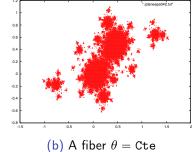

Whiskered invariant tori for fibered dynamics.


We consider fibered holomorphic dynamics, generated by the skew product over the translation T_{ω} :

$$\begin{aligned} \mathbf{F} : \mathbb{T}^{\mathbf{d}} \times \mathbb{C}^{\mathbf{n}} &\to \mathbb{T}^{\mathbf{d}} \times \mathbb{C}^{\mathbf{n}} \\ \mathbf{F}(\boldsymbol{\theta}, \mathbf{z}) &= (\boldsymbol{\theta} + \boldsymbol{\omega}, \mathbf{f}(\boldsymbol{\theta}, \mathbf{z})) \end{aligned} \tag{1}$$

Where ω satisfies a non-resonance condition.

(a) Siegel set for $f(\theta, z) = az + z^2(1 + \epsilon \cos \theta)$

Objective: Given an approximately F-invariant torus \mathfrak{T}_0 , compute an F-invariant torus \mathfrak{T} , near \mathfrak{T}_0 .

Methodology:

- A-posteriori format: Set up functional equations.
- Nash-Moser iteration: Asymptotics for the derivative cocycle.
- Melnikov Conditions.
- Lower dimensional tori (d < n): Add parameters (after [Moser, 1967]) which act as "counterterms".
- Use a-posteriori format to reduce the number of parameters (after [Herman, Sevryuk]).