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Abstract

We look for traveling waves of the semi-discrete conservation law 4u̇j + u2
j+1 − u2

j−1 = 0, using
variational principles related to concepts of “hidden convexity” appearing in recent studies of
various PDE (partial differential equations). We analyze and numerically compute with two
variational formulations related to dual convex optimization problems constrained by either the
differential-difference equation (DDE) or nonlinear integral equation (NIE) that wave profiles
should satisfy. We prove existence theorems conditional on the existence of extrema that satisfy
a strict convexity criterion, and numerically exhibit a variety of localized, periodic and non-
periodic wave phenomena.

1 Introduction

A great many types of dynamic behavior are known to arise from different approximation schemes
for solutions to the inviscid Burgers equation

∂tu+ ∂x

(
1

2
u2
)

= 0, −∞ < x < ∞, t > 0. (1.1)

In particular, conservative and dispersive approximations of this equation often exhibit dispersive
shocks. As a dispersive shock develops, its structure is that of a modulated envelope of periodic
waves, and at its leading edge one sees the emergence of several solitary waves. While a great
deal is known about dispersive shocks for integrable approximations to (1.1), little appears to be
understood for non-integrable approximations.

A recent study by Sprenger et al. [1] focuses on a non-integrable approximation generated by
simple centered differences in space: With uj(t) ≈ u(jh, ht), one obtains the equations

d

dt
uj +

1

4

(
u2j+1 − u2j−1

)
= 0 j ∈ Z. (1.2)

In addition to dispersive shocks, Sprenger et al. illustrate many other different regimes and types
of solutions in numerical simulations of these equations. They use Whitham modulation theory
and weakly nonlinear asymptotics to explain some of the observed phenomena. Other interesting
behaviors that were observed include highly nonlinear phenomena such as discontinuous waves
connecting periodic solutions to constant states, and periodic waves emerging from both sides of a
discontinuity.
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In this article we focus on studying periodic and solitary traveling waves of the semi-discrete
Burgers equations (1.2). Such waves must take the form

uj(t) = f(j − ct), (1.3)

where the wave profile f satisfies the differential-difference equation (DDE)

−cf ′(x) +
1

4

(
f(x+ 1)2 − f(x− 1)2

)
= 0. (1.4)

Upon integration we find this is equivalent to the nonlinear integral equation (NIE)

−cf(x) +
1

4

∫ x+1

x−1
f(z)2 dz = C0, (1.5)

where C0 is a constant.
For our study we will adapt the dual variational framework that has been developed for a

variety of problems in [2, 3, 4] and computationally demonstrated in [5, 6, 7], with rigorous results
presented in [7, 8]. The approach is closely related to the idea of ‘hidden convexity’ in nonlinear
PDE developed by Brenier [9, 10]. Brenier’s approach has recently been extended and employed
by Vorotnikov [11, 12] to establish a version of Dafermos’ maximum entropy rate principle for
conservation laws, and by Mirebeau and Stampfli [13] to establish rates of convergence to smooth
solutions for discretization schemes for multidimensional quadratic porous medium and (in)viscid
Burgers equations.

We utilize this approach for both numerical and theoretical reasons. Regarding the numerical
computation of steady wave profiles, a method known as Petviashvili iteration often works rather
well in practice [14, 15]. Equation (1.5) may be the simplest for which this method can be applied,
in fact. The global convergence properties of Petviashvili iteration are not very well understood,
however. The work of Pelinovsky and Stepanyants [15] established criteria for local convergence or
divergence, but requires certain assumptions about the spectrum of the linearization at an exact
wave profile, assumptions which are not known to hold in many settings, including that of (1.5).

Regarding theory, we are not aware of any proof of existence for any non-trivial traveling
waves of the semi-discrete Burgers equations (1.2), except that the approach of Herrmann [16] may
capture periodic solutions that are strictly of one sign after modifying the flux function Φ′(u) =
1
2u

2 to be strictly monotonic and C1. The solitary-wave problem appears similar to that for
solitary waves in Fermi-Pasta-Ulam type particle lattices involving nearest-neighbor forces, which
is the subject of a recent review by Vainchtein [17]. Variational methods based on concentration
compactness or mountain-pass methods have been used to prove existence theorems for solitary
waves in Fermi-Pasta-Ulam lattices [18, 19, 20] and related equations of peridynamics [21, 22]. But
we are not aware of an existing variational formulation for the traveling wave profile equations (1.4)
or (1.5). The general variational framework of Herrmann and Matthies [23] deals with equations
that resemble (1.5), but does not evidently apply due to the fact that the characteristic function
of an interval has a sign-changing Fourier transform and thus is not a convolution square.

For waves that are small-amplitude long-wave perturbations of a non-zero constant state, a for-
mal Korteweg-de Vries (KdV) approximation can be described, as one may expect, and we describe
this in Appendix A. It is plausible that existence of waves in this regime could be established by
adapting existing fixed-point and pertubation methods [24, 25, 26, 27, 28, 29]. On the other hand,
large-amplitude waves, and any perturbations of the zero solution, are in a completely nonlinear
regime inaccessible by such methods. Perhaps existence results might be had by methods based on
topological degree theory, though, like those in [30, 31].
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The dual variational formulation that we will study here provides a flexible method for exploring
the solution space numerically. Using it we also prove conditional existence theorems for traveling
waves. We prove the existence of extrema which determine an exact traveling wave solution,
conditional upon a certain domain constraint being strictly satisfied. In many cases, our numerical
computations strongly indicate that the domain constraint indeed strictly holds. But we do not
claim any mathematically rigorous existence proof.

A useful feature of our approach is that it provides a well-set solution strategy without imposing
further conditions on the fundamental problem statement for ones not naturally posed with bound-
ary conditions (such as the traveling wave problem). We exploit this feature in our formulation
and computations.

Let us briefly summarize some of the key results of our computations. We find a considerable
variety of periodic and non-periodic wave profiles on long intervals. Our computations of waves
with localized structure suggest that solitary wave solutions should exist having limit states

ū = lim
t→±∞

uj(t) , (1.6)

whenever a phase-speed non-matching condition holds. Namely, a solitary wave of the form (1.3)
that satisfies (1.6) should exist whenever the speed c does not match the phase velocity ω/ξ of any
linear harmonic wave vj(t) = eiξj−iωt for the equations (1.2) linearized at the constant state ū. As
the dispersion relation for this linearized equation is ω = ū sin ξ, this means that the phase-speed
non-matching condition reads

c ̸= ū sinc ξ for all ξ ∈ R, (1.7)

where sinc ξ = sin ξ/ξ for ξ ̸= 0 (and = 1 for ξ = 0).
The wave profiles that we find develop different types of long-wave structure in two regimes in

which phase-speed non-matching is breaking down. In one regime, c ≈ ū. This corresponds to the
KdV long-wave regime, and indeed we see wide, small-amplitude single-hump wave profiles there.
In the other regime, c ≈ ū sinc ξ∗ where ξ∗ ≈ 4.4934 is the value which minimizes sinc ξ. Here
we see wave profiles oscillating with wave number near ξ∗ but modulated with an envelope that
slowly decays away. Note that at the critical wave number ξ∗, the phase velocity matches the group
velocity dω/dξ = ū cos ξ of wave packets. A recent work by Kozyreff [32] studies wave propagation
in such a regime. Kozyreff’s study involves the asymptotics of exponentially small terms, a topic
beyond the scope of the present paper.

A further interesting result from our computations is that we find a range of cases where our
optimization method finds localized waves with oscillatory decaying tails, but Petviashvili iteration,
initiated with the resulting wave shape, goes unstable and fails to converge.

As our focus in the present paper is to demonstrate the utility of the variational method for
finding wave solutions, we leave systematic investigation and classification of the families of non-
linear wave solutions of the semi-discrete Burgers system (1.2) for future research. Clearly, there
remain many issues to be understood more thoroughly and more rigorously.

2 Variational formulations

By a simple scaling (replacing f by −2cf), equation (1.4) for nontrivial traveling wave profiles can
be reduced to the following DDE that corresponds to setting c = −1

2 in (1.4):

f ′(x) +
1

2

(
(f(x+ 1))2 − (f(x− 1))2

)
= 0, (2.1)

3



where f : R → R and (·)′ ≡ d(·)
dx . Correspondingly, equation (1.5) is reduced to the NIE

f(x) +
1

2

∫ x+1

x−1
f(y)2 dy = C1, (2.2)

where C1 = 1
2C0/c

2. In this section, we will describe two related dual variational formulations for
this problem, one that starts directly from the DDE (2.1) and one that starts from the NIE (2.2).
The formulations have slightly different numerical and analytical properties, to be compared in
later sections.

Schematically, the formulations we study are dual to primal optimization problems of a classic
form. Namely, as discussed in [9, 2], one seeks to minimize an integral functional

∫
H(f, x) dx,

constrained by the equation in question. If Q[f ] = 0 corresponds to the equation in question, one
introduces a dual field (Lagrange multiplier) λ(x) and writes the primal problem in the inf-sup
formulation

Find inf
f

sup
λ

∫
(λQ[f ] +H(f, x)) dx .

This primal problem is set only as a device, however. The point is that the dual problem, obtained
by interchanging inf and sup, is one that we can exploit to obtain information about solutions of
Q[f ] = 0 both computationally and theoretically.1

Of particular importance is the realization that Q[f ] = 0 is a component of the first-order
optimality conditions of both the supλ inff and inff supλ problem statements, regardless of the
choice of H. Thus, our solution strategy exploits the use of not just a single H function, but
a family of adapted, convex ones, allowing parametrization by base states which are specified
functions or trajectories that can encode knowledge about approximate solutions [3, 2]. Indeed,
base states are utilized in a crucial, adaptive way in our algorithm in Sec. 4.

Below, for any field (·), we will use the following notation:

(·)(x+ h) ≡ (·)x+h

In cases when h = 0, we will utilize the notations (·)(x) ≡ (·)x and (·)(x) ≡ (·) interchangeably.

2.1 Dual DDE formulation

Considering a dual field λ corresponding to (2.1), define the following pre-dual functional:

Ŝ[f, λ] =

∫ ∞

−∞

(
−λ′ f +

λ

2
( f2

x+1 − f2
x−1 ) + H(f, x)

)
dx, (2.3)

where H is a free auxiliary function of the arguments shown. Since the limits of integration involved
in the last equation are from −∞ to ∞, we can write:∫ ∞

−∞
λ f2

x+1 dx =

∫ ∞

−∞
λx−1 f

2 dx and

∫ ∞

−∞
λ f2

x−1 dx =

∫ ∞

−∞
λx+1 f

2. (2.4)

Equation (2.3) can thus be rewritten as:

Ŝ[f, λ] =

∫ ∞

−∞

(
−λ′ f +

f2

2
(λx−1 − λx+1) +H(f, x)

)
dx =

∫ ∞

−∞
LH(f,D, x) dx, (2.5)

1The term ‘duality’ is used in the physics literature when two superficially distinct theoretical structures can be
mapped onto each other to facilitate the approximation of difficult nonlinear problems. This served as the initial
motivation for the use of the term for the method adopted here, as discussed in [33, Sec. 1].
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where D := {λx−1, λ
′, λx+1} and we refer to the integrand LH as the Lagrangian for the current

problem. The subscript H in LH denotes its dependence on the chosen auxiliary function. We now
impose the following condition

∂LH

∂f
= 0 : −λ′ + f(λx−1 − λx+1 ) +

∂H

∂f
= 0, (2.6)

to solve for f in terms of the dual objects

D := (λ′, λx−1, λx+1).

The choice of the function H is made to enable this step, for a substantial class of dual fields. One
such choice of H is

H(f, x) =: Ĥ(f(x), f̄(x)) =
a

2
(f − f̄)2, (2.7)

where f̄ : R → R represents a base state and a ≫ 0. The choice of a is discussed at the end of this
subsection and in subsection 4.2.

For such a choice of H, equation (2.6) takes the form

(a+ λx−1 − λx+1)f = af̄ + λ′ , (2.8)

and we define the following Dual-to-Primal (DtP ) mapping to provide a solution for f when one
exists:

f (H)(D, a, x) =


af̄+λ′

a+λx−1−λx+1
= f̄ + λ′−f̄(λx−1−λx+1)

a+λx−1−λx+1
if a+ λx−1 − λx+1 ̸= 0

0 if a+ λx−1 − λx+1 = 0 and af̄ + λ′ = 0

(2.9)

We will often write f̂ := f (H)(D, a, x). The dual functional can now be defined as:

S[λ] := Ŝ[f̂ , λ] =

∫ ∞

−∞

(
−λ′ f̂ +

f̂ 2

2
(λx−1 − λx+1) +

a

2
(f̂ − f̄)2

)
dx (2.10)

which can be rewritten completely in terms of dual variables as:

S[λ] =

∫ ∞

−∞

(
−λ′ f̂ +

f̂ 2

2
(λx−1 − λx+1) + a

(
f̂ 2

2
− f̄ f̂ +

f̄2

2

))
dx

=

∫ ∞

−∞

(
(a+ λx−1 − λx+1)

f̂ 2

2
− (af̄ + λ′)f̂ + a

f̄2

2

)
dx

=

∫ ∞

−∞

(
−(a+ λx−1 − λx+1)

f̂ 2

2
+

af̄ 2

2

)
dx

=
1

2

∫ ∞

−∞

(
− (λ′ + af̄)2

a+ λx−1 − λx+1
+ af̄ 2

)
dx

(2.11)
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An alternate, but equivalent, expression arises by first writing S[λ] in terms of (f̂ − f̄):

S[λ] =

∫ ∞

−∞

(
−λ′ f̂ +

f̂ 2

2
(λx−1 − λx+1) +

a

2
(f̂ − f̄)2

)
dx

=

∫ ∞

−∞

(
−λ′ (f̂ − f̄) +

(f̂ − f̄) 2

2
(λx−1 − λx+1) +

a

2
(f̂ − f̄)2

)
dx

+

∫ ∞

−∞
(f̂ − f̄)f̄(λx−1 − λx+1) +

∫ ∞

−∞
−λ′ f̄ +

f̄ 2

2
(λx−1 − λx+1) dx

which reduces, after collecting and combining linear and quadratic terms in (f̂ − f̄) using the DtP
mapping, to

S[λ] =

∫ ∞

−∞
− 1

2∆λ

(
λ′ − f̄(λx−1 − λx+1)

)2
dx+

∫ ∞

−∞
−λ′ f̄ +

f̄ 2

2
(λx−1 − λx+1) dx, (2.12)

where
∆λ := a+ λx−1 − λx+1. (2.13)

The first variation of (2.10) in a direction δλ is given by

δ(1)S[λ; δλ] =

∫ ∞

−∞

(
∂LH

∂f

∂f̂

∂D
δD +

∂LH

∂D
δD

)
dx =

∫ ∞

−∞

(
∂LH

∂D
δD
)

dx

=

∫ ∞

−∞

(
−δλ′ f̂ +

f̂ 2

2
(δλx−1 − δλx+1)

)
dx, (2.14a)

=

∫ ∞

−∞
δλ

(
f̂ ′ +

1

2
(f̂ 2

x+1 − f̂ 2
x−1)

)
dx. (2.14b)

where we have used
δλ → 0 as x → ±∞. (2.15)

On requiring δ(1)S[λ; δλ] = 0 for any δλ satisfying (2.15), the Euler-Lagrange equation for S[λ] is
given by

f̂ ′(x) +
1

2

(
(f̂(x+ 1))2 − (f̂(x− 1))2

)
= 0 ∀x ∈ (−∞,∞), (2.16)

which is the same as (2.1) now written only in terms of the dual variables.
Additionally, one can always choose δλ(x) = 0 for x /∈ (a, b) to establish (2.16) only for x ∈ (a, b).
An important consistency check of our scheme is that for each solution, say f∗, to the primal

problem, there is at least one dual functional whose critical point corresponds to that solution.
That functional is constructed simply by the choice of f̄ = f∗ and the critical point is given by
λ = 0, as can be directly read off from the DtP mapping and the fundamental justification of the
scheme that the primal equation forms the Euler-Lagrange equation of the dual functional with
DtP mapping substituted.

Concave maximization. Having demonstrated the consistency of our scheme with the problem
(2.1) as a critical point problem of the dual functional (2.12), for practical purposes we consider a
pure maximization problem on a bounded domain. We require the dual fields λ to vanish outside
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a given finite interval Ω = (−L,L), and consider a related functional given by

S̃[λ] := inf
f

ŜL[f, λ] = inf
f

∫
Ω1

(
− λ′f +

f2

2
(λx−1 − λx+1) +

a

2
(f − f̄) 2

)
dx

=

∫
Ω1

inf
f

(
f2

2
(a+ λx−1 − λx+1)− f

(
λ′ + af̄

)
+

a

2
f̄ 2

)
dx,

(2.17)

where ŜL is exactly the functional Ŝ from (2.5), restricting the domain of integration to the minimal
interval Ω1 := (−L − 1, L + 1) that accomodates all nonvanishing values of λx−1 and λx+1 to be
considered. Noting that the Lagrangian of ŜL is affine in D, the integrand of S̃ must be concave in
D. Furthermore,

S̃[λ] =


SL[λ] for λ s.t. a.e. (a+ λx−1 − λx+1) ≥ 0 and

if (a+ λx−1 − λx+1) = 0 then λ′(x) + af̄(x) = 0,

−∞ otherwise,

(2.18)

where SL is the functional S from (2.10) integrated on the interval Ω1. This is so because at points
where ∆λ > 0 the integrand of S̃ has a unique minimizer (over f) given by the integrand of S,
and at x where ∆λ(x) = 0, the associated condition λ′(x) + af̄(x) = 0 again ensures that the
integrands of S̃ and SL match, as can be seen from (2.10)-(2.9). Thus, finding a critical point of S̃
corresponds to a concave maximization problem. Moreover, in such a maximization, λ fields which
do not satisfy the Convexity Condition

C : ∆λ = (a+ λx−1 − λx+1) ≥ 0 a.e. (2.19)

cannot be competitors for being a maximizer, and it is best to not be concerned with such fields
(we note that SL[λ] need not be concave over the set of all λ fields); alternatively, we can simply
choose to seek maximizers of SL[λ] in the reduced set of fields which satisfy C .

We will utilize the above insights in our numerical scheme by looking for critical points of SL[λ]
constrained by C . Some rigorous analytical properties of the concave functional S̃ will be developed
in Section 3 below. We note here that the condition (2.19) is the analog, in this non-local setting,
of the condition that guarantees a local degenerate ellipticity of the dual critical point problem in
the PDE case, as defined in [2, Sec. 3] and applied to the inviscid Burgers equation in [6, Sec. 2].

A scaling symmetry. The pre-dual and dual functionals defined above depend in a simple way
upon the parameter a > 0 that scales the amplitude of the function H(f, x) in (2.7). If we make
this dependence upon a explicit, then it is evident from (2.5) that the pre-dual functional Ŝ satisfies

Ŝ(f, λ, a) = a Ŝ(f, λ/a, 1), (2.20)

the DtP map in (2.9) satisfies

f (H)(D, a, x) = f (H)(D/a, 1, x), (2.21)

and the functional S in (2.10) satisfies

S[λ, a] = aS[λ/a, 1]. (2.22)

Thus, increasing a from 1 simply produces a proportional increase in S at a scaled down argument
λ/a. The first variation remains invariant with scaled arguments, satisfying

δ(1)S[λ, a; δλ] = δ(1)S[λ/a, 1; δλ/a] (2.23)
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and correspondingly the second variation is inversely proportional to a.
What this means is that, for our present choice of the function H in the Lagrangian, the

choice of a makes no difference in theory for the purpose of finding primal solutions in the form
f̂ = f (H)(D, a, x) for critical points λ. With a different value of a the location of the critical points
simply scales proportionally while f̂ remains the same. In practice, however, we find it convenient
to choose a to be somewhat large. In particular, this makes the convexity condition (2.19) easier
to satisfy with numerically chosen functions λ without having to worry about scaling down their
amplitude. The choice of a in principle also has some effect on numerical schemes and stopping
criteria. We will discuss these issues further in Section 4.2 and Appendix B. We note that with
other choices of H, parameters in its definition may not lead to this kind of scaling symmetry.

2.2 Dual NIE Formulation

We will derive an alternative dual variational formulation by starting from the nonlinear integral
equation (2.2) instead of the differential-difference equation (2.1) and formulating the problem in
terms of a corresponding dual field ν. This leads to some differences in terms of the approximations
that are natural to make and the results obtained. We will work with both approaches and compare
them at the end.

In the simplest case when C1 = 0, we can consider ν = −λ′, and we can then write

λx−1 − λx+1 =

∫ x+1

x−1
ν(y) dy =

∫ 1

−1
ν(x+ z) dz.

Define the right-hand side to be Kν(x). Then K is a linear convolution operator satisfying

Kν(x) =

∫ ∞

−∞
Λ(x− y)ν(y) dy, Λ(z) =

{
1 |x| ≤ 1,

0 |x| > 1.
(2.24)

Note that if ν is locally integrable on R then Kν is continuous, and if ν is periodic then Kν is
periodic with the same period. And, if µ and ν are 2L-periodic locally square-integrable functions,
then ∫ L

−L
µKν dx =

∫ L

−L
ν Kµdx. (2.25)

Indeed, since the integral of any translate of a periodic function over any full period is the same,∫ L

−L
µKν dx =

∫ L

−L

∫ 1

−1
µ(x)ν(x+ z) dz dx =

∫ 1

−1

(∫ L

−L
µ(x)ν(x+ z) dx

)
dz

=

∫ 1

−1

(∫ L

−L
µ(x− z)ν(x) dx

)
dz =

∫ L

−L
ν Kµdx .

We will seek wave profiles f as perturbations of a constant u∞, taking the form

f(x) = u∞ + w(x) . (2.26)

For periodic waves we require w to be 2L-periodic on the real line, and for solitary waves we say
L = ∞ and require w(x) → 0 as |x| → ∞. In these terms, equation (2.2) takes the form

u∞ + w +
1

2
K
(
u2∞ + 2u∞w + w2

)
= C1 .
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We claim that it is no loss of generality to require

C1 = u∞ + u2∞ . (2.27)

Indeed, if f is a solitary wave profile, evidently (2.27) must hold. If instead f is a 2L-periodic
solution of (2.2) with L < ∞, then because K(f2) is 2L-periodic and K(1) = 2, we find∫ L

−L

1
2K(f2) dx =

∫ L

−L
f2 dx =

∫ L

−L
(−f + C1) dx ≤

∫ L

−L
(f2 + 1

4 + C1) dx ,

since −f ≤ −f +(f + 1
2)

2 = f2+ 1
4 . Thus

1
4 +C1 ≥ 0 and (2.27) follows with u∞ = −1

2 ±
√

1
4 + C1.

Equation (2.2) now becomes equivalent to

w + u∞Kw +
1

2
K(w2) = 0 , (2.28)

which may be written more explicitly as the equation

w(x) +

∫ x+1

x−1

(
u∞w(y) +

1

2
w(y)2

)
dy = 0 .

We are ready next to develop a dual variational formulation for equation (2.28). Letting ν be a
2L-periodic dual field and noting that (2.25) should hold with µ = w and w2, we define a pre-dual
functional by

Ŝ[w, ν] =

∫ L

−L

(
w(ν + u∞Kν) +

w2

2
Kν + H(w, x)

)
dx =

∫ L

−L
LH(w, ν, x) dx . (2.29)

For convenience we take H(w, x) in (2.3) in the modified form

H(w, x) =
a

2

(
(w − w̄)2 − w̄ 2

)
= a

(
w2

2
− ww̄

)
, (2.30)

where w̄ = w̄(x) is a fixed base state, whence

LH(w, ν, x) =
w2

2
(a+Kν) + w(ν + u∞Kν − aw̄) . (2.31)

Aiming toward a well-posed dual maximization problem, notice that

inf
w∈R

LH(w, ν, x) =


−∞ if a+Kν(x) < 0,

−∞ if a+Kν(x) = 0 and aw̄(x)− ν(x)− u∞Kν(x) ̸= 0,

−1
2(a+Kν)ŵ 2 otherwise,

(2.32)
where ŵ is given by a Dual-to-Primal relation in the form

ŵ =


aw̄ − ν − u∞Kν

a+Kν
if a+Kν ̸= 0,

0 if a+Kν = 0.
(2.33)

Now, for 0 < L < ∞ and for any ν that is 2L-periodic and locally square-integrable, we define

S[ν] = inf
w

Ŝ[w, ν]. (2.34)
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where the inf is taken over all w that are 2L-periodic and locally square-integrable. If L = ∞ we
require v ∈ L2(R) and define S[ν] by the same formula, taking the inf over all w ∈ L2(R).

Given any such ν, define the sets

Nν = {x ∈ (−L,L) : a+Kν < 0},

Zν = {x ∈ (−L,L) : a+Kν = 0 and aw̄ − ν − u∞Kν ̸= 0}.
(2.35)

Then with | · | denoting the Lebesgue measure of a set, from (2.32) we infer that

S[ν] =

∫ L

−L

(
−1

2
(a+Kν)ŵ 2

)
dx if |Nν | = 0 and |Zν | = 0,

S[ν] = −∞ if |Nν | > 0 or |Zν | > 0.

(2.36)

At a state ν subject to the strict convexity condition

Cs : a+Kν > 0, (2.37)

we have the formula

S[ν] =

∫ L

−L

(
−1

2

(aw̄ − ν − u∞Kν)2

a+Kν

)
dx . (2.38)

Let us compute (formally) the first variation of S in a direction δν in this case. We find

δ(1)S[ν; δν] =

∫ L

−L

(
ŵ(I + u∞K)δν +

ŵ 2

2
(K δν)

)
dx

=

∫ L

−L
δν

(
(I + u∞K)ŵ +

1

2
K(ŵ 2)

)
dx, (2.39)

due to the self-adjointness property (2.25) of the convolution operator K. We find that for a
maximizer of S[ν] that satisfies the strict convexity condition (2.37), necessarily equation (2.28)
holds.

We point out that here we have a consistency property similar to that in the previous subsection.
Namely, if w̄ happens to be a (2L-periodic) solution to (2.28), then with ν = 0 we have ŵ = w̄ and
the first variation vanishes in (2.39). By concavity, ν = 0 is a then a maximizer of S, regardless of
any degeneracies as will be discussed in Section (3) below.

We remark that the functionalS enjoys a scaling symmetry in terms of the amplitude parameter
a just like the one for S previously described. Thus a can be chosen at will for convenience
in numerical computations. Also we mention that although the base state f̄ from the previous
subsection formally corresponds to u∞ + w̄ here, we may expect some differences on a bounded
interval, because w̄ is considered here to be 2L-periodic outside Ω = (−L,L), while f̄ need not be
defined there. Thus, e.g., we have no reason to expect that f̂ = u∞ + ŵ for respective maximizers
of S̃[λ] and S[ν] when f̄ = u∞ + w̄ on Ω.

3 Analysis of concave maximization problems

In principle, by defining the pre-dual functional and just algebraically eliminating the primal field
by substituting in the DtP mapping, one obtains a dual functional whose critical points should
provide solutions to the primal equation, as long as the denominator in the DtP mapping is non-
vanishing. But for the purposes of analysis, it is natural to study the dual function defined by
minimization of the pre-dual over primal fields, as we have described. In this section we develop
several analytical facts about the resulting concave maximization problem, for both the DDE and
NIE formulations.
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3.1 Analysis for the dual DDE formulation

We study the DDE formulation specified on a bounded interval with homogeneous boundary con-
dition on dual fields. Given 0 < L < ∞, let

Ω = (−L,L), Ω1 = (−L− 1, L+ 1). (3.1)

Consider the functional S̃ from (2.17) and (2.18) for dual fields restricted to lie the Hilbert space
of functions λ ∈ H1

0 (Ω) considered as equal to zero outside Ω. We can take the norm on this space
to be

∥λ∥H1
0 (Ω) = ∥λ′∥L2(Ω) .

Any such λ ∈ C0(Ω), and satisfies the Poincare inequality. Below, we will use the notation ∥ · ∥ to
denote either ∥ · ∥L2(Ω) or ∥ · ∥L2(Ω1) as appropriate in context. The pre-dual functional ŜL is affine

in λ and is evidently continuous in λ for each f ∈ L2(Ω1). Then the infimum over f renders S̃ an
upper semicontinuous functional posed on H1

0 (Ω) . We summarize the analytic properties of S̃ in
the following result.

Proposition 3.1. Let 0 < L < ∞ and let f̄ ∈ L2(Ω1). The functional S̃ defined by (2.17) is given
by (2.18) and maps H1

0 (Ω) into [−∞, 12a∥f̄∥
2]. Moreover, S̃ is concave and upper semicontinuous.

The interior of its domain dom(S̃) = {λ ∈ H1
0 (Ω) : S̃[λ] > −∞} is the set

int dom S̃ = {λ ∈ H1
0 (Ω) : ∆λ = a+ λx−1 − λx+1 > 0 on Ω1}.

Furthermore, −S̃ is coercive, and S̃ achieves a maximum. If some maximizer λ lies in int dom S̃,
then the function defined on Ω1 by

f̂(x) =
af̄ + λ′

a+ λx−1 − λx+1

is absolutely continuous inside Ω and is a strong solution of (2.1) there.

This result gives an existence result for some (weak) solution of the primal equation (2.1) on Ω
satisfying homogeneous boundary conditions outside this interval, conditional on having S̃ admit
some maximizer at a state λ where the convexity condition (2.19) holds strictly inside Ω.

Proof. Evidently taking the infimum over f in (2.17) always yields S̃(λ) ≤ ŜL(0, λ) = 1
2a∥f̄∥

2.

Clearly Ŝ(f, λ) depends continuously on λ ∈ H1
0 (Ω), so the concavity and upper semicontinuity

follow by basic results in convex analysis, see [34, Chap. 1] or [35, Prop. 9.2].
Regarding the interior of the domain, if ∆λ > 0 on Ω1 then it is bounded below there (it is

continuous and approaches a at the boundary) and clearly S̃[λ] is finite in a neighborhood of λ in
H1

0 (Ω). And conversely if ∆λ = 0 at some point in Ω1 then a small perturbation of λ can make it
negative, which makes S̃ infinite.

Next we prove coercivity. Given λ at which S̃[λ] in (2.18) is finite and using (2.9)-(2.10), we
find

S̃[λ] =
a

2
∥f̄∥2 − 1

2

∫
Ω1\Ω∗

1

(λ′ + af̄)2

a+ λx−1 − λx+1
dx, (3.2)

where Ω∗
1 is the subset of Ω1 where ∆λ and λ′ + af̄ both vanish. Define

λm = sup
x∈Ω

|λ(x)| ,
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and note that 0 ≤ a+ λx−1 − λx+1 ≤ a+ 2λm so that

−(λ′ + af̄)2

a+ λx−1 − λx+1
≤ −(λ′ + af̄)2

a+ 2λm
,

and that λ′ + af̄ = 0 on Ω∗
1 . Then(

S̃[λ]− a

2
∥f̄∥2

)
· 2(a+ 2λm) ≤ −

∫
Ω1\Ω∗

1

(λ′ + af̄)2 dx = −
∫
Ω1

(λ′ + af̄)2 dx

≤
∫
Ω

(
−(λ′)2 − 2af̄λ′) dx ≤ 2a∥f̄∥∥λ′∥ − ∥λ′∥2 .

Since ∥λ′∥ = ∥λ∥H1
0 (Ω) it follows that −S̃ is coercive on H1

0 (Ω), which means that

S̃[λ] → −∞ as ∥λ∥H1
0 (Ω) → ∞.

A maximizer of S̃ therefore exists, because −S̃ is proper (i.e., finite somewhere) and a standard
convex analysis result states that a proper, convex and lower semicontinuous function that is
coercive has a minimizer. (E.g., see [35, Thm. 11.10].)

Since ∆λ > 0 for each λ ∈ int dom S̃, it is clear from (3.2) (with Ω∗ empty) that S̃ is Frechèt
differentiable in a neigborhood, with (directional) derivative given by the first variation. Let us
next compute this first variation at such a state. Recall that λ and its variations δλ are taken to
vanish outside the interval Ω = (−L,L). Then λx−1 vanishes for x < −L+ 1, so∫

Ω1

f̂2λx−1 dx =

∫ L+1

−L+1
f̂2λx−1 dx =

∫
Ω
f̂2
x+1λ dx,

and similarly for integrands with f̂2λx+1 and with λ replaced by δλ. We find therefore that, like
for the computation of the variation on the whole line,

δ(1)SL[λ; δλ] =

∫ L

−L

(
−δλ′ f̂ + δλ · 1

2
(f̂ 2

x+1 − f̂ 2
x−1)

)
dx. (3.3)

Thus, at a maximizer of S̃ where ∆λ > 0 in Ω1, we can infer that f̂ ∈ L2(Ω1) and is a weak
solution of the primal equation (2.1) on the interval Ω = (−L,L). Since the functions f̂x±1 are
square integrable in Ω, equation (2.1) holds strongly in L1(Ω) and (by integration) it follows f̂ is
absolutely continuous on Ω.

Remark. From (2.1), inductively we can infer higher regularity on smaller sets: f̂ is C1 inside
the interval (−L+1, L−1), C2 inside the interval (−L+2, L−2), etc. Even if f̄ is smooth, however,
f̂ may be discontinuous at ±L due to a potential discontinuity in λ′ at the endpoints of Ω. In this
case we could infer that f̂ is C1 throughout Ω except at ±(L− 1), and further that f̂ is smooth in
Ω outside the set of points ±(L− k) where k ∈ N.

3.2 Analysis for the dual NIE formulation

In this subsection we study the NIE formulation on both finite and infinite intervals. Using this
formulation we will obtain conditional existence results for C∞ periodic solutions of the primal
equation (2.28), instead of imposing homogeneous boundary conditions outside a bounded interval.
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The price is that the coercivity analysis turns out to be more involved, and we do not establish
coercivity for all values of the parameter u∞.

Throughout this section, we fix a > 0 and ū ∈ L2(Ω). For any L ∈ (0,∞], let Ω = (−L,L). If
L = ∞, the formula (2.24) defines K as a bounded linear operator from L2(Ω) into H1(Ω). The
same holds if 0 < L < ∞, by extending ν ∈ L2(Ω) to be 2L-periodic and considering Kν as the
restriction of (2.24) to Ω. For later use we also define K0ν to be given by extending ν to be zero
outside Ω and restricting formula (2.24) to Ω.

We summarize several properties of the dual functional S in the following proposition. Note
that for any ν and w in L2(Ω), the pre-dual integrand LH in (2.31) is integrable on Ω, which is
evident since Kν is in L2(Ω) and is continuous and bounded.

Proposition 3.2. The functional S defined by (2.34), i.e., by

S[ν] = inf
w∈L2(Ω)

∫ L

−L
LH(w, ν, x) dx,

is given by (2.36) and maps L2(Ω) into [−∞, 0]. Moreover, S is concave and upper semicontinuous.
The interior of its domain domS = {ν ∈ L2(Ω) : S[ν] > −∞} is the set where (2.37) holds, i.e.,

int domS = {ν ∈ L2(Ω) : a+Kν > 0 on Ω}.

If additionally −S is coercive, then a maximizer of S exists. Also, if S has some maximizer
ν ∈ int domS, then the function ŵ given by (2.33) is a C∞ solution of (2.28).

Proof. Since LH(0, ν, x) = 0, the infimum defining S[ν] is non-positive. Since Ŝ(w, ν) is continuous
and affine in ν, the convexity and lower semicontinuity of −S follow as in the previous subsection.

From (2.32)–(2.33), evidently if (2.37) holds then S[ν] is finite and remains finite in a neighbor-
hood of ν in L2(Ω), so ν ∈ int domS. On the other hand, if S[ν] is finite but (2.37) does not hold,
then a+Kν(x) = 0 for some x ∈ Ω. For any nearby ν̃ < ν locally near x, we get a+Kν̃(x) < 0,
whence S[ν̃] = −∞ so ν /∈ int domS.

We note that ŵ = w̄ when ν = 0, so S[0] = −1
2a∥w̄∥

2
L2(Ω). Then −S is proper, convex and

lower semicontinuous, hence S has a maximizer.
Finally, if S has a maximizer ν in the interior of its domain, then S is differentiable at ν and

the first variation must vanish, implying that ŵ solves (2.28) as shown in section 2.2 above. We
claim ŵ is C∞. The function Kν is in H1(Ω), so is continuous (and vanishes in the limit x → ±∞
if L = ∞), and a+Kν has a positive minimum and bounded maximum:

0 < amin ≤ a+Kν ≤ amax < ∞. (3.4)

The function ŵ given by (2.33) is then in L2(Ω). As Kŵ and K(ŵ 2) are absolutely continuous and
ŵ satisfies (2.28), ŵ is absolutely continuous also, whence by bootstrapping (induction) we find ŵ
is Ck for all k.

Recall that to say −S is coercive means that −S[ν] → ∞ as ∥ν∥L2(Ω) → ∞. In most cir-
cumstances we can prove the function −S is indeed coercive. This is easiest when the bounded
operator I + u∞K on L2(Ω) has bounded inverse, which is evidently the case when |u∞| is small
enough, for example.

Proposition 3.3. Suppose I + u∞K has bounded inverse on L2(Ω). Then −S is coercive.
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Proof. Throughout the proof, ∥ · ∥ denotes the norm in L2(Ω). We begin with two preliminary
estimates. First, due to the invertibility hypothesis, there is a constant α > 0 such that for all
ν ∈ L2(Ω),

∥(I + u∞K)ν∥ ≥ α∥ν∥ ,
whence

∥aw̄ − (I + u∞K)ν∥ ≥ ∥(I + u∞K)ν∥ − ∥aw̄∥ ≥ α∥ν∥ − ∥aw̄∥ .
Second, by the Cauchy-Schwarz inequality we find (recall we extend ν as 2L-periodic if needed)

|Kν(x)| =
∣∣∣∣∫ x+1

x−1
1 · ν(y) dy

∣∣∣∣ ≤ CK∥ν∥ ,

where CK is a constant independent of ν (and equal to
√
2 if L > 1). Therefore

amax = max
x

|a+Kν| ≤ a+ CK∥ν∥.

2. Now, define the set
Pν = {x ∈ Ω : a+Kν > 0}. (3.5)

If S[ν] > −∞ then by (2.36) and the definition of ŵ in (2.33),

−2S[ν] =

∫
Pν

(aw̄ − ν − u∞Kν)2

a+Kν
dx ≥ 1

amax

∫
Pν

|aw̄ − ν − u∞Kν|2 dx .

However, because |Nν | = |Zν | = 0, we have aw̄ − ν − u∞Kν = 0 a.e. on the complement of Pν .
Hence, the domain of integration can be extended from Pν to all of Ω = (−L,L). Thus for all
ν ∈ L2(Ω) we have

−2S[ν] ≥ ∥aw̄ − (I + u∞K)ν∥2

a+ CK∥ν∥
≥ (α∥ν∥ − ∥aw̄∥)2

a+ CK∥ν∥
. (3.6)

The right-hand side tends to ∞ as ∥ν∥ → ∞, which establishes the coercivity as claimed.

We can determine precisely when bounded invertibility holds by locating the spectrum of K
using the Fourier transform, with the following result. Define the Fourier transform of ν ∈ L2(Ω)
by

Fν(ξ) =

∫ L

−L
e−iξxν(x) dx

on the Fourier domain given by ξ ∈ Ω∗, where

Ω∗ :=

{
(−∞,∞) if L = ∞,

{kπ/L : k ∈ Z} if 0 < L < ∞.
(3.7)

Then by a straightforward computation,

F(Kν)(ξ) = (2 sinc ξ)Fν(ξ), where sinc(ξ) =

{
sin ξ
ξ ξ ̸= 0,

1 ξ = 0.

It follows that (I + u∞K)ν = w if and only if

(1 + 2u∞ sinc ξ)Fν(ξ) = Fw(ξ) for all ξ ∈ Ω∗,

and I + u∞K has bounded inverse if and only if (1 + 2u∞ sinc ξ)−1 is uniformly bounded on Ω∗.
Notice that the range {2 sinc ξ : ξ ∈ Ω∗} is a closed interval [−σ0, 2] with −σ0 ≈ −0.434467

for L = ∞, and is a discrete sequence of not-necessarily-distinct values converging to zero for
0 < L < ∞. Thus we find the following.
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Proposition 3.4. The operator I + u∞K has bounded inverse if and only if

1 + 2u∞ sinc ξ ̸= 0 for all ξ ∈ Ω∗.

In particular I + u∞K is invertible whenever

−1

2
< u∞ < 1/σ0 ≈ 2.30167.

For 0 < L < ∞ each number 1 + 2u∞ sinc(kπ/L) (k ∈ Z) is an eigenvalue of finite mulitiplicity.

Remark. The condition in proposition 3.4 has a physical meaning. Namely, it corresponds
to the phase-speed non-matching condition mentioned in the introduction. If we undo the scaling
f 7→ −2cf , then the constant solution f = u∞ in (2.2) corresponds to the constant state ū = −cu∞
for equation (1.2). For the linearization at this state, waves eiξj−iωt must satisfy the dispersion
relation

ω = ū sin ξ. (3.8)

Then the phase-speed non-matching requirement that c ̸= ω/ξ is equivalent to the condition that
1 + 2u∞ sinc ξ ̸= 0 for all ξ ∈ Ω∗ as stated in the proposition.

In general, when L is finite we can also prove coercivity for any value of u∞ ̸= −1
2 , with a

somewhat more involved argument.

Proposition 3.5. Suppose Ω = (−L,L) is bounded. If u∞ ̸= −1
2 , then −S is coercive on L2(Ω).

If u∞ = −1
2 , the functional −S is coercive on the subspace of L2(Ω) consisting of functions with

mean zero.

Proof. 1. For the value u∞ = −1
2 , the self-adjoint operator I + u∞K has one-dimensional kernel

spanned by the constant function 1. Restricting S to the orthogonal complement of this kernel,
the proof of coercivity works the same as the proof of proposition 3.3.

2. Suppose u∞ ̸= −1
2 but I + u∞K is singular. Decompose L2(Ω) into the finite-dimensional

kernel V of I+u∞K and its orthogonal complementW on which I+u∞K has bounded inverse. Each
nonzero ν ∈ V is a trigonometric polynomial with mean zero, so it is impossible that Kν(x) ≥ 0
for all x. Then by a compactness argument, there exists some σ1 < 0 such that whenever ∥ν∥ = 1
then minxKν(x) ≤ σ1.

3. Let (νn) be a sequence in L2(Ω) with ∥νn∥ → ∞ as n → ∞. For each n decompose νn as
µn + ηn with µn ∈ V and ηn ∈ W . There are now two cases: (i) Suppose that for some postive
constant C, ∥µn∥ ≤ C∥ηn∥ for all n. Then ∥νn∥ ≤ (1 + C)∥ηn∥ → ∞ as n → ∞, and

∥aw̄ − (I + u∞K)νn∥ = ∥aw̄ − (I + u∞K)ηn∥ ≥ α∥ηn∥ − ∥aw̄∥ ≥ α̂∥νn∥ − ∥aw̄∥,

where α̂ = α/(1 + C). One then infers that −S[νn] → ∞ by the same argument as before.
(ii) If it is false that case (i) holds for some C, then there must be a subsequence of (νn) (denoted

the same) such that ∥µn∥ ≥ n∥ηn∥ for all n, with ∥µn∥ → ∞. By step 1, we note that

min
x

Kµn(x) ≤ ∥µn∥σ1 < 0,

and since Kνn = Kµn +Kηn,

min
x

(a+Kνn) ≤ a+ ∥µn∥σ1 + CK∥ηn∥ ≤ a+ ∥µn∥(σ1 + CK/n).

This is strictly negative for sufficienty large n, and when this is the case we must have −S[νn] = ∞.
This finishes the proof.
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We suspect coercivity may always hold when L = ∞ as well. In any case, we only get a proof
that a solution to the NIE (2.28) exists on the condition that a maximizer of S exists that belongs
to the interior of the domain of S. Presently, despite strong numerical evidence in favor as shown
below, we lack any proof that such a maximizer exists, for any values of L and u∞.

Second variation. In general, at any point in the interior of the domain of S, its second variation
can be found by substituting ν+ t δw into (2.33) and (2.39) and differentiating at t = 0 to find that

d

dt
ŵ

∣∣∣∣
t=0

= −(I + u∞K)δw

a+Kν
− ŵK(δw)

a+Kν
= −(I + f̂K)δw

a+Kν
,

where

f̂ = u∞ + ŵ =
a(u∞ + w̄)− ν

a+Kν
. (3.9)

Then differentiation of (2.39) yields

δ(2)S[ν; δν, δw] = −
∫ ∞

−∞
δν(I +Kf̂)(a+Kν)−1(I + f̂K)δw dx. (3.10)

Here Kf̂ is regarded as composition of operators with Kf̂ g = K(f̂g). Since K is self-adjoint we
find

δ(2)S[ν; δν, δν] = −
∫ ∞

−∞
(a+Kν)−1|(I + f̂K)δν|2 dx . (3.11)

Indicating explicitly the dependence upon the parameter a, this enjoys the scaling property

δ(2)Sa[ν; δν, δν] = a−1 δ(2)S1[a
−1ν; δν, δν]. (3.12)

Critical points and translational invariance. Now let L ∈ (0,∞] and suppose ν is a maximizer
of S[ν] belonging to the interior of its domain, so that the strict convexity condition (2.37) holds.
Then as stated in proposition 3.2, ŵ as given by (2.33) is a smooth solution of (2.28) so that
f̂ = u∞ + ŵ from (3.9) is a smooth solution of (2.2) with C1 = u∞ + u2∞ as in (2.27).

Now, equation (2.2) is translation invariant, meaning that if f is a solution on R, then the
function x 7→ f(x + h) is a solution for any real h. Differentiating with respect to h at h = 0 we
find that

f ′(x) +

∫ x+1

x−1
f(y)f ′(y) dy = 0, i.e., f ′ +K(ff ′) = 0.

Thus the operator I +Kf has f ′ in its kernel. Multiplying this equation by f(x) we find that

f(x)f ′(x) + f(x)

∫ x+1

x−1
f(y)f ′(y) dy = 0 i.e., (I + fK)(ff ′) = 0.

That is, the (adjoint) operator I + fK has the function ff ′ in its kernel.
For the maximizer ν this means that the second variation vanishes in (3.11) for the variation

δν = f̂ f̂ ′ . (3.13)

Indeed, (I + f̂K)(f̂ f̂ ′) = 0. Now consider first the case when L is finite. The operator f̂K acting
on L2(Ω) is then always a compact operator, since the embedding of H1(Ω) into L2(Ω) is compact.
From the Riesz-Schauder spectral theory of compact operators, the eigenvalue 0 is necessarily an
isolated eigenvalue of I+f̂K and has a finite-dimensional (generalized) eigenspace, which we denote
by Z0.
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In the case L = ∞ when Ω = R, the operator K maps L2(R) into H1(R) but is not compact.
Because ŵ is smooth with limit 0 at ±∞, though, the operator ŵK is compact on L2(R), due to
the convenient compactness criteria of [36]. If we assume I + u∞K has bounded inverse on L2(R),
which is natural to ensure coercivity according to proposition 3.3, then since f̂ = u∞ + ŵ, the
operator I + f̂K will be the sum of an invertible operator and a compact one, i.e., Fredholm of
index zero. Then the Riesz-Schauder theory ensures again that the eigenvalue 0 is isolated with
finite-dimensional generalized eigenspace Z0.

Conditional strict coercivity of second variation. We expect, but are unable to prove, that Z0 is
one-dimensional and spanned by f̂ f̂ ′. In any case, if Y ⊂ L2(Ω) is any subspace complementary to
Z0, then necessarily the operator I + f̂K is bounded below on Y , meaning that for some constant
κY > 0,

∥(I + f̂K)u∥L2 ≥ κY ∥u∥L2 for all u ∈ Y .

This means that we have (conditional) strict coercivity in (3.11) for variations in Y , with

−δ(2)S[ν;u, u] ≥
κ2Y
amax

∥u∥2L2 for all u ∈ Y . (3.14)

Our numerics suggests that Z0 is one-dimensional and the solitary wave can be chosen even, so f̂ f̂ ′

is odd. One could take Y to consist of the even functions in L2, then.

4 Approximation and numerical examples for the DDE formula-
tion

4.1 Approximation for the DDE formulation

We approximate weak solutions of the DDE (2.16), generating a weak form for solutions on a finite
domain Ω = (−L,L) as follows: We generate a residual by multiplying (2.16) with a test function
δλ that vanishes outside Ω and integrating. After integration by parts, this yields:

R[λ; δλ] :=

∫ L

−L

(
−δλ′ f̂ +

δλ

2
( f̂ 2

x+1 − f̂ 2
x−1 )

)
dx, (4.1)

where we have eliminated the boundary terms by imposing boundary conditions δλ(±L) = 0. Since
the value of f̂(x) from (2.9) depends upon values of λ at x− 1 and x+ 1, defining the terms f̂2

x−1

and f̂2
x+1 in this integrand requires that λ be defined in the extended domain Ω2 = (−L−2, L+2).

Thus we find it suffices to describe a weak form for the dual problem as follows:

Find λ : (−L− 2, L+ 2) → R, satisfying λ(x) = 0 whenever x /∈ (−L,L), such that for
any δλ satisfying δλ(x) = 0 whenever x /∈ (−L,L),∫ L

−L

(
−δλ′ f̂ +

δλ

2
( f̂ 2

x+1 − f̂ 2
x−1 )

)
dx = R[λ; δλ] = 0. (4.2)

Here f̂(x) is determined for x ∈ (−L− 1, L+ 1) in terms of λ by the DtP map (2.9).

The weak form in (4.2) is the same problem that is satisfied by a maximizer of the functional
S̃ that lies in the interior of its domain, as shown in Proposition 3.1. By the same arguments as in
the proof of that result, for any λ ∈ H1(Ω2) satisfying the weak formulation (4.2), f̂ is absolutely
continuous inside Ω = (−L,L) and is a strong solution of (2.1) there. And f̂ enjoys additional
regularity properties as described in the remark following the proposition.
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4.1.1 A modified Newton-Raphson scheme with step-size control

The solutions to (4.2) are obtained via a Newton Raphson (N-R) scheme based algorithm: A
nonlocal Galerkin Finite Element method has been implemented to approximate discrete solutions
to (4.2). We start by considering the variation of R[λ; δλ] (eq. (4.2)) in a direction dλ given by:

J |λ[dλ; δλ] =
∫ L

−L

(
−δλ′ ∂f̂

∂D
dD + δλ

(
f̂x+1

∂f̂x+1

∂Dx+1
dDx+1 − f̂x−1

∂f̂x−1

∂Dx−1
dDx−1

))
dx, (4.3)

where
Dx+c ≡ {λx+c−1, λ

′
x+c, λx+c+1},

and
∂f̂x+c

∂ λ′
x+c

=
1

λx+c−1 − λx+c+1 + a
;

∂f̂x+c

∂ λx+c±1
= ±

af̄x+c + λ′
x+c

(λx+c−1 − λx+c+1 + a)2
. (4.4)

In the following, we will use the summation convention on repeated indices. We discretize the
extended domain and approximate various fields on it as follows:

λ(x) = λiN i(x); δλ(x) = δλiN i(x); dλ(x) = dλiN i(x),

where first-order C0(Ω) shape functions N i are considered, and i runs over the nodes of the dis-
cretized extended domain. Let xA denote the position of any node A on the extended domain and
define a set S of nodal indices as follows:

S = {B |xB ∈ (−L,L)}.

Our objective is to identify the coefficients λA for all nodes A ∈ S such that the discrete residual
generated from (4.2), when equated to 0, gets satisfied. The discrete residual can be given as:

RA =

∫ L

−L

(
−(NA)′ f̂ +

NA

2
( f̂ 2

x+1 − f̂ 2
x−1 )

)
dx, (4.5)

where f̂ is now depends on the discretized dual field of λ. Correspondingly, the Jacobian (4.3) can
be discretized as:

J |λ[dλ; δλ] = δλA JAB(λ) dλB,

where

JAB =

∫ L

−L

(
− (NA)′

(
∂f̂

∂λ′
x

(NB)′(x) +
∂f̂

∂λx−1
NB(x− 1) +

∂f̂

∂λx+1
NB(x+ 1)

)

+NA f̂x+1

(
∂f̂x+1

∂λ′
x+1

(NB)′(x+ 1) +
∂f̂x+1

∂λx
NB(x) +

f̂x+1

∂λx+2
NB(x+ 2)

)

−NA f̂x−1

(
∂f̂x−1

∂λ′
x−1

(NB)′(x− 1) +
∂f̂x−1

∂λx−2
NB(x− 2) +

f̂x−1

∂λx
NB(x)

))
dx, (4.6)

and (2.9) and (4.4) can be utilized to evaluate the above expression.
To generate corrections for dual field, we implement a modification to the generic N-R scheme

based on the following steps:

−RA
(
λ(k−1)

)
= JAB

(
λ(k−1)

)
dλB;

λ(k) = λ(k−1) + αdλ,
(4.7)
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where λ(k) denotes the discretized dual field of λ at kth iterate and α is a step-size control factor.
α = 1 in (4.7) implies a simple N-R scheme. The introduction of α has been motivated below.

In cases where the base state is set far away from any of the potential solutions of (2.1), the
correction obtained via a simple N-R scheme can potentially lead to a dual field which violates the
convexity condition C (2.19). For such cases, we stipulate the following condition on any discretely
obtained dual iterate:

Cd : min
Ω

∆λ

a
> T

where T ∈ [0, 1] represents a threshold value such that a large value of T indicates a large denom-
inator. We generally opt for T > 0.1 with larger values implying that the dual fields take values
away from the convexity boundary. However, smaller values of T can also be chosen; a value of
T = 0.01 yields an approximation with a residual tolerance of 10−11.

To satisfy Cd, we control the value of α in the N-R iterates via Alg. 1. Starting from any fixed
base state, we use λ(0) = 0 at each node and α = 1. Each time a correction leads to a dual field
which violates Cd at any point in the domain, we reduce α by a factor of 2 and re-evaluate the
correction until the criteria is met. If the factor α attains too a small value judged by a threshold
(set to 0.01 in the presented calculations), we stop the step-size controlled N-R and declare the
primal field f (H) (evaluated at Gauss points) corresponding to the current dual iterate λ as the
best improvement that can be obtained starting from the current base state. Using this primal field
as a base state, we restart the step-size controlled N-R scheme with α = 1. Such occasional base
state resets followed by controlled N-R steps are carried out until convergence on residual (4.2) is
reached while ensuring that Cd remains satisfied. The algorithm has been summarized in Alg. 1.

The convergence criteria is given as:

tol : max
A

|RA| < tol ∀A ∈ S, (4.8)

where tol is a user-defined tolerance. In the following,

tol = 10−12 for all problems solved. (4.9)

4.2 Numerical examples for the DDE formulation

In each of the following examples, we discretize the extended domain where x ∈ (−L − 2, L + 2),
choose a base state for this extended domain, and allow the dual scheme to pick up a solution
within the domain of interest, x ∈ (−L,L). Following (4.2), we employ λs(x) = 0 (without loss of
generality). The figures produced in the following sections are based on a standard L2 projection
performed from Gauss points to the nodal points (projection only performed in the domain of
interest).

For all the following problems, a = 106 and L = 8 unless otherwise stated. The justification for
the choice of a is as follows: while a ̸= 0 is a free choice in the theoretical scheme (for the critical
point formulation of S), it is clear from the convexity condition (2.19) (cf. [2, Sec. 3] for conclusions
on degenerate ellipticity of the dual problem in the PDE case) that in seeking solutions, a large
value of a > 0 is practically useful in allowing more freedom to sample dual states (‘centered’ around
the state λ = 0 in the entire domain) where the problem is concave, and for obtaining solutions.
In App. B we demonstrate this fact by a computed example.

For each of the examples presented below (except the first one since it is a trivial example),
we compute the maximum of absolute difference (normalized with respect to the RMS value of the
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Algorithm for modified N-R scheme with step-size control

Choose the values for L, N and tol. T = 0.95 and a = 106 and can be changed. Set α = 1 and
choose a starting base state f̄ . Set c = 0 (c : base state reset counter).

1. Global Loop:

WHILE c ≥ 0:

(i) Set k = 0 (k : N-R counter) and λ(0) = 0 at each node.

(ii) Find λ(1) using step no. 2 and set k = 1.

(iii) IF max
A

∣∣RA[λ(1)]
∣∣ > max

A

∣∣RA[λ(0)]
∣∣ then ABORT

(iv) WHILE k > 0 :

(a) IF max
A

∣∣RA[λ(k)]
∣∣ < tol : EXIT and GOTO step no. 5.

(b) IF α < 0.01 → Reset base state (GOTO step no. 4).

(c) Find λ(k+1) using using step no. 2.

(d) DO k = k + 1 and GOTO step no. 1iv.

2. Evaluate Increment:

(i) Evaluate RA[λ(k)] and JAB[λ(k)].

(ii) Find λ(k+1) based on current α from (4.7) and check for condition (Cd) (step no. 3).

IF Cd is not satisfied: DO α = α/2 and redo current step.

ELSE return λ(k+1).

3. Condition Cd:

(i) Evaluate ∆λ (using (2.13)) on discretized domain of Ω based on λ(k+1).

(ii) Check for

max
Ω

∆λ

a
> T

4. Reset base state and restart N-R:

(i) Evaluate f (H) based on λk (using (2.9)) on the Gauss points of discretized domain.

(ii) Set f̄ = f (H) at the Gauss points.

(iii) Do c = c+ 1, α = 1 and restart N-R from step no. 1.

5. Perform an L2 projection to obtain f (H) at nodes. This establishes the solution.

Table 1: Algorithm to solve (2.16). N represents the number of elements used to discretize the extended
domain. Step 1iii indicates that condition Cd was satisfied but the Newton residual did not decrease. The
algorithm currently is applicable to a wide range of base states, even those far from the solutions. It fails
for base states close to being outside the function class allowed for the problem (for e.g. discontinuous base
states).
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field) across the domain when the number of elements in the mesh is doubled. Based on a uniform
mesh of 6400 elements, the RMS value is defined as:

fRMS =

√∑
A

(fA)2

n
,

where A ranges over the total number of nodes in the domain of interest (n). Accordingly, we
define the difference D(m) (percentage measure), where m is the number of elements in the mesh
under consideration, as follows:

D(m) = max
A

∣∣fA
2m − fA

m

∣∣
fRMS

× 100, (4.10)

where fA
m and fA

2m represent the primal fields obtained using meshes with m and 2m elements,
respectively, at node A. D(m) values for each of the examples subsequently presented can be found
in App. E: Table 5. The obtained primal field in each of the examples is further subjected to a
Finite Difference approximation of (2.1). Details can be found in App. C.

In the following, we will collectively refer to the last two operations as convergence of results
w.r.t mesh refinement in the discussion of computed results.

4.2.1 Approximating solutions with prior knowledge

In this section, we examine cases where the base states are chosen close to the solutions of (2.1).
These base states are specifically designed so that, when used in Alg. 1, a simple N-R method can
be employed. Accordingly, the Convexity Condition is met at each N-R iterate without employing
the step-size control and the initial base state remains unchanged throughout the execution of the
algorithm.

A fixed point iteration scheme due to Petviashvili (cf. [37, Sec. 4.3], [14]) is utilized to generate
solutions to (2.1), which we will refer to as the PV solutions. For C1 = 0 in (2.2), we define:

g(x) := −f(x) : g(x) =
1

2

∫ x+1

x−1
g(s)2ds =

1

2
(Λ ∗ g2)(x), (4.11)

where

Λ(x) =

{
1 if |x| < 1,

0 otherwise,

and employ the following iterative scheme (n ≥ 1):

Step 1: g̃n+1(x) =
1

2
(Λ ∗ g2n)(x);

Step 2: C̃n+1 =

∫∞
−∞ gn dx∫∞

−∞ g̃n+1 dx
;

Step 3: gn+1(x) = C̃q
n+1 g̃n+1(x),

(4.12)

where q = 1.4 has been used, and the integrals in second step are for x ∈ (−∞,∞). We set

g1(x) =
1√
2π

e−
x2

2
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(a) Base state: PV solution (b) Base state: 2PV solution

Figure 1: Figure (a) employs the PV solution directly as the base state, whereas Figure (b) utilizes the
PV solution scaled by a factor of 2 before using it as the base state.

and set the following tolerance for convergence:

|C̃n − 1| < 10−6.

The integrations in Step 2 of (4.12) are computed on a finite domain. Due to the rapid decay of
the PV solution away from x = 0, the domains considered are large enough to minimize the impact
of the finite domain on the integrals, and it has been verified that the final PV profiles obtained
on doubling the domain are very close.

One of the PV solutions is shown in Fig. 1a. Employing this solution as a base state for the
dual scheme, Fig. 1a also demonstrates that the obtained primal field f (H) remains close to it.

We now examine how much we can deviate from the PV solution used as a base state. We
consider the following base state:

f̄(x) = α̃PV(x), (4.13)

where α̃ denotes a scaling factor. For α̃ = 2, the results are shown in Fig. 1b. Comparing against
Fig. 1a, it is evident that given an input condition that differs from the PV solution, the dual
scheme can pick up solutions different from the PV solution. Convergence of the obtained primal
profile w.r.t mesh refinement can be found in App. D: Fig. 10a.

Results obtained for the base states set up with different scaling factors are shown in Fig. 2a,
which indicate that for α̃ = 0.2, we obtain a constant-in-space type primal field. Additionally for
an approximate range of 0.2 < α̃ < 0.8 and α̃ > 2.3, the dual scheme fails to converge with a simple
N-R. Convergence results for the obtained primal profile w.r.t mesh refinement for these examples
can be found in App. D: Fig. 10.

For certain examples, the obtained primal fields exhibit slight bending near the domain bound-
aries at x = ±8. This behavior becomes apparent when scaling the y-axis to smaller scales, as
clearly illustrated in App. D: Fig. 10b (primal profiles obtained for α̃ = 0.2 on different meshes:
Range of plot is O(10−3)). The primal field f (H) satisfies the governing equation in (−L,L) and the
solutions obtained satisfy the prescribed tolerance. Since L is an adjustable parameter, solutions
on arbitrarily large domains without such bends, if deemed undesirable, can be obtained, up to
computational cost.

The fact that the primal problem can be solved without any boundary condition specified on
the primal field may be considered an interesting aspect of the dual scheme.
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(a) Single hump primal profiles (b) Double hump profile

Figure 2: Profiles in Fig. (a) are produced with a single hump PV solution scaled by α̃ set as the base
state. Fig. (b) uses a double hump PV solution scaled by a factor of 2 as the base state.

Finally, Fig. 2b shows the result obtained when a PV solution with two self-similar structures
(humps) on the same domain and scaled by a factor α̃ = 2 is used as a base state. Corresponding
profiles w.r.t mesh refinement are shown in App. D: Fig. 10e.

Scaling invariance of the primal solution with a for H = 1
2a(f − f̄)2

The scaling invariance indicated and explained in Sec. 2.1, preamble of Sec. 4.2 and App. B has
been demonstrated in Fig. 3. Numerically, a larger value of a allows us to search for the dual
solution in an enlarged space. This has been discussed in App. B.

4.2.2 Approximating solutions without any prior knowledge

Gaussian base states:
We start by considering the following standard Gaussian:

G(x) = 1√
2π

e−
x2

2 , (4.14)

and the base states of the following type:

f̄(x) = γ G(x)

For a range of γ values, we generate primal fields from dual solutions obtained from a simple N-R
scheme. The simple N-R converges only for −5.2 < γ < −2.7 and for −0.5 < γ < 5 (amongst the
possibilities tried). For the latter range of γ, the dual scheme tends to pick up constant-in-space
primal fields. The primal profiles obtained for a few different values of γ are shown in Fig. 4. The
corresponding profiles on mesh refinement are presented in App. D: Fig. 11.

Employing Alg. 1 allows us to pick up solutions to (2.16) starting from a wide range of γ in
(4.14). As an example, Fig. 5 shows the results of starting the dual scheme from two nearby
Gaussian base states (γ = −1.7 and γ = −1.9), each approximating to a different primal field. We
note that these base states fail to converge with a simple N-R scheme on a mesh of 6400 elements.
The corresponding mesh refinement profiles are presented in App. D: Fig. 12.
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(a) a = 1 (b) a = 106

Figure 3: Invariance in the eigenfunctions upon scaling the factor a: The DtP mapped image of the
eigenvectors j associated with the discrete Jacobian matrix (4.6) are plotted against nodal positions x for
the converged dual field λ. Three smallest eigenvalues have been shown. Following parameters were set:
f̄ = 2PV, Mesh = 6400.

(a) Scaled gaussian base states (b) Obtained primal fields

Figure 4: Primal field profiles in Fig. (b) are obtained using the corresponding scaled Gaussian profiles set
as base states from Fig. (a) (drawn on same scale). Simple N-R scheme was used to produce the results.
convergence results upon can be found in App. D: Fig. 11.
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(a) γ = −1.9 (b) γ = −1.7

Figure 5: Fig. (a) and Fig. (b) (drawn on same scale) are produced using the step-size controlled N-R with
scaled Gaussian profiles (by factor γ) set as base states. Convergence results w.r.t mesh refinement can be
found in App. D: Fig. 12.

Sinusoidal base states:
Unlike a simple N-R scheme, Alg. 1 also allows us to pick up dual solutions using a truncated,
smoothed sinusoidal base state of generated from

f̄ =

{
sin (ωx) for − 2π < x < 2π

0 otherwise
, (4.15)

where the kinks at the sharp transitions at x = ±2π are smoothed out while preserving the overall
shape of the profile. For ω = 0.5, 1 and ω = 2, the corresponding primal fields with mesh of 6400
elements are shown in Fig. 6 and the corresponding profiles on mesh refinement can be found in
App. D: Fig. 13. It is evident from these results that the dual scheme prefers to pick up constant
primal fields for higher frequency base states.

Piecewise Linear functions as base states:
In this section, we employ piecewise linear functions as base states for the Alg. 1. We start with a
negative smoothed hat function generated from

f̄ = Ĥ(h) :=


−(x− 5)h for 0 < x ≤ 5

(x+ 5)h for − 5 < x ≤ 0

0 otherwise

; h < 0 (4.16)

with smoothed out the kinks between its piecewise linear segments. Based on the results obtained
using the dual scheme for two different heights h, as shown in Fig. 6d and Fig. 6e, it is evident
that the negative peak disperses into several small humps. Mesh refinement profiles are shown in
App. D: Fig. 13

As a final test, we use linear profiles across the entire domain as the base state. Since no
external boundary conditions (from the primal problem description) are imposed on the problem,
this test aims to evaluate how the method handles the problem, when non-uniform base states are
employed near the boundary.

We adopt the following base state

f̄ = −x

4
. (4.17)
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(a) ω = 0.5 (b) ω = 1

(c) ω = 2 (d) h = −0.4

(e) h = −0.8 (f) f̄ = −x/4

Figure 6: Fig. (a), Fig. (b) and Fig. (c) use a sinusoidal base state (4.15) (parameter: ω). Fig. (d)
and Fig. (e) use a negative-smoothened hat-type initial base state (4.16) (parameter: h). Fig. (f) uses a
linear profile (4.17). Results are produced using a step-size controlled N-R. Convergence results w.r.t mesh
refinement for the above examples can be found in App. D: 13.
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(a) α̃ = 3, c = 2 (b) α̃ = 4, c = 3

Figure 7: Both the plots are produced using scaled PV profiles added to constants set as base states on
L = 38 and a smaller domain in Fig. (a) is shown for better demonstration purposes. Fig. (a) displays a
solitary wave structure and as one moves outside the shown region, f (H) approximates to a constant value.
Fig. (b) shows the case where the dual scheme pursues a u∞ greater than the allowed invertibility limit in
proposition 3.4, leading to a disintegration of the solitary wave.

Evident from the result for this setup (Fig. 6f, mesh refinement results shown in App. D: Fig. 13f),
the f profile exhibits a dip near the boundary, for the problem solved with the given boundary
conditions on the dual field. However, the primal field satisfies (2.1) up to the prescribed tol = 10−13

on each of the meshes.

4.2.3 Dispersive solitons and their disintegrations

We consider the scaled PV profile with an added constant c, and define it as the base state:

f̄(x) = α̃PV(x) + c.

Fig. 7 shows the result obtained for such a setup. As we try to move away from the PV solution
by increasing α̃ and c, we start capturing solutions formed at larger u∞ values which exhibit the
emergence of modulating envelopes around the central peak, representing the characteristics of a
solitary wave structure. Fig. 7a shows one such structure obtained using the following parameters:
L = 38, α̃ = 3 and c = 2. The solution reaches an approximate value of u∞ = 1.87. Primal profiles
obtained w.r.t mesh refinement are presented in Fig. 14a.

Pursuing a higher u∞ value by adjusting α̃ and c leads to a breakdown, such that the obtained
pattern exhibits a dispersive profile throughout the domain without any ostensible compact support
(here, compact support refers to the profile after subtracting u∞) and has a smooth central dip, as
shown in Fig. 7b. This result was obtained using the following parameters: L = 38, α̃ = 4 and c = 3
and we will refer to this example as a disintegrated soliton (d-soliton). This result also matches
well with the proposition 3.4, where the operator I + u∞K loses its invertibility upon pursuing
u∞ > 2.301 approximately and we do not obtain a solitary wave structure. Primal profiles obtained
on refinement are presented in Fig. 14b.

For quantitative comparisons of convergence w.r.t mesh refinement on par with the other com-
puted examples, results for the dispersive soliton and the disintegrated soliton (d-soliton) are pre-
sented on a domain of L = 8 in Tables 4 and 5.
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5 Approximation and numerical examples for the NIE formulation

5.1 Approximation for the NIE formulation

To approximate solutions of the NIE (2.28), we discretize the functional S[ν] as given in (2.38)
by left-endpoint-rule quadrature. This yields a spectrally accurate approximation for smooth 2L-
periodic functions ν represented by the vector ν⃗ = (νj) of their values νj = ν(xj) on a uniform grid
of N points xj = jh with grid spacing h = 2L/N . The integrals in the definition of K from (2.24)
are approximated at xj by the trapezoid rule, and calculated using the discrete Fourier transform.
Thus the values Kν(xj) are approximated by the components Kν⃗j of Kν⃗, where K = (Kjk) is an
N ×N symmetric banded Toeplitz matrix whose nonzero entries are h or h/2.

With this notation, our approximation to S[ν] is given by

Sh(ν⃗) = −1

2

N∑
j=1

(a+ Kν⃗j)ŵ
2
j h, ŵj =

aw̄j − νj − u∞Kν⃗j
a+ Kν⃗j

, (5.1)

when the strict convexity condition a+ Kν⃗j > εa holds, for some specified tolerance εa > 0. When
this condition fails, we set Sh(ν⃗) to be some large negative value. The gradient of Sh is explicitly
given as

∂Sh

∂νj
= hρj , ρj = ŵj +

N∑
k=1

Kjk(u∞ŵk +
1
2 ŵ

2
k) . (5.2)

We minimize −Sh using standard optimization software to determine an approximate minimizer
ν⃗ = (νj). Provided the strict convexity condition holds, this determines an approximate solution
(ŵj) to (2.28) since the gradient ∂Sh/∂ν⃗ is small.

The Hessian of Sh has the matrix entries

∂2Sh

∂νj∂νk
(ν⃗) = −h

N∑
j=1

(δij +Kij f̂j)(δ
j
k + f̂jKjk)

a+ Kν⃗j
, f̂j = u∞ + ŵj . (5.3)

For later reference, we note that when ν⃗ = 0 we have ŵj = w̄j , and the second variation of the
functional aS[ν] at ν = 0 (which is independent of the parameter a) is approximated by the matrix

M(w̄) =
a

h

(
∂2Sh

∂νj∂νk
(0)

)
= −(I + KF̄)(I + F̄K) , F̄ = diag(u∞ + w̄j). (5.4)

In order to carry out numerical computations for a range of values of u∞ while maintaining the
strict convexity condition, we implement a primitive kind of path-following method. We start with
u∞ = 0 and take the base state w̄ to be a numerical solution to (2.28) computed by Petviashvili
iteration, as described below and in [29]. Then we change u∞ in small increments, changing the
base state w̄ to be the approximate solution ŵ obtained numerically for the previous value of u∞.
In this way the values of νj can be kept small and the convexity condition a+Kν⃗j > εa maintained.

5.2 Numerical results for the NIE formulation

The computations in this section are performed with a = 10. We minimize −Sh[ν⃗] using the BFGS
algorithm as implemented in the julia package Optim.jl [38]. We take L = 25 and discretize using
N = 1000 so h = 2L/N = 0.05. The stopping criterion is based on the maximum norm of the
gradient, with tolerance 2 · 10−9.
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We present two sets of solutions computed for various values of u∞. We start with u∞ = 0 in
each case, with base state w̄ = f̄ as computed using 50 steps of Petviashvili iteration, similarly
as in section 4.2.1. For succeeding values of u∞ we then reset the base state w̄ to be the solution
ŵ last computed, as described above in section 5.1. We note that in all cases the residual norm
∥ρ⃗∥∞ < 10−7.

The first set of solutions is computed for nonpositive values of u∞ ranging from 0 down to
−0.475, a value slightly above the lower threshold u∞ = −0.5 at which the operator I + u∞K
first loses invertibility on the infinite line according to proposition 3.4. Results for these solutions
appear in Fig. 8. In Fig. 8a we plot the numerically determined wave shapes f̂ = u∞ + ŵ vs. x for
8 successively decreasing values of u∞ ranging from 0 to −0.475, and in Fig. 8b we plot log10 |ŵ|
vs. x.

We compute a second set of solutions for positive values of u∞ ranging from 0.5 to 2.0, a value
somewhat less than the upper threshhold ≈ 2.30167 at which the operator I + u∞K first loses
invertibility on the infinite line according to proposition 3.4. The results for f̂ = u∞ + ŵ vs. x are
shown in Fig. 9a, and we plot log10 |ŵ| vs. x in Fig. 9b.

In Table 2, for selected solutions in both sets we tabulate the lowest four non-negligible eigen-
values κj of the matrix −aD2Sh[0] (with base state set as w̄ = ŵ). This is the negative Hessian
scaled by a, i.e., the negative Hessian scaled to be independent of a. In all cases the first eigenvalue
satisfied |κ1| < 2 · 10−15. We tabulate as well as the minimum of the (continuous) spectrum of
the operator (I + u∞K)2 corresponding to the ‘spectrum at infinity’ of the scaled second variation
−aδ(2)S[0]. According to the Fourier analysis in section 3.2, this value is given by

minσc =

{
(1− σ0u∞)2 if u∞ > 0,

(1 + 2u∞)2 if u∞ ≤ 0,
− σ0 = min

ξ∈R
2 sinc ξ ≈ −0.434467. (5.5)

The results in both sets of solutions appear consistent with the possibility that periodic and
solitary waves exist on the line for u∞ in the whole range from −0.5 to at least 2.2, consistent with
the phase-speed non-matching condition mentioned in the introduction and with the coercivity
result from propositions 3.3 and 3.4. For u∞ between −0.5 and 0, the wave perturbation ŵ has a
single hump shape, monotonic for 0 < x < L. Log plots suggest that values of |ŵ| smaller than
about 10−6 are not computed accurately with the precision and tolerances that were used.

For u∞ ̸= 0, the values of |ŵ| decay toward zero at an exponential rate that depends upon u∞
and diminishes as u∞ approaches −0.5. This regime, where 2u∞ → −1, is where we can expect
the KdV approximation to be valid, in fact—the wave amplitude becomes small and wave length
becomes large.

For u∞ = 0, on the other hand, the wave profile ŵ = f̂ may decay to zero at a rate that is
faster than exponential. This is reminiscent of the solitary wave pulse for a chain of beads in Hertz
contact, which was shown in [39] to decay at a rate that is faster than double exponential.

For the positive values of u∞ between 0.2 and 2.2, on the other hand, the computed wave
perturbations ŵ decay toward zero in an oscillatory, sign-changing way. The decay rate of the
envelope diminishes as u∞ approaches the upper threshold near 2.3. The oscillation frequency
appears well approximated by the value ξ∗ ≈ 4.4934 which minimizes sinc ξ and at which the phase
velocity matches the group velocity of harmonic waves. This corresponds to the regime investigated
in the general study by Kozyreff [32].

5.3 Usage and failure of Petviashvili iteration

As mentioned in the previous subsection, using the optimization package Optim.jl in julia we
found approximate solutions (ŵj) to equation (2.28) for which the residual ρ⃗ from (5.2) has norm
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(a) Solutions u∞ + ŵ vs. x (b) log10 |ŵ| vs. x

Figure 8: Solutions and dual fields for u∞ = 0.0,−0.1,−0.2,−0.3,−0.4,−0.425,−0.45,−0.475.

(a) Solutions u∞ + ŵ vs. x (b) log10 |ŵ| vs. x

Figure 9: Solutions for u∞ = 0.5, 1.0, 1.5, 2.0.
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u∞ κ2 κ3 κ4 κ5 minσc
-0.45 0.00525 0.01008 0.01017 0.01155 0.01000
-0.40 0.01940 0.03960 0.04027 0.04210 0.04000
-0.30 0.06512 0.15327 0.16035 0.16209 0.16000
-0.20 0.12258 0.32787 0.36029 0.36172 0.36000
-0.10 0.18357 0.54470 0.63819 0.64042 0.64000
0.00 0.24398 0.64190 0.64190 0.78068 1.00000
0.50 0.48865 0.55764 0.55764 0.61489 0.61272
1.00 0.32294 0.32296 0.32611 0.32613 0.31983
1.50 0.12421 0.12423 0.12718 0.12721 0.12131
2.00 0.01867 0.01869 0.02025 0.02031 0.01718

Table 2: Lowest eigenvalues of −aD2S, and bottom of continuous spectrum. |κ1| < 2 · 10−15 in all cases.

∥ρ⃗∥∞ < 10−7 for all the values of u∞ listed in Table 2, ranging from −0.45 to 2.2.
A natural idea to improve the quality of the numerical solution is by post-processing, applying

a Petviashvili iteration for several steps, starting with the solution found by Optim.jl. For solving
(2.28), one rewrites the equation in the equivalent form

w(x) = −g(x), g(x) = (I + u∞K)−1K(12g
2)(x), (5.6)

and replaces Step 1 in the iteration scheme (4.12) by

Step 1’: g̃n+1(x) = (I + u∞K)−1K(12g
2
n)(x). (5.7)

The operator (I +u∞K)−1K is easily discretized and applied using the discrete Fourier transform.
With this method, we found that we could achieve residual norm ∥ρ⃗∥∞ < 10−14 for all values

of u∞ attempted ranging from −0.45 to 0.7. However, the number of iterations required increased
greatly for u∞ close to 0.8, and the Petviashvili iteration became unstable and failed to improve
the solution found by Optim.jl, for u∞ in the range (0.8,2.3). This is a subset of the range where
localized solutions with oscillatory tails are found.

6 Discussion

In this paper, we have taken a variational approach that has been developed to solve PDEs through
duality for convex optimization problems constrained by field constraints, and extended it to handle
two different nonlocal equations that determine traveling waves for the semi-discrete inviscid Burg-
ers equation: a nonlinear advance-delay differential-difference equation (DDE) and a corresponding
nonlinear integral equation (NIE).

Particularly, we made extensive use of the flexibility of selecting the base state, changing it
to facilitate the numerical computation of solutions in many cases when optimization algorithms
produce sequences approaching the boundary of the functional domain where the objective func-
tional is finite. For the DDE case, we implemented an algorithm that adaptively adjusts dual
field increments to stay within the finiteness domain, and incorporates base state resets that have
the effect of shifting or reshaping the domain to allow the search for a solution to continue and
not simply stall at the boundary. For the NIE case, we used standard software to carry out each
optimization for a sequence of values of the parameter u∞, setting as base state the solution found
for the previous parameter value. This enables a new solution nearby to be found with dual field
presumably of small amplitude well inside the domain.
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The automatic adaptivity built into the DDE code may be responsible for the fact that it
continued to work and produced “disintegrated” wave profiles that appear delocalized and may
be non-periodic, in a parameter regime (u∞ > 2.35, e.g.) where the periodic NIE code failed and
analysis of the periodic problem indicated difficulties with coercivity.

On the other hand, the periodic NIE code performed much better to find well-localized (solitary)
wave profiles with specified limiting states u∞. Unfortunately, we lack a convincing explanation
for why this should be so.

For the nonlocal problems that we treated, truncation of the wave-profile problem on the infinite
line to a bounded interval requires extended boundary conditions for base states and dual fields.
We have done this in different ways for the DDE and NIE mainly as an experiment, implementing
Dirichlet-type conditions for the DDE and periodic conditions for the NIE. Switching the treatments
is plausibly feasible; e.g., for the DDE case one could require that the base state f̄ and dual field
λ be extended as periodic outside the interval (−L,L). Analytically this is almost equivalent in
principle to the periodic NIE formulation that we treated, with a subtle difference, in that periodic
variations δλ in the DDE dual field would have derivatives δν = −δλ′ constrained to have integral
zero. This means that solutions found by the two schemes might in principle correspond to different
constants C1 in (2.2).

We re-emphasize that in this paper we have focused on the properties of the variational ap-
proach for the nonlocal wave profile problem, and not on an exhaustive exploration of the family
of solutions. The use of software for continuation and path-following such as AUTO or pde2path
would plausibly allow one to track branches of solutions and their possible bifurcations more sys-
tematically than we have done.

Our results nevertheless provide clues about certain parameter regimes that appear interesting
to examine more closely. Because we are unable to guarantee that maximizers of the relevant
concave objective functionals do not lie on the boundary of the finiteness domain, however, we
have not managed to prove an unconditional existence theorem for traveling-wave profiles using
either the DDE or NIE formulations.

The variational approach with base state changes does suggest a possible avenue towards a
convergence proof, though. E.g., in L2-gradient flow for a convex functional, the norm of the
gradient is non-increasing in time. In the problems we treat, the functional gradient agrees with
the equation residual for the DDE or NIE. If one runs gradient flow and resets the base state with
dual field reset to zero (as in our numerical algorithm which was based on Newton-type iteration
rather than gradient flow, however), the equation residual would not change with the reset and
would be ensured to be non-increasing in gradient flow afterwards. Perhaps one could stay away
from the domain boundary and have the gradient flow equilibrate this way.

Acknowledgments

The work of UK was supported by funds from the NSF grant OIA-DMR 2021019 and the Paul P.
Christiano Professorship in the Dept. of Civil & Environmental Engineering at CMU. This material
is based upon work supported by the National Science Foundation under grant DMS 2106534 to
RLP.

32



References

[1] Patrick Sprenger, Christopher Chong, Emmanuel Okyere, Michael Herrmann, PG Kevrekidis,
and Mark A Hoefer. “Hydrodynamics of a discrete conservation law”. In: Studies in Applied
Mathematics (2024), e12767.

[2] Amit Acharya. “A hidden convexity in continuum mechanics, with application to classical,
continuous-time, rate-(in)dependent plasticity”. In: Mathematics and Mechanics of Solids
30.3 (2025), pp. 701–719. doi: 10.1177/10812865241258154. eprint: https://arxiv.org/
abs/2310.03201.

[3] Amit Acharya. “A dual variational principle for nonlinear dislocation dynamics”. In: Journal
of Elasticity 154.1 (2023), pp. 383–395.

[4] Amit Acharya. “Variational principle for nonlinear PDE systems via duality”. In: Quarterly
of Applied Mathematics 81 (2023), pp. 127–140.

[5] Uditnarayan Kouskiya and Amit Acharya. “Hidden convexity in the heat, linear transport,
and Euler’s rigid body equations: A computational approach”. In: Quarterly of Applied Math-
ematics 82 (2024), pp. 673–703.

[6] Uditnarayan Kouskiya and Amit Acharya. “Inviscid Burgers as a degenerate elliptic problem”.
In: Quarterly of Applied Mathematics (2024, published online). url: https://arxiv.org/
abs/2401.08814.

[7] Siddharth Singh, Janusz Ginster, and Amit Acharya. “A hidden convexity of nonlinear elas-
ticity”. In: Journal of Elasticity 156 (2024), pp. 975–1014. url: https://link.springer.
com/article/10.1007/s10659-024-10081-w.

[8] Amit Acharya, Bianca Stroffolini, and Arghir Zarnescu. Variational dual solutions for incom-
pressible fluids. 2024. url: https://arxiv.org/abs/2409.04911.

[9] Yann Brenier. “The initial value problem for the Euler equations of incompressible fluids
viewed as a concave maximization problem”. In: Communications in Mathematical Physics
364.2 (2018), pp. 579–605.

[10] Yann Brenier. “Examples of hidden convexity in nonlinear PDEs”. 2020. url: https://hal.
science/hal-02928398/document.

[11] Dmitry Vorotnikov. “Partial differential equations with quadratic nonlinearities viewed as
matrix-valued optimal ballistic transport problems”. In: Archive for Rational Mechanics and
Analysis 243.3 (2022), pp. 1653–1698.

[12] Dmitry Vorotnikov. “Hidden convexity and Dafermos’ principle for some dispersive equa-
tions”. In: arXiv preprint arXiv:2501.05389 (2025).

[13] Jean-Marie Mirebeau and Erwan Stampfli. “Discretization and convergence of the ballistic
Benamou-Brenier formulation of the porous medium and Burgers’ equations”. working paper
or preprint. Mar. 2025. url: https://hal.science/hal-05005367.

[14] Vladimir I. Petviashvili. “Equation of an extraordinary soliton”. In: Fizika plazmy 2 (1976),
pp. 469–472.

[15] Dmitry E. Pelinovsky and Yury A. Stepanyants. “Convergence of Petviashvili’s iteration
method for numerical approximation of stationary solutions of nonlinear wave equations”.
In: SIAM J. Numer. Anal. 42.3 (2004), pp. 1110–1127. issn: 0036-1429,1095-7170. doi: 10.
1137/S0036142902414232. url: https://doi.org/10.1137/S0036142902414232.

33

https://doi.org/10.1177/10812865241258154
https://arxiv.org/abs/2310.03201
https://arxiv.org/abs/2310.03201
https://arxiv.org/abs/2401.08814
https://arxiv.org/abs/2401.08814
https://link.springer.com/article/10.1007/s10659-024-10081-w
https://link.springer.com/article/10.1007/s10659-024-10081-w
https://arxiv.org/abs/2409.04911
https://hal.science/hal-02928398/document
https://hal.science/hal-02928398/document
https://hal.science/hal-05005367
https://doi.org/10.1137/S0036142902414232
https://doi.org/10.1137/S0036142902414232
https://doi.org/10.1137/S0036142902414232


[16] Michael Herrmann. “Oscillatory waves in discrete scalar conservation laws”. In: Math. Models
Methods Appl. Sci. 22.1 (2012), pp. 1150002, 21. issn: 0218-2025,1793-6314. doi: 10.1142/
S021820251200585X. url: https://doi.org/10.1142/S021820251200585X.

[17] Anna Vainchtein. “Solitary waves in FPU-type lattices”. In: Phys. D 434 (2022), Paper No.
133252, 22. issn: 0167-2789,1872-8022. doi: 10.1016/j.physd.2022.133252. url: https:
//doi.org/10.1016/j.physd.2022.133252.

[18] Gero Friesecke and Jonathan A. D. Wattis. “Existence theorem for solitary waves on lat-
tices”. In: Comm. Math. Phys. 161.2 (1994), pp. 391–418. issn: 0010-3616. url: http://
projecteuclid.org/euclid.cmp/1104269908.

[19] D. Smets and M. Willem. “Solitary waves with prescribed speed on infinite lattices”. In: J.
Funct. Anal. 149.1 (1997), pp. 266–275. issn: 0022-1236,1096-0783. doi: 10.1006/jfan.
1996.3121. url: https://doi.org/10.1006/jfan.1996.3121.

[20] Michael Herrmann. “Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains”.
In: Proc. Roy. Soc. Edinburgh Sect. A 140.4 (2010), pp. 753–785. issn: 0308-2105. doi:
10.1017/S0308210509000146. url: https://doi-org.cmu.idm.oclc.org/10.1017/
S0308210509000146.

[21] Robert L. Pego and Truong-Son Van. “Existence of solitary waves in one dimensional peri-
dynamics”. In: J. Elasticity 136.2 (2019), pp. 207–236. issn: 0374-3535,1573-2681. doi: 10.
1007/s10659-018-9701-6. url: https://doi.org/10.1007/s10659-018-9701-6.

[22] Michael Herrmann and Katia Kleine. “Korteweg–de Vries waves in peridynamical media”.
In: Stud. Appl. Math. 152.1 (2024), pp. 376–403. issn: 0022-2526,1467-9590.

[23] Michael Herrmann and Karsten Matthies. “Nonlinear and nonlocal eigenvalue problems: vari-
ational existence, decay properties, approximation, and universal scaling limits”. In: Nonlin-
earity 33.8 (2020), pp. 4046–4074. issn: 0951-7715,1361-6544. doi: 10.1088/1361-6544/
ab8350. url: https://doi.org/10.1088/1361-6544/ab8350.

[24] G. Friesecke and R. L. Pego. “Solitary waves on FPU lattices. I. Qualitative properties,
renormalization and continuum limit”. In: Nonlinearity 12.6 (1999), pp. 1601–1627. issn:
0951-7715. doi: 10.1088/0951-7715/12/6/311. url: https://doi-org.cmu.idm.oclc.
org/10.1088/0951-7715/12/6/%20311.

[25] Gérard Iooss. “Travelling waves in the Fermi-Pasta-Ulam lattice”. In: Nonlinearity 13.3
(2000), pp. 849–866. issn: 0951-7715,1361-6544. doi: 10.1088/0951-7715/13/3/319. url:
https://doi.org/10.1088/0951-7715/13/3/319.

[26] Gérard Iooss and Guillaume James. “Localized waves in nonlinear oscillator chains”. In:
Chaos 15.1 (2005), pp. 015113, 15. issn: 1054-1500,1089-7682. doi: 10.1063/1.1836151.
url: https://doi.org/10.1063/1.1836151.

[27] Guillaume James. “Periodic travelling waves and compactons in granular chains”. In: J.
Nonlinear Sci. 22.5 (2012), pp. 813–848. issn: 0938-8974,1432-1467. doi: 10.1007/s00332-
012-9128-3. url: https://doi.org/10.1007/s00332-012-9128-3.

[28] Michael Herrmann and Alice Mikikits-Leitner. “KdV waves in atomic chains with nonlocal in-
teractions”. In: Discrete Contin. Dyn. Syst. 36.4 (2016), pp. 2047–2067. issn: 1078-0947,1553-
5231. doi: 10.3934/dcds.2016.36.2047. url: https://doi.org/10.3934/dcds.2016.36.
2047.

34

https://doi.org/10.1142/S021820251200585X
https://doi.org/10.1142/S021820251200585X
https://doi.org/10.1142/S021820251200585X
https://doi.org/10.1016/j.physd.2022.133252
https://doi.org/10.1016/j.physd.2022.133252
https://doi.org/10.1016/j.physd.2022.133252
http://projecteuclid.org/euclid.cmp/1104269908
http://projecteuclid.org/euclid.cmp/1104269908
https://doi.org/10.1006/jfan.1996.3121
https://doi.org/10.1006/jfan.1996.3121
https://doi.org/10.1006/jfan.1996.3121
https://doi.org/10.1017/S0308210509000146
https://doi-org.cmu.idm.oclc.org/10.1017/S0308210509000146
https://doi-org.cmu.idm.oclc.org/10.1017/S0308210509000146
https://doi.org/10.1007/s10659-018-9701-6
https://doi.org/10.1007/s10659-018-9701-6
https://doi.org/10.1007/s10659-018-9701-6
https://doi.org/10.1088/1361-6544/ab8350
https://doi.org/10.1088/1361-6544/ab8350
https://doi.org/10.1088/1361-6544/ab8350
https://doi.org/10.1088/0951-7715/12/6/311
https://doi-org.cmu.idm.oclc.org/10.1088/0951-7715/12/6/%20311
https://doi-org.cmu.idm.oclc.org/10.1088/0951-7715/12/6/%20311
https://doi.org/10.1088/0951-7715/13/3/319
https://doi.org/10.1088/0951-7715/13/3/319
https://doi.org/10.1063/1.1836151
https://doi.org/10.1063/1.1836151
https://doi.org/10.1007/s00332-012-9128-3
https://doi.org/10.1007/s00332-012-9128-3
https://doi.org/10.1007/s00332-012-9128-3
https://doi.org/10.3934/dcds.2016.36.2047
https://doi.org/10.3934/dcds.2016.36.2047
https://doi.org/10.3934/dcds.2016.36.2047


[29] Benjamin Ingimarson and Robert L Pego. “Existence of solitary waves in particle lattices
with power-law forces”. In: Nonlinearity 37.12 (Nov. 2024), p. 125016. doi: 10.1088/1361-
6544/ad8c1c. url: https://dx.doi.org/10.1088/1361-6544/ad8c1c.

[30] T. B. Benjamin, J. L. Bona, and D. K. Bose. “Solitary-wave solutions of nonlinear problems”.
In: Philos. Trans. Roy. Soc. London Ser. A 331.1617 (1990), pp. 195–244. issn: 0080-4614.
doi: 10.1098/rsta.1990.0065. url: https://doi.org/10.1098/rsta.1990.0065.

[31] Jerry Bona and Hongqiu Chen. “Solitary waves in nonlinear dispersive systems”. In: Discrete
Contin. Dyn. Syst. Ser. B 2.3 (2002), pp. 313–378. issn: 1531-3492,1553-524X. doi: 10.3934/
dcdsb.2002.2.313. url: https://doi.org/10.3934/dcdsb.2002.2.313.

[32] Gregory Kozyreff. “Speed of wave packets and the nonlinear Schrödinger equation”. In: Phys.
Rev. E 107.1 (2023), Paper No. 014219, 15. issn: 2470-0045,2470-0053. doi: 10 . 1103 /

physreve.107.014219. url: https://doi.org/10.1103/physreve.107.014219.

[33] Amit Acharya. “An action for nonlinear dislocation dynamics”. In: Journal of the Mechanics
and Physics of Solids 161 (2022), p. 104811.

[34] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universi-
text. Springer, New York, 2011, pp. xiv+599. isbn: 978-0-387-70913-0.

[35] Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory
in Hilbert spaces. Second. CMS Books in Mathematics/Ouvrages de Mathématiques de la
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Here we describe solutions of the semi-discrete Burgers equation (1.2) that are long-wave per-
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approximation takes the form

uj(t) = u∗ + ε2v(x, τ), with x = ε(j − c∗t), τ = ε3t, (A.1)
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where c∗ = u∗ is the limiting speed of long waves in the linearization of (1.2). Then straightforward
use of the chain rule and Taylor expansion yields

d

dt
uj = ε5∂τv − ε3 c∗∂xv , (A.2)

uj±1 = u∗ + ε2
(
v ± ε∂xv +

1
2ε

2∂2
xv ± 1

6ε
3∂3

xv +
1
24ε

4∂4
xv
)
+O(ε7) . (A.3)

By straightforward substitution this results in the residual, or equation error,

d

dt
uj +

1

4

(
u2j+1 − u2j−1

)
= ε5

(
∂τv + v ∂xv +

u∗
6
∂3
xv
)
+O(ε7) . (A.4)

Thus (1.2) is formally approximated by the KdV equation

∂τv + v ∂xv +
u∗
6
∂3
xv = 0 . (A.5)

This KdV equation has solitary wave solutions with any wave speed ĉ having the same sign as u∗,
given by

v(x, τ) = 3ĉ sech2

(
x− ĉτ

2

√
6ĉ

u∗

)
. (A.6)

This provides an approximate traveling wave for the semi-discrete Burgers equation (1.2) in the
form

ûj(t) = u∗ + 3γ sech2
(
j − ct

2

√
6γ

u∗

)
, c = u∗ + γ, γ = ε2ĉ. (A.7)

B Effect of the choice of a

This appendix motivates the usage of a larger value of a in the auxiliary potential function H (2.7).
We consider the problem for a scaled PV set as base state (see Sec. 4.2.2 and (4.13)) with α̃ set
as 2. We employ a simple N-R scheme with tolerance set as per (4.9) for this problem with two
different types of initial guesses on λ given by:

λ(0)(x) = 0 and λ(0)(x) = e−x2
.

The convergence results and the corresponding residual values are shown in the Table 3.

λ(0)(x) = 0

a N-R Result

10−6 Converged

1 Converged

106 Converged

λ(0)(x) = e−x2

a N-R Result

10−6 No Convergence

1 No Convergence

106 Converged

Table 3: Convergence results for different initial conditions: “Converged” and “No Convergence” indicate
whether the residual in the N-R iterations converged below the set tolerance (4.9), tol = 10−12, or not.

The difference in the (non)convergence to a solution of the N-R iterations for the two cases can
be understood as follows. Direct inspection shows that our algorithm produces invariant results
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under the following scaling transformation: if a residual R(k,1) is the result produced at iteration k
for a choice of a = 1 and initial guess λ(0) then, for a choice of a = a∗, if the initial guess is scaled
to a∗λ(0), the residual remains invariant, i. e.,

R(k,a∗) = R(k,1).

Moreover, λ(k,a∗) = a∗λ(k,1).
Indeed, from (2.9) we observe that

f (H)(D, 1, x) = f (H)(aD, a, x),

where aD denotes scaling each element of D by the scalar a. Based on (4.4), it can also be verified
that

∂f (H)

∂D
(aD, a, x) =

1

a

∂f (H)

∂D
(D, 1, x).

Thus, in the N-R iterations
λ(k+1) − λ(k) = −J (k)−1R(k),

if λ(k) → aλ(k), J (k)−1 → aJ (k)−1, R(k) → R(k) when a changes from 1 → a then this implies that
at each step λ(k+1) → aλ(k+1).

For λ(0) = 0, the scaling hypothesis on the initial guess is satisfied and there is no change in the
N-R iteration convergence profile as a is varied. When λ(0) is not scaled with a, the hypothesis is
not satisfied and there is a significant difference in the ability of the algorithm to obtain solutions
with varying a.
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C Testing primal fields using a Finite Difference approximation

Based on the dual solution obtained at nodes of any FE mesh, we use a finite difference to ap-
proximate the terms in (2.1) and check how well the equation gets satisfied at these nodes. For a
primal field f and corresponding to any node A, this agreement is evaluated based on the following
expression:

ErrA =
fA+1 − fA−1

2 dx
+

1

2

((
fA+ 1

dx

)2
−
(
fA− 1

dx

)2)
, (C.1)

where dx represents the element length and the meshes are chosen in such a way that for a node
at x, there always exists nodes at x+ 1 and x− 1.

Focusing on the internal part of the domain, the maximum absolute value of ErrA within the
region x ∈ (−L+ 2.5, L− 2.5) for examples in this work is summarized in Table 4.
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D Results obtained on mesh refinement

(a) α̃ = 2 (b) α̃ = 0.2 (Range of plot is O(10−3))

(c) α̃ = 0.8 (d) α̃ = 2.3

(e) α̃ = 2 (Double Hump)

Figure 10: Convergence of obtained primal profiles w.r.t mesh refinement with PV profiles scaled by a
factor of α̃ set as the base states: Fig. (a)-(d) were produced with a single hump in the base state, whereas
Fig. (e) was produced using a double hump in the base state.
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(a) γ = −0.5 (Range of plot is O(10−4)) (b) γ = −2.7

(c) γ = −4.0 (d) γ = −5.2

Figure 11: Convergence of obtained primal profiles w.r.t mesh refinement for scaled Gaussian profiles (by
a factor of γ) set as base states. Results were produced using a simple N-R scheme.

(a) γ = −1.9 (b) γ = −1.7 (Range of plot is O(10−1))

Figure 12: Convergence of obtained primal profiles w.r.t mesh refinement for two closely related scaled
Gaussian profiles, each scaled by a factor of γ, set as the base state. Alg. 1 was utilized.
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(a) ω = 0.5 (b) ω = 1

(c) ω = 2 (Range of plot is O(10−2)) (d) h = −0.4

(e) h = −0.8 (f) y = −0.25x

Figure 13: Convergence of obtained primal profiles w.r.t mesh refinement for the following functions set as
base states: sinusoidal functions (4.15), negative hat functions (4.16) and a linear function (4.17) are shown
in Fig. (a)-(c), Fig. (d)-(e) and Fig. (f) respectively. Alg. 1 was utilized.

41



(a) f̄ = 3PV + 2 (b) f̄ = 4PV + 3

Figure 14: Convergence of obtained primal profiles w.r.t mesh refinement for base states set as a scaled
PV solution shifted by a constant (Fig. 7). Profiles were drawn based on tests performed on L = 38.
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E Supporting tables

Example Mesh
Multiplier

Base State Fig. Parameter 200 400 800 1600 3200 6400

Scaled PV

10a α̃ = 2 198 52 13 3 1 0.8

×10−4
10b α̃ = 0.2 6.8 1.7 0.4 0.1 0.04 0.02

10c α̃ = 0.8 61 16 4 1 0.4 0.4

10d α̃ = 2.3 514 140 35 9 3 1

Double Hump 10e α̃ = 2 - - 39 9.8 2.7 0.8 ×10−4

Gaussian

11a γ = −0.5 3.6 0.9 0.22 0.05 0.01 0.003

×10−4
11b γ = −2.7 37.9 9.48 2.37 0.59 0.14 0.03

11c γ = −4.0 66 17 4 1 0.2 0.06

11d γ = −5.2 108 28 7 1 0.4 0.1

12a γ = −1.7 153 60 18 5 1.6 0.3
×10−3

12b γ = −1.9 53 14.9 3.9 1 0.2 0.06

Sine wave

13a ω = 0.5 217 55 14 3.5 0.9 0.2

×10−413b ω = 1 166 42.8 10.8 2.7 0.7 0.2

13c ω = 2 396 99 24 6.2 1.5 0.3

Hat functions
13d h = −0.4 13.3 7.17 3.86 2.35 2.02 1.81

×10−2

13e h = −0.8 25.9 14.2 12.8 11.4 9.75 8.2

Linear 13f y = −0.25x 35.2 22.6 18 14.1 10.3 7.29 ×10−2

Soliton - f̄ = 3PV + 2 - 19.6 4.97 2.29 1.13 0.56 ×10−3

d-soliton - f̄ = 4PV + 3 - 11.4 9.3 5.7 3.56 2.14 ×10−1

Table 4: Finite Difference Test: ErrA based on (C.1). Soliton refers to the dispersive solitary wave profile
(Fig. 7a), while d-soliton denotes the disintegrated profile (Fig. 7b), both up to adjusting for value of u∞ as
explained in text. All the tests (except the double-hump example) are performed on L = 8.
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Example D(m), (%) on Mesh

Base State Fig. Parameter 200 400 800 1600 3200

Scaled PV

10a α̃ = 2 1.06 0.27 0.06 0.02 0.004

10b α̃ = 0.2 1.07 0.27 0.07 0.02 0.006

10c α̃ = 0.8 0.67 0.17 0.04 0.01 0.002

10d α̃ = 2.3 1.78 0.45 0.11 0.03 0.007

Double Hump 10e α̃ = 2 - - 0.16 0.04 0.01

Gaussian

11a γ = −0.5 0.71 0.18 0.05 0.01 0.005

11b γ = −2.7 0.40 0.10 0.03 0.006 0.002

11c γ = −4.0 0.43 0.11 0.03 0.007 0.002

11d γ = −5.2 0.89 0.22 0.06 0.01 0.003

12a γ = −1.7 43.62 20.40 6.53 1.76 0.44

12b γ = −1.9 5.55 1.60 0.41 0.10 0.03

Sine wave

13a ω = 0.5 2.96 0.72 0.18 0.04 0.01

13b ω = 1 1.59 0.34 0.19 0.17 0.14

13c ω = 2 9.44 2.38 0.58 0.14 0.03

Hat functions
13d h = −0.4 16.09 13.25 9.88 7.52 5.86

13e h = −0.8 12.35 10.68 8.89 7.52 6.52

Linear 13f y = −0.25x 17.5 17 16.5 15.61 13.64

Soliton - f̄ = 3PV + 2 - 0.29 0.14 0.071 0.036

d-soliton - f̄ = 4PV + 3 - 8.56 6.82 5.2 3.64

Table 5: Values for D(m), (%) are provided for all examples. In the table, the second column, titled Fig.,
corresponds to the figures illustrating the convergence of obtained primal profiles w.r.t mesh refinement.
Soliton refers to the dispersive solitary wave profile (Fig. 7a), and d-soliton denotes the disintegrated profile
(Fig. 7b), both up to adjusting for value of u∞ as explained in text. All the tests (except the double-hump
example) are performed on L = 8.
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