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Abstract. A variational model for the interaction between homogenization and phase
separation is considered in the regime where the former happens at a finer scale than
the latter. The first order Γ−limit is proven to exhibit a separation of scales which has
been previously conjectured in [11][23].

1. Introduction

Composite materials are important to modern technology as the mixing of two different
material properties at fine scales can give rise to unexpected emergent behavior [13].
Therefore, understanding the process of phase separation on such materials is crucial to
leveraging these processes for technological applications.

For a homogeneous material, the distribution of stable phases is commonly modeled by
using the Cahn-Hilliard free energy (also known as the Modica-Mortola functional, in the
mathematical community). The energy reads as

Eε(u) :=

∫
Ω

[
W (u(x)) + ε2|∇u(x)|2

]
dx,

where u ∈ W 1,2(Ω;RM) represents the distribution of phases, ε > 0 is a small parameter
that represents the width of the transition layers between the different materials that
form the composite, and the free energy W : RM → [0,∞) that vanishes at the stable
critical phases. It was first proved by Modica and Mortola [28][29] in the scalar case that
in the limit this energy minimizes perimeter, i.e, interfacial energy. This sharp interface
limit was conjectured by Gurtin [22] to hold in more generality, and was later proven in
[25, 30, 20]. Since then, many variants have been studied such as having multiple phases
[7], fully coupled singular perturbations [8, 19], and even the case in which the wells of
W are allowed to depend on position [16, 14].

Our interest here is in a heterogeneous material where the heterogeneities are modeled
with an oscillating periodic potential W : RN ×RM → [0,+∞) that is Q-periodic in the
first variable, where Q ⊂ RN is the unit cube (−1

2
, 1
2
)N . We consider the wells of W to

be fixed constants a, b ∈ RM , while the case in which the wells of W are dependent on
the spatial variable will be considered in future work.

The energy functional reads as

Fε,δ(u) :=

∫
Ω

[
W
(x
δ
, u
)
+ ε2|∇u|2

]
dx.
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In order to analyze the behavior of minimizers, we consider a Γ−expansion [10, 4]. At
the lowest order, it is possible to show that, Fε,δ

Γ−→ F0 as δ, ε→ 0 with

F0(u) :=

∫
Ω

Wr(u) dx,

where u ∈ L1(Ω;RM) and Wr is a homogenized potential whose form depends on the
rate of convergence r := lim δ

ε
. Since we are in the regime of fixed wells a, b, it is always

possible to find many minimizers of F0 which achieve zero energy even with a mass
constraint. Thus, in order to better understand the minimizers, we need to consider the
next order in the Γ−expansion. Similar to the heuristics for the homogeneous Modica-
Mortola functional, ìt is possible to determine that the energy of having a transition layer
between the phases will be of order ε. This leads us to consider the rescaled functional

Eε,δ(u) :=
1

ε
Fε,δ(u) =

∫
Ω

[
1

ε
W
(x
δ
, u
)
+ ε|∇u|2

]
dx (1.1)

However, this energy has not been studied much in the literature due to technical mathe-
matical difficulties it poses. The behavior of minimizers of such a model depends greatly
on the rate r at which ε, δ comparatively decay to 0, i.e., ε � δ, ε ∼ δ, or δ � ε. In [15]
the first two authors in collaboration with Hagerty and Popovici, rigorously characterized
the first order Γ-limit when ε ∼ δ. This has been recently extended to the fully coupled
scalar case with stochastic homogenization [27]. For ε � δ, the characterization of the
Γ−limit is still open, but in [14], the authors have identified an intermediate scaling of ε

δ
and characterized the Γ−limit with respect to strong two-scale convergence in an analysis
that also extends to the case of spatially dependent phases.

In this paper, we study the case δ � ε, and we prove a separation of scales that has only
been conjectured thus far (see [11][23]), namely that the first order Γ-limit is the Γ-limit
of the functional

u 7→
∫
Ω

[
1

ε
Whom(u(x)) + ε|∇u(x)|2

]
dx,

where Whom is the homogenized potential of W defined as

Whom(z) :=

∫
Q

W (y, z)dy.

Heuristically, this is expected because the regime δ � ε suggests that we first homogenize
(namely, we first send δ → 0), and then we study phase separation (namely, we send
ε→ 0). Indeed, [23] was able to use the technique of direct replacement of the potential
by Whom (first used in [11] in a similar setting) to show the Γ−limit when δ � ε

3
2 . Here,

we are able to prove that the same heuristics can be made rigorous even when δ � ε, by
using an intermediate cell problem derived from the two-scale unfolding of the functional.

Our strategy, which will be outlined in Section 1.2, enables us to weaken the regularity
requirements of W to be only Carathéodory and to remove restrictions such as quadratic
behavior near the wells, which are sometimes used in literature [14][20]. Another im-
portant feature is that we prove strong compactness directly from the coercivity and
polynomial growth bounds rather than assuming the existence of a continuous double
well potential WH independent of x and such that WH(z) ≤ W (x, z) for every z ∈ RM ,
as used in [23].

Finally, we note that sometimes in the literature the heterogeneity is entered into the
energy through the singular perturbation [2][3]. This creates a similar separation of scales
effect, but it requires different techniques and leads to anisotropic effective limits. The
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techniques used in [2][3] has since also been applied to the case of the Ambrosio-Totorelli
energy [6][5].

1.1. Main results. Let Ω ⊂ RN be a bounded open set, and N,M ≥ 1. Denote by Q :=
(−1/2, 1/2)N the unit cube in RN centered at the origin. Let W : RN × RM → [0,+∞)
be a measurable function which satisfying the following hypotheses:

(W1) W is a Carathéodory function which is Q-periodic in the spatial variable, i.e.,
• z 7→ W (x, z) is continuous for LN−a.e. x ∈ Q,

• x 7→ W (x, z) is measurable and Q−periodic for all z ∈ RM .

(W2) There are a, b ∈ RM such that
W (x, z) = 0 ⇐⇒ z ∈ {a, b}.

(W3) There exists R > 0 such that for LN -a.e. x ∈ Q,

W (x, z) ≥ 1

R
|z|,

if |z| ≥ R.

(W4) For every M > 0, there exists a constant CM > 0 depending only on M such that
ess sup
x∈Q,|z|≤M

W (x, z) ≤ CM

Remark 1.1. We note that we use two-wells for convenience. For multiple wells, a similar
result holds using [7].

Remark 1.2. Assumption (W1) is the minimum regularity requirement when allowing
for material inclusions which are a common form of composite materials. The coercivity
growth assumption (W3) is standard in such type of problems. We note that (W4) allows
for a general class of upper bounds on W including polynomial growth conditions. Note
that we are not assuming any behavior of the potential close to the wells. This is a
novelty in comparison with previous works (see,e.g., [20][15][14]).

We now introduce the functionals that we will study.

Definition 1.3. Let {εn}n, {δn}n be infinitesimal sequences such that

lim
n→∞

δn
εn

= 0.

For n ∈ N, define the functional En : L1(Ω;RM) → [0,+∞] as

En(u) :=


∫
Ω

[
1

εn
W

(
x

δn
, u(x)

)
+ εn|∇u(x)|2

]
dx if u ∈ W 1,2(Ω;RM),

+∞ else.

We next introduce the limiting functional in (1.2).

Definition 1.4. For z ∈ RM , let

Whom(z) :=

∫
Q

W (x, z) dx.



4 R. CRISTOFERI, I. FONSECA, AND L. GANEDI

Set

σhom := inf

{∫ 1

−1

2
√
Whom(γ(t))|γ′(t)|dt : γ ∈ LipZ([−1, 1];RM), γ(−1) = a, γ(1) = b

}
,

where LipZ([−1, 1];RM) is the space of continuous curves γ : [−1, 1] → RM such that γ ∈
Lip(T,RM), for every compact set T ⊂ [−1, 1] disjoint from {t ∈ [−1, 1] : γ(t) ∈ {a, b}}.

Definition 1.5. Define the functional E∞ : L1(Ω;RM) → [0,+∞] as

E∞(u) :=

{
σhomPer({u = a}; Ω) if u ∈ BV (Ω; {a, b}),

+∞ else,
(1.2)

where Per({u = a}; Ω) denotes the perimeter of the set {u = a} in Ω.

We are now in position to state the two main results of this paper, namely pre-compactness
of sequences with uniformly bounded energy, and the Γ-convergence of {En}n.

Theorem 1.6. Let {εn}n, {δn}n be infinitesimal sequences such that

lim
n→∞

δn
εn

= 0.

Let {un}n ⊂ L1(Ω;RM) be such that

sup
n∈N

En(un) <∞.

Then, there exist u ∈ BV (Ω; {a, b}) and a subsequence {unk
}k such that unk

→ u strongly
in L1(Ω;RM).

Theorem 1.7. Let {εn}n, {δn}n be infinitesimal sequences such that

lim
n→∞

δn
εn

= 0.

Then, En
Γ→ E∞ with respect to the strong L1(Ω;RM) convergence.

The strategy of the proofs are stable enough to allow for a mass constraint to be incor-
porated in the functional.

Definition 1.8. Let m ∈ (0, |Ω|). We define the mass constrained functional

Ên(u;m) :=


En(u) if u ∈ W 1,2(Ω;RM),

∫
Ω

u dx = ma+ (1−m)b,

+∞ else.

We also define the suitable limiting problem

Ê∞(u;m) :=


E∞(u), if u ∈ BV (Ω; {a, b}),

∫
Ω

u dx = ma+ (1−m)b,

+∞ else.



THE SUPERCRITICAL CASE - FIXED WELLS 5

Corollary 1.9. Let m ∈ (0, |Ω|) and {εn}n, {δn}n be infinitesimal sequences such that

lim
n→∞

δn
εn

= 0.

Then, Ên
Γ→ Ê∞ with respect to strong L1(Ω;RM) convergence Moreover, pre-compactness

for sequences with uniformly bounded Ên energy holds.

Remark 1.10. The Γ-convergence results stated in Theorem 1.7 and Corollary 1.9 allow
to get the standard convergence of minima and minimizers (see [17, Corollary 7.20])), as
well as approximation of isolated local minimizers (see [25]).

1.2. Outline of the Strategy. The recovery sequence is the same recovery sequence as
for the Modica-Mortola energy with potential Whom. This, and the modifications required
to satisfy the usual mass constraint are detailed in Sections 6 and 7, which require some
care due to the minimal assumptions on W . The core of the work is in proving the Liminf
inequality in Section 4 (see Theorem 4.1), with some useful preliminary and auxiliary
results contained in Sections 2 and 3. Here, we outline the main ideas of the proof of the
Liminf inequality.

Take a sequence {un} ⊂ W 1,2(Ω;RM)∩L∞(Ω;RM) with bounded energy which achieves
the Γ-Liminf (see Definition 2.6). We can partially unfold the energy with the unfolding
operator (see Definition 2.1) just on the potential, and use the non-negativity to throw
away the boundary terms at the cost of the correct inequality,

En[un] ≥
∫
Ω

[∫
Q

W (y,Uδnun)
εn

dy + εn|∇un|2
]
dx.

Applying Young’s inequality, we get

En[un] ≥
∫
Ω

2

[∫
Q

W (y,Uδnun(x, y)) dy
] 1

2

|∇un| dx =: Fn[un].

To finish we would need to replace the integral under the square root by

Whom(un) =

∫
Q

W (y, un) dy.

First, we notice that the following term is negligible in the limit (see (3.5)),∫
Ω

∫
Q

|Uδnun − un| dy|∇un| dx→ 0,

and we rewrite Fn as∫
Ω

2

[∫
Q

W (y, un(x) + Uδnun(x, y)− un(x)) dy

] 1
2

|∇un| dx.

The idea is to claim that the potential essentially acts like Whom(un), but with the excep-
tion of some small sets. We fix an η > 0. Using a slicing argument, we find a sequence
{vηn}n ⊂ L∞(Ω;W 1,2

0 (Q)) with ‖vn‖∞ ≤ η and with lower energy,

lim inf
n→∞

Fn[un] ≥ lim inf
n→∞

∫
Ω

2

[∫
Q

W (y, un + vηn) dy

] 1
2

|∇un| dx.
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We define a double-well function W η(z) such that vηn is admissible in the infimum (see
Section 3.2). After appropriate truncations and removal of small ”bad sets”, we achieve

lim inf
n→∞

Fn[un] ≥ lim inf
n→∞

∫
Ω

2
√
W η(un)|∇un| dx.

Since W η is still a continuous double-well function with the same wells (see Theorem 3.4),
we can apply ”classical” compactness and Γ− Liminf arguments [20] to obtain that up
to a subsequence, un → u strongly in L1(Ω;RM) and

lim inf
n→∞

Fn[un] ≥ σηPer({u = a}; Ω).

To conclude, we show that ση ↗ σhom, where σhom is as defined in Definition 1.5.

Here we use ideas from [33], where Zuniga and Sternberg showed under very minimal
conditions the existence of a minimizer of the geodesic problems that underly ση. We
recall these properties in Section 2.3, and use them to prove some critical results in Section
3.3.

In the sequel, we will often take subsequences without relabeling, C will be a generic
constant that may change between inequalities, and subscripts to C will describe the
limiting parameters that it depends upon.

2. Preliminaries

2.1. The unfolding operator. We recall the unfolding operator, which was first used
to pass to the limit in periodic homogenization problems by rendering the microscopic
scale to behave macroscopically. Two scale convergence was shown to be characterized as
Lp convergence on the product space through the unfolding operator [12][31][32]. While
we do not need two scale convergence in this paper, the unfolding operator provides here
a useful tool to encode the usual change of variable used in homogenization problems.

Definition 2.1. For δ > 0, let

Ω̂δ :=
⋃
zi∈Iδ

(
zi + δQ

)
where Iδ is the set of points k ∈ δZN such that k + δQ ⊂ Ω. The unfolding operator
Uδ : L1(Ω;RM) → L1(Ω;L1(Q;RM)) is defined as

Uδ(u)(x, y) :=


u
(
δ
⌊
x
δ

⌋
+ δy

)
for x ∈ Ω̂δ, y ∈ Q,

a if x ∈ Ω \ Ω̂δ, y ∈ Q,

(2.1)

where, given an enumeration {ki}i∈N of ZN ,

bxc := ki i := min
{
j ∈ N : kj ∈ argmin{|k − x| : k ∈ ZN}

}
(2.2)

is the integer part of x ∈ RN , and a is the well in (W2).

Remark 2.2. This definition of the unfolding operator is nonstandard as we make the un-
folding operator nonzero in the small boundary set Λδ×Q. This has been used previously
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in [14] to simplify some of the computations. In particular, by change of variables and
periodicity of W we can rewrite∫

Ω

W
(x
δ
, u
)
dx ≥

∫
Ω̂δ

W
(x
δ
, u
)
dx =

∑
zi∈Iδ

δN
∫
Q

W (y, u(zi + δy)) dy

=
∑
zi∈Iδ

∫
zi+δQ

∫
Q

W (y, u(zi + δy)) dydx =

∫
Ω̂δ

∫
Q

W (y,Uδu) dydx

=

∫
Ω

∫
Q

W (y,Uδu) dydx,

where in the second to last equality we used that for every x ∈ zi + δQ, δ
⌊
x
δ

⌋
= zi. In

the last equality, we are able to add back in the boundary set to the unfolded integral as
by definition of our unfolding operator, we have W (y,Uδu) = W (y, a) = 0.

Furthermore, we note that for Sobolev functions, gradients transform by chain rule to be

δUδ(∇u(x)) = ∇y(Uδu(x, y)).

2.2. Truncation of functions. We define the truncation operator and state its basic
properties.

Definition 2.3. For M > 0, we define the truncation operator TM : L1(Ω;RM) →
L∞(Ω;RM) as

TM(f)(x) :=


f(x) |f(x)| ≤M,

M
f(x)

|f(x)|
|f(x)| > M.

The following can be easily proved.

Lemma 2.4. Let f ∈ W 1,2(Ω;RM). Then, TM(f) ∈ L∞(Ω;RM) ∩ W 1,2(Ω;RM) and
|∇TM(f)| ≤ |∇f |.

2.3. Geodesics of degenerate metrics. Here we describe results from [33], that will
be used extensively to prove convergence of the degenerate geodesic problems under mild
assumptions.

Let F : RM → [0,∞) be a continuous function satisfying

(F1) The zero set of F , denoted by Z, consists of a finite number of distinct points;

(F2) lim inf |z|→∞ F (z) > 0.

As in Definition 1.4, we define LipZ([−1, 1];RM) to be the space of continuous curves
which are Lipschitz continuous with respect to the Euclidean metric on any compact
portion of the curve that does not touch the zero set of F .

Consider the energy

E(γ) :=

∫ 1

−1

F (γ(t))|γ′(t)|dt, for γ ∈ LipZ([−1, 1];RM).
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Due to the parameterization invariance of the energy and the fact that it is conformal to
the Euclidean metric up to a degenerate factor, we can define a metric on RM by

d(p, q) := inf

{∫ 1

−1

F (γ(t))|γ′(t)|dt : γ ∈ LipZ([0, 1];RM), γ(−1) = p, γ(1) = q

}
,

and (RM , d) is a length space. Further, we introduce the length functional L for any
curve γ as

L(γ) := sup
{tk}k⊂P

∑
k

d(γ(tk), γ(tk+1)),

where P is the set of finite partitions of [−1, 1]. Using this length space viewpoint,
Proposition 2.5 below was proven in [33].

Proposition 2.5.
(1) [33, Lemma 2.4] Let B(x,r) denote the open ball centered at x and with radius r in

the Euclidean metric. For every ε > 0 such that Z ⊂ B(0, 1
ε
), there is an rε > 0

such that if p, q ∈ B(0, 1
ε
) ∩
(⋃

z∈Z B(z, 2ε)c
)

then there is a d-minimizing curve,
γ∗ ∈ LipZ([−1, 1];RM), such that

γ∗([−1, 1]) ∩

(⋃
z∈Z

B(z, ε)

)
= ∅;

(2) [33, Theorem 2.5] For any γ ∈ LipZ([−1, 1];RM), we have
L(γ) = E(γ);

(3) [33, Theorem 2.6] For every p, q ∈ RM , there is a minimizer γ∗ ∈ LipZ([−1, 1];RM)
which satisfies

d(p, q) = E(γ∗) = L(γ∗);

(4) [33, Proposition 2.7] Given any partition {tk} of [−1, 1], a minimizer γ∗ ∈
LipZ([−1, 1];RM) satisfies

L(γ∗) =
∑
k

d(γ∗(tk), γ
∗(tk+1)).

2.4. Γ-convergence. In this section, we recall the definition and the basic properties of
Γ-limits. Since in this paper we work in the setting of the metric space L1(Ω;RM), we
will present the equivalent definition with sequences. We refer to [17] (see also [9]) for a
complete study of Γ-convergence on topological spaces.

Definition 2.6. Let (X, d) be a metric space, and let {Fn}n be a sequence of functionals
Fn : X → [−∞,+∞]. We say that {Fn}n Γ-converges to F : X → [−∞,+∞] with
respect to the metric d, if the followings hold:

(i) (Γ-Liminf) For every x ∈ X and every {xn}n ⊂ X with xn → x, we have
F (x) ≤ lim inf

n→∞
Fn(xn),

(ii) (Recovery sequence) For every x ∈ X, there exists {xn}n ⊂ X such that
lim sup
n→∞

Fn(xn) ≤ F (x),

and with xn → x.
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2.5. Sets of finite perimeter. We recall the definition and some basic facts about sets
of finite perimeter that are needed in the paper. For more details on the subject, we refer
the reader to standard references, such as [1, 18, 21, 26].

Definition 2.7. Let E ⊂ RN with |E| < ∞, and let A ⊂ RN be an open set. We say
that E has finite perimeter in A if

P (E;A) := sup

{∫
E

divφdx : φ ∈ C1
c (A;RN) , ‖φ‖L∞ ≤ 1

}
<∞.

Definition 2.8. Let a, b ∈ RM . We define the space BV (Ω; {a, b}) as the space of
functions u ∈ L1(Ω;RM) with u(x) ∈ {a, b} for a.e. x ∈ Ω, and such that the set
{x ∈ Ω : u(x) = a} has finite perimeter in Ω.

Definition 2.9. Let E ⊂ RN be a set of finite perimeter in the open set A ⊂ RN . We
define ∂∗E, the reduced boundary of E, as the set of points x ∈ RN for which the limit

νE(x) := − lim
r→0

DχE(B(x, r))

|DχE|(B(x, r))

exists and is such that |νE(x)| = 1. The vector νE(x) is called the measure theoretic
exterior normal to E at x.

We recall part of the De Giorgi’s structure theorem for sets of finite perimeter.

Theorem 2.10. Let E ⊂ RN be a set of finite perimeter in the open set A ⊂ RN . Then,
P (E,B) = HN−1(∂∗E ∩ B),

for all Borel sets B ⊂ A.

3. Technical results

In this section we collect the main technical results that will be used in the proofs of the
main theorems.

3.1. Estimates for sequences with uniformly bounded energy. We start by finding
bounds that will allow to compare the energy of a sequence {un}n with the energy of the
unfolded sequence {Tδnun}n.

Remark 3.1. We first remark that any {un}n ⊂ W 1,2(Ω;RM) with bounded energy, i.e.,
sup
n∈N

En(un) ≤ C,

satisfies the following energy estimate

‖∇un‖2L2(Ω;RN×M ) ≤
C

εn
. (3.1)

By the chain rule (see Remark 2.2) and that the unfolding operator is a bounded operator,
we can compute

‖∇yUδnun‖2L2(Ω;L2(Q;RN×M )) = δ2n‖Uδn(∇un)‖2L2(Ω;L2(Q;RN×M )) ≤ δ2n‖∇un‖2L2(Ω;RN×M ).

Thus, we have the useful estimate

‖∇yUδnun‖2L2(Ω;L2(Q;RN×M )) ≤ C
δ2n
εn
. (3.2)
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By slightly modifying the key Poincairé-type estimates in [11][23] rewritten in terms of
the unfolding operator we achieve the key estimate that will be used throughout the
paper.

Theorem 3.2. Let {un}n ⊂ W 1,2(Ω;RM) be such that
sup
n∈N

En(un) ≤ C.

Then,

‖Uδnun − un‖2L2(Ω;L2(Q;RM )) ≤ C

(
‖∇yUδnun‖2L2(Ω;L2(Q;RN×M )) +

∫
Ω\Ω̂δn

|un − a|2dx

)
.

(3.3)
Moreover, if supn ‖un‖∞ < +∞, then

‖Uδnun − un‖L2(Ω;L2(Q;RM )) ≤ Cδ
1
2
n . (3.4)

In particular, this implies that

‖Uδnun − un‖L2(Ω;L2(Q;RM ))‖∇un‖L2(Ω;RN×M ) ≤ C

(
δn
εn

) 1
2

. (3.5)

Proof. Step 1. We first prove (3.3). For x ∈ Ω, let

(Uδnun)Q(x) :=
∫
Q

Uδnun(x, y) dy.

Using the triangle inequality, together with the inequality (p+ q)2 ≤ 2(p2 + q2), we get
‖Uδnun − un‖2L2 ≤ 2‖Uδnun − (Uδnun)Q‖2L2 + 2‖un − (Uδnun)Q‖2L2 . (3.6)

where the norm is the L2(Ω;L2(Q;RM)) norm. We estimate the latter term on the
right-hand side of (3.6). We split the integral as∫

Ω

|un − (Uδnun)Q|2dx =

∫
Ω̂δn

|un − (Uδnun)Q|2dx+
∫
Ω\Ω̂δn

|un − a|2dx.

Using the unfolding operator similarly to Remark 2.2, and since Uδn [(Uδnun)Q] = (Uδnun)Q,
we get∫

Ω

|un − (Uδnun)Q|2dx ≤ ‖Uδnun − (Uδnun)Q‖2L2(Ω;L2(Q;RM )) +

∫
Ω\Ω̂δn

|un − a|2dx. (3.7)

Now, we estimate the first term on the right-hand side of (3.6). By the Poincaré-Wirtinger
inequality in the y-variable, for each x ∈ Ω, we can estimate∫

Q

|Uδnun − (Uδnun)Q|2 dy ≤ C

∫
Q

|∇yUδnun|2 dy.

Integrating over Ω we get the bound
‖Uδnun − (Uδnun)Q‖2L2(Ω;L2(Q;RM )) ≤ C‖∇yUδnun‖2L2(Ω;L2(Q;RN×M )). (3.8)

Thus, from (3.6), (3.7), and (3.8), we deduce (3.3).

Step 2. We now prove (3.4) and (3.5). Since, supn ‖un‖∞ < +∞, we get∫
Ω\Ω̂δn

|un − a|2dx ≤ C|Ω \ Ω̂δn | ≤ Cδn.
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Combining (3.3) together with (3.2), and that δn � εn, we achieve (3.4)

‖Uδnun − un‖L2(Ω;L2(Q;RM )) ≤ C

(
δ2n
εn

+ δn

) 1
2

≤ Cδ
1
2
n .

In view of (3.1), we conclude that

‖Uδnun − un‖L2(Ω;L2(Q;RM ))‖∇un‖L2(Ω;RN×M ) ≤ C

(
δn
εn

) 1
2

.

□

3.2. Definition and properties of the auxiliary cell problem. In this section, we
study an auxiliary cell problem that will be invoked in the proof of the liminf inequality
(see Proposition 4.1).

Definition 3.3. Define the function W η : RM → [0,∞) as

W η(z) := inf
ψ∈Aη

∫
Q

W (y, z + ψ(y)) dy,

where the admissible set Aη is given by

Aη :=
{
ψ ∈ L∞(Q;RM) ∩W 1,2

0 (Q;RM) : ‖ψ‖L∞(Q;RM ) ≤ η,

‖ψ‖L2(Q;RM )‖∇ψ‖L2(Q;RN×M ) ≤ 5η2
}
.

We prove some properties of the function W η.

Theorem 3.4 (Properties of W η). The followings hold:
(1) For every z ∈ RM , the infimum problem defining W η(z) admits a minimizer;
(2) W η is continuous;
(3) W η(z) = 0 ⇐⇒ z ∈ {a, b};
(4) For each z ∈ RM , W η(z) converges increasingly to

Whom(z) :=

∫
Q

W (y, z) dy,

as η → 0. Moreover, W η converges uniformly to Whom on every compact set.

Proof. Step 1. We prove (1). Fix z ∈ RM . Let {ψn}n be an infimizing sequence for
W η(z). Since supn ‖ψn‖∞ ≤ η, up to a subsequence (not relableled), we have that ψn

∗−⇀ ψ
for some ψ ∈ L∞(Q;RM), and, in turn, ψn ⇀ ψ in L2(Q;RM). This is not enough to
conclude by using the lower semicontinuity of the integral functional. We need to improve
the convergence. To do that, we now consider two cases.
Case 1. Suppose ψ 6= 0. Using the constraints satisfied by each ψn’s, we get

lim sup
n→∞

‖∇ψn‖L2(Q;RM ) ≤ lim sup
n→∞

5η2

‖ψn‖L2(Q;RM )

≤ 5η2

‖ψ‖L2(Q;RM )

,

where the last step is obtained by the fact that
‖ψ‖L2(Q;RM ) ≤ lim inf

n→∞
‖ψn‖L2(Q;RM ).
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Thus, we deduce that {ψn}n is bounded in W 1,2(Q;RM). By the Rellich–Kondrachov
Theorem, we get that ψn → ψ strongly in L2(Q;RM), and weakly in W 1,p(Q;RM) for
all p ∈ [1, 2]. In particular, by the compactness of the trace operator, we note that
ψ ∈ W 1,2

0 (Q;RM). We conclude that ψ ∈ Aη, because
‖ψ‖L2(Q;RM )‖∇ψ‖L2(Q;RM ) ≤ (lim inf

n→∞
‖ψn‖L2(Q;RM ))(lim inf

n→∞
‖∇ψn‖L2(Q;RM ))

≤ lim inf
n→∞

‖ψn‖L2(Q;RM )‖∇ψn‖L2(Q;RM ) ≤ 5η2.

Case 2. Now we consider the case in which ψ = 0. Note that if
lim inf
n→∞

‖∇ψn‖L2(Q;RM ) < +∞,

we can argue as in the previous case, by taking a subsequence bounded in W 1,2(Q;RM).
We now consider the case in which

lim inf
n→∞

‖∇ψn‖L2(Q;RM ) = +∞.

We have
lim sup
n→∞

‖ψn‖L2(Q;RM ) ≤ lim sup
n→∞

5η2

‖∇ψn‖L2(Q;RM )

= 0.

Thus, in both cases we achieve that ψn → ψ strongly in L2(Q;RM) and ψ ∈ Aη. We then
conclude by using the Dominated Convergence Theorem (thanks to the upper bound on
W (W4)) and the uniform continuity of W on B(0, |z|+ η) that

lim
n→∞

∫
Q

W (y, z + ψn(y)) dy =

∫
Q

W (y, z + ψ(y)) dy.

Step 2. We establish (2). Let {zn}n ⊂ RM be such that zn → z. We first prove that
W η(z) ≤ lim inf

n→∞
W η(zn).

Using Step 1, for each n ∈ N there exists ψn ∈ Aη such that

W η(zn) =

∫
Q

W (y, zn + ψn(y)) dy,

and clearly,

W η(z) ≤
∫
Q

W (y, zn + ψn(y)) dy (3.9)

for all n ∈ N. Since ‖ψn‖L∞(Q;RM ) ≤ η for all n ∈ N, we have that
lim
n→∞

|W (y, zn + ψn(y))−W (y, z + ψn(y))| = 0, (3.10)

for all y ∈ Q. Using (3.9), (3.10), the upper bound on W (W4), we can apply Dominated
Convergence Theorem to conclude that

W η(z) ≤ lim inf
n→∞

∫
Q

W (y, zn + ψn(y)) dy = lim inf
n→∞

W η(zn),

as desired.

In order to establish the other inequality, let ψ ∈ Aη be such that

W η(z) =

∫
Q

W (y, z + ψ(y)) dy.
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Then, for each n ∈ N, we get

W η(zn) ≤
∫
Q

W (y, zn + ψ(y)) dy

≤
∫
Q

W (y, z + ψ(y)) dy +

∫
Q

|W (y, zn + ψn(y))−W (y, z + ψn(y))| dy

≤ W η(z) +

∫
Q

|W (y, zn + ψn(y))−W (y, z + ψn(y))| dy.

Thus, by (3.10), we get the opposite inequality.

Step 3. We prove (3). This follows directly from the fact that W ≥ 0, that (see (W2))
W (x, z) = 0 if and only if z ∈ {a, b}, and that ψ = 0 on ∂Q in the sense of traces.

Step 4. We prove (4). Let η1 < η2. Then, Aη1 ⊂ Aη2 , and thus W η1(z) ≥ W η2(z) for
all z ∈ RM . Let {ηn}n with ηn → 0 as n → ∞. For each n ∈ N, let ψn ∈ Aηn be a
solution for the minimizing problem defining W ηn(z). We claim that ψn → 0 strongly in
L2. Indeed, since ‖ψn‖L∞(Q;RM) ≤ ηn, we get the claim. Similar to the previous proofs,
the upper bound on W (W4) allows us to apply Dominated Convergence Theorem to
prove that W η(z) → Whom(z) as η → 0. Since the sequence is increasing, we can apply
Dini’s Theorem and get that the convergence is uniform on compact sets. □

3.3. Properties of distances with degenerate metrics. In this section we study the
properties of the metrics

dη(p, q) := inf

{∫ 1

−1

2
√
W η(γ(t))|γ′(t)|dt : γ ∈ LipZ([−1, 1];RM), γ(−1) = p, γ(1) = q

}
,

where the space LipZ([−1, 1];RM) is introduced in Definition 1.4.

In particular, we are interested in their behavior as η → 0. We first state some properties
that are easy to establish.

Lemma 3.5. For p, q ∈ RM , define

d0(p, q) := sup
η>0

dη(p, q).

Then

(1) d0 is a metric on RM ;

(2) For each p, q ∈ RM , it holds limη→0 dη(p, q) = d0(p, q).

(3) d0 ≤ dhom where

dhom(p, q) := inf
γ∈LipZ([−1,1];RM )

{∫ 1

−1

2
√
Whom(γ(t))|γ′(t)|dt : γ(−1) = p, γ(1) = q

}
.

Proof. Step 1. We first prove that d0 is a metric on RM . Since each dη is a metric on
RM , we get that d0(p, q) ≥ 0 for all p, q ∈ Rm, and that d0(p, q) = 0 if and only if p = q.
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We now prove the triangle inequality. Let p, q, r ∈ RM . Then, invoking the triangle
inequality for each dη, we get

d0(p, q) = sup
η>0

dη(p, q) ≤ sup
η
[dη(p, r) + dη(r, q)]

≤ sup
η>0

dη(p, r) + sup
η
dη(r, q) = d0(p, r) + d0(r, q),

as desired.

Step 2. For 0 < η1 < η2, by Theorem 3.4 we have that W η1(z) ≥ W η2(z), for all z ∈ RM .
Thus, for each p, q ∈ RM , the supremum in the definition of d0(p, q) is actually a limit.
Step 3. This follows directly from Theorem 3.4 as W η ≤ Whom. □

The existence of minimizing geodesics has already been established in [33] for each η
(see Proposition 2.5(3)). Therefore, for each η > 0 we have γη ∈ LipZ([0, 1];RM) with
γη(−1) = a, γη(1) = b such that

ση := dη(a, b) =

∫ 1

−1

2
√
W η(γη)|γ′η|dt.

For notational convenience, we also define
σ0 := sup

η>0
dη(a, b).

We now investigate the behavior of minimizing curves γη.

Lemma 3.6. Let {ηn}n be an infinitesimal sequence, and for each n ∈ N let γηn be a
geodesics for dηn(a, b). Then, (up to a subsequence, not relabeled) there exists a curve
γ0 ∈ LipZ([−1, 1];RM) such that

lim
n→∞

sup
t∈[−1,1]

d0(γηn(t), γ0(t)) = 0,

and γ0(−1) = a, γ0(1) = b.

Proof. We apply the Ascoli-Arzelà Theorem.

Step 1. We first prove equiboundedness with respect to the metric d0. We claim that
there exists M̃ > 0 such that

{γηn(t) : t ∈ [−1, 1]} ⊂ Bd0(a, M̃),

for all n ∈ N. We start by showing that there exists M > 0 such that
{γηn(t) : t ∈ [−1, 1]} ⊂ B(0,M),

for all n ∈ N, where B(0,M) is the Euclidean ball. Indeed, note that
dηn(a, b) ≤ dhom(a, b), (3.11)

independent of n. Since W grows linearly at infinity (see (W3)), we get that there exists
R̃ > 0 such that

W ηn(z) ≥ C(dhom(a, b))
2|z|, (3.12)

for all |z| ≥ R̃, where the constant C > 0 is independent of n and of z ∈ RM . Let
M > max{|a|, |b|, R̃}. Assume that there exists tn ∈ [−1, 1] such that |γn(tn)| > 2M .
Since the curve γn is continuous and γn(−1), γn(1) ∈ B(0,M), by the choice of M , it is
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possible to find tn1 (M) < tn < tn2 (M) such that |γn(t)| ≥ M for all t ∈ [tn1 (M), tn2 (M)],
and |γn(tn1 (M))| = |γn(tn2 (M))| =M . Then, by using (3.12), we get

dηn(a, b) = 2

∫ 1

−1

√
W (γn(t))|γ′n(t)|dt

≥ Cdhom(a, b)
√
M

∫ tn2 (M)

tn1 (M)

|γ′n(t)|dt

≥ Cdhom(a, b)M
3/2,

where in the third step we used the choice of tn1 (M) and tn2 (M). This contradicts (3.11)
for M large enough.

We now conclude this step as follows. Using the upper bound of d0 by dhom and choosing
the straight line path between the point a and the termination point (denoted by La,p),
we can compute

sup
t∈[−1,1]

d0(a, γηn(t)) ≤ sup
t∈[−1,1]

dhom(a, γηn(t)) ≤ sup
t∈[−1,1]

2|γηn(t)− a|
∫ 1

−1

√
Whom(La,γηn (t))ds.

using the continuity of
√
Whom and the boundedness of γηn(t) in the Euclidean ball

B(0,M), we can establish the uniform boundedness in the d0 metric

{γηn(t) : t ∈ [0, 1]} ⊂ Bd0(a, 4‖
√
Whom‖L∞(B(0,M))(|M |+ |a|)).

We conclude by setting M̃ := 1 + 4‖
√
Whom‖L∞(B(0,M))(|M |+ |a|).

Step 2. We now prove the equicontinuity of the sequence with respect to the metric d0.
As in [33, Proof of Theroem 2.6], for any n ∈ N we rescale the curve γη to a curve (that
with an abuse of notation we still denote by) γηn : [−1, 1] in such a way that

2
√
W ηn(γηn(t))|γ′ηn(t)| ≡

σηn
2
,

for all t ∈ [−1, 1]. Let t2 > t1. Then,

dηn(γηn(t1), γηn(t2)) =

∫ t2

t1

2
√
W ηn(γηn(t))|γ′ηn(t)| dt =

σηn
2

(t2 − t1) ≤
σ0
2
(t2 − t1).

Therefore, we get that

d0(γηn(t1), γηn(t2)) ≤
σ0
2
(t2 − t1) + ‖dηn − d0‖∞,

where the last norm is the uniform norm in the space B(0,M)×B(0,M). Note that by
definition of d0, and by using Dini’s Theorem on the compact space B(0,M)×B(0,M),
we get that

lim
n→∞

‖dηn − d0‖∞ = 0.

Fix ε > 0, choose n̄ ∈ N such that

‖dηn − d0‖∞ <
ε

2
,

and let
δ0 :=

ε

σ0
.

Then, for every n ≥ n̄, it holds
d0(γηn(t1), γηn(t2)) ≤ ε,
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whenever |t2 − t1| < δ0. For each n = 1, . . . , n̄, using the equiboundedness and uniform
continuity of γηn , let δn > 0 be such that

d0(γηn(t1), γηn(t2)) ≤ ε

whenever |t2 − t1| < δn. Define
δ := min{δ0, δ1, . . . , δn̄}.

This proves that the sequence {γηn}n∈N is equicontinuous.

Step 3. Applying the Ascoli-Arzelà Theorem, we get the existence of a subsequence and
of a curve γ0 : [−1, 1] → RM to which the subsequence converges uniformly with respect
to the metric d0.

Step 4. We now prove that γ0 ∈ LipZ([−1, 1];RM). This follows directly from the fact
that, given any r > 0, there exists mr > 0 such that

inf
{
W ηn(z) : z ∈ RM \ (B(a, r) ∪ B(b, r))

}
≥ mr,

for all n ∈ N. Indeed, this can be deduced by using the uniform convergence of W ηn to
Whom, together with the fact that Whom only vanishes at a and b. □

Now we are ready to prove the main result of this section.

Proposition 3.7. Let γ0 ∈ LipZ([−1, 1];RM) be the curve given by Lemma 3.6. Then,
it holds

d0(a, b) = lim
η→0

∫ 1

−1

2
√
W η(γ0)|γ′0|dt = sup

η>0

∫ 1

−1

2
√
W η(γ0)|γ′0|dt.

Proof. By definition, we have

dη(a, b) ≤
∫ 1

−1

2
√
W η(γ0)|γ′0|dt,

thus taking the limit as η → 0, and recalling that η 7→ W η(z) is monotone for each
z ∈ RM , we get

d0(a, b) ≤ lim
η→0

∫ 1

−1

2
√
W η(γ0)|γ′0|dt.

Now we prove the converse inequality. Using Proposition 2.5 (2) and the fact that γ0 ∈
LipZ([−1, 1];RM), we get ∫ 1

−1

2
√
W η(γ0)|γ′0|dt = Lη(γ0).

Fix an arbitrary finite partition {tk}mk=1 of [−1.1]. Use the triangle inequality and the
definition of d0 to get

dη(γ0(tk), γ0(tk+1)) ≤ dη(γη(tk), γ0(tk)) + dη(γη(tk), γη(tk+1)) + dη(γ0(tk), γη(tk+1))

≤ d0(γη(tk), γ0(tk)) + dη(γη(tk), γη(tk+1)) + d0(γ0(tk), γη(tk+1)).

Fix j ∈ N. In view of the uniform convergence given by Lemma 3.6, we can find η0(j,m)
such that for all η < η0 we have

sup
t∈[−1,1]

d0(γη(t), γ0(t)) ≤
1

jm
.
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Thus, we can bound the total sum over the partition using the uniform convergence
estimate for all η < η0 by

m∑
k=1

dη(γ0(tk), γ0(tk+1)) ≤
m∑
k=1

dη(γη(tk), γη(tk+1)) +
1

j
= Lη(γη) +

1

j
= dη(a, b) +

1

j
.

Taking a supremum over all possible finite partitions, we have∫ 1

−1

2
√
W η(γ0)|γ′0|dt = Lη(γ0) ≤ dη(a, b) +

1

j
,

and we conclude taking the limit as η → 0 and then j → ∞. □

4. Liminf Inequality

The goal of this section is to prove the following result.

Theorem 4.1. Let {un}n ⊂ W 1,2(Ω;RM) be such that un → u ∈ BV (Ω; {a, b}) strongly
in L1(Ω;RM). Then,

lim inf
n→∞

En(un) ≥ E∞(u).

Note that this proposition is weaker than the liminf inequality, since we are assuming
the limiting function to be in BV (Ω; {a, b}), and not just in L1(Ω; {a, b}). We will prove
in the next section that this is sufficient. The reason why we are first proving the above
result is that, in the proof of the compactness (see Theorem 1.6), we will use arguments
that are the core of the idea to prove the above result. Thus, we opt by presenting them
first here.

Without loss of generality, in what follows we assume that
lim inf
n→∞

En(un) = lim
n→∞

En(un) <∞.

Step 1: Reduction In this step, we show that it suffices to prove Theorem 4.1 for un
uniformly bounded in L∞, and W being linear outside a ball. Let M > R, where R > 0
is the constant given in (W3). Let ψM : [0,+∞) → [0, 1] be a smooth function such that

ψM ≡ 1 on [0,M ], ψM ≡ 0 for t ≥ 2M.

Define
W̃M(x, z) := ψM(|z|)W (x, z) + (1− ψM(|z|)) |z|

R
,

and
Ẽn(v) :=

∫
Ω

[
1

εn
W̃M

(
x

δn
, v(x)

)
+ εn|∇v(x)|2

]
dx.

We claim the following. Assume that for all v ∈ BV (Ω; {a, b}) it holds

E∞(v) ≤ lim inf
n→∞

Ẽn(vn), (4.1)

whenever {vn}n ⊂ W 1,2(Ω;RM) with ‖vn‖L∞ ≤ 2M is such that vn → v strongly in
L1(Ω;RM). Then, Theorem 4.1 holds.

Indeed, let {un}n ⊂ W 1,2(Ω;RM) be such that un → u ∈ BV (Ω; {a, b}) strongly in
L1(Ω;RM). Let

vn := T2Mun,
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where T2Mun is the truncation of v (see Definition 2.3). We observe that
lim
n→∞

‖un − vn‖L1(Ω;RM ) = 0. (4.2)

Indeed, let
∆n := {x ∈ Ω : |un(x)| > 2M}.

By Chebyshev’s inequality, we get

LN(∆n) ≤
1

2M

∫
∆n

|un| dx ≤ R

2M

∫
Ω

W

(
x

δn
, un

)
dx ≤ C

R

2M
εn, (4.3)

where in the second inequality we used the fact that M > R1 together with (W3) and
in the last inequality we are using that the sequence has bounded energy. Invoking the
triangle inequality and convexity, we obtain by (4.3)

‖un − vn‖L1(Ω;RM ) =

∫
∆n

|un − vn| dx

≤
(∫

∆n

|un| dx+ 2MLN(∆n)

)
≤ CMεn,

This proves (4.2).
Therefore, by (4.1) we get

E∞(u) ≤ lim inf
n→∞

Ẽn(vn),
and to conclude, we claim that for all n ∈ N

Ẽn(vn) ≤ En(un).

Indeed, note that W̃M satisfies (W1), (W2), and (W3). Thus, (W3), the definition of vn,
and the definition of W̃M yield

W̃M(x, vn(x)) ≤ W̃M(x, un(x)) ≤ W (x, un),

for almost all x ∈ Ω, and all z ∈ RM .
This, together with Lemma 2.4, yields∫

Ω

[
1

εn
W̃M

(
x

δn
, vn(x)

)
+ εn|∇vn(x)|2

]
dx ≤ En(un),

and thus the desired conclusion.

In the rest of this section, we will therefore assume that
sup
n∈N

‖un‖L∞(Ω;RM ) ≤M, (4.4)

for some M > R.
Step 2: Slicing For each n ∈ N and η > 0, let

f ηn(x, y) := Tη(Uδnun(x, y)− un(x)),

where the truncation operator Tη is with respect to the variable y. We want use a De
Giorgi’s slicing type of argument to modify f ηn to make it vanish on Ω× ∂Q.
For k ∈ N \ {0}, let (see Figure 1)

Sk :=

{
y ∈ Q :

1

k
< dist(y, ∂Q) ≤ 2

k

}
,
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Figure 1. The construction of the sets Qk, and Sk, where the cut-off
function ψk equals one, and transition from one to zero, respectively.

and
Qk :=

{
y ∈ Q :

2

k
< dist(y, ∂Q)

}
.

Let ψk : Q→ [0, 1] be a smooth function with 0 ≤ ψ ≤ 1 such that

ψk ≡ 1 in Qk, ψk ≡ 0 on Q \ (Qk ∪ Sk), ‖∇ψ‖L∞(Q) ≤ k.

Define
vηn,k(x, y) = ψk(y)f

η
n(x, y).

Theorem 4.2. There exists a sequence {kηn(x)}n with x 7→ kηn(x) measurable, such that

lim
n→∞

kηn(x) = +∞

for almost every x ∈ Ω,

lim sup
n→∞

∫
Ω

1

kn(x)εn
dx = 0, (4.5)

and with vηn := vηn,kn(x), it holds

lim sup
n→∞

En(un) ≥ lim sup
n→∞

∫
Ω

2

[∫
Q

W (y, un + vηn) dy

] 1
2

|∇un| dx. (4.6)

Moreover, for almost every x ∈ Ω, we have the estimate

‖vηn(x, ·)‖L2(Q;RM )‖∇yv
η
n(x, ·)‖L2(Q;RM ) ≤ 4η2 + η‖∇yUδnun(x, ·)‖L2(Q;RN×M ). (4.7)

The proof of the above theorem requires some preliminary results. First, we claim that,
for almost all x ∈ Ω, it holds that

‖vηn,k(x, ·)‖L∞(Q;RM ) ≤ η, (4.8)

for all n ∈ N, and that

lim
n→∞

‖vηn,k(x, ·)‖L2(Q;RM ) = lim
n→∞

‖f ηn(x, ·)‖L2(Q;RM ) = 0. (4.9)
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Indeed, the first estimate is direct from the definition of the function vηn,k together with
the fact that the cut-off function is bounded above by one. To see (4.9), we observe that
(3.4) and the definition of f ηn gives that

lim
n→∞

‖f ηn‖L2(Ω;L2(Q;RM )) = lim
n→∞

‖Uδnun − un‖2L2(Ω;L2(Q;RM )) = 0.

In particular, this implies by taking a subsequence without relabeling that the following
pointwise convergence holds for LNa.e. x ∈ Ω

lim
n→∞

‖f ηn(x, ·)‖L2(Q;RM ) = 0.

Thus, (4.9) follows from the fact that the cut-off function is bounded above by one.

We can compute∫
Ω

2

[∫
Q

W (y, un + vηn,k) dy

] 1
2

|∇un| dx

≤
∫
Ω

2

[∫
Q

W (y, un + f ηn) dy

] 1
2

|∇un| dx

+

∫
Ω

2

[∫
Q\Qk(x)

W (y, un) dy

] 1
2

|∇un| dx

+

∫
Ω

2

[∫
Sk(x)

W (y, un + vηn,k(x, y)) dy

] 1
2

|∇un| dx

=: In + IIn + IIIn. (4.10)
We will estimate the three integrals separately.

Lemma 4.3 (Estimate for In). It holds

lim sup
n→∞

∫
Ω

2

[∫
Q

W (y, un + f ηn) dy

] 1
2

|∇un| dx

≤ lim sup
n→∞

∫
Ω

2

[∫
Q

W (y,Uδnun) dy
] 1

2

|∇un| dx.

Proof. Write∫
Ω

2

[∫
Q

W (y, un + Tη(Uδnun − un)) dy

] 1
2

|∇un| dx

≤
∫
Ω

2

[∫
Q

W (y,Uδnun) dy
] 1

2

|∇un| dx

+

∫
Ω

2

[∫
Qη

n(x)

W (y, un + Tη(Uδnun − un)) dy

] 1
2

|∇un| dx, (4.11)

where
Qη
n(x) := {y ∈ Q : |Uδnun(x, y)− un(x)| > η}.

By Chebyshev inequality, we have

LN(Qη
n(x)) ≤

1

η2

∫
Q

|Uδnun(x, y)− un(x)|2 dy =
1

η2
‖Uδnun(x, ·)− un(x)‖2L2(Q;RM ). (4.12)
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Using (W4), (4.4), and (4.12) we get∫
Ω

[∫
Qη

n(x)

W (y, un + Tη(Uδnun − un)) dy

] 1
2

|∇un| dx

≤ CM
η2

∫
Ω

LN(Qη
n(x))

1
2 |∇un(x)| dx

≤ CM
η2

‖LN(Qη
n(x))

1
2‖L2(Ω RM )‖∇un‖L2(Ω RN×M )

=
CM
η2

‖Uδnun − un‖L2(Ω;L2(Q;RM ))‖∇un‖L2(Ω;RN×M )

≤ CM
η2

(
δn
εn

) 1
2

,

where we used Hölder and estimate (3.5). Since δn � εn, in view of (4.12)this gives

lim sup
n→∞

∫
Ω

2

[∫
Q

W (y, un + Tη(Uδnun − un)) dy

] 1
2

|∇un| dx

≤ lim sup
n→∞

∫
Ω

2

[∫
Q

W (y,Uδnun) dy
] 1

2

|∇un| dx.

□

Now, we estimate IIn.

Lemma 4.4 (Estimate for IIn). Assume that

lim sup
n→∞

∫
Ω

1

kn(x)εn
dx = 0. (4.13)

Then,
lim
n→∞

IIn = 0.

Proof. Using (W4) and the fact that ‖un‖∞ ≤M (recall (4.4)) for all n ∈ N, we get∫
Ω

2

[∫
Q\Qkn(x)

W (y, un) dy

] 1
2

|∇un| dx ≤ CM

∫
Ω

LN(Q \Qkn(x))
1
2 |∇un| dx

≤ CM‖∇un‖L2(Ω)

(∫
Ω

LN(Q \Qkn(x)) dx

) 1
2

,

where the last step follows from Hölder inequality. Using estimate (3.1) together with
the fact that

LN(Q \Qkn(x)) ≤
C

kn(x)
,

we get

IIn ≤ CM

[∫
Ω

1

kn(x)εn
dx

] 1
2

.

Thanks to (4.13), we conclude. □

We finally estimate IIIn by employing a similar strategy.
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Lemma 4.5 (Estimate for IIIn). Assume that

lim sup
n→∞

∫
Ω

1

kn(x)εn
dx = 0. (4.14)

Then,
lim
n→∞

IIIn = 0.

Proof. Using (W4) and the fact that ‖un+ vηn,k‖∞ ≤M + η for all n ∈ N (see (4.4)(4.8)),
we get∫

Ω

2

[∫
Skn(x)

W (y, un + vηn,k(x, y)) dy

] 1
2

|∇un| dx ≤ CM,η

∫
Ω

LN(Skn(x))
1
2 |∇un| dx.

Applying Hölder inequality, we get

IIIn ≤ CM,η‖∇un‖L2(Ω)

(∫
Ω

LN(Skn(x)) dx
) 1

2

.

and since
LN(Sk(x)) ≤

C

kn(x)
,

by (4.14) and (3.1) we conclude. □

We are now in position to prove the main theorem of this step.

Proof of Theorem 4.2. Part 1. Define

kn(x) :=

⌊
η2

‖f ηn(x, ·)‖2L2(Q;RM )

⌋
.

Observe that kn ≥ 1 is an integer for all x ∈ Ω, and that the function x 7→ kn(x)
is Lebesgue measurable, as it is the composition of an upper semicontinuous function
(hence Borel measurable) and a Lebesgue measurable function. Furthermore, by (4.9) we
have that the denominator converges to zero, and thus kn → ∞ as n→ ∞. Moreover, in
view of the definition of f ηn and (3.4), we have∫

Ω

1

εn
‖f ηn(x, ·)‖2L2(Q;RM ) dx ≤ 1

εn
‖Uδnun − un‖2L2(Ω;L2(Q;RM )) ≤ C

δn
εn
.

Thus, using that δn � εn, we deduce that

lim sup
n→∞

∫
Ω

1

kn(x)εn
dx = 0.

Part 2. We now prove the energy estimate . From (4.10), together with Lemmas 4.3, 4.4,
and 4.5 we get the desired estimate

lim sup
n→∞

∫
Ω

2

[∫
Q

W (y, un + vηn) dy

] 1
2

|∇un| dx

≤ lim sup
n→∞

∫
Ω

2

[∫
Q

W (y,Uδnun) dy
] 1

2

|∇un| dx

≤ lim sup
n→∞

En(un)
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Part 3. Finally, we establish the bound (4.7). Note that
|∇yv

η
n|2 = |∇yψknf

η
n + ψkn(x)∇yf

η
n |2 ≤ 2(k2n(x)|f ηn |2 + |∇yf

η
n |2),

and thus
‖∇yv

η
n(x, ·)‖L2(Q;RM ) ≤

√
2
[
kn(x)‖f ηn(x, ·)‖L2(Q;RM ) + ‖∇yf

η
n(x, ·)‖L2(Q;RM )

]
.

Since
‖vηn‖L2(Q;RM ) ≤ ‖f ηn‖L2(Q;RM ),

we obtain
‖vηn(x, ·)‖L2(Q;RM )‖∇yv

η
n(x, ·)‖L2(Q;RM )

≤
√
2
[
kn(x)‖f ηn(x, ·)‖2L2(Q;RM ) + ‖f ηn(x, ·)‖L2(Q;RM )‖∇yf

η
n(x, ·)‖L2(Q;RM )

]
≤

√
2
[
2η2 + η‖∇yUδnun(x, ·)‖L2(Q;RM )

]
,

where in the last step we used Lemma 2.4, (4.8), and the definition of kn. This concludes
the proof of the slicing theorem. □

We now continue with the proof of Theorem 4.1.

Step 3: Passing to Limit. Using Theorem 4.2, we get that, for all η > 0, it holds

lim inf
n→∞

En(un) ≥ lim inf
n→∞

∫
Ω

2

[∫
Q

W (y, un + vηn) dy

] 1
2

|∇un| dx.

We now want to pass to the limit in the above inequality as n → ∞, replacing W by
W η. Observe that vηn(x, ·) might not satisfy, for a.e x ∈ Ω, the required bound to be an
admissible competitor for the minimization problem defining W η. Thus, we reason as
follows. Define

Ωη
n := {x ∈ Ω : ‖∇yUδnun(x, ·)‖L2(Q;RM ) ≤ η}.

Then, for each x ∈ Ωη
n, we have that vηn(x, ·) ∈ Aη (see Definition 3.3). We can estimate

lim inf
n→∞

∫
Ω

2

[∫
Q

W (y, un + vηn) dy

] 1
2

|∇un| dx ≥ lim inf
n→∞

∫
Ωη

n

2
√
W η(un)|∇un| dx

≥ lim inf
n→∞

∫
Ω

2
√
W η(un)|∇un| dx− lim sup

n→∞

∫
Ω\Ωη

n

2
√
W η(un)|∇un| dx.

We claim that
lim sup
n→∞

∫
Ω\Ωη

n

2
√
W η(un)|∇un| dx = 0.

Indeed, by Chebyshev’s inequality we have that

LN(Ω \ Ωη
n) ≤

1

η2

∫
Ω

‖∇yUδnun(x, ·)‖2L2(Q;RM ) dx,

and thus, by (3.2) we get

LN(Ω \ Ωη
n) ≤

δ2n
η2εn

. (4.15)

Using the upper bound on un (see (4.4)), we obtain∫
Ω\Ωη

n

2
√
W η(un)|∇un| dx ≤ CM,η

∫
Ω\Ωη

n

|∇un| dx,
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and applying Hölder and (4.15) we infer from (3.1) that∫
Ω\Ωη

n

2
√
W η(un)|∇un| dx ≤ CM,ηLN(Ω \ Ωη

n)
1
2‖∇un‖L2(Q;RM ) ≤ CM,η

δn
εn
,

which proves the claim because δn � εn.

Therefore, for all η > 0 we have that

lim inf
n→∞

En(un) ≥ lim inf
n→∞

∫
Ω

2
√
W η(un)|∇un| dx. (4.16)

We specifically note that up to this point, we have not used the convergence of {un}n
in any way. Now we do so, and by virtue of ”classical” results on the Modica-Mortola
functional (see [20, Theorem 3.4]), we get that

lim
n→∞

En(un) ≥ σηPer({u = a}), (4.17)

where

ση := min

{∫ 1

−1

2
√
W η(γ)|γ′|dt : γ ∈ LipZ([−1, 1];RM), γ(−1) = a, γ(1) = b

}
.

Step 3: Concluding the Arguments We send η → 0 in (4.17). Recall that

σhom := min

{∫ 1

−1

2
√
Whom(γ)|γ′|dt : γ ∈ LipZ([−1, 1];RM), γ(−1) = a, γ(1) = b

}
.

We claim the following.

Proposition 4.6. Let
σ0 := lim

η→0
ση = sup

η>0
ση.

Then σ0 = σhom.

Proof. Note that ση is increasing, and thus the limit exists.

By Theorem 3.4, for every η > 0, ση ≤ σhom, and this establishes the inequality σ0 ≤ σhom.

We prove the converse inequality. Proposition 3.7 gives us that σ0 is the distance between
a and b in a certain metric d0, and that there exists γ0 ∈ C0([−1, 1];RM) such that

σ0 = sup
η>0

∫ 1

−1

2
√
W η(γ0)|γ′0|dt. (4.18)

Without loss of generality, due to parameterization invariance we can assume that the
γ0(t) = a if and only if t = −1, and that γ0(t) = b if and only if t = 1. For j ∈ N \ {0},
define

T aj := { t ∈ [−1, 1] : γ0(t) 6∈ B(a, 1/j) },

T bj := { t ∈ [−1, 1] : γ0(t) 6∈ B(b, 1/j) },
and

Tj := [−1, 1] \ (T aj ∪ T bj ).

Let
Lj :=

∫
T j

|γ′0(t)| dt <∞.
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By Theorem 3.4, we have uniform convergence of W η ot Whom on compact sets. Let (ηj)j
be a decreasing sequence such that

‖
√
W ηj −

√
Whom‖C0(K) ≤

1

2jLj
.

for all η < ηj, where K ⊂ RM is a compact set such that γ0(t) ∈ K for all t ∈ [−1, 1].
We observe that

σ0 ≥
∫ 1

−1

2
√
W ηj(γ0)|γ′0|dt

≥
∫
T j

2
√
W ηj(γ0)|γ′0|dt

≥
∫
T j

2
√
Whom(γ0)|γ′0|dt− 2

∫
T j

∣∣∣√W ηj(γ0)−
√
Whom(γ0)

∣∣∣ |γ′0|dt
≥
∫
T j

2
√
Whom(γ0)|γ′0|dt−

1

j

Taking j → ∞ and using Monotone Convergence Theorem together with (4.18), we
conclude. □

5. Compactness

In this section prove Theorem 1.6.

Proof of Theorem 1.6. Let {un}n ⊂ W 1,2(Ω;RM) be such that
sup
n∈N

En(un) = C <∞.

By (4.16), we obtain the uniform bound without using any information about the con-
vergence:

sup
n

∫
Ω

2
√
W η(un)|∇un| dx ≤ C

Since W η has two wells a, b, we can apply arguments in [20] to extract a subsequence
such that un → u ∈ BV (Ω; {a, b}) strongly in L1.

□

6. Limsup inequality

The main result of this section is the construction of a recovery sequence.

Theorem 6.1. Given u ∈ BV (Ω; {a, b}), there exists a sequence {un}n ⊂ W 1,2(Ω;RM)
with un → u strongly in L1(Ω;RM), such that

lim sup
n→∞

En(un) ≤ E∞(u).

The proof of the limsup inequality requires two technical results that are well known
to the experts. For the reader’s convenience, we state them in here. The first is an
approximation result, stating that C2 sets are dense both in configuration and in energy.
This result is contained in the proof of [7, Lemma 3.1].

Proposition 6.2. Let E ⊂ Ω be a set with finite perimeter. Then, there exists a sequence
of sets {En}n, where each En ⊂ Ω satisfies
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• ∂En ∩ Ω is of class C2;

• HN−1(∂Ω ∩ ∂En) = 0,

such that En → E with respect to the L1 topology, and
lim
n→∞

E∞(un) = E∞(u),

where un := 1En, and u := 1E.

The next result ensures that, up to a small error, it is possible to reparametrize a curve
in such a way that the energy functional is bounded by the limiting energy. This was
originally used in the article by Modica (see [28, Proof of Proposition 2]). Here we give
the version used in [16, Lemma 4.5], since it clearly states the estimates that we will need.
Note that none of the assumptions on W required in [16] are actually used, other than
continuity in the second variable. Moreover, the lower bound for τ follows easily from
the definition of τ given in the proof of the result.

Lemma 6.3. Fix λ > 0, ε > 0. Let γ ∈ C1([−1, 1];RM), with γ(−1) = a, γ(1) = b, and
γ′(s) 6= 0 for all s ∈ (−1, 1). Then, there exist τ > 0, and C > 0, with

Cε ≤ τ ≤ ε√
λ

∫ 1

−1

|γ′(t)| dt,

and g ∈ C1((−τ, τ ); [−1, 1]) such that

(g′(t))2 =
λ+W (x, γ(g(t)))

ε2|γ′(g(t))|2

for all t ∈ (−τ, τ ), g(−τ) = −1, g(τ) = 1, and∫ τ

−τ

[
1

ε
Whom (γ(g(t))) + ε|γ′ (g(t)) |2 (g′(t))2

]
dt

≤
∫ 1

−1

2
√
Whom(γ(s))|γ′(s)| ds+ 2

√
λ

∫ 1

−1

|γ′(s)| ds.

We are now in position to prove the existence of a recovery sequence.

Proof of Theorem 6.1. Let A := {u = a}.

Step 1. Using Proposition 6.2 and a diagonalization argument, we note that it suf-
fices to prove the result for u ∈ BV (Ω; {a, b}) such that ∂A ∩ Ω is of class C2, and
HN−1(∂A ∩ ∂Ω) = 0.

Step 2. Let u ∈ BV (Ω; {a, b}) be as in Step 1. Fix η > 0. Let γ ∈ C1([−1, 1];RN) with
γ(−1) = a, and γ(1) = b, be such that∫ 1

−1

2
√
Whom(γ(t))|γ′(t)|dt ≤ σhom + η. (6.1)

Without loss of generality, we can assume that γ′(s) 6= 0 for all s ∈ (−1, 1). For each
n ∈ N, let τn > 0, and gn ∈ C1([0, τn];RM) be those given by Lemma 6.3 relative to the
choice of

ε := εn, λ :=

(
η

L(γ)

)2

, (6.2)
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Figure 2. The two different scales εn and δn.

where
L(γ) :=

∫ 1

−1

|γ′(s)| ds <∞.

Let dist(·, ∂A) : RN → R be the signed distance function from ∂A. Note that dist(·, ∂A)
is of class C1, since ∂A is of class C2. For n ∈ N, define

un(x) :=


b dist(x, ∂A) > τn,

γ (gn(dist(x, ∂A))) |dist(x, ∂A)| ≤ τn,

a dist(x, ∂A) < −τn.
(6.3)

We claim that the sequence {un}n satisfies the required properties, up to an error η.
Observe that each un ∈ W 1,2(Ω;RM). Moreover, by using the fact that τn → 0 as
n→ ∞, we have that un → u strongly in L1(Ω;RM).

We prove the convergence of the energies. Define
An := {x ∈ Ω : |dist(x, ∂A)| ≤ τn},

and note that
|An| ≤ HN−1(∂A)τn. (6.4)

For each n ∈ N, consider the set of indexes
In := {i ∈ N : zi + δnQ ⊂ An, zi ∈ δnZN},

Bn := {i ∈ N : zi + δnQ ∩ An 6= ∅, zi ∈ δnZN} \ In.
Let Kn := #In, and observe that

lim
n→∞

Kn

(⌊
|An|
δNn

⌋)−1

= 1. (6.5)

Write
An :=

⋃
i∈In

(zi + δnQ) ∪Rn,

where
Rn :=

⋃
j∈Bn

(zj + δnQ) ∩ An.
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Then,
|Rn| ≤ CAδn, (6.6)

where CA > 0 is a constant depending on ∂A.

Step 3. We claim that there exists a dimensional constant CN > 0 such that

|un(x)− un(zi)| ≤ ωγ

(
CN

δn
εn

)
, (6.7)

for all x ∈ zi+ δnQ, and all n ∈ N, and i ∈ In, where ωγ : [0,∞) → [0,∞) is the modulus
of continuity of γ. Indeed,

|un(x)− un(zi)| = |γ (gn(dist(x, ∂A)))− γ (gn(dist(zi, ∂A)))|

≤ ωγ

(
1

εn
(|dist(x, ∂A)− dist(zi, ∂A)|)

)
≤ ωγ

(
1

εn
(|x− zi|)

)
≤ ωγ

(
CN

δn
εn

)
,

where in the second step we used the fact that |g′n| ≤ C/εn.

Step 4. We claim that

lim
n→∞

∣∣∣∣ 1εn
∫
An

[
W

(
x

δn
, un(x)

)
−Whom(un(x))

]
dx

∣∣∣∣ = 0.

By using the unfolding operator restricted to An, we get∫
An

W

(
x

δn
, un(x)

)
dx =

Kn∑
i=1

∫
zi+δnQ

∫
Q

W (y,Uδnun) dydx+
∫
Rn

W

(
x

δn
, un(x)

)
dx

= δNn

Kn∑
i=1

∫
Q

W (y, un(zi + δny)) dy +

∫
Rn

W

(
x

δn
, un(x)

)
dx.

Thus, we can write∫
An

[
W

(
x

δn
, un(x)

)
−Whom(un(x))

]
dx

= δNn

Kn∑
i=1

[∫
Q

W (y, un(zi + δny)) dy −Whom(un(zi))

]

+
Kn∑
i=1

[
δNn Whom(un(zi))−

∫
zi+δnQ

Whom(un(x)) dx

]
+

∫
Rn

[
W

(
x

δn
, un(x)

)
−Whom(un(x))

]
dx

=: J1
n + J2

n + J3
n. (6.8)

We now estimate the three terms J1
n, J

2
n, and J3

n separately. Since γ is continuous on a
compact set, we note that by definition of the recovery sequence

sup
n∈N

‖un‖L∞ ≤M <∞. (6.9)
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This implies that

|J3
n| ≤ C|Rn| ≤ Cδn, (6.10)

where in the last inequality we used (6.6).

Now we estimate J2
n. Let ωhom be a modulus of continuity of Whom in B(0,M), where

M > 0 is the constant in (6.9). Then,

|J2
n| =

∣∣∣∣∣
∫
∪Kn

i=1 zi+δnQ

Whom(un(zi))−Whom(un(x)) dx

∣∣∣∣∣
≤
∫
∪Kn

i=1 zi+δnQ

ωhom(|un(zi)− un(x)|) dx

≤ Knδ
N
n ωhom

(
ωγ

(
CN

δn
εn

))
≤ Cεnωhom

(
ωγ

(
CN

δn
εn

))
, (6.11)

where in the previous to last inequality we used Step 3, while in the last inequality we
used (6.4) together with (6.5).

Finally, we estimate J1
n. Using the definition of Whom, we write∫

Q

W (y, un(zi + δny)) dy −Whom(un(zi)) =

∫
Q

[W (y, un(zi + δny))−W (y, un(zi))] dy.

Thus, using a similar argument to that in (6.11), we obtain

|J1
n| ≤ CεnωW

(
ωγ

(
CN

δn
εn

))
, (6.12)

where ωW is a modulus of continuity of W in B(0,M), where M > 0 is the constant in
(6.9).

Combining (6.12)(6.11)(6.10), we get∣∣∣∣ 1εn
∫
An

W

(
x

δn
, un(x)

)
−Whom(un(x)) dx

∣∣∣∣
≤ 1

εn

(
|J1
n|+ |J2

n|+ |J3
n|
)

≤ C

(
ωW

(
ωγ

(
C
δn
εn

))
+ ωhom

(
ωγ

(
C
δn
εn

))
+
δn
εn

)
→ 0, (6.13)

as n → ∞, where in the last step we used the fact that δn � εn, together with
limt→0 ωW (t) = limt→0 ωhom(t) = 0.
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Step 5. Using Step 4, and the coarea formula (see [1, Theorem 2.93 and Remark 2.94]),
we get that

lim sup
n→∞

En(un) = lim sup
n→∞

∫
Ω

[
1

εn
W

(
x

δn
, un

)
+ εn|∇un|2

]
dx

≤ lim sup
n→∞

∫
Ω

[
1

εn
Whom(un) + εn|∇un|2

]
dx

+ lim sup
n→∞

∣∣∣∣ 1εn
∫
Ω

[
W

(
x

δn
, un(x)

)
−Whom(un(x))

]
dx

∣∣∣∣
= lim sup

n→∞

∫
Ω

[
1

εn
Whom(un) + εn|∇un|2

]
dx

= lim sup
n→∞

∫ τn

−τn

[
1

εn
Whom(γ(gn(s))) + εn|γ′(gn(s))g′n(s)|2

]
·

· HN−1({x ∈ Ω : dist(x, ∂A) = s}) ds
≤ lim sup

n→∞
sup
|s|≤τn

HN−1({x ∈ Ω : dist(x, ∂A) = s})·

·
∫ τn

−τn

[
1

εn
Whom(γ(gn(s))) + εn|γ′(gn(s))g′n(s)|2

]
ds

≤ lim sup
n→∞

sup
|s|≤τn

HN−1({x ∈ Ω : dist(x, ∂A) = s})·

·
[∫ 1

−1

2
√
Whom(γ(t))|γ′(t)|dt+ 2

√
λL(γ)

]
≤ HN−1(∂A)[σhom + 3η],

where the last inequality follows from (6.13), together with (6.2), Lemma 6.3, and the
fact that, since ∂A is of class C2, it holds

lim
s→0

HN−1({x ∈ Ω : dist(x, ∂A) = s}) = HN−1(∂A).

Since η > 0 is arbitrary, we conclude. □

7. The mass constrained functional

As it is usually the case, the strategy of the proof for the Gamma-limit in the uncon-
strained case is stable enough to be used for the mass constrained functional, with minor
changes. The liminf inequality follows from exactly the same proof. What needs to be
checked is that, in the construction of the recovery sequence, it is possible to adjust the
mass of the sets constructed in the proof of Proposition 6.1. There are some standard
ways to do that, which can be found in the paper by Fonseca and Tartar (see [20]), and in
the paper by Ishige (see [24], see also [7]). However, such strategies are heavily based on
the assumption that potential W enjoys regularity that we do not require in this paper.
Here, we use a different argument that does not require such assumption.

Lemma 7.1. Fix m ∈ (0, |Ω|). Let u ∈ BV (Ω; {a, b}) with |{u = a}| = m. Then, there
exists a sequence {un}n ⊂ W 1,2(Ω;RM) with un → u strongly in L1(Ω;RM) such that

lim sup
n→∞

Ên(un) ≤ Ê∞(u),

where Ên and Ê∞ are defined in Definition 1.8.
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Proof. We show how to modify Proposition 6.2 and the definition of the function un in
Step 2 of the proof of Proposition 6.1 in order to get the recovery sequence satisfying the
mass constraint.

Step 1. Let E := {u = a}. Let {En}n be the sequence provided by Proposition 6.2.
We would like to modify this in such a way that the required mass constraint is satisfied.
The strategy we use is a variant of an idea by Ryan Murray.

Let x0, x1 ∈ Ω be points of density one and zero for E, respectively. i.e.,

lim
r→0

|E ∩ B(x1, r)|
|B(x1, r)|

= 1 and lim
r→0

|E ∩ B(x0, r)|
|B(x0, r)|

= 0.

Then, there exists R > 0 such that
3

4
≤ |E ∩ B(x1, r)|

|B(x1, r)|
≤ 1, 0 ≤ |E ∩ B(x0, r)|

|B(x0, r)|
≤ 1

4
, (7.1)

for all r ≤ R. Without loss of generality, up to decreasing the value of R > 0, we can
assume that B(x1, r) ∩ B(x0, r) = ∅. For r ≤ R, let

Ẽr := E ∪B(x1, r) \B(x0, r).

Note that
lim
r→0

|P (Er; Ω)− P (E; Ω)| = 0, ‖1Er − 1E‖L1(Ω) = 0.

Let {F r
n}n be the sequence of sets given by Proposition 6.2 relative to Er. Then, for n

large, we get that

|P (F r
n ; Ω)− P (Er; Ω)| < r, ‖1Er

n
− 1Er‖L1(Ω) < r.

Since such sets F r
n are obtained with the standard procedure of mollification of the char-

acteristic function of Er, and by taking a super level set, we get that there exists n̄ ∈ N
such that

B

(
x0,

(
4

5

)N
r

)
⊂ Ω \ F r

n and B

(
x1,

(
4

5

)N
r

)
⊂ F r

n ,

for all n ≥ n̄. Now, assume that |F r
n | < m. Let sn > 0 be such that |F r

n |+ |B(0, sn)| = m.
We claim that

sn <

(
4

5

)N
r,

for all n ≥ n̄. Indeed, for n large enough, using (7.1) it holds that

|Er| − |E| < 3

4
|B(x1, r)|.

Therefore, considering the set

F̃ r
n := F r

n ∪ B(x0, sn),

we get that |F̃ r
n | = m, for all n ≥ n̄. Using a diagonal argument, we obtain the desired

conclusion. A similar argument is used to fix the mass in the case where |F r
n | > m. This

sequence satisfies the required properties.
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Step 2. It can be shown that, for each n ∈ N, there exists vn ∈ R such that the function

ũn(x) :=


b dist(x, ∂A) > τn,

γ (gn(dist(x, ∂A) + vn)) |dist(x, ∂A)| ≤ τn,

a dist(x, ∂A) < −τn.

is such that ∫
Ω

un(x) dx = ma+ (1−m)b.

Using the fact that vn → 0 as n → ∞, it is possible to check that all of the steps in the
proof of Proposition 6.1 can be carried out in a similar way. This allows to conclude. □
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