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Introduction

The classical obstacle problem consists in finding u the minimizer of Dirichlet energy
in a domain Ω, among all functions v, with fixed boundary data, constrained to lie
above a given obstacle ψ, studying proprieties of minimizer and analysing the regularity
of the boundary of the coincidence set Λu := {u = ψ} between minimizer and obstacle,
Γu := ∂Λu ∩Ω.

In this context, we aim at minimizing the following energy (we are reduced to the 0
obstacle case, so f = −div(A∇ψ))

E(v) :=
∫
Ω

(
〈A(x)∇v(x),∇v(x)〉+ 2f(x)v(x)

)
dx, (1)

on K0 = {v ∈ H1(Ω) : v ≥ 0 Ln a.e., Tr(v) = g ∈ H
1
2(∂Ω)}, where Ω ⊂ Rn is a

smooth, bounded and open set, n ≥ 2, A : Ω → Rn×n and f : Ω → R are functions
satisfying:

(H1) A ∈W1+s,p(Ω;Rn×n) with s > 1
p , p >

n2

n(1+s)−1 ∧ n or s = 0 and p = +∞;
(H2) A(x) =

(
aij(x)

)
i,j=1,...,n

continuous, aij = aji Ln a.e. Ω and ∃Λ ≥ 1

Λ−1|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2 Ln a.e. Ω, ∀ξ ∈ Rn; (2)

(H3) f Dini-continuous ∫1
0

ω(t)

t
dt <∞ (3)

where ω(t) = sup|x−y|≤t |f(x) − f(y)|, f ≥ c0 > 0.
(H3) ′ Let a > 2 be ∫1

0

ω(r)

r
| log r|a dr <∞. (4)

Result and discussions

We analyse the properties of the minimizer and, studying the properties of blow-ups, we
obtain the regularity of the free-boundary. We prove that the minimizer u is a regular
solution of an elliptic differential equation in divergence form:

div(A(x)∇u(x)) = f(x)χ{u>0}(x) a.e. on Ω and in D ′(Ω). (5)

The lack of smoothness and homogeneity of the matrix of coefficients A does not permit
to exploit elementary freezing arguments to locally reduce the regularity problem above to
the analogous one for smooth operators, for which a complete theory has been developed
by Caffarelli [3]. We fix x0 a point of the free-boundary Γu and by a suitable change of
variable L(x0), w.l.o.g., we suppose

x0 = 0 ∈ Γu, A(0) = In, f(0) = 1. (6)

Building upon the variational approach to the classical obstacle problem developed by
Weiss and Monneau, the strategy to prove the regularity of free-boundary is energy-based

and relies on quasi-mononicity formulas, on Weiss’ epiperimetric inequality as well as on
Caffarelli’s fundamental blow up analysis. We proceed, as in [4], introducing the rescaled
2-homogeneous functions ur(x) := u(rx)

r2
and we introduce an associate energy “à la

Weiss”

Φ(r) :=

∫
B1

(
〈A(rx)∇ur(x),∇ur(x)〉+2f(rx)ur(x)

)
dx+

∫
∂B1

〈
A(rx)

x

|x|
,
x

|x|

〉
u2r(x)dH

n−1,

(7)
The rescaled functions satisfy an appropriate PDE and an uniform estimate.
Proposition 1 (Uniform boundness W2,p)
Assume (6) holds. Then, ∀R > 0 ∃C > 0 such that, for r << 1

‖ur‖W2,p∗(BR)
≤ C. (8)

In particular, the functions ur are equibounded in C1,γ ′ for γ ′ ≤ γ := 1− n
p∗.

It holds a quasi-monotonicity formula that extends Weiss’ formula in [9]:
Theorem 2 (Weiss’ type quasi-monotonicity formula)
Assume that (H1)-(H3) and (6) are satisfied, and let Θ = Θ(n, p, s) be an exponent
such that Θ > n ( Θ = +∞ if A ∈W1,∞). Then ∃ C̄3, C4 > 0 independent from r
such that

r 7→ Φ(r) eC̄3r
1−nΘ

+ C4

∫ r
0

t−
n
Θ +

ω(t)

t

 eC̄3t
1−nΘ

dt (9)

is nondecreasing on (0, 12dist(0, ∂Ω)∧ 1).
By Blanck and Hao [1] we have the following result.
Proposition 3 (Quadratic growth)
Let x0 ∈ Γu, then ∃θ > 0 such that

sup
∂Br(x0)

u ≥ θ r2. (10)

By boundness estimate we have the existence of blow-ups, by quasi-monotonicity for-
mula we prove that the blow-ups are 2-homogeneous and by quadratic growth we obtain
the non degeneracy of blow-ups. Moreover thanks Γ -convergence argument we give a
classification of blow-ups as in the classical case established by Caffarelli [2, 3].
Proposition 4 (Classification of blow-ups)
Every blow-up vx0 at a free boundary point x0 ∈ Γu is of the form vx0 = w(L

−1(x0)y),
where w is a non-trivial, 2-homogeneous for which one of the following two cases occurs:

(A)w(y) = 1
2

(
〈y, ν〉∨ 0

)2 for some ν ∈ Sn−1;
(B)w(y) = 〈By, y〉 with B a symmetric, positive definite matrix satisfying and TrB = 1

2.

The above proposition allows us to formulate a simple criterion to distinguish between
regular and singular free boundary points.
Definition 5 (Regular and Singular points of the free-boundary)
A point x0 ∈ Γu is a regular free boundary point, and we write x0 ∈ Reg(u) if there
exists a blow-up of u at x0 of type (A). Otherwise, we say that x0 is singular and write
x0 ∈ Sing(u).
We prove a Monneau’s type quasi-monotonicity formula (see [8]) for singular free bound-
ary points.
Theorem 6 (Monneau’s type quasi-monotonicity formula)
Let 0 ∈ Sing(u). Below hypotesies of Theorem 1 ∃C5 > 0 independent of r such that for
some v 2-homogeneous polynomial positive function, solving ∆v = 1 on Rn, the function

r 7−→ ∫
∂B1

(ur − v)
2 dHn−1 + C5

r(1−nΘ) +ω(r)
 (11)

is nondecreasing on (0, 12dist(0, ∂Ω)∧ 1).
The following result prove the property of uniqueness of blow-ups. We use the Theorem
6 for singular points and the Weiss’ epiperimetric formula [9] for regular points.

Proposition 7 (Uniqueness of blow-ups)
(i) Assume (H1)-(H3), then ∀x ∈ Sing(u) there exists a unique blow-up limit
vx(y) = w(L−1(x)y). Moreover, if K ⊂ Sing(u) is a compact subset, then ∀x ∈ K

∥∥∥∥∥∥uL(x),r −w
∥∥∥∥∥∥C1(B1) ≤ σK(r) ∀r ∈ (0, rK), (12)

for some modulus of continuity σK : R+ → R+ and a radius rK > 0.
(ii) Suppose (H1), (H2) and (H3) ′ and let x0 ∈ Reg(u). Then, ∃r0 = r0(x0),
η0 = η0(x0) such that every x ∈ Reg(u) ∩ Bη0(x0) and, denoting by
vx = w(L−1(x)y) any blow-up of u in x we have∫

∂B1

|uL(x),r −w|dH
n−1(y) ≤ C7 ρ(r) ∀ r ∈ (0, r0), (13)

where C7 is an independent constant from r and ρ(r) a growing, infinitesimal
function in 0. In particular, the blow-up limit vx is unique.

These results allow to prove the regularity of free-boundary:

Theorem 8 (Regularity of the free-boundary)
We assume the hypothesis (H1)-(H3). The free-boundary decomposes as
Γu = Reg(u) ∪ Sing(u) with Reg(u) ∩ Sing(u) = ∅.
(i) Assume (H3) ′. Reg(u) is relatively open in ∂{u = 0} and for every point
x0 ∈ Reg(u) there exists r = r(x0) > 0 such that Γu ∩ Br(x0) is a C1 hypersurface
with normal versor σ is absolutely continuous.
In particular if f is Hölder continuous there exists r = r(x0) > 0 such that
Γu ∩ Br(x) is C1,β hypersurface for some universal exponent β ∈ (0, 1).

(ii) Sing(u) = ∪n−1k=0Sk and for all x ∈ Sk there exists r such that Sk ∩ Br(x) is
contained in a regular k-dimensional submanifold of Rn.

Futher development

As a direct outcome of Theorem 8 we shall deduce the analogous result for u, solution
of nonlinear variational problem

min
Kψ

∫
Ω
F(x, v,∇v)dx (14)

where Kψ := {v ∈ H1(Ω) : v ≥ ψ Ln a.e., Tr(v) = g ∈ H
1
2(∂Ω)}, F(x, z, ξ) is a

nonlinear function for which (∇ξF, ∂zF)(x, z, ξ) is smooth strongly coercive vector field
and ψ is a regular obstacle.
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