I'~-CONVERGENCE OF PERIMETER ON RANDOM GEOMETRIC GRAPHS

NICOLAS GARCIA TRILLOS AND DEJAN SLEPCEV

ABSTRACT. We study the perimeter on the sets V,, of n random, uniformly distributed points in a
Euclidean domain. To define the notion of perimeter on a finite set of points, the set is considered
as a weighted graph, where the weights are assigned to edges connecting pairs of points based on
their distances. The perimeter of A, C V4 is defined by summing the weights of edges between
Ap and V,\A,. We investigate under which choice of weights do the functionals which assign
the graph perimeter converge to the perimeter in the Euclidean space as the number of points n
goes to infinity. In particular, for £(n) such that significant weight is given to edges of length up
to e(n) we investigate under which scaling of € on n does the convergence hold. We consider this
question in the setting of I'-convergence and consider it for total-variation functional on graphs
(which extends the notion of the perimeter).

1. INTRODUCTION

Our research is motivated by the study of point clouds and the analysis of the information they
contain. By a point cloud we mean a finite set of points in the Euclidean space RY. One standard
approach to exploring the structure of a data cloud is to define a weighted graph to represent it.
Points become vertices, while the distances between them are used to assign weights to edges. In a
variety of tasks such as classification and clustering it is useful to have information about a perimeter
of a subset of the point cloud. To be precise, let V = {X7,..., X, } be a point cloud. Let n be a
kernel, that is, let 7 : RN — [0, 00) be a radially symmetric, radially decreasing, function decaying
to zero sufficiently fast. Typically the kernel is appropriately rescaled to take into account data
density. In particular, let 7. depend on a length scale € so that significant weight is given to edges
connecting points up to distance e. We assign for 4, j € {1,...,n} the weights by

wij = 1e(Xi — Xj)
and define the graph perimeter of A C V by

(1) Per(A)=2 Y >

X, €A XjEV\A

The graph perimeter is also known as the cut capacity, if we thing of cutting the edges between
A and its complement. It can be effectively used as a term in functionals which give a variational
description to classification and clustering tasks [9] 12| T3] 16l T4l [T5] 27, 28] B2} B39] 42} 43].

It is important to understand when is the graph perimeter defined above a good notion of a
perimeter in the variational setting, especially for the case that the number of data points is large.
To formulate this question mathematically we assume that the data points are random independent
samples of an underlying measure p. In a practical data-analytic setting, the data considered often
have some underlying, lower dimensional, structure. We make the “manifold assumption” that p
is supported on a d-dimensional manifold in RY and that p has a continuous density with respect
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to volume form on the manifold. The question is if the perimeter computed on the graph based
on point cloud is a good (in a variational sense) approximation of the perimeter on the manifold.
It is important for determining if the minimizers of functionals involving perimeter defined on the
graphs converge, as the number of data points increases (n — 00), to a minimizer of the appropriate
limiting functional in the continuum setting. Further question is to determine for what scaling of
on n does the convergence hold. For computational considerations one desires to take € small, but
the question is how small € can one choose when n is large, so that the graph structure still contains
enough information for the graph perimeter to keep the needed properties.

In this paper we take the first, but in our opinion crucial step in investigating the above questions
rigorously. Our main result is on a localized version of the above question. Namely we assume that
data belong to (0,1)¢ (which can be thought as the coordinate chart for the manifold supporting p),
and furthermore that on (0,1)¢ the points are drawn with uniform distribution (which is relevant
locally given that we assumed that p varies continuously). While one can consider (0,1)¢ in a
periodic setting, and thus entirely sidestep discussing the boundary of the domain, we chose to
consider the question on bounded domains D in Euclidean setting. We first consider D = (0, 1)¢,
and then extend the result to more general domains.

1.1. Setting and the main results. Consider D = (0, 1)d, the unit cube in R%, and assume n data
points X1,...,X,, (ii.d. random vectors) are chosen uniformly on D. We construct a graph on the
set of these n data points using an isotropic kernel i : RY — [0, c0) and a parameter £ > 0 by setting
the weight of the edge between X; and X; to be W; ; := n. (X; — X;), where 1c(2) := 27 (£). The
total variation of a function u defined on a graph is typically defined as

(2) ZWi,ﬂU(Xv:) — u(Xj)l.

We note that the total variation is a generalization of perimeter since for a set A its perimeter is
nothing but the total variation of x 4, the characteristic function of A.

Having limits as n — oo in mind, we define the graph total variation to be the following rescaled
form of the functional above:

—_ 11
(3) TVie(u) = —— > Wi,
,J

u(Xi) = u(X;)]-

For a given scaling of ¢ with respect to n, we study the limiting behavior of TV n,e(n) as the
number of points n — co. The limit is considered in the variational sense of I'-convergence. Before
we state it precisely, we have to define the topology with respect to which the I'-convergence is
considered. To be able to compare functions defined on different sets of random points we define
what we call the T'L' metric space. We discuss this TL! metric in detail in Section [3| Here we just
give an idea regarding the type of convergence it provides. We denote by vy the Lebesgue measure
restricted to the domain D and by v, the empirical measure associated to the first n data points,
that is:

17l
4 n = — 0x,,
(4) v n;X’

It is known that except on a set of probability zero the sequence of measures {v,}, . converges
weakly to v9. By the optimal transportation theory (discussed in Subsection [2.1]) there exists a
sequence of Borel maps T), : D — D with v, = Ty (i.e. T;, transports vy to v,) such that:

(5) lim |z — T (z)|dx = 0.
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A sequence of functions {uy }, o, Where u, belongs to L*(D, ), converges to u € L'(D,1p) in the
TL! sense if the sequence {u, 0Ty}, ey converges in LY(D,vp) to u. It is worth remarking that
the notion of TL! convergence is independent of the choice of maps {T},cn above, as long as (5]
holds. For further details see Section [3] and in particular Proposition
Since the kernel 7 is assumed isotropic, it can be thought to be defined as n(x) := n(|z|) for all

x € R, where 7 : [0,00) — [0, 00) is the radial profile. We assume the following properties on 7:

(K1) n(0) > 0 and n is continuous at 0.

(K2) 7 is non-increasing.

(K3) The integral [~ n(r) r¥dr is finite.

We remark that the last assumption on 7 is equivalent to imposing that the surface tension

(© 7= [ nwlmldn

is finite. We note that the class of acceptable kernels is quite broad and includes both Gaussian
kernels and discontinuous kernels like one defined by function 1 of the form n = 1 for t < 1 and
n=0fort>1.

The total variation in continuum setting, TV : L*(D, ) — [0, 0], is given by

(7) TV (u) = sup {/ udivodr : ¢ € C°(D,RY) and || |@] ||~ < 1}
D

if the right-hand side is finite and is set to equal infinity otherwise. Here and in the rest of the
paper we use | - | to denote the euclidean norm in R?. Note that if u is smooth enough then the
total variation can be written as TV (u) = [, [Vuldz.

The main result of the paper is:

Theorem 1.1 (T-convergence). Let D = (0,1)% and let X1,...,X,,... be a sequence of i.i.d.
random vectors chosen uniformly on D. Let {e,} be a sequence of positive numbers converging
to 0 and satisfying

neN

Vog(l
i V1o8U0BR) 1

n— 00 n1/2
logn)3/* 1
(8) gngggfmf:0ﬁdzl
n—00 n En

(logn)t/4 1 ,
- = > 3.
n—00 nl/d En 0 Zf dz3
Let m be a function satisfying (K1)-(K3) and consider n : R — [0,00) given by n(z) := n(|z|).
Then, TV ,, ., , defined by , I'-converge to 0, TV asn — oo in the TL' sense, where o, is given
by @ and TV is the total variation functional on D.

The notion of I'-convergence in deterministic setting is recalled in Subsection 2.3 where we also
extend it to the probabilistic setting in Definition 2:1I0] The following compactness result shows
that the T'L' topology is indeed a good topology for the I'-convergence (see also Proposition [2.9).

Theorem 1.2 (Compactness). Under the assumptions of the theorem above, consider the sequence
of functions u, € L*(D,vy,), where vy, is given by [@). If {un }nen have uniformly bounded L' (D, vy,)
norms and graph total variations, TV ,, .., then the sequence is precompact in TL'. More precisely
if

sup [[un |1 (p,u,) < 00,
neN
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and

sup ﬁn,sn (up) < o0,
neN

then {un }nen is TL'-precompact.

When A,, is a subset of {X7, ..., X,}, it holds that ﬁnﬁgn (xa,) = nzlen Per(A,,), where Per(A,,)
was defined in ([I)). Also, when A C D we can write TV (x4) = Per(A), where Per(A) in this context
is the usual perimeter of A in D. Theorem allows us to consider the variational convergence of

the perimeter on the graphs to the perimeter in the domain D, that is:

Corollary 1.3 (I-convergence of Perimeter). Under the hypothesis of Theorem the conclusions
hold when all of the functionals are restricted to characteristic functions of sets. That is, the graph
perimeters I'-converge to the continuum perimeter.

The proof of the theorems and of the corollary are presented in Section 5.

Remark 1.4. The notion of I'-convergence was introduced by De Giorgi in the 70’s and since then it
has been used as the standard notion of variational convergence. With compactness it ensures that
minimizers of approximate functionals converge (along a subsequence) to a minimizer of the limiting
functional. This notion is quite different from the pointwise convergence of functionals, which of
course does not guarantee convergence of minimizers. For extensive exposition of the properties
of T-convergence see the books by Braides [I0] and Dal Maso [2I]. Pointwise convergence of the

functionals TV, .. to TV (scaled with the appropriate constant) can be obtained from the results

. . . . . 1 1/(d+1)
in [7]. In particular if one considers €,, converging to zero, such that %% goes to zero as

n — oo, and if A is a fixed closed regular subset of D then, ﬁmen (XAn{X1,...x0}) = 0TV (x4)
as n — oo almost surely. We remark that from the techniques we use in our proofs, it is possible
to establish that with the same scaling for ,, as in Theorem we get pointwise convergence as
described above (which slightly improves the rate of pointwise convergence). Note that this does
not follow directly from the I'-convergence.

Remark 1.5. Theorem implies that the probability that the weighted graph, with vertices
X1,..., X, and edge weights w; ; = 7., (X; — Xj)7 is connected converges to 1 as n — oco. Other-
wise there is a sequence ny oo as k — oo such that with positive probability, the graph above
is not connected for all k. We can assume that n; = k for all k. Consider a connected component
Ay € {X1,..., Xy} such that §4,, < n/2. Define function un, = z3-xa4,. Note that [[ua| L1(,) =1

and that ﬁnﬁn (un) = 0. By compactness, along a subsequence u,, converges in T'L! to a function
u € L'(vg). Thus [Julri(,) = 1. By lower-semicontinuity which follows from I-convergence of
Theorem it follows that TV (u) = 0 and thus v = 1 on D. But since the values of w,, are either
0 or greater or equal to 2, it is not possible that w,, converges to w in TL'. This is a contradiction.

1.2. Optimal scaling of ¢(n). If 7 is compactly supported and d > 3 then the rate presented in
is sharp in terms of scaling. Namely it is known from graph theory (see [35], [24] and [20])

1/d
that there exists a constant A\ > 0 such that if ¢, < )\% then the weighted graph associated

to Xi,...,X, is disconnected with high probability. Therefore, in the light of Remark the

1/d
compactness property cannot hold if €,, < )\%.

An interesting question arises if one restricts attention to a class of functions which are also
uniformly bounded in L™ (for example the set of characteristic functions). In fact, the example of
Remark no longer applies. Thus, it is possible that I'-convergence and compactness hold even
when €, < /\(1051#. Determining the optimal scaling on £(n) for I'-convergence and compactness
to hold in this setting is an important open problem. One could imagine that the (assymptotic)
connectivity of the random geometric graph is still necessary condition for the I'-convergence of
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TV n,e, functionals to TV, but it is worth remarking that this is not as simple as it seems. Indeed,
it is known that for a scaling of €,, between the connectivity threshold and the thermodynamical
limit threshold a giant component (one containing a positive fraction of all points) appears in the
graph. This component can asymptotically contain all but an asymptotically negligible fraction of
the total number of points in the graph. If the scaling for ¢, is such that the fraction of points in
the giant component approaches one as n — oo, then the I'-convergence may still hold.
Nevertheless, it is important to notice that if e, scales like 1/n'/? (so that the expected number

of points per neighborhood is bounded by a constant, that is, ne? = O(1) ), then even with the

n
L°° bound, the I'-convergence to ¢, TV together with its compactness result cannot hold, since in
this case the ratio of the cardinality of the biggest component in the graph and the total number
of points n does not approach one as n — oco (see Chapter 13 in [36] and [37]) and hence one can
create sets in the discrete setting with zero (discrete) perimeter that approach a set with nonzero
perimeter. For a more complete discussion of random geometric graphs, the giant component, the

thermodynamical limit and the connectivity threshold for a random geometric graph see [36].

1.3. Related works. Background on T'-convergence of functionals to perimeter. A classical ex-
ample of I'-convergence of functionals to perimeter is the Modica and Mortola theorem ([33]) that
shows the I'-convergence of Allen-Cahn (Cahn-Hilliard) free energy to perimeter. In particular they
consider the energy

(9) s/D |Vu|2dx+§/W(u)dx,

where W is a double well potential.

In [3], Alberti and Bellettini study a nonlocal model for phase transitions where the energies do
not have a gradient term as in the setting of Modica and Mortola, but a nonlocal term penalizing
the spatial inhomogeneity of a given function wu:

W _1 Tr — ulr) —u 2x 1 u)ax
(10) P =2 [ [ o= wlute) ) Pdsdy+ - [ wids,

In the context of [3] the kernel 7 is not assumed radially symmetric. However, in the isotropic case,
the results in [3] imply that the I-limit is the perimeter (multiplied by a surface tension).

In [40], Savin and Valdinoci consider the energy related to with 1(z) = 2= (429 for s > 0
and show that for s € (0.5,1) the functionals I'-converge to perimeter. For s < 0.5 they show that,
under a somewhat different scaling, the nonlocality is preserved in the limit.

In the discrete setting, works related to the I" convergence of functionals to continuous functionals
involving perimeter include [I1], [47] and [19]. The results by Braides and Yip [I1], can be interpreted
as the analogous results in a discrete setting to the ones obtained by Modica and Mortola. They
give the description of the limiting functional (in the sense of I'-convergence) after appropriately
rescaling the energies. In the discretized version considered, they work on a regular grid. The
gradient term gets replaced by a finite-difference approximation to it that depends on the mesh size
4. Different limiting functionals are obtained (as e — 0 and § — 0) depending on the regime for the
ratio . In particular in the case § < ¢, the limiting functional is, as expected, the perimeter. Van
Gennip and Bertozzi [47] consider a similar problem and obtain analogous results.

In [19], Chambolle, Giacomini and Lussardi consider a very general class of anisotropic perimeters
defined on discrete subsets of a finite lattice of the form 6Z”~. They prove the I'-convergence of the
functionals as 6 — 0 to an anisotropic perimeter defined on a given domain in R?.

Background on analysis of algorithms on point clouds as n — oo. In the past years a diverse
set of geometrically based methods has been developed to solve different tasks of data analysis
like classification, regression, dimensionality reduction and clustering. One desirable and important
property that one expects from these methods is consistency. That is, it is desirable that as the
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number of data points tends to infinity the procedure used “converges” to some “limiting” procedure.
Usually this“limiting” procedure involves a continuum functional defined on a domain in a Euclidean
space or more generally on a manifold.

The available consistency results, include the work of Belkin and Niyogi [8] on the convergence
of Laplacian Eigenmaps, the work by Pollard [38] where there are consistency results for the k-
means algorithm used for clustering tasks and the work by von Luxburg, Belkin and Bousquet on
consistency of spectral clustering [49].

The notion of I'-convergence has been used extensively in the calculus of variations, in particular
in homogenization theory, phase transitions, image processing, and material science. However, to
the best of our knowledge it has not been used in data analysis to establish consistency of algorithms.
It is our intention to introduce this notion in this context. We intend to use the ideas developed in
this paper to explore some consistency problems in subsequent papers.

1.4. Outline of the approach. Since the functions we consider are given only at the data points,
to be able to compare functions given on different data sets (in particular as number of data points
is increasing) we introduce the T'LP topology in Section [3| This topology is used to formulate the
I'-convergence result.

The Br/oof of I'-convergence has two main steps. One is to compare the the graph total vari-
ation, TV, . with a nonlocal continuum functional. In particular we consider the functional
TV. : LY(D,vp) — [0, 00] given by:

(1) TVt = 2 [ [ nele—n)lute) = ) dody

Note that the argument of T'V,, . , is a function, wu, supported on the data points, while the
argument of TV, is an L' function with respect to the Lebesgue measure. Thus to comare the
functionals one needs to find a suitable L'(1g) function which, in appropriate sense, approximates
u,. We use a transportation map (a notion recalled in Subsection between vy and v, to define
such u,, € Ll(l/o). More precisely we set u,, = u, o T,, where T,, is the transportation map which is
constructed in Subsection We note that u,, is piecewise constant and takes the same values as
Uyn. The map T, is what enables going from the discrete to the continuum setting. Once again we
contrast the situation here with the previous works which dealt with functionals on grids. When the
discrete function is given on a grid it is straightforward to define the corresponding L (1) function
by letting it be constant on each grid cell, where it takes the value of a chosen grid point. On the
other hand in the random setting finding the right correspondence was one of the main challenges
(which also led us to introduce the T'LP topology). Comparing TV, .. (u,) with TV, (i) relies
on choosing a transportation plan between the Lebesgue measure and the empirical measure which
transports the points as little as possible. The estimates on how far the mass needs to be moved rely

on previous works and are discussed in Subsection[2.2] One of the key properties of TL' convergence
1

is that if functions u, defined at data points converge to an L!(vy) function u, u, Ly wasn — 0,

- LY (v
then a,, L(>’)uausn—>oo.

This enables us to reduce the problem to comparing the continuum nonlocal total variation
functional with the total variation. We prove, using results of Alberti and Bellettini [3] on non-local
models for phase transitions, that the energy T'V., I'-converges in the L'-metric to ¢,,7V. In their
paper, Alberti and Bellettini consider energies F'V of the form . It is proven that the functionals
FY T-converge as ¢ — 0 (in the L! sense) to ow,, TV, where o, is the surface tension associated
to the energies FV, and can be written as the solution to an optimal profile problem. Our result
can be seen as a shape interface I'-convergence result which parallels the diffuse-interface result of
Alberti and Bellettini.
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The compactness result that accompanies the I'-convergence in [3] differs with the one we need.
Indeed, the main difference is the L* boundedness in [3] which is absent in our situation. The
absence of L*° boundedness creates additional technical difficulties that we solve by reflecting the
functions considered near the bounday.

The paper is organized as follows. Section [2| contains the notation and preliminary results from
transportation theory and I'-convergence of functionals on metric spaces. More specifically, in
Subsection [2.1] we introduce the optimal transportation problem and list some basic results. In
Subsection we review the results on optimal matching between the empirical measure, v, and
the Lebesgue measure, 4. In Subsection we recall the notion of I'-convergence on metric spaces
and introduce the appropriate extension to random setting. In Section [3] we define the metric space
TLP and prove some basic results about it. Section [f] contains the proof of the I'-convergence of the
nonlocal continuum total variation functional TV, to the TV functional. The main result, the I'-
convergence of the graph TV functionals to the TV functional is proved in Section |5 In Subsection
we discuss the extension of the main result to the case when X7,...,X,, are not independent,
uniformly distributed points, but are still “close” to describing the Lebesgue measure. In Subsection
[6-3] we extend the main results to more general domains D and in Subsection[5.4) we present a simple
example of an application to data clustering.

2. PRELIMINARIES

2.1. Transportation theory. In this section D is an open and bounded domain in R?. We denote
by B(D) the Borel g-algebra of D and by P(D) the set of all Borel probability measures on D.
Given 1 < p < o0, the p-OT distance between p, v € P(D) (denoted by d,(u,v)) is defined by:

(12 dp{js, ) 1= min { ([ e y|pdw<x,y>)1/p re r(w)} ,

where T'(u,v) is the set of all couplings between p and v, that is, the set of all Borel probability
measures on D x D for which the marginal on the first variable is i and the marginal on the second
variable is v. The elements m € I'(u, v) are called transportation plans between p and v. When
p = 2 the distance is also known as the Wasserstein distance. The existence of minimizers, which
justifies the definition above, is straightforward to show, see [48]. When p = co

(13) doo(pt, v) := inf {esssup,{|z —y| : (z,y) € Dx D} : m e T'(,v)},

defines a metric on P (D), which is called the oo-transportation distance.

It is known that for any 1 < p < oo, the convergence in OT metric is equivalent to weak
convergence of probability measures and uniform integrability of p-moments. In our setting, the
uniform integrability of p-moments is immediate since the domain D is assumed to be bounded, and
hence for our purposes, convergence in OT metric is equivalent to weak convergence. For details
see for instance [48], [6] and the references within. In particular, u, — p (to be read u, converges
weakly to p) if and only if for any 1 < p < oo there is a sequence of transportation plans between
pin and i, {7, }, o, for which:

(14) lim // |z — y|Pdmp(z,y) = 0.

Actually, note that since D is bounded, is equivalent to lim, o [}, p |2 — yldmn(z,y) = 0.
We say that a sequence of transportation plans, {m,}, oy (With m, € I'(u, it,)), is stagnating if it
satisfies the condition . We remark that, since D is bounded, it is straightforward to show that
a sequence of transportation plans is stagnating if and only if 7, converges weakly in the space of
probability measures on D X D to m = (id x id)gfu.
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Given a Borelmap T : D — D and p € P(D) the push-forward of p by T, denoted by Tyu € P(D)
is given by:
Typu(A) = p (T7'(A)), A€ B(D).
Then for any bounded continuous function ¢ € C(D) the following change of variables in the integral
holds:

(15) | o@ aT@) = [ o) duto).

We say that a Borel map T : D — D is a transportation map between the measures u € P(D)
and v € P(D) if v = Typ. In this case, we associate a transportation plan 7mp € I'(u, ) to T by:

(16) mp = (Id xT)yp,

where (IdxT) : D — D x D is given by (Id xT)(z) = (z,T(z)). Then for any ¢ € LY(D x
D,B8 (D x D),m)

(1) | dainren) = [ e 7@)duo).
DxD D
It is well known that when the measure p € P(D) is absolutely continuous with respect to the
Lebesgue measure, the problem on the right hand side of is equivalent to:

(18) min { ( [ 2= T<w>|Pdu<x>) R } ,

and when p is strictly greater than 1, the problem has a unique solution which is induced
(via (16)) by a transportation map 7" solving (see [48]). In particular when the measure u is
absolutely continuous with respect to the Lebesgue measure, pi, — p as n — oo is equivalent to
the existence of a sequence {T},}, o of transportation maps, (T3¢t = p) such that:

(19) /D | — T, (x)|dp(z) — 0, as n — oo.

We say that a sequence of transportation maps {Tn}neN is stagnating if it satisfies .
We consider now the notion of inverse of transportation plans. For 7 € T'(u, v), the inverse plan
7=t € T'(v, u) of 7 is given by:

(20) 7= gy,
where s : D x D — D x D is defined as s(x,y) = (y,z). Note that for any ¢ € L*(D x D, 7):

| cowina) = [ cyayir @),

DxD

Let p,v,p € P(D). The composition of plans w2 € T'(u,v) and ma3 € I'(v, p) was discussed in
[6][Remark 5.3.3]. In particular there exists a probability measure @ on D x D x D such that the
projection of 7r to first two variables is w12, and to second and third variables is wo3. We consider
m13 to be the projection of 7 to the first and third variables. We will refer w13 as a composition of
T12 and 23 and write 713 — 723 O TM12.

2.2. Optimal matching results. In this section we discuss how to construct the transportation
maps which allow us to make the transition from the functions of the data points to continuum
functions. To obtain good estimates we want to match the Lebesgue measure with the empirical
measure of data points while moving the mass as little as possible.

Consider (2, F,P) a probability space that we assume to be rich enough to support a sequence
of independent random vectors uniformly distributed on the cube (0,1)?. All the random variables
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that we use are to be understood as functions defined on 2. We consider X3, ..., X, i.i.d. random
vectors uniformly distributed in the cube (0, 1)

In the previous section we introduced the notion of stagnating sequence of transportation maps.
In this section we present results by Leighton and Shor [30], and Shor and Yukich [41], that imply
that not only we can find a sequence of transportation maps {7} (with Th4v0 = vy,) which is
stagnating but also satisfies a stronger condition:

(21) nh_)rréoHId—TnHoo =0,

neN

where Id is the identity mapping and || - ||« denotes the L® norm with respect to the Lebesgue
measure restricted to (0, l)d. In other words de(vo,v,) — 0 as n — oo. Moreover, the rates of
convergence of ||Id — T, ||« are obtained. These results play an important role in the proof of the
main theorem of this paper.

To construct the transportation map between vy and v,, we first use the results above to match
v, with a discrete measure supported on a regular grid with n points and then match the grid points
with vy locally. For that reason we first consider n of the form n = k¢ for some k € N. Consider
P = {p1,...,pn} the set of n points in (0,1)? of the form (;—}C, e ;—*,;) for i1,...,4, odd integers
between 1 and 2k. The points in P form a regular k x - - - x k array in (0,1)? and in particular each
point in P is the center of a cube with volume 1/n. As in [30] we call the points in P grid points
and the cubes generated by the points in P grid cubes.

First consider the case d = 2. Leighton and Shor [30] showed that there exist ¢ > 0 and C' > 0 such
that with very high probability (meaning probability greater than 1 — n~® where o = ¢ (logn)'/?
for some constant ¢; > 0):

(03

c(logn)3/4 . C(log n)3/4
where 7 ranges over all permutations of {1,...,n}. In other words, when d = 2, with very high

probability the co-transportation distance between the random points and the grid points is of order
(log n)3/*

nl/2

We use the previous result to construct a transportation map T),. Indeed, consider 7= minimizing

min, max; | X; — pr(;)|. We define the map 75, : (0, H? - {X1,...,X,} as follows. Any z € (0,1)¢
belongs to a grid cube associated to some p; € P. We set Ty, (x) := X,¢;y. Then Tpyv9 = v, and
(thanks to (22)) there are constants ¢ > 0 and C > 0 such that with very high probability:

C(logn)>/*
iz

c(logn)3/*

(23) v

S HId - Tn”oo S
Remark 2.1. For the previous statement, we considered n = k? for some k € N since the result in
[30] is stated under the assumption that we work with a regular grid. Nevertheless, this is not a
restriction as we now explain. In fact if n is not a square of an integer, so that k% < n < (k + 1)
for some k, one can construct {C1,...,Cy,}, n rectangles covering D with sides parallel to the axis,
each of them with volume 1/n and length of its diagonal below ﬁ where c is a universal constant.
We can consider points p1,...,p, in Ci,...,C, respectively. From the proof in [30] one can deduce
in this case again (even if n is not a square). The idea is that all probabilistic estimates in the
proof in [30] are independent of the fact whether n is a square or not. The ingredient they needed to
utilize their probabilistic estimates on the regular grid was the Hall’s marriage lemma. The lemma
can be applied to points p1,...,p, in a similar way if n is not a square, given the properties of the
rectangles C1, ..., Cy,. Therefore one can take x € D and define T}, () = X(;) where x € C; and 7 is
the optimal matching between the points X7, ..., X,, and the points p1, ..., p,. It is straightforward
to check that 1,419 = v, and that holds.

Using Borel-Cantelli lemma we deduce the following proposition.
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Proposition 2.2. Consider d = 2 and v,, given by .Then there are constants ¢ > 0 and C' > 0
such that for P-a.e. w € §Q there exists a sequence of transportation maps {T),} from vq to v,
(Thyvo = vy) and such that:

neN

nt/2||Id — Ty || n'/2||Id — Ty oo
< liminf — 12— "0~ lim s == ~nlicc
(24) €= hnrgloréf (logn)3/4 - hTILn—?olip (log n)3/4
For d > 3, Shor and Yukich [41] proved the analogous result to . As in the case d = 2 one
is not restricted to considering only n = k% for some integer k. An immediate consequence of their
results is the following:

<C.

Proposition 2.3. Consider d > 3 and v, given by . For P-a.e. w € €} there exists a sequence
of transportation maps {Ty,}, cy from vo to v, (Thyvo = vy) and constants ¢ > 0, C > 0 (only
depending on d) such that:

Va|1d -1, Vd|\[d — T,
(25) ¢ < liminf nlId = Tallo < lim sup n/fld ~ Tullw

<cC.
n—oo  (logn)/d nsoo  (logn)t/d

One should note that the powers of the log terms are different when d = 2 and when d > 3.
In both cases they are sharp, meaning it is impossible to find transportation maps {7}, .y with

1/d 3/4
T4vo = vy, and where ||Id—T, ||« converges faster to zero than % in case d > 3 or %

in case d = 2.

The basic matching algorithm involving random uniformly distributed points was introduced by
Ajtai, Komlés, and Tusnddy in [2]. That algorithm can still be used to obtain results like the ones
above (not quite as sharp for d = 2). It relies on a dyadic decomposition of the cube (0,1)¢ and
transporting step by step between levels of the dyadic decomposition. The final matching is obtained
as a composition of the matchings between consecutive levels. For d > 3 the AKT algorithm is the
basic tool used in [41] to prove the analogous result to for d > 3. For d = 2 the AKT algorithm
gives an upper bound with extra log factors, which makes the proof of the sharp bounds more
complicated.

As remarked in [41], there is a crossover in the nature of the matching when d = 2: for d > 3,
the matching length between the random points and the points in the grid is determined by the
behavior of the points locally, for d = 1 on the other hand, the matching length is determined by
the behavior of random points globally, and finally for d = 2 the matching length is determined by
the behavior of the random points at all scales. At the level of the AKT algorithms this means that
for d > 3 the major source of the transportation distance is at the finest scale, for d = 1 at the
coarsest scale, while for d = 2 distances at all scales are of the same size (in terms of how they scale
with n).

Problems related to the ones considered in [30] and [41] were also considered by Talagrand and
Yukich [45] and Talagrand [44]. In particular it is possible to deduce from the results in [44]
and to obtain an upper bound for the asymptotic behavior of ||Id — T, ||« in the case d = 2 from
the results in [45].

So far we have not discussed the result in case d = 1. In this case we can take advantage of the
classical results by Chung [20] (or Kiefer [29]) on the behaviour of the discrepancy of the measures
vn, and vy as n — oo. In fact if we consider the points p, ..., p, with p; = i/n, and consider random
points X1, ..., X, that (after reordering) we assume to be in increasing order, it is not hard to see
that the permutation 7 that minimizes min, max; [p; — Xr(;)| is precisely the identity, in other words
min,; max; [p; — Xr(;)| = max; [p; — X;|. The results on [20] can then be used to obtain asymptotic
(as n — o0) sharp estimates on the value of max;|p; — X;|, and in particular deduce that with

probability one max; [p; — X;| = O ( loglong(”)>. It is an immediate consequence of these results

the following:
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Proposition 2.4. There are constants ¢ > 0 and C > 0 such that for P-a.e. w € Q there exists a
sequence of transportation maps {Ty,}, oy (with Toyvo = vy) and such that:

12|1d -1, V2| [d - T
(26) e < timinf = Tollee o o A= Tolleo
n—oo log log(n) n—00 log log(n)

2.3. I'-convergence on metric spaces. We recall and discuss the notion of I'-convergence in
general setting. Let (X, dx) be a metric space. Let F,, : X — [0, 00] be a sequence of functionals.

Definition 2.5. The sequence {Fy,}, oy ['-converges with respect to metric dx to the functional
F: X —[0,00] as n — oo if the following inequalities hold:

1. Liminf inequality: For every v € X and every sequence {x,},y converging to x,

liminf F, (z,) > F(z),
n—roo

2. Limsup inequality: For every v € X there exvists a sequence {T,},y converging to x
satisfying
limsup F,(z,) < F(x).
n—oo

We say that F is the T'-limit of the sequence of functionals {F,} (with respect to the metric dx ).

neN

Remark 2.6. In most situations one does not prove the limsup inequality for all z € X directly.
Instead, one proves the inequality for all z in a dense subset X’ of X where it is somewhat easier
to prove, and then deduce from this that the inequality holds for all x € X. To be more precise,
suppose that the limsup inequality is true for every x in a subset X’ of X and the set X’ is such that
for every 2 € X there exists a sequence {x}, oy in X’ converging to = and such that F(zy) — F(x)
as k — oo, then the limsup inequality is true for every z € X. It is enough to use a diagonal
argument to deduce this claim.

Definition 2.7. We say that the sequence of nonnegative functionals {Fy,}, oy satisfies the com-
pactness property if the following holds: Given {ny},cy an increasing sequence of natural numbers
and {Tr} ey a bounded sequence in X for which
(27) sup Fy,, (z1) < o0

keN
{z1} e is precompact in X.

Remark 2.8. Note that the boundedness assumption of {zy}, y in the previous definition is a
necessary condition for precompactness and so it is not restrictive.

The notion of I'-convergence is particularly useful when the functionals {F}}, .y satisfy the
compactness property. This is because it guarantees convergence of minimizers (or approximate
minimizers) of F,, to minimizers of F" and it also guarantees convergence of the minimum energy of
F,, to the minimum energy of F' (this statement is made precise in the next proposition). This is
the reason why I'-convergence is said to be a variational type of convergence.

Proposition 2.9. Let F,, : X — [0,00] be a sequence of nonnegative functionals which are not
identically equal to 400, satisfying the compactness property and I'-converging to the functional
F: X — [0,00] which is not identically equal to +0o0. Then,

(28) lim inf F,,(z) = min F(z).

n—oo reX rzeX
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Furthermore every bounded sequence {y},cy in X for which

(29) nh_)rr;o (Fn(xn) - mlélg{ Fn(x)> =0
18 precompact and each of its cluster points is a minimizer of F.

In particular, if F' has a unique minimizer, then a sequence {x,}, oy satisfying converges to
the unique minimizer of F.

One can extend the concept of I'-convergence to families of functionals indexed by real numbers
in a simple way, namely, the family of functionals {F}},. is said to I-converge to F' as h — 0
if for every sequence {hy},.y with h, — 0 as n — oo the sequence {F},, }, oy [-converges to the
functional F' as n — oo. Similarly one can define the compactness property for the functionals
{Fh}),>o- For more on the notion of I'-convergence see [10] or [21].

Since the functionals we are most interested in depend on data (and hence are random), we
need to define what it means for a sequence of random functionals to I'-converge to a deterministic
functional.

Definition 2.10. For {F,}, .y a sequence of (random) functionals F,, : X x © — [0,00] and
F a (deterministic) functional F' : X — [0,00], we say that the sequence of functionals {F,}, oy
I'-converges (in the dx metric) to F, if for P-almost every w € ) the sequence {F,(-,w)}, oy I'-
converges to F according to Definition . Similarly, we say that {F,}, o satisfies the compactness
property if for P-almost every w € Q, {F,(-,w)}, oy satisfies the compactness property according to

Definition [2.7.

We do not explicitly write the dependence of F,, on w and we simply write F,, : X — [0, 0],
understanding that we are always working with a fixed value w € €2, and hence with deterministic
functionals.

3. THE SPACE T'LP

In this section D denotes an open and bounded domain in R?. Consider the set

TLP(D) :={(n., f) : n€P(D), f € LP(D, n)}-

For (u, f) and (v, ¢) in TLP we define
(30)

dr(a 0 o) =t (] o ypdﬂx,y)f ([ i@ -swrasen)’

The next proposition shows that drr» is a metric. We remark that formally T'L? is a fiber bundle
over P(D). Namely if one considers the Finsler (Riemannian for p = 2) manifold structure on P(D)
provided by the p — OT metric (see [I] for general p and [34, [6] for p = 2) then T'L? is, formally, a
fiber bundle. We also remark that one could also change the set and consider a metric where the
powers of the terms in would be different (p and ¢, instead of p and p and the natural name
for the space in this case would be T'LP*?).

Remark 3.1. One can think of the convergence in TLP as a generalization of weak convergence of
measures and convergence in LP of functions. By this we mean that {4}, y in P(D) converges

weakly (and in p-OT sense for any p since D is bounded) to p € P(D) if and only if (g, 1) LI (1, 1)
as n — oo, and that for u € P(D) a sequence {f,}, y in LP(p) converges in LP(u) to f if and only
if (1, fr) =7Le (1, f) as m — oo. The last fact is established in Proposition
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Remark 3.2. If one restricts the attention to measures p and v which are absolutely continuous with
respect to the Lebesgue measure then

e ([ rera)” (o o)

majorizes drre ((14, f), (v,9)) and furthermore provides a metric (on the subset of T'LP) which gives
the same topology as drpr. The fact that these topologies are the same follows from Proposition
1.0l

Proposition 3.3. drpr defines a metric on TLP.

Proof. To prove that drre (1, f), (1, f)) = 0, note that if we consider 7 = ryu where r : D — D x D
is given by r(z) = (z,2), 7 € T(p, ) and [}, p l& —yl? + |f(z) — g(y)|Pdr(2,y) = 0.

Suppose now that drr» (1, f), (v, g)) = 0. In particular it is true that dp(p, ) = 0 and so u = v.
Thus there exists a sequence {7, }, .y of transportation plans belonging to I'(u, ) such that:

(31) lim // |z — y|Pdmy,(z,y) // (y)Pdmp(z,y) =0
=0 JJDxD DxD

Note that the sequence {7, },,y is tight in P (D x D), and hence it has a subsequence (that we do
not relabel) that converges weakly to some m € T'(us, ). Using the boundedness of D we conclude

that:
// | — y|Pdn(z,y) = lim // |z —yPdmp(z,y) =0
DxD "m0 JJDxD

Consequently m = ryu, for r as above. For every € > 0 there exist f, g functions defined on D which
are continuous and bounded and such that || f — f[/z»(,) < €/2 and ||g — g zr() < €/2. Then

<//DXD A y)‘pdﬂn(w’y))l/p = (//DXD () - f(x)‘pdwn(x,y)>1/p
([ 1@ = st anan) v
(//DXD §)P dr o y>)“p

1/p
<(f[ i >|pdwn<x,y>) ‘e
DxD
From and the fact that m,, — 7 we obtain:

1F = llirgo = ( / /D RCET ”dm,y))”p
”IL%</LXD il

1f = gllzeqy <N = Flloegy + 1 = dllr + 13 = gll ey < 3e.
Since € was arbitrary, we conclude that f = g, and so drre ((14, f), (v,9)) = 0 implies (y, f) = (v, 9).

1/p
dﬂn(xay)) <e

Therefore:
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To prove that drp» (( v,9)) = drre (v, f)) simply note that for every m € T'(u, v)

//Dw [z~ yPdn(y) //DD &~ yPdr(z.9)
and // |f(z y)|Pdr(z,y) //DXD F)IPdr (2, y)

where 771 € T'(v, ) is the inverse of 7 as defined in (20)).

Finally, consider (y, f), (v, g), (0,h) € TLP. Take m; € T'(u,v) and 73 € T'(v,0). We now use a
measure w € P(D x D x D) to obtain 73 o7y € I'(, o) as mentioned at the end of Subsection [2.1].
Using Minkowski’s inequality for the measure 7r, one obtains that:

drre (4, f) <//DXD|$_z|pd7r20m z z> (//DXD h(z)|Pdrs o m (2, Z)>‘17
) <//DXD oty ) (//DxD g(y)|Pdm (, y));
Ui ] - v

Taking infimum over 71 and over 7, on the previous expression we deduce that drrr (i, f), (o )
drre (1, f), (v, 9)) + drre ((v,9), (0, h)).

We wish to establish a simple characterization for the convergence in the space T'LP. For this,
we need first the following two lemmas.

Lemma 3.4. Fiz yu € P(D). For any stagnating sequence of transportation plans {m,}, . (with
mn € T'(p, 1)) and for any u € LP(u)

lim // y)|Pdmp(z,y) =0
n—oo DxD

Proof. We prove the case p = 1 since the other cases are similar. Let u € L*(x) and let {7n},en be

a stagnating sequence of transportation maps with m,, € I'(u, ). Since the probability measure p
is inner regular, we know that the class of Lipschitz and bounded functions on D is dense in L ().
Fix £ > 0, we know there exists a function v : D — R which is Lipschitz and bounded and for which:

/ fu(z) — v(@)|du(z) < ©
D
Note that:

// ) — v(y)|dm, (x,y) < Lip(v // |z — y|dm, (2, y) = 0, asn — oo
DxD DxD

Hence we can find N € N such that if n > N then [[, , |v(z) —v(y)|dm,(z,y) < §. Therefore, for
n > N, using the triangle inequality, we obtain

J],., @ = uwamay //DD )= o@ldmaen)+ [[jule) = ldre.y)
s ot - utldma (o)
—2/ lv(z) — u(x)|dp(x //DXD () |dmn (z,y) <

This proves the result. O
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Lemma 3.5. Suppose that the sequence {fin}, oy i P(D) converges weakly to p € P(D). Let
{tn}pen be a sequence with u, € LP(uy,) and let uw € LP(u). Consider two sequences of stagnating
transportation plans {mn}, cy and {7n}, ey (With Tp, Tn € T(1, pin) ). Then:

2 Jim [ ) - w )P =0 o nlggo//DxD\u(x)—un(y)|pdﬁn(w7y)=0

Proof. We present the details for p = 1, as the other cases are similar. Take &, ! € T'(u,, i) the
inverse of ,, defined in . We can consider T € P(D x D x D) as the one mentloned at the
end of Subsection (takmg mo3 = 7, L and w2 = 7). In particular 7, ! o7, € T'(u, ). Then

[ == ], =i

S vtz = [ ) i .
:///DxDxD fun(y) = u(z)|dma(z,y, 2),

which imply after using the triangle inequality:

] J[ o)~ wtwlamaen) ~ [ ) - w2
DxD DxD
/// — u(a)|dma (2,9, 2) // (2)|d77 o o (z, 2)
D><D><D
Finally note that :

J[ w-stitom@a< [[ - ylmea+ [[ sl + 0. asn o
DxD DxD DxD

The sequence {7}; 1 o7rn}nEN satisfies the assumptions of Lemma so we can deduce that
[y p lu(z) —u(z)|di, ! o mp(2, 2) = 0 as n — co. By we get that:

Tim. ‘ I ) = @i, - [ () = (v, )| =

This implies the result. O

and

Proposition 3.6. Let (u, f) € TLP and let {(pn, fn)}
statements are equivalent:

nen be a sequence in TLP. The following

1. (ﬂnvfn) (,u,f) as n — o0.
2. Un LN w and for every stagnating sequence of transportation plans {m,}

T(4, pin))

(34) //D D|f($)*fn(y)|pd7rn(:c,y) — 0, asn — oo.

nen (with m, €

3. pn — p and there erxists a stagnating sequence of transportation plans {mn}pen (with
T € T'(pt, pin) ) for which holds.

Moreover, if the measure u is absolutely continuous with respect to the Lebesque measure, the fol-
lowing are equivalent to the previous statements:
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4. p, — p and there exists a stagnating sequence of transportation maps {To}en (with
Tyt = ptn) such that:

(35) /D F(@) — fo (Ta (@) dps() = 0, asn — oo.

5. fin — p and for any stagnating sequence of transportation maps {Tn}en (with Toyp = pi,)

holds.

Proof. By Lemma [3.5] claims 2. and 3. are equivalent. In case p is absolutely continuous with
respect to the Lebesgue measure, we know that there exists a stagnating sequence of transportation
maps {1}, cy (With Tpyp = pp,). Considering the sequence of transportation plans {77, },cy (as
defined in ) and using we see that 2., 3., 4., and 5. are all equivalent. We prove the
equivalence of 1. and 3.

(1. = 3.) Note that dp(u, n) < drpe (1, f), (i, fn)) for every n. Hence dp(p, pin) — 0 as
n — oo and in particular j, — pu as n — co. Also, since drre (s £) 5 (tn, frn)) — 0 as n — oo, in
particular there exists a sequence {;}  of transportation plans (with 7, € I'(x, p1,)) such that:

S //DXD |z — y[Pdry, (z,y) =0,
i //DD 1£(2) = Faly)[Pdr(, ) = 0.

n— 00

{7} } ey is then a stagnating sequence of transportation plans for which holds.

(3. = 1.) Since p,, — p as n — oo (and since D is bounded), we know that d(p,, 1) — 0 as
n — oo. In particular, we can find a sequence of transportation plans {m,},, .y with m, € I'(u, pt,)

such that:
lim // | — yPdmy(z,y) =0

{70}, cn is then a stagnating sequence of transportation plans. By the hypothesis we conclude that:

im ([ 15@) = Falo)Pdmaa) =0

n— o0
From this we deduce that lim, o drre (6, ), (ton, fn)) = 0. O

Definition 3.7. Suppose {fin}, oy in P(D) converges weakly to u € P(D). We say that the sequence
{un},en (with u, € LP(uy)) converges in the TLP sense to u € LP(u), if {(fin,un)},cn converges

to (p,u) in the TLP metric. In this case we use a slight abuse of notation and write u, T w
as n — oo. Also, we say the sequence {un},cy (with u, € LP(u,)) is precompact in TLP if the
sequence {(n, Un)},cy 8 precompact in TLP.

Remark 3.8. Thanks to Proposition[3.6]when 1 is absolutely continuous with respect to the Lebesgue

TLP . . .
measure u, — w as n — oo if and only if for every (or one) {7}, .y stagnating sequence of

LP
transportation maps (with Thyp = ) it is true that w, o T, it)) u as n — oo. Also {“n}neN is

precompact in T'LP if and only if for every (or one) {7, }, .y stagnating sequence of transportation
maps (with Toyp = pp) it is true that {u, o Tp,}, oy is precompact in LP(1).

4. I'-CONVERGENCE OF TV,

Consider an open, bounded domain D in R? with Lipschitz boundary. Here we prove that
{TV.}.., (defined in (1)) I'-converges with respect to the L' metric to ¢, 7'V. This result and the
proof we present rely on the work of Alberti and Bellettini [3] and [4]. While a direct approach, which
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bypasses using the diffuse interface functional is possible (see for example [22], [I9]), we base our
argument on results of [3] to make the presentation short. The only part which required substantial
new arguments is the proof of compactness, where due to the presence of domain boundary and
lack of L* control, new ideas were needed. For this result we impose extra regularity assumptions
on the domain D. As a corollary, we show that if one considers only functions uniformly bounded
in L*°, the compactness holds for open and bounded domains D regardless of its boundary.

Let W(z) = 42%(1 — 2)? and let W), = kW. We define the functionals:

1

(36)  FOw) = /D Dm(m—y)lu(a:)—u(y)\%dy+§ /D Wi(u)dz, u € L}(D).

The double-well potential W, forces functions with low energy to stay close to the pure states 0
and 1. This tendency becomes stronger as k increases. The first term resembles the functional T'V,.
In fact if u is the characteristic function of a measurable subset of D then for every k& € N and for
every € > 0

(37) F® (u) = TV (u).

One of the consequences of the results in [4] is that for fixed k € N, o) I'-converges in the
L'-metric as ¢ — 0 to the functional F* defined by Uf;TV(u) for all functions v € BV (D, {0,1})
and extended to +oo for all functions belonging to L*(D) \ BV (D, {0,1}), where o} is the surface
tension associated to n and Wjy. We show in Appendixthat 0’77 converge as k — oo to oy, defined
in @

We recall that the functional T'V; is convex and satisfies the generalized coarea formula:

(33) TV.(u) = / T TV qussy s,

— 00

for every u € L'(D). The coarea formula is obtained by directly computing:

o0 1 oo
/ TVs(X{u>s})d5 == / / Ne(w — y)‘X{u>s}(x) — X{u>s} (y)|dzdyds
€ J—ooJDxD
1 o0

— 00

’/ ”E(x—y)/ X {u>s} (2) = X{u>sy (y)|dsdzdy
€ JDxD —o0

_! /D nelo = 9)lule) = uly)ldady.

€

Theorem 4.1. For D an open and bounded domain in R% with Lipschitz boundary and m satisfying
(K1)-(K3):

(39) TV. = o, TV ase — 0,

where the T' limit has to be understood in the L'-sense.

Proof. Let {e,} be a sequence of positive numbers converging to 0.

neN
LY(D
Liminf Inequality: Suppose u,, — w as n — oo.
Step 1: Assume first that for every n € N, u,, := xy, for some measurable subset V,, of D. In
particular u = xy for some V. From the I'-convergence of the functionals Fg(f) and , for every
keN

(40) liminf TVz, (xv,) = liminf £ (xv,) > op TV (xv).

n—roo

Since this is true for every k, we can let & — oo in the previous equation and from (A.2)) obtain:
(41) lminf TVe, (xv, ) = 09TV (xv)
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So we conclude that the liminf inequality is true when restricting to characteristic functions.
Step 2: In the general case, we follow the proof in [19]. Indeed, note that:

o
[ ) = u@lde = [ [ o0 = g dods,
D —oo JD
LY(D

So if wu, —>) u as n — oo, then (up to a subsequence) we can assume that for a.e. s € R.

LY (D
X{un>s} L>) X{u>s}- Using Step 1, Fatou’s lemma, coarea formula and the coarea formula

for the total variational functional we deduce that:
o0

liminf TV, (u,) =lim inf TVe, (X{un>s})ds
—o0

n— oo n—oo

> / Hminf TVz, (X {u, >s))ds

oo MO0

2Jn/ TV(X{u>s})d5

=0, TV (u).
Limsup inequality: We show that for every u € L*(D):
(42) limsup TV, (u) < 0, TV (u).

n— oo
This is a stronger statement than necessary to prove the limsup inequality needed for I'-convergence
(Definition . We show this statement since we use it is some of the remarks and results that
follow.

It suffices to show for functions u € BV(D), that is, L' functions on D with finite total
variation. For u € BV (D) we use Proposition 3.21 in [5] which says that there exists an extension
@ € BV (RY) of u to the entire space R? such that:

(43) |Da| (0D) = 0.

Here D denotes the distributional derivative of 4. Since 4 is a BV function, | D4l is a finite measure.
In case that u belongs to the Sobolev space W11(D), @ can be taken to be in W1 (R%). We split
the proof of in two cases.

Step 1: Suppose that n has compact support, i.e. assume there is a > 0 such that if |h| > «
then n(h) = 0. We define D, := {z € R? : dist(z, D) < ag, }. For & € Wh1(D,, ) N C*>(Dy,) let
v be its restriction to D. Then

1
V. () = - / / e (& — 9)lo() — v(y)|dedy
€n JD JDNB(y,0e,)

1
— / / Nen (T —Y)
€n JD., JB(y,ae,)

1 ! .
1 / / / e (& — W) VO(y + t(z — y) - (¢ — y)\dtdady
&n JD JB(y,ae,) J0O

/D /Rd /Olﬂ(h)IV@(2)~h|dtdhdz

/an /Rdn(h)\V{)(z)hwhdz
<o, [ Vi)

En

/0 Vi(y +t(x —y)) - (v — y)dt| dvdy

IN

IA
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where the second inequality is obtained after using the change of variables (¢, y, x) — (¢, h, 2) Where
h=** and z = y + t(z — y), noting that the Jacobian of this transformation is equal to ed and
that the transformed set D is contained in D, ; the last equality obtained thanks to the fact that
n is radially symmetric.

Now suppose u € BV (D) (not necessarily in W11(D)). By Theorem 13.9 in [31], there exists a

" and such that [,, [Vég(z)| dz —

|Da|(D,, ). This fact, together with continuity of TV, with respect to L' convergence, and the
previous calculations implies

1
sequence {9y by in WL(D., )NC (D, ) such that o, 25"

TV, (u) < oy|Da|(De,, ).
Sending n — oo in the previous expression and using provides that

(44) limsup T'V;, (u) < 0,)|D4|(D) = 0, TV (u).

n—oo

Step 2: Consider n whose support is not compact. The control of 7 at infinity, which is still
needed for the statement to hold, is provided by the condition (K3). For o > 0 define the kernel
n“(h) := n(h)XB(0,a)(h), which satisfies the conditions of Step 1. Denote by TV the nonlocal total
variation using the kernel n*. For a given u € BV (D)

TV, (u) = TV (u / / e, (& — p)lu(z) — u(y)|dady.
{z€D: |z—y|>acy,}

The second term on the right-hand side satisfies:

1
=~/ 0o, (2 — y)ule) — uly)|dedy
€n JD J{zeD : |z—y|>ae,}
1 . R
_ L / / e (2 — )| — ay)|dzdy
{zeD: |z— y\>oc€n}
</ |h|/ [aly) = aly +enl)] )
h|>a n|h|

< |Da|(RY) / n(h)|hldh,

|h|>a

where the first inequality is obtained using the change of variables h = xs;y and the second inequality
obtained using Lemma 13.33 in [31]. By Step 1 we conclude that:

limsup TV;, (u) <limsup TV (u) + |Dﬁ\(Rd)/ n(h)|h|dh
|h|>a

n—0o0 n—00

< e TV () + DR [ (hlhlan
|h|>a

Since « was arbitrary, by condition (K3) on n we can send « to infinity and obtain . O

Remark 4.2. Note that from the previous proof, we can deduce the pointwise convergence of the
functionals T'V; namely, for every u € L'(D):

611_% TV (u) = 0,TV (u)
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4.1. Compactness. We first establish compactness for regular domains and then extend it to more
general ones.

Lemma 4.3. Let D be a bounded open set in R?, with C? boundary. Let {en}pen e a sequence of

positive numbers converging to 0 and let {vy}, o be a sequence in L'(D) such that:

sup [|vn |21 (py < o0,
neN

and

(45) sup 1z /D /D Ne, ( — y)|vn () — vp(y)|dedy < .

neN €n
Then, {vn}, ey is precompact in L'(D).

Proof. Note that thanks to assumption (K1), we can find a > 0 and b > 0 such that the function
77 :[0,00) = {0, a} defined as 7(t) = a for ¢t < b and 7(t) = 0 otherwise, is bounded above by 7. In
particular, holds when changing n for 7 and so there is no loss of generality in assuming that
7 has the form of 7.

We first extend each function v,, to R?. Since 8D is a compact C? manifold, there exists § > 0
such that for every x € R? for which d(x, D) < § there exists a unique closest point on dD. For all
v €U :={xcR?: d(z,D) < &} let Px be the closest point to x in D. We define the local reflection
mapping from U to D by & = 2Px — z. Let £ be a smooth cut-off function such that £(s) = 1 if
s < d/8 and £(s) =0 if s > 6/4. We define an auxiliary function 0,, on U, by 0,(z) := v,(&) and
the desired extended function @, on RY by @, (z) = £(|z — Px|)v, ().

We claim that:

(46) sup [ [ (o= 9)lone) 5,0 <

neN €n JRd JR4
To show the claim we first establish the following geometric properties: Let W := {z € RN\D :
d(x,D) < /4y and V := {z e R\D : d(z,D) < §/8}. Forallz € W and all y € D

(47) 12—yl < 2|z -yl

Since the mapping =z — 2 is smooth and invertible on W it is bi-Lipschitz. While this would
be enough for our argument, we present an argument which establishes the value of the Lipschitz
constant: for all z,y € W

1 A
(48) i\m—y\ <[z — 7| < 4]z -yl

By definition of § the domain D satisfies the outside and inside ball conditions with radius 4.

Therefore if x € W and z € D
r — Px
— | P o——— || >0.
: ( x+|m-pﬂ>k—

Squaring and straightforward algebra yield
r — Px

2

For x € W and y € D, using we obtain
ly =i |y -2 = |y — Pz + (z — Px)]* — [y — Pz — (2 — Px)|?

=4(y — Pz) - (x — Pz) < §|y—PI|2 | — Pz

1
< Gly =P <ly—af + |z - Paf” <2y - al*,
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Therefore |y — | < 3|y — x|?, which establishes ([47).

For distinct z,y € W using , with z = Py and with z = Pz, follows
Px — Py
|Pa: — Py

Px — Py

— > — - Z

= (zx — Pz — (y — Py) + Pz — Py) -
> [Pz — Py| - 5(\%‘ — Pz||Py — Pz| + |y — Py| |Py — Pxl)
3
> |Px — Py| 2
2 [Pz — Pyl
Therefore
PO 8
o =3l = 2Po— 2Py ~yl <2Ps— Pyl 1o —3l < (5 +1) oyl < tla — ol
Since the roles on x,y and &,§ can be reversed it follows that |z — y| < 4|% — §|. Combining the

estimates establishes .
We now return to proving . For ¢, large

[ et =) sty = = [ = o) — oy
= [ [ neste = lon@) = va o)y
L[ et = plente) — vaidady

16d
< 16 / / e, (2 — 1)tn(z) — va(2)|dzdy,

where the first inequality follows from and the second follows from the fact that the change of
variables x +— & is bi-Lipschitz as shown in . Also,

! 0 v _1 T — )0n () — 0 x
o Sy Lo e )~ ey =2 [ e )l ) @iy

< / / e (& — D)IE() — E)n(z) | dady

//77 9)[n () — ()] €| ddy.

I /\

Note that for all  # y, we have w < |xfy|nsn (x — y). Therefore:

! JJe@) ~ €w)|
;/W/Wnsn(xfy)\ﬁ(z) §W)llon(x |dxdy<b/ / Me, (z—y ﬁ|vn( x)|dady

< bLip(¢ / / Ne, (x — y)|0n (2)|dxdy
< 44bLip(&)|lvnl L1 (D),

where we used (48) and change of variables to establish the last inequality. Also,
1 X X 49 e R
= o= tonte) = iy < = [ [ i (= ) (e) = o) oy
nJw Jw
43d
= [ meste = o) = valdady.



22 NICOLAS GARCIA TRILLOS AND DEJAN SLEPCEV

The first inequality is obtained thanks to the fact that |{(y)| < 1 and (48], while the second
inequality is obtained by a change of variables.
Using that

[ e = plonto) — vatldody <o [ [ e o= g)loa) = o) ldedy

by combining the above inequalities we conclude that

supf/ / e, (2 — y)|[0n(x) — 0n(y)]
neN €n JRd
< Csup ( / / e (2 — )l (@) — v ()| dady + ||vn|L1<D>) < o0,
D JD

neN

Using the proof of Proposition 3.1 in [3] we deduce that the sequence {0, },en is precompact in
L'(R?) which implies that the sequence {v,}, oy is precompact in L'(D). O

Remark 4.4. We remark that the difference between the compactness result we proved above and
the one proved in Proposition 3.1 in [3] is the fact that we consider functions bounded in L', instead
of bounded in L as was assumed in [3]. Nevertheless, after extending the functions to the entire
R? as above, one can directly apply the proof in [3] to obtain the desired compactness result.

Proposition 4.5. Let D be a bounded open set in R%, which is homeomorphic to a C? domain D
via a bi-Lipschits mapping ©. Let {En}neN be a sequence of positive numbers converging to 0 and
suppose that the sequence of functions {un}, oy C LY(D) satisfies:

bup 1unllL1 (D) < o0,

supTVEn( n) < 00.
neN

Then, {un},cy is precompact in L'(D).

We remark that the proposition applies to D = (0,1)?, for example by using line-wise linear
rescalling.

Proof. Suppose {un}, oy € L'(D) is as in the statement. As in Lemma we can assume that n
is of the form n(t) = a if t < b and n(t) = 0 for ¢t > b, where a and b are two positive constants. For
every n € N consider the function v, := u, o © and set 7(s) := n (Lip(O) s), s € R.

Since © is bi-Lipchitz we can use a change of variables, to conclude that there exists a constant
C > 0 (only depending on ©) such that:

[ 1ol < [ funw)iay

and

/ / e (&= ) bt () = ) drdy > / / e, ((2) — ©(y) [vn () — vn(y)| dudy
> 1 / ey (@ = ) [oa(@) — va(y)| dady.

D JD

We conclude that the sequence {v,}, cy C LY(D) satisfies the hypothesis of Lemma (taking
n := 7). Therefore, {v, },y is precompact in LY(D), which implies that {un},cn is precompact in
LY(D). O
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Corollary 4.6. Let D be a bounded open set in R, Let {,,}, o
converging to 0 and suppose that the sequence of functions {u,}

be a sequence of positive numbers
nen € LY(D) satisfies:

sup [[unl| L1 (p) < o0,

neN

sup TV, (uy) < oc.
neN

Then, {un},cy is locally precompact in L* (D).
In particular if

sup [[un || L~ (py < 00,
neN

then, {un}, oy is precompact in L*(D).

Proof. If B is a ball compactly contained in D then the pre compactness of {u,}nen in L1(B)
follows from Lemma [4.3] using that T'Vz, (un|p) < TV, (u,). We note that if compactness holds on
two sets Dy and Dy compactly contained in D, then it holds on their union. Therefore it holds on
any set compactly contained in D, since it can be covered by finitely many balls contained in D.
The compactness in L'(D) under the L> boundedness follows via a diagonal argument. This
can be achieved by approximating D by compact subsets: D, C D, D = UD;, and using that

limy 00 SUpP,,eN ||unHL1(D\Dk) =0.
O

5. GAMMA CONVERGENCE OF TOTAL VARIATION ON GRAPHS

5.1. Proof Main result. Let D = (0,1)% and let {¢,}
converging to 0 satisfying .

nen be a sequence of positive numbers

Proof of Theorem[1.1. We use the sequence of transportation maps {T},},cy considered in Section
We work with w € Q for which , , in case d =1, d = 2 and d > 3 respectively. By
the results in Section 2.2. the complement in € of such w’s is contained in a set of probability zero.

Step 1: Suppose first that 7 is of the form n(t) = a for t < b and n = 0 for ¢ > b, where a, b are
two positive constants. Note it does not matter what value we give to n at b.

1
Liminf inequality: Assume that u, TL, 4 as n — oo. Since T4 = Vn, using the change of

variables (15]) it follows that
— 1
(50) TVie, (un) = = / Nen (T () = To(y)) [tn 0 Tn(x) — upn 0 Ty (y)| dzdy.
n DxD

The key idea in the proof is that the estimates of the Section on transportation maps provide
that the transportation happens on a length scale which is small compared to ¢,,. By taking a kernel
with slightly smaller "radius” than e,, we can then obtain a lower bound, and by taking a slightly
larger radius a matching upper bound on the graph total variation. In particular, note that for
Lebesgue almost every (z,y) € D x D

(51) ITn(2) — Ta(y)| > ben = [z —y| > ben, — 2[1d — Ty [| o

Thanks to the assumptions on {En}neN and , , incased =1,d=2and d > 3
respectively, for large enough n € N:

2
& i=en — 7 11d = Tullc > 0.

By (p1)), for large enough n and for almost every (z,y) € D x D,
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Let @, = uy, o T,,. Thanks to the previous inequality and (50]), for large enough n

__ 1 T — - -
TV e (1) > / n(' - y') i () — it (3)] ddy
En DxD

En

(2)" vz o).

En

1
Note that 5" — 1 as n — oo and that u, —> u implies Uy, —(>) u as n — oco. We deduce from

Theorem [.1] that lim inf,,_, TVz, (4,) > 0,TV (u) and hence:
liminf TV, e () > 0TV ().

n—oo

Limsup inequality: By Remark [2.0] it is enough to consider Lipschitz continuous functions
u : D — R. Define u,, to be the restriction of u to the first n data points Xy,..., X,,. Consider
Ep = 5n+% [ d—T,||c and let @,, = u,oT},. Then note that for Lebesgue almost every (z,y) € Dx D

T, (x) =T, T —
n(l (2) (y)|><n<|~y|>.
En &n
Then for all n

er [ (P00 ) ) e

d+1
(52 " .
< — N, (€ = y) lin(x) — tn(y)| dody.
DxD
Also
1
= / Ne, (2 — y)lu(z) — u(y)| dedy — / N, (€ = y)|uo Ty (x) —wo Tn(y)|dedy
€n |JDxD DxD
2
(53) <z Nz, (@ — y)lu(z) — uo T, (x)|dzdy
DxD
QC’L
1p / | — T (x)|dz,
where C' = fRd n(h)dh. The last term of the last expression goes to 0 as n — oo, yielding
. 1
lim — </ ne, (x — y)|u(z) — u(y)|dedy — / N, (x —y)|luoTy(x) —uo Tn(y)|dxdy> =0
n—00 £, DxD DxD

Since Z.—: — 1 as n — oo, using (52)) we deduce :

— 1 T, - T,
limsup TV, e, (un) =limsup — g / n (M) |uo Ty (z) —uwoTy(y)| dedy
DxD n

n— 00 n—oo E&np

1
glimsupf/ Ne, (x —y) |uoTy(x) —uoT,(y)| dedy
DxD

n—oo En

=limsup T'V;, (u) < 0, TV (u),

n—oo
where the last inequality follows from the proof of Theorem specifically inequality .
Step 2: Now consider 1 to be a piecewise constant function with compact support, satisfying
(K1)-(K3). In this case, we can write 1 = 22:1 7y, for some ! and functions 7y, as in Step 1. For this
—k
step of the proof we denote by TV, _ the total variation function on the graph using the function
M-
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s e o . TL
Liminf inequality: Assume that u,, — u as n — oco. By Step 1:

l l l
liminf TV, en (Up) = liminf Z TVn e (Uun) > Z im inf TVn e Z =0, TV (u)

n— 00 n—00 n— 00
= k=1 k=1

Limsup inequality: By Remark [2.6] it is enough to prove the limsup inequality for u: D — R
Lipschitz. Consider u,, as in the proof of the limsup inequality in Step 1. Then

limsup TV ., (uy,) = lim sup Z TV ., (un)

n— 00 n—o00
k=1

1
—k
< Z limsup TV, . (un)

k=1 n— oo

l
<> 0y, TV (1) = 0TV (u)

Step 3: Assume 7 is compactly supported and satisfies (K1)-(K3).

Liminf Inequality: Note that we can find an increasing sequence of piecewise constant functions
Nk ¢ [0,00) — [0,00) (n from Step 2 is used as n; here), with n; ' n as k — oo a.e. Denote by

k

—_— 1

TV, .. the graph TV corresponding to nx. If u, Ly was n — o0, by Step 2 0, TV (u) <
K —

liminf,, o TV, . (un) < liminf, o TV, ¢, (uy) for every k& € N. The monotone convergence

theorem implies that limy_, o 0, = 05, and so we conclude that o, TV (u) < liminf, ﬁn,sn (up).

Limsup inequality: As in Steps 1 and 2 it is enough to prove the limsup inequality for u
Lipschitz. Consider u,, as in the proof of the limsup inequality in Steps 1 and 2. Analogously to the
proof of the liminf inequality, we can find a decreasing sequence of functions ny, : [0, 00) — [0, 00)
(of the form considered in Step 2), with 1y \y 1 as k — oo a.e. Proceeding in an analo-
gous way to the way we proceeded in the proof of the liminf inequality we can conclude that
limsup,, .o TV ne, (un) < 0,7V (u).

Step 4: Consider general 7, satisfying (K1)-(K3). Note that for the liminf inequality we can use
the proof given in Step 3. For the limsup inequality, as in the previous steps we can assume that «
is Lipschitz and we take w,, as in the previous steps. Let « > 0 and define n,, : [0,00) — [0, 00) by
Na(t) :=n(t) for t < a and 1, (t) = 0 for t > a. We denote by T\V:E the graph TV using 7.

Note that:

TV e (un) =TV, . (uy)

(54) 1
+ cdtT

T,(z) — T,
/ n (M) (w0 T () — u o Ta(y)| dedy
En' J|To(2)=Ta(y)|>ae, En

Let us find bounds on the second term on the right hand side of the previous equality for large n.
Indeed since for almost every (z,y) € D x D it is true that |z —y| < |T,,(z) — T, (v)| + 2| Id — Th||
and |T,(x) — Tn(y)| < |z —y| + 2||Id — T, || We can use the fact that w —0asn— oo to

conclude that for large enough n, for almost every (x,y) € D x D for Wthh T () — To(y)| > ae,
it holds that |z — y| < 2|T,,(z) — T (y)| and |T,(z) — To.(y)| < 2]z — y|. From this we can conclude



26 NICOLAS GARCIA TRILLOS AND DEJAN SLEPCEV

that for large enough n

1
Tﬂ/ ( )>uoT( ) —uoTu(y)| drdy
En | Ty (2) =T ( u)|>a6n

1 / 1 (B2 lwo (o) = wo 10 daay
|z—y|>aen /2 2en,

2Llp( )/ (|93 |)
<—5 n |z — y|dzdy
524_1 lz—y|>ae, /2 2ep

To find bounds on the last term of the previous chain of inequalities, consider the change of variables

(z,y) € D x D+ (z,h) where x =z and h = 3%, we deduce that:

o (20)
T n |z — yldzdy < C n(h)|h|dh,
eit Jz—yl>ae, /2 2en Ih|>2

where C' does not depend on n or a. From the previous inequalities, and Step 3 we deduce
that

lim sup ﬁn’sn (up) <limsup TV: ., (un) + Lip(u)C n(h)|h|dh
n—00 n—ro0 ’ |h|>%
<0, TV (u) + Lip(u)C n(h)|h|dh
[hl>%

Finally, given the assumptions (K1)-(K3) on 7, sending « to infinity we conclude that
lim sup ﬁna (un) < 0,TV ()

n—o0

We now present the proof of Theorem on compactness.

Proof. Assume that {u, }nen is a sequence of functions with u,, € L'(D,v,) satisfying the assump-

tions of the theorem. As in Lemma [£.3]and Proposition [£.5] without loss of generality we can assume

that n is of the form n(t) = a if t < b and n(t) = 0 for ¢ > b, for some a and b positive constants.
Consider the sequence of transportation maps {7}, }, oy from Section Since {e,} eN satisfies

, estimates (24)), (25), and (26)), imply that for Lebesgue a.e. z,y € D w1th T, (2) — T (y)| > bep
it hold that |z — y| > be, — 2||Id — Ty || For large enough n, we set &, := ¢, — M > 0.
We conclude that for large n and Lebesgue a.e. z,y € D:

(B o (B280).

Using this, we can conclude that for large enough n:

dﬂ// ('Z y')moT() tn 0 T (y)| d=dy
< or [ [ o (PEEE) 0 om0 T sy

= TVn En (un)-

Thus

sup d+1// ( >|unOT()—unoTn(y)|dzdy<oo.

neN En
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Finally noting that i—z — 1 as n — oo we deduce that:

1
sup 7/ / Nz, (2 — y) |un 0 Tn(2) — uy 0 T (y)| dzdy < .
pJp

neN En
By Proposition we conclude that {u, o Ty}, oy is precompact in L' (D) and hence {uy,},, oy is
precompact in T'L". O

Finally, to prove Corollary on the I' convergence of perimeter, note that if {A,}, y is such

that A, C {X1,..., Xn}, ey and x4, T—>L1 x4 as n — oo for some A C D, then the liminf inequality
follows automatically from the liminf inequality in Theorem The limsup inequality is not
immediate, since we cannot use the density of Lipschitz functions as we did in the proof of Theorem
given that we restrict our attention to characteristic functions.

We follow the proof of Proposition 3.5 in [I9] and take advantage of the coarea formula of
the energies TV ne,- In fact, consider a measurable subset A of D. By the limsup inequal-
ity in Theorem we know there exists a sequence {u,} (with w, € L'(v,)) such that

neN
limsup,, oo TV, (un) < 0,7V (xa). It is easy to check that the functionals TV, . satisfy the

coarea formula:
oo

TV e, (tn) = / TV e, (Xgunss) ) ds.

— 00

Fix0<d < % Then in particular we have:

1-6
/ TVpe, (X{un>s})d5 <TVye, (un)-
§

For every n we can find s, € (4,1 — §) such that ﬁn’en (X fup>s,)) < ﬁf‘?n@n (up). De-

1
fine A% := {u, >s,}. Tt is straightforward to see that XAs I, x4 as n — oo and that

limsup,, ﬁn’sn (A2) < 0,TV(xa). We can now take d arbitrarily close to 0 and use a diagonal
1 —_—

argument to obtain sets {4, }, .y such that x4, IL, x4 asn — oo and lim SUP, o0 TV e, (X4, ) <

UnTV(XA)-

Remark 5.1. There is an alternative proof of the limsup inequality above. It is possible to proceed
in a similar fashion as in the proof of the limsup inequality in Theorem [[.I} In this case, instead
of approximating by Lipschitz functions, one would consider the characteristic functions of £ N D
where E is a subset of R? with smooth boundary. As in the proof of Theorem the key is to
show that for step kernels (n(r) = b if r < a and zero otherwise), and sets G := EN D

lim TV, . (xa) =TV (xa).

n—0o0

To do so one needs a substitute for estimate . The needed estimate follows from the estimate
| @) = Xa(Ta@)ds S Per(G: D) 1~ T, o
D

where Per(G : D) is the relative perimeter of G in D. We do not prove this estimate, but remark
that it has a straightforward proof. Finally, noting that this class of sets is dense with respect to
perimeter (see Remark 3.42 in [5]) and using Remark we obtain the limsup inequality for the
characteristic function of any measurable set.
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5.2. Extension to different sets of points. Consider D = (0,1)?. Instead of random, uniformly
distributed, independently chosen points Xi,...,X,,... one can consider different sets of points.
The only requirement is that one has estimates on how well the sequence of points approximates
the Lebesgue measure on D. In particular one would need to obtain analogues of estimates ,
, and . That is one would need to show that

1/d
(55) lim sup L e e 11 M1d ~ T oo
for some nonnegative function f : N — (0,00). The map T, in this context transports the Lebesgue
measure vy to the empirical measure determined by the new set of points (not necessarily randomly
chosen with uniform distribution).
We remark that f must be bounded from below, since for any collection V = {X;,..., X, } in D

sup dist(y, V) > en~ 4
yeD

<C

and thus n/?||Id — T, ||oc > c.
If holds and if ¢, is a positive sequence converging to zero such that lim, )1 g

ni/d e, —
then the conclusion of the Theorem [I.1] holds. We note that almost no modifications to the proof
are needed.
One special case is when we consider Xi,...,X,,... a sequence of grid points on diadicaly

refining grids. In this case one can take f(n) =1 for all n and &, — 0 such that lim,, ﬁ =0.

Note that our results imply I'-convergence in the T'L! metric, however in this particular case, this
is equivalent to the L' -metric considered in [19] and [II] where for a function defined on the grid
points we associate a function defined on D by simply setting the function to be constant on the
grid cells. This follows from Proposition [3.6]

5.3. Extension to more general domains. The purpose of this subsection is to extend the results
obtained for the cube (0,1)¢ to more general bounded domains D with continuous boundary. To
frame our approach consider X7, ..., X, to be independent samples of the uniform distribution D.
Let v}, to be the empirical measure associated to the data points and 1) the Lebesgue measure on D,
rescaled by Vol(D). If one can find a sequence of transportation maps Ty, : D — D with T},,15 = v,
and obtain an upper bound on how fast ||Id — T} ||~ converges to zero, then one can find a scaling
of € with respect to n for which the rescaled total variation on the graphs determined by the points
X1, X}, ... T-converges (in the TL! metric) to ity 1V as n — oo. Here TV denotes the total
variation on D. To obtain this result it is enough to imitate the proof of Theorem [I.1]in Subsection
[.1] noting that almost no modifications to the proof are required.

Thus the goal is to determine for general domains how well does the empirical measure approx-
imate the Lebesgue measure. While this question deserves a careful investigation, here we only
present two simple criteria, which still apply to a broad class of domains for which estimates on
|[Id — T! ||« are as good as those for the domain (0, 1)<.

Proposition 5.2. Let D be an open and bounded domain with Lipschitz boundary. Let v{, be the
Lebesgue measure on D rescaled by Vol(D). Let Xi,...,X),... be a sequence of i.i.d. random
vectors chosen uniformly on D and let v), = %Z?zl ) x/ be the corresponding empirical measures.
Assume that

(i) there ewists a volume preserving bi-Lipschitz mapping © : (0, L)% — D for some L > 0, or
(ii) D is diffeomorphic to B(0,1) via a C** mapping © : D — B(0,1).
Then, there ezists a sequence {1}, }, o of transportation maps Ty v = v, and such that ||Id—T} ||

satisfies , , ford=1,d=2 and d > 3 respectively. In particular Theorems and
hold for the domain D.
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Remark 5.3. It was shown in [23], and an explicit construction was given in [25], that there exists a
bi-Lipschitz volume preserving map between the unit ball and the unit cube (after rescaling by the
volume of the unit ball). Thus the case (i) of Lemma above applies to D = B(0, 1).

Proof Consider the case that (i) holds. By rescaling, we can assume that L = 1. The points

X, := O(X/) are independent and uniformly distributed on (0, 1)¢. Using the maps T}, of Subsection
we define T/, := ©~1 0 T}, 0 ©. Since O is bi-Lipschitz, the maps T/, are such that ||Id — T}||~
has the same rate of convergence to zero as ||Id — Ty, ||oo. This in particular implies that Theorem
is also true when considering D, with the same scaling for &,,. The compactness also follows.

The proof in the case that (ii) holds depends on Lemma we present below. We use the

diffeomorphism © to obtain a probability measure fi := (67! uV(l) defined on B(0,1). Since ©
is a C’} '@ diffeomorphism, [ is absolutely continuous with respect to the Lebesgue measure and
p = —;‘ is C and bounded below by a positive constant. Note that the points X; := o~h (X))
are independent and dlStI"ljbuted according to fi. We can obtain maps T, as in Lemma and check
that the maps 7!, := © o T, 0 ©~! satisfy the desired properties.

O

Lemma 5.4. Let p: B(0,1) — (0,00) be a Hélder continuous function such that fB(O 1 plx)dx = 1.

Let X1, e Xn, ... bei.i.d. random vectors on B(0,1) chosen according to the density p. Denote by
[ 1= }L Zi:l %, the empirical measure associated to the first n data points and by v the measure
with density p: dj(x) = p(x)dx. Then, there exists a sequence T, : B(0,1) — B(0,1) of (random,)
transportation maps with Tyyfi = fi, and such that ||[Id — T,||s satisfy the analogous estimates to

, , ford=1,d =2 and d > 3 respectively.

Proof. Step 1: If p is identically equal to 1/ Vol(B(0,1)), we can use Proposition case (i), and
Remark [5.3] to deduce the result.

Step 2: Denote by & the Lebesgue measure on B(0, 1) rescaled by Vol(B(0,1)). By Brenier’s
theorem (see [48]) there exists a convex function ® on B(0,1) such that V®;o = . Furthermore,
V& is the unique optimal transportation map for the quadratic cost, that is V® minimizes with
p = 2 (where [ plays the role of v and © the role of u). The function @, called the transportation
potential, satisfies a Monge-Ampere equation. The deep boundary regularity results for solutions
of the Monge-Ampere equation by Caffarelli [I8] (see also [I7], and Urbas [46]) imply that & € %7
up to the boundary, for some g > 0. Therefore the transportatlon map V@ is O18 up to the
boundary and thus Lipschitz. By a similar reasoning, (V<I>) is Lipschitz as well. Slnce Xi,..., X,
are 1. d samples of measure fi, it follows that the random variables Y7 := (Vo) " (X1),...,Y, =
(V®) " (X,,) are independent and uniformly distributed on B(0,1). Let 2, be the empirical measure

corresponding to Yi,...,Y,. Let T,, be the sequence of transportation maps between o and ,, which
satisfy the conclusions of this lemma (which exist by Step 1). Then T}, := V® o T}, o (V®) "
transportation maps between [ and fi,, and satisfy the desired estimates. O

5.4. Example: An application to clustering. Over the last couple of years a number of algo-
rithms involving total-variation and related functionals have been introduced for the purposes of
data analysis [9], 12| T3], 16, [14] 15 27, 28| [39, 42|, [43]. Here we present an illustration of how the
I'-convergence results can be applied to functionals in data analysis. The example we choose is
simple and its primary goal is to give a hint of the possibilities. We intend to carefully investigate
the more relevant functionals in future works.

Let D be the planar domain depicted on Figure |1} which we define as follows. Let ®; be the flow
map of the vector field v(z,y) := (sin(z) cos(y), — cos(z) sin(y)). Let ¥ = &; and D = ¥([-1,1]?).
Since v is divergence free and smooth, ¥ is a bi-Lipschitz volume-preserving homeomorphism be-
tween [—1,1]% and D.
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Consider the problem of dividing the domain into two clusters of equal sizes. In the continuum
setting the problem can be posed as finding A,,;, C D such that F(A) = TV (xa), is minimized
over all A such that Vol(D) = 2Vol(A). Tt is not hard to see that there are exactly two minimizers
( Apin and its complement) of the energy, see Figure

FI1cURE 1. Domain D FIGURE 2. Energy minimizers

In the discrete setting assume that n is even and tha‘g Vo ={X1,...,X,} are random points in
D. The clustering problem can be described as finding A,, C V,,, which minimizes

Fo(An) =TV, . (xa,)

among all A,, C V,, with 4,, = n/2. We can extend the functionals F,, and F to be equal to +o00
for sets which do not satisfy the volume constraint.

The kernel we consider for simplicity is the one given by n(z) = 1 if || < 1 and n(z) = 0
otherwise. While we did not consider the graph total variation with this constraint in the paper
thus far, we note that I'-convergence of graph total variation on domains like D was considered in
Subsection (Note that the corresponding I'-convergence for perimeter also holds). The liminf
inequality in the constraint case follows directly. To show the limsup inequality, one can use Remark
to obtain it first for sets G’ which satisfy the volume constraint and are of the form G = END
where F is a set with smooth boundary. After a careful modification to the density argument in
Remark 3.43 in [5] one can impose a volume constraint to the approximating sequences and finally
use Remark to obtain the limsup inequality in the general case.

The compactness result implies that if € satisfy , then along a subsequence, the minimizers
A, of F,, converge to A which minimizes F. Thus our results provide sufficient conditions which
guarantee the consistency (convergence) of the scheme as the number of data points increases to
infinity. That is, they indicate that for e(n) sufficiently large the minimizers converge (along a
subsequence) to the desired set.

Here we illustrate the minimizers corresponding to different € on a fixed dataset. On Figure [ we
present the discrete minimizer when ¢ is taken large enough. Note that this minimizer resembles
the one in the continuous setting in Figure[2] In contrast, on Figure[6] we present a minimizer when
e is taken too small. Note that in this case the energy of such minimizer is zero. The solutions are
computed by using the code of [14].
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08r

FIGURE 5. Graph with n=500, ¢ = 0.1 FIGURE 6. A minimizer when € = 0.1
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APPENDIX A. APPROXIMATING SURFACE TENSIONS

Here we show that surface tensions that correspond to approximating diffuse interface functionals
(136) converge to the surface tension of the sharp-interface problem as k — oo.

Consider a unit vector e € R%. Denote by C. the set of d — 1 dimensional cubes, centered at the
origin and contained in the orthogonal complement of e. For C € C. we denote by T the set of
points = whose projection on e’ is in C and finally for given C' € C, consider X¢ to be the class
of mesurable functions v : RY — [0,1] which are C-periodic and satisfy lim, .y u(z) = 1 and
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lim, oy o u(x) = 0. We define the energy,

F®) (u, Te) == / . /R (k) (u(@ + h) - u(z))?dxdh + Wi (u(z))dz, u € LY(D).

zeTc

We can now specify 07’;:
(56) of = inf { F®(u,Tc)/ | C| :u € X¢,C €Ce },

An important remark is that 05 is independent of the choice of unit vector e. In fact this follows
from the isotropy assumed for 7. From now on we take e = (1,0,...,0).

The minimization problem defining 07’; in is called the optimal profile problem associated to
n and W}, and it basically quantifies the least expensive way to transition from state 0 to state 1,
where the cost is measured by the energy F¥) (-, T¢). In [3] it was proved that the infimum in
is actually a minimum. Moreover, it is proved that for any C' € C, there exists a function 4y, : R —
[0, 1] which is C-periodic, only depends on the first coordinate, is increasing in the first coordinate
and together with C solves (56). Since the energy F¥)(-,T¢) is invariant under translations in
the first coordinate we select the optimal function 4y so that 0 = sup {1 : 4x(x) < 1/2}, by first
translating if necessary. From now on we take C' = {0} x [-1/2,1/2] x --- x [-1/2,1/2]. Intuitively
because of the double-well potential term in F*) (-, T¢) we should expect that as k gets bigger, the
functions g get closer to the sharp interface u given by

~ L 1 ifl‘lzo
i(z) "{ 0 ifa; <0

This is precisely the content of the next proposition. Note that a direct computation shows that
o, defined in (6) satisfies o, = Jre Jean(W)|a(@ + 1) — (z)|dwdh.

Lemma A.1. For the functions {iy},cy and @ considered above, Uy(x) — u(zx) as k — oo for
almost every x € RY,

Proof. First of all note that it is enough to prove the result for a.e. point in T by C-periodicity.
Consider {ay}, .y a decreasing sequence of positive numbers converging to 0 with a; < 1/2. Then

Wi (g )dz > / Wi (tg)dx > kW (ag) Vol ({z € T, : ap < Gg(z) <1 —ag})
{z€T.|ar<ar(z)<l—ay }

Tc
This implies,
oy > of, > kW(ag) Vol({x €T, : ap < dgx(x) <1—ag})
Therefore
on/ (kW (ay)) > Vol ({z € T, | ar, < tg(z) <1 —ay })

Let us choose the sequence {ax}, .y in such a way that kW (ax) — oo as k — oo . From the fact
that 4y, only depends on z; and that it is increasing in 1, we conclude that if 21 > o, /(KW (ay))
then a4 (z) > 1 —a and if 21 < —0, /(KW (ay)) then i () < aj. This immediately implies @, — @
a.e. in Tp. Il

Lemma A.2.

(57) lim of = o,

k—o0
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Proof. Indeed, by the previous lemma and Fatou’s lemma
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