Nanoparticle thermal motion in a Newtonian fluid using fluctuating hydrodynamics

Uma Balakrishnan
Department of Mechanical Engineering and Applied Mechanics
University of Pennsylvania
E-mail: umab@seas.upenn.edu

Incompressible fluids, Turbulence and Mixing: In honour of Peter Constantin's 60th birthday,
Carnegie Mellon University, October 15, 2011
Drug delivery by intravascular use of targeted nanocarriers holds promise for personalized medicine.

Clinical optimization of drug transport requires accurate description of carrier motion in the blood stream and near endothelial cells.

Synergistic computational approach is required to determine the translational and rotational motions of a nanocarrier.

Brownian motion and hydrodynamic interactions are important.
Overview

Fluctuating Hydrodynamics Approach

Lattice Boltzmann method

Stochastic Immersed Boundary method

Finite element method
(Espanõl et al., J. Chem. Phys., 2009)

Finite Volume Method

Langevin Approach

Direct Numerical Simulation (DNS): Arbitrary Lagrangian–Eulerian technique based on combined formulation of the fluid and particle momentum equations – ALE moving, unstructured, finite-element mesh

\[k_B = 1.3806 \times 10^{-23} \text{ J K}^{-1}; T = 310 \text{ K}; \mu = 10^{-4} \text{ kg/ms}; \rho_f = 10^3 \text{ kg/m}^3; 990 \text{ kg/m}^3 \leq \rho_p \leq 1010 \text{ kg/m}^3 \]

\[U_{\text{max}} = 10^{-4} \text{ to } 10 \text{ mm/s}; \text{Re}_f = 5 \times 10^{-7} \text{ to } 5 \times 10^{-2}; \text{Re}_p = 2.5 \times 10^{-8} \text{ to } 2.5 \times 10^{-3} \text{ (Poiseuille flow)} \]

Finite Element Discretization

Direct Numerical Simulation (DNS): Arbitrary Lagrangian–Eulerian technique based on combined formulation of the fluid and particle momentum equations – ALE moving, unstructured, finite-element mesh
Governing Equations and Boundary Conditions:
Fluctuating Hydrodynamics Approach

Governing equations for the fluid motion and rigid particles

\[\nabla \cdot \mathbf{u} = 0 \]

\[\rho_f \frac{D\mathbf{u}}{Dt} = \rho_f \mathbf{f} + \nabla \cdot \sigma = 0 \]

\[\sigma = -p \mathbf{I} + \mu \left[\nabla \mathbf{u} + \left(\nabla \mathbf{u} \right)^T \right] + \mathbf{S} \]
(Random Stress)
(Landau and Lifshitz, 1959)

Boundary conditions

\[\mathbf{u} = \mathbf{u}_p \text{ on } \left(\partial \Omega \right)_u \]

\[\sigma \cdot \mathbf{n} = 0 \text{ on } \left(\partial \Omega \right)_\sigma \]

\[\mathbf{u} = \mathbf{V}_i + \omega_i \times (\mathbf{x}_i - \mathbf{X}_i) \text{ for } \mathbf{x} \in \partial \Omega_i(t) \]

Initial conditions

\[\mathbf{u} = \mathbf{u}_0 \text{ on } \Omega_0(0) \]

\[\left\langle \mathbf{S}_{ij} \right\rangle = 0; \quad \left\langle \mathbf{S}_{ik}(\mathbf{x}_1, t_1) \mathbf{S}_{lm}(\mathbf{x}_2, t_2) \right\rangle = 2k_B T \mu \left(\delta_{il} \delta_{km} + \delta_{im} \delta_{kl} \right) \delta(t_1 - t_2) \delta(\mathbf{x}_1 - \mathbf{x}_2) \]
Time Scales

Hydrodynamic time scale:
(a – radius of a nanoparticle
ν – viscosity of the fluid)

Nanoparticle of radius
a = 250 nm

\[\tau_v = \frac{a^2}{\nu} \]
\[\tau_v = 6.25 \times 10^{-8} \text{s} \]

Brownian relaxation time scale:
(m – mass of a nanoparticle
\(\zeta^{(F)} \) – Stokes friction coefficient)

Nanoparticle of radius
a = 250 nm

\[\tau_b = \frac{m}{\zeta^{(F)}} \]
\[\tau_b = 1.38 \times 10^{-8} \text{s} \]

Brownian diffusion time scale:

Nanoparticle of radius
a = 250 nm

\[\tau_d = \frac{a^2 \zeta^{(F)}}{k_B T} \]
\[\tau_d = 6.88 \times 10^{-2} \text{s} \]

Time scale for simulation:

\[\Delta t << \tau_b, \tau_v, \tau_d \]
Translational and rotational temperatures of the nanoparticle are obtained:

\[T^{(t)} = \frac{m \langle U^2 \rangle}{3k_B}, \quad T^{(r)} = \frac{I \langle \omega^2 \rangle}{3k_B} \]

➢ To account for compressibility effects in the translation motion of the particle, its mass is augmented by an added mass (mass of the displaced fluid)

\[T^{(t)} = \frac{M \langle U^2 \rangle}{3k_B}, \quad T^{(r)} = \frac{I \langle \omega^2 \rangle}{3k_B} \]
The translational and rotational temperatures of the particle in a stationary medium as a function of the normalized surface mesh length and for different time step of integration.

The rotational motion of the nanoparticle is unaffected by the incompressibility of the fluid.

The error bars have been plotted from standard deviations of the temperatures obtained with 15 different realizations (5 realizations in each direction).

The translational and rotational temperatures of the nanoparticle agree with the preset temperature of the fluid to within 5% error.
The translational and rotational temperatures of nearly neutrally buoyant Brownian particles, thermally equilibrated, in a quiescent fluid medium are independent of the density of the particle in relation to that of fluid.

The translational and rotational temperature equilibration of a nanoparticle initially placed at the center of a cylindrical tube as a function of the particle Reynolds number for Poiseuille flow.

The translational and rotational temperatures of the nanoparticle agree with the preset temperature of the fluid to within 5% error.
The probability density distribution of the translational and rotational velocities of the fluctuating nanoparticle follow the Maxwell-Boltzmann distribution.

Each degree of freedom individually follows a Gaussian distribution.
DNS: Fluctuating Hydrodynamics – Velocity Autocorrelation Function (VACF)

At Short times:

\[
\langle U(t)U(0) \rangle = \frac{3k_B T}{M} e^{-\zeta(t)t/M}; \quad \langle \omega(t)\omega(0) \rangle = \frac{3k_B T}{I} e^{-\zeta(r)t/I}
\]

At long times:

\[
\langle U(t)U(0) \rangle \approx \left(\frac{k_B T \rho^{(f)1/2}}{4\pi^{3/2} \mu^{3/2}} \right) t^{-3/2}; \quad \langle \omega(t)\omega(0) \rangle \approx \left(\frac{3k_B T \rho^{(f)3/2}}{32\pi^{3/2} \mu^{5/2}} \right) t^{-5/2}
\]

The translational VACF follows an exponential decay in the range for \(t < 0.343 \, \tau_v \)
and an algebraic tail for \(t > 1.202 \, \tau_v \).

The rotational VACF follows an exponential decay, for \(t < 0.115 \, \tau_v \)
and an algebraic tail for \(t > 0.495 \, \tau_v \).

The error bars have been plotted from standard deviations of the decay at particular

- time instants obtained with 45 different realizations.
DNS: Fluctuating Hydrodynamics – Mean Square Displacement (MSD)

Translation:

\[\langle \Delta x^2 \rangle = \frac{3k_B T}{M} t^2 \quad \text{(ballistic limit)} \]

\[= 6D_{\infty}^{(t)} t \quad \text{(diffusive regime; Stokes-Einstein relation)} \]

(Zwanzig, Nonequilibrium Statistical Mechanics, 2001)

Rotation:

\[\langle \Delta \theta^2 \rangle = \frac{3k_B T}{I} t^2 \quad \text{(ballistic limit)} \]

\[= 6D_{\infty}^{(r)} t \quad \text{(diffusive regime; Stokes-Einstein-Debye relation)} \]

(Heyes et al., J. Phys.: Condens. Matter 10, 10159 (1998))
In the ballistic regime, $0.346 \tau_v < t < 0.63 \tau_v$ (translation), and $0.174 \tau_v < t < 0.316 \tau_v$ (rotation), the translational and rotational motions of the particle follow $(3k_B T / M) t^2$ and $(3k_B T / I) t^2$ respectively.

In the diffusive regime, $t \gg \tau_b$, and when $t \geq 7 \tau_v$ (translation) and $t \geq 1.2 \tau_v$ (rotation), the translational and rotational MSDs increase linearly in time to follow Stokes-Einstein and Stokes-Einstein-Debye relation, respectively.
Parallel (x direction) and perpendicular (y direction) diffusion coefficients of neutrally buoyant particles of different radii initially placed at various distances from the tube wall, both in a quiescent medium and Poiseuille flow are in good agreement with the analytical predictions of Happel and Brenner (1983).
DNS: Fluctuating Hydrodynamics

- Frequency distribution of velocity of a nanoparticle: Maxwell-Boltzmann distribution
- Temperature of a particle: Equipartition theorem
- Velocity autocorrelation function (VACF): Exponential decay (initial time) Power-law decay (long time)
- Mean square displacement (MSD): Stokes-Einstein & Stokes-Einstein-Debye relations
- Wall effects: Parallel and perpendicular diffusivity of the particle agrees with Happel and Brenner’s analytical prediction

DNS: Other Approaches

Generalized Langevin Dynamics with Correlated noise
(Uma et al., The Journal of Chemical Physics, 135, 114104 (2011);
Uma et al., Proceedings of the ASME 3rd Micro/Nanoscale Heat and Mass Transfer
International Conference, Paper No. MNHMT2012-75019 (2012))

Hybrid Approach: Combination of fluctuating hydrodynamics and Generalized Langevin
dynamics
(Uma et al., Molecular Physics, in review (2011))

<table>
<thead>
<tr>
<th>Approach</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluctuating Hydrodynamics (FHD)</td>
<td>Satisfies equipartition theorem, VACF, MSD and wall effects. Compressibility effects are accounted by adding the virtual mass with the particle mass</td>
</tr>
<tr>
<td>Generalized Langevin Dynamics (GLD) with correlated noise</td>
<td>Thermostat satisfies equipartition theorem in a small plateau region, and satisfies VACF. Alters dynamics with a scaling factor depends on the radius of the particle</td>
</tr>
<tr>
<td>Hybrid: Combination of FHD and GLD</td>
<td>Thermostat satisfies equipartition theorem in a small plateau region. Also satisfies VACF, and MSD. Wall effects are yet to determine.</td>
</tr>
</tbody>
</table>
Modeling nanocarrier binding through receptor ligand interactions

Review of physiological factors in drug delivery

Thank my Collaborators & funding agency

Prof. P.S. Ayyaswamy
Department of Mechanical Engineering and Applied Mechanics
ayya@seas.upenn.edu

Prof. D.M. Eckmann
Department of Anesthesiology and Critical Care
David.Eckmann@uphs.upenn.edu

Prof. R. Radhakrishnan
Department of Bioengineering
rradhak@seas.upenn.edu

Dr. T.N. Swaminathan
Department of Mechanical Engineering and Applied Mechanics

Other Collaborators:
Dr. Jin Liu
Department of Bioengineering

Prof. V.R. Muzykanto
Department of Anesthesiology and Critical Care

Work supported by NIH grant No: 1R01EB006818;
Computing resource: NPACI MCB060006
Thanks for your attention !!!!!!