σηTV (u).

Limsup inequality: By Remark 2.6 it is enough to consider Lipschitz continuous functions
u : D → R. Define un to be the restriction of u to the first n data points X1, . . . , Xn. Consider
ε̃n := εn+ 2

b‖Id−Tn‖∞ and let ũn = un◦Tn. Then note that for Lebesgue almost every (x, y) ∈ D×D

η

(
|Tn(x)− Tn(y)|

εn

)
≤ η

(
|x− y|
ε̃n

)
.

Then for all n

1

ε̃d+1
n

∫
D×D

η

(
|Tn(x)− Tn(y)|

εn

)
|ũn(x)− ũn(y)| dxdy

≤ 1

ε̃n

∫
D×D

ηε̃n (x− y) |ũn(x)− ũn(y)| dxdy.
(52)

Also

1

ε̃n

∣∣∣∣∫
D×D

ηε̃n(x− y)|u(x)− u(y)| dxdy −
∫
D×D

ηε̃n(x− y)|u ◦ Tn(x)− u ◦ Tn(y)|dxdy
∣∣∣∣

≤ 2

ε̃n

∫
D×D

ηε̃n(x− y)|u(x)− u ◦ Tn(x)|dxdy

≤2C Lip(u)

ε̃n

∫
D

|x− Tn(x)|dx,

(53)

where C =
∫
Rd η(h)dh. The last term of the last expression goes to 0 as n→∞, yielding

lim
n→∞

1

ε̃n

(∫
D×D

ηε̃n(x− y)|u(x)− u(y)|dxdy −
∫
D×D

ηε̃n(x− y)|u ◦ Tn(x)− u ◦ Tn(y)|dxdy
)

= 0

Since εn
ε̃n
→ 1 as n→∞, using (52) we deduce :

lim sup
n→∞

T̃ V n,εn(un) = lim sup
n→∞

1

ε̃d+1
n

∫
D×D

η

(
|Tn(x)− Tn(y)|

εn

)
|u ◦ Tn(x)− u ◦ Tn(y)| dxdy

≤ lim sup
n→∞

1

ε̃n

∫
D×D

ηε̃n(x− y) |u ◦ Tn(x)− u ◦ Tn(y)| dxdy

= lim sup
n→∞

TVε̃n(u) ≤ σηTV (u),

where the last inequality follows from the proof of Theorem 4.1, specifically inequality (42).
Step 2: Now consider η to be a piecewise constant function with compact support, satisfying

(K1)-(K3). In this case, we can write η =
∑l
k=1 ηk for some l and functions ηk as in Step 1. For this

step of the proof we denote by T̃ V
k

n,εn the total variation function on the graph using the function
ηk.
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Liminf inequality: Assume that un
TL1

−→ u as n→∞. By Step 1:

lim inf
n→∞

T̃ V n,εn(un) = lim inf
n→∞

l∑
k=1

T̃ V
k

n,εn(un) ≥
l∑

k=1

lim inf
n→∞

T̃ V
k

n,εn(un) ≥
l∑

k=1

σηkTV (u) = σηTV (u)

Limsup inequality: By Remark 2.6 it is enough to prove the limsup inequality for u : D → R
Lipschitz. Consider un as in the proof of the limsup inequality in Step 1. Then

lim sup
n→∞

T̃ V n,εn(un) = lim sup
n→∞

l∑
k=1

T̃ V
k

n,εn(un)

≤
l∑

k=1

lim sup
n→∞

T̃ V
k

n,εn(un)

≤
l∑

k=1

σηkTV (u) = σηTV (u)

Step 3: Assume η is compactly supported and satisfies (K1)-(K3).
Liminf Inequality: Note that we can find an increasing sequence of piecewise constant functions

ηk : [0,∞) → [0,∞) (η from Step 2 is used as ηk here), with ηk ↗ η as k → ∞ a.e. Denote by

T̃ V
k

n,εn the graph TV corresponding to ηk. If un
TL1

−→ u as n → ∞, by Step 2 σηkTV (u) ≤

lim infn→∞ T̃ V
k

n,εn(un) ≤ lim infn→∞ T̃ V n,εn(un) for every k ∈ N. The monotone convergence

theorem implies that limk→∞ σηk = ση and so we conclude that σηTV (u) ≤ lim infn→∞ T̃ V n,εn(un).
Limsup inequality: As in Steps 1 and 2 it is enough to prove the limsup inequality for u

Lipschitz. Consider un as in the proof of the limsup inequality in Steps 1 and 2. Analogously to the
proof of the liminf inequality, we can find a decreasing sequence of functions ηk : [0,∞) → [0,∞)
(of the form considered in Step 2), with ηk ↘ η as k → ∞ a.e. Proceeding in an analo-
gous way to the way we proceeded in the proof of the liminf inequality we can conclude that

lim supn→∞ T̃ V n,εn(un) ≤ σηTV (u).
Step 4: Consider general η, satisfying (K1)-(K3). Note that for the liminf inequality we can use

the proof given in Step 3. For the limsup inequality, as in the previous steps we can assume that u
is Lipschitz and we take un as in the previous steps. Let α > 0 and define ηα : [0,∞)→ [0,∞) by

ηα(t) := η(t) for t ≤ α and ηα(t) = 0 for t > α. We denote by T̃ V
α

n,εn the graph TV using ηα.
Note that:

T̃ V n,εn(un) =T̃ V
α

n,εn(un)

+
1

εd+1
n

∫
|Tn(x)−Tn(y)|>αεn

η

(
|Tn(x)− Tn(y)|

εn

)
|u ◦ Tn(x)− u ◦ Tn(y)| dxdy

(54)

Let us find bounds on the second term on the right hand side of the previous equality for large n.
Indeed since for almost every (x, y) ∈ D×D it is true that |x− y| ≤ |Tn(x)−Tn(y)|+ 2‖Id−Tn‖∞
and |Tn(x)− Tn(y)| ≤ |x− y|+ 2‖Id− Tn‖∞ we can use the fact that ‖Id−Tn‖∞εn

→ 0 as n→∞ to

conclude that for large enough n, for almost every (x, y) ∈ D ×D for which |Tn(x)− Tn(y)| > αεn
it holds that |x− y| ≤ 2|Tn(x)− Tn(y)| and |Tn(x)− Tn(y)| ≤ 2|x− y|. From this we can conclude
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that for large enough n

1

εd+1
n

∫
|Tn(x)−Tn(y)|>αεn

η

(
|Tn(x)− Tn(y)|

εn

)
|u ◦ Tn(x)− u ◦ Tn(y)| dxdy

≤ 1

εd+1
n

∫
|x−y|>αεn/2

η

(
|x− y|

2εn

)
|u ◦ Tn(x)− u ◦ Tn(y)| dxdy

≤2 Lip(u)

εd+1
n

∫
|x−y|>αεn/2

η

(
|x− y|

2εn

)
|x− y|dxdy

To find bounds on the last term of the previous chain of inequalities, consider the change of variables
(x, y) ∈ D ×D 7→ (x, h) where x = x and h = x−y

2εn
, we deduce that:

2

εd+1
n

∫
|x−y|>αεn/2

η

(
|x− y|

2εn

)
|x− y|dxdy ≤ C

∫
|h|>α

4

η(h)|h|dh,

where C does not depend on n or α. From the previous inequalities, (54) and Step 3 we deduce
that

lim sup
n→∞

T̃ V n,εn(un) ≤ lim sup
n→∞

T̃ V
α

n,εn(un) + Lip(u)C

∫
|h|>α

4

η(h)|h|dh

≤σηαTV (u) + Lip(u)C

∫
|h|>α

4

η(h)|h|dh

Finally, given the assumptions (K1)-(K3) on η, sending α to infinity we conclude that

lim sup
n→∞

T̃ V n,εn(un) ≤ σηTV (u)

�

We now present the proof of Theorem 1.2 on compactness.

Proof. Assume that {un}n∈N is a sequence of functions with un ∈ L1(D, νn) satisfying the assump-
tions of the theorem. As in Lemma 4.3 and Proposition 4.5 without loss of generality we can assume
that η is of the form η(t) = a if t < b and η(t) = 0 for t ≥ b, for some a and b positive constants.

Consider the sequence of transportation maps {Tn}n∈N from Section 2.2. Since {εn}n∈N satisfies
(8), estimates (24), (25), and (26), imply that for Lebesgue a.e. z, y ∈ D with |Tn(z)−Tn(y)| > bεn
it hold that |z − y| > bεn − 2‖Id − Tn‖∞. For large enough n, we set ε̃n := εn − 2‖Id−Tn‖∞

b > 0.
We conclude that for large n and Lebesgue a.e. z, y ∈ D:

η

(
|z − y|
ε̃n

)
≤ η

(
|Tn(z)− Tn(y)|

εn

)
.

Using this, we can conclude that for large enough n:

1

εd+1
n

∫
D

∫
D

η

(
|z − y|
ε̃n

)
|un ◦ Tn(z)− un ◦ Tn(y)| dzdy

≤ 1

εd+1
n

∫
D

∫
D

η

(
|Tn(z)− Tn(y)|

ε̃n

)
|un ◦ Tn(z)− un ◦ Tn(y)| dzdy

= T̃ V n,εn(un).

Thus

sup
n∈N

1

εd+1
n

∫
D

∫
D

η

(
|z − y|
ε̃n

)
|un ◦ Tn(z)− un ◦ Tn(y)| dzdy <∞.
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Finally noting that ε̃n
εn
→ 1 as n→∞ we deduce that:

sup
n∈N

1

ε̃n

∫
D

∫
D

ηε̃n (z − y) |un ◦ Tn(z)− un ◦ Tn(y)| dzdy <∞.

By Proposition 4.5 we conclude that {un ◦ Tn}n∈N is precompact in L1(D) and hence {un}n∈N is

precompact in TL1. �

Finally, to prove Corollary 1.3 on the Γ convergence of perimeter, note that if {An}n∈N is such

that An ⊆ {X1, . . . , Xn}n∈N and χAn
TL1

−→ χA as n→∞ for some A ⊆ D, then the liminf inequality
follows automatically from the liminf inequality in Theorem 1.1. The limsup inequality is not
immediate, since we cannot use the density of Lipschitz functions as we did in the proof of Theorem
1.1 given that we restrict our attention to characteristic functions.

We follow the proof of Proposition 3.5 in [19] and take advantage of the coarea formula of

the energies T̃ V n,εn . In fact, consider a measurable subset A of D. By the limsup inequal-
ity in Theorem 1.1, we know there exists a sequence {un}n∈N (with un ∈ L1(νn)) such that

lim supn→∞ T̃ V n,εn(un) ≤ σηTV (χA). It is easy to check that the functionals T̃ V n,εn satisfy the
coarea formula:

T̃ V n,εn(un) =

∫ ∞
−∞

T̃ V n,εn(χ{un>s})ds.

Fix 0 < δ < 1
2 . Then in particular we have:∫ 1−δ

δ

T̃ V n,εn(χ{un>s})ds ≤ T̃ V n,εn(un).

For every n we can find sn ∈ (δ, 1 − δ) such that T̃ V n,εn(χ{un>sn}) ≤ 1
1−2δ T̃ V n,εn(un). De-

fine Aδn := {un > sn}. It is straightforward to see that χAδn
TL1

−→ χA as n → ∞ and that

lim supn→∞ T̃ V n,εn(Aδn) ≤ σηTV (χA). We can now take δ arbitrarily close to 0 and use a diagonal

argument to obtain sets {An}n∈N such that χAn
TL1

−→ χA as n→∞ and lim supn→∞ T̃ V n,εn(χAn) ≤
σηTV (χA).

Remark 5.1. There is an alternative proof of the limsup inequality above. It is possible to proceed
in a similar fashion as in the proof of the limsup inequality in Theorem 1.1. In this case, instead
of approximating by Lipschitz functions, one would consider the characteristic functions of E ∩D
where E is a subset of Rd with smooth boundary. As in the proof of Theorem 1.1, the key is to
show that for step kernels (η(r) = b if r < a and zero otherwise), and sets G := E ∩D

lim
n→∞

T̃ V n,εn(χG) = TV (χG).

To do so one needs a substitute for estimate (53). The needed estimate follows from the estimate∫
D

|χG(x)− χG(Tn(x))|dx . Per(G : D) ||Id− Tn||∞

where Per(G : D) is the relative perimeter of G in D. We do not prove this estimate, but remark
that it has a straightforward proof. Finally, noting that this class of sets is dense with respect to
perimeter (see Remark 3.42 in [5]) and using Remark 2.6 we obtain the limsup inequality for the
characteristic function of any measurable set.
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5.2. Extension to different sets of points. Consider D = (0, 1)d. Instead of random, uniformly
distributed, independently chosen points X1, . . . , Xn, . . . one can consider different sets of points.
The only requirement is that one has estimates on how well the sequence of points approximates
the Lebesgue measure on D. In particular one would need to obtain analogues of estimates (24),
(25), and (26). That is one would need to show that

(55) lim sup
n→∞

n1/d‖Id− Tn‖∞
f(n)

≤ C

for some nonnegative function f : N→ (0,∞). The map Tn in this context transports the Lebesgue
measure ν0 to the empirical measure determined by the new set of points (not necessarily randomly
chosen with uniform distribution).

We remark that f must be bounded from below, since for any collection V = {X1, . . . , Xn} in D

sup
y∈D

dist(y, V ) ≥ cn−1/d

and thus n1/d‖Id− Tn‖∞ ≥ c.
If (55) holds and if εn is a positive sequence converging to zero such that limn→∞

f(n)
n1/d

1
εn

= 0
then the conclusion of the Theorem 1.1 holds. We note that almost no modifications to the proof
are needed.

One special case is when we consider X1, . . . , Xn, . . . a sequence of grid points on diadicaly
refining grids. In this case one can take f(n) = 1 for all n and εn → 0 such that limn→∞

1
n1/dεn

= 0.

Note that our results imply Γ-convergence in the TL1 metric, however in this particular case, this
is equivalent to the L1 -metric considered in [19] and [11] where for a function defined on the grid
points we associate a function defined on D by simply setting the function to be constant on the
grid cells. This follows from Proposition 3.6.

5.3. Extension to more general domains. The purpose of this subsection is to extend the results
obtained for the cube (0, 1)d to more general bounded domains D with continuous boundary. To
frame our approach consider X ′1, . . . , X

′
n to be independent samples of the uniform distribution D.

Let ν′n to be the empirical measure associated to the data points and ν′0 the Lebesgue measure on D,
rescaled by Vol(D). If one can find a sequence of transportation maps T ′n : D → D with T ′n]ν

′
0 = ν′n

and obtain an upper bound on how fast ||Id− T ′n||∞ converges to zero, then one can find a scaling
of ε with respect to n for which the rescaled total variation on the graphs determined by the points
X ′1, X

′
2, . . . Γ-converges (in the TL1 metric) to

ση
Vol(D)TV as n → ∞. Here TV denotes the total

variation on D. To obtain this result it is enough to imitate the proof of Theorem 1.1 in Subsection
5.1, noting that almost no modifications to the proof are required.

Thus the goal is to determine for general domains how well does the empirical measure approx-
imate the Lebesgue measure. While this question deserves a careful investigation, here we only
present two simple criteria, which still apply to a broad class of domains for which estimates on
||Id− T ′n||∞ are as good as those for the domain (0, 1)d.

Proposition 5.2. Let D be an open and bounded domain with Lipschitz boundary. Let ν′0 be the
Lebesgue measure on D rescaled by Vol(D). Let X ′1, . . . , X

′
n, . . . be a sequence of i.i.d. random

vectors chosen uniformly on D and let ν′n = 1
n

∑n
i=1 δX′

i
be the corresponding empirical measures.

Assume that

(i) there exists a volume preserving bi-Lipschitz mapping Θ : (0, L)d → D for some L > 0, or
(ii) D is diffeomorphic to B(0, 1) via a C1,α mapping Θ : D → B(0, 1).

Then, there exists a sequence {T ′n}n∈N of transportation maps T ′n]ν
′
0 = ν′n and such that ‖Id−T ′n‖∞

satisfies (26), (24), (25) for d = 1, d = 2 and d ≥ 3 respectively. In particular Theorems 1.1 and
1.2 hold for the domain D.
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Remark 5.3. It was shown in [23], and an explicit construction was given in [25], that there exists a
bi-Lipschitz volume preserving map between the unit ball and the unit cube (after rescaling by the
volume of the unit ball). Thus the case (i) of Lemma above applies to D = B(0, 1).

Proof. Consider the case that (i) holds. By rescaling, we can assume that L = 1. The points
Xi := Θ(X ′i) are independent and uniformly distributed on (0, 1)d. Using the maps Tn of Subsection
2.2 we define T ′n := Θ−1 ◦ Tn ◦ Θ. Since Θ is bi-Lipschitz, the maps T ′n are such that ||Id − T ′n||∞
has the same rate of convergence to zero as ||Id − Tn||∞. This in particular implies that Theorem
1.1 is also true when considering D, with the same scaling for εn. The compactness also follows.

The proof in the case that (ii) holds depends on Lemma 5.4 we present below. We use the
diffeomorphism Θ to obtain a probability measure µ̂ :=

(
Θ−1

)
]
ν′0 defined on B(0, 1). Since Θ

is a C1,α diffeomorphism, µ̂ is absolutely continuous with respect to the Lebesgue measure and
ρ := dµ̂

dx is Cα and bounded below by a positive constant. Note that the points X̂i :=
(
Θ−1

)
(X ′i)

are independent and distributed according to µ̂. We can obtain maps T̂n as in Lemma 5.4 and check
that the maps T ′n := Θ ◦ T̂n ◦Θ−1 satisfy the desired properties.

�

Lemma 5.4. Let ρ : B(0, 1)→ (0,∞) be a Hölder continuous function such that
∫
B(0,1)

ρ(x)dx = 1.

Let X̂1, . . . , X̂n, . . . be i.i.d. random vectors on B(0, 1) chosen according to the density ρ. Denote by
µ̂n := 1

n

∑n
i=1 δX̂i the empirical measure associated to the first n data points and by µ̂ the measure

with density ρ: dµ̂(x) = ρ(x)dx. Then, there exists a sequence T̂n : B(0, 1) → B(0, 1) of (random)

transportation maps with T̂n]µ̂ = µ̂n and such that ‖Id − T̂n‖∞ satisfy the analogous estimates to
(26), (24), (25) for d = 1, d = 2 and d ≥ 3 respectively.

Proof. Step 1: If ρ is identically equal to 1/Vol(B(0, 1)), we can use Proposition 5.2 case (i), and
Remark 5.3 to deduce the result.

Step 2: Denote by ν̂ the Lebesgue measure on B(0, 1) rescaled by Vol(B(0, 1)). By Brenier’s
theorem (see [48]) there exists a convex function Φ on B(0, 1) such that ∇Φ]ν̂ = µ̂. Furthermore,
∇Φ is the unique optimal transportation map for the quadratic cost, that is ∇Φ minimizes (18) with
p = 2 (where µ̂ plays the role of ν and ν̂ the role of µ). The function Φ, called the transportation
potential, satisfies a Monge–Ampere equation. The deep boundary regularity results for solutions
of the Monge–Ampere equation by Caffarelli [18] (see also [17], and Urbas [46]) imply that Φ ∈ C2,β

up to the boundary, for some β > 0. Therefore the transportation map ∇Φ is C1,β up to the
boundary and thus Lipschitz. By a similar reasoning, (∇Φ)

−1
is Lipschitz as well. Since X̂1, . . . , X̂n

are i.i.d samples of measure µ̂, it follows that the random variables Y1 := (∇Φ)
−1

(X̂1), . . . , Yn :=

(∇Φ)
−1

(X̂n) are independent and uniformly distributed on B(0, 1). Let ν̂n be the empirical measure

corresponding to Y1, . . . , Yn. Let T̃n be the sequence of transportation maps between ν̂ and ν̂n which
satisfy the conclusions of this lemma (which exist by Step 1). Then T̂n := ∇Φ ◦ T̃n ◦ (∇Φ)

−1
are

transportation maps between µ̂ and µ̂n and satisfy the desired estimates. �

5.4. Example: An application to clustering. Over the last couple of years a number of algo-
rithms involving total-variation and related functionals have been introduced for the purposes of
data analysis [9, 12, 13, 16, 14, 15, 27, 28, 39, 42, 43]. Here we present an illustration of how the
Γ-convergence results can be applied to functionals in data analysis. The example we choose is
simple and its primary goal is to give a hint of the possibilities. We intend to carefully investigate
the more relevant functionals in future works.

Let D be the planar domain depicted on Figure 1, which we define as follows. Let Φt be the flow
map of the vector field v(x, y) := (sin(x) cos(y),− cos(x) sin(y)). Let Ψ = Φ1 and D = Ψ([−1, 1]2).
Since v is divergence free and smooth, Ψ is a bi-Lipschitz volume-preserving homeomorphism be-
tween [−1, 1]2 and D.
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Consider the problem of dividing the domain into two clusters of equal sizes. In the continuum
setting the problem can be posed as finding Amin ⊂ D such that F (A) = TV (χA), is minimized
over all A such that Vol(D) = 2 Vol(A). It is not hard to see that there are exactly two minimizers
( Amin and its complement) of the energy, see Figure 2.

Figure 1. Domain D Figure 2. Energy minimizers

In the discrete setting assume that n is even and that Vn = {X1, . . . , Xn} are random points in
D. The clustering problem can be described as finding Ān ⊂ Vn, which minimizes

Fn(An) = T̃ V n,εn(χAn)

among all An ⊂ Vn with ]An = n/2. We can extend the functionals Fn and F to be equal to +∞
for sets which do not satisfy the volume constraint.

The kernel we consider for simplicity is the one given by η(x) = 1 if |x| < 1 and η(x) = 0
otherwise. While we did not consider the graph total variation with this constraint in the paper
thus far, we note that Γ-convergence of graph total variation on domains like D was considered in
Subsection 5.3 (Note that the corresponding Γ-convergence for perimeter also holds). The liminf
inequality in the constraint case follows directly. To show the limsup inequality, one can use Remark
5.1 to obtain it first for sets G which satisfy the volume constraint and are of the form G = E ∩D
where E is a set with smooth boundary. After a careful modification to the density argument in
Remark 3.43 in [5] one can impose a volume constraint to the approximating sequences and finally
use Remark 2.6 to obtain the limsup inequality in the general case.

The compactness result implies that if ε satisfy (8), then along a subsequence, the minimizers
Ān of Fn converge to Ā which minimizes F . Thus our results provide sufficient conditions which
guarantee the consistency (convergence) of the scheme as the number of data points increases to
infinity. That is, they indicate that for ε(n) sufficiently large the minimizers converge (along a
subsequence) to the desired set.

Here we illustrate the minimizers corresponding to different ε on a fixed dataset. On Figure 4 we
present the discrete minimizer when ε is taken large enough. Note that this minimizer resembles
the one in the continuous setting in Figure 2. In contrast, on Figure 6 we present a minimizer when
ε is taken too small. Note that in this case the energy of such minimizer is zero. The solutions are
computed by using the code of [14].
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Figure 3. Graph with n=500, ε = 0.18 Figure 4. Minimizers when ε = 0.18

Figure 5. Graph with n=500, ε = 0.1 Figure 6. A minimizer when ε = 0.1
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Appendix A. Approximating surface tensions

Here we show that surface tensions that correspond to approximating diffuse interface functionals
(36) converge to the surface tension of the sharp-interface problem as k →∞.

Consider a unit vector e ∈ Rd. Denote by Ce the set of d− 1 dimensional cubes, centered at the
origin and contained in the orthogonal complement of e. For C ∈ Ce we denote by TC the set of
points x whose projection on e⊥ is in C and finally for given C ∈ Ce consider XC to be the class
of mesurable functions u : Rd → [0, 1] which are C-periodic and satisfy lim〈x,ε〉→∞ u(x) = 1 and
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lim〈x,ε〉→−∞ u(x) = 0. We define the energy,

F (k)(u, TC) :=

∫
x∈TC

∫
Rd
η(h)(u(x+ h)− u(x))2dxdh+

∫
x∈TC

Wk(u(x))dx, u ∈ L1(D).

We can now specify σkη :

(56) σkη := inf {F (k)(u, TC)/ | C| : u ∈ XC , C ∈ Ce } ,

An important remark is that σkη is independent of the choice of unit vector e. In fact this follows
from the isotropy assumed for η. From now on we take e = (1, 0, . . . , 0).

The minimization problem defining σkη in (56) is called the optimal profile problem associated to
η and Wk and it basically quantifies the least expensive way to transition from state 0 to state 1,
where the cost is measured by the energy F (k)(·, TC). In [3] it was proved that the infimum in (56)
is actually a minimum. Moreover, it is proved that for any C ∈ Ce there exists a function ûk : Rd →
[0, 1] which is C-periodic, only depends on the first coordinate, is increasing in the first coordinate
and together with C solves (56). Since the energy F (k)(·, TC) is invariant under translations in
the first coordinate we select the optimal function ûk so that 0 = sup {x1 : ûk(x) < 1/2 }, by first
translating if necessary. From now on we take C = {0}× [−1/2, 1/2]× · · · × [−1/2, 1/2]. Intuitively
because of the double-well potential term in F (k)(·, TC) we should expect that as k gets bigger, the
functions ûk get closer to the sharp interface û given by

û(x) :=

{
1 if x1 ≥ 0
0 if x1 < 0

This is precisely the content of the next proposition. Note that a direct computation shows that
ση defined in (6) satisfies ση =

∫
TC

∫
Rd η(h)|û(x+ h)− û(x)|dxdh.

Lemma A.1. For the functions {ûk}k∈N and û considered above, ûk(x) → û(x) as k → ∞ for

almost every x ∈ Rd.

Proof. First of all note that it is enough to prove the result for a.e. point in TC by C-periodicity.
Consider {ak}k∈N a decreasing sequence of positive numbers converging to 0 with a1 < 1/2. Then∫
TC

Wk(ûk)dx ≥
∫
{ x∈Tc|ak<ûk(x)<1−ak }

Wk(ûk)dx ≥ kW (ak) Vol ({x ∈ Tc : ak < ûk(x) < 1− ak})

This implies,

ση ≥ σkη ≥ kW (ak) Vol ({x ∈ Tc : ak < ûk(x) < 1− ak })

Therefore

ση/(kW (ak)) ≥ Vol ({x ∈ Tc | ak < ûk(x) < 1− ak })

Let us choose the sequence {ak}k∈N in such a way that kW (ak) → ∞ as k → ∞ . From the fact
that ûk only depends on x1 and that it is increasing in x1, we conclude that if x1 > ση/(kW (ak))
then ûk(x) ≥ 1− ak and if x1 < −ση/(kW (ak)) then ûk(x) ≤ ak. This immediately implies ûk → û
a.e. in Tc. �

Lemma A.2.

(57) lim
k→∞

σkη = ση.
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Proof. Indeed, by the previous lemma and Fatou’s lemma

ση =

∫
TC

∫
Rd
η(h)|û(x+ h)− û(x)|dhdx

=

∫
TC

∫
Rd
η(h)|û(x+ h)− û(x)|2dhdx

=

∫
TC

∫
Rd
η(h) lim

k→∞
|ûk(x+ h)− ûk(x)|2dhdx

≤ lim inf
k→∞

∫
TC

∫
Rd
η(h)|ûk(x+ h)− ûk(x)|2dhdx

≤ lim inf
k→∞

σkη ≤ lim sup
k→∞

σkη ≤ ση.

�
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