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We present a species-conserving Monte Carlo (MC) method, motivated by systems such as high-entropy
alloys. Current fast local-structure MC methods do not conserve the net concentration of atomic species, or
are inefficient for complex atomic systems. By coarse-graining the atomic lattice into clusters and developing
a renormalized MC method that takes advantage of the local structure of the atoms, we are able to significantly
reduce the number of iterations required for MC simulations to reach equilibrium. In addition, the structure of
the method enables easy parallelizability for the future.

1. Introduction
Understanding, and hence optimizing, the composition of complex multi-species materials that display unique physical and
chemical properties can be challenging due to the very large number of experiments required and the computational complexity
needed to simulate them [GRR19]. For instance, high-entropy alloys (HEA) such as CrMnFeCoNi [GRR19], are an important
example of materials that are difficult to discover experimentally, but are also computationally demanding to simulate. Their
unique mechanical and electrical properties, radiation tolerance, and oxidization resistance makes them promising for a wide
range of applications, including nuclear reactors, combustion chambers, superconducting devices, photothermal conversion, and
for applications in biomedical devices [DPAM19, YZ20, GV19, CWL+22, CWL+22, ZYL+18].

An important aspect of understanding HEA, and multi-species materials in general, is to elucidate the local or short-range
order of the different atomic types, which is hypothesized to be the origin of their unique properties [WZY+21, CWL+22].
The large number of atomic species in these systems limits their experimental discovery, and the high configurational entropy
causes the simulations to have long convergence times [FDG+20]. Simulations of HEA typically predict their short-range order
using quantum mechanical calculations coupled with Monte Carlo simulations [TCWSNM+17]. Recent efforts to speed up the
simulations have primarily focused on reducing the computational complexity of the quantum mechanical calculations by using
data-driven methods to learn a local, reduced-dimensional, empirical interatomic potential that is a function of only nearest
neighbor atoms [LZY+21, Sha17, KRN+20]. In this work, we propose a complementary speedup to MC simulations that can
enable the discovery of new HEA and materials with complex atomic arrangements by reducing the computational barrier of
their simulations.

1.A. Relevant Prior Approaches to Increase the Efficiency of Monte Carlo Simulations
An important advance in a Monte Carlo method that exploits the local structure of atoms to speed up the simulation was proposed
by Swendsen and Wang [SW87], and related work in this direction includes [HR04, Lui06, KD91, Kat09]; this class of methods
has deep connections to the renormalization group. Another important class of methods are the Kinetic Monte Carlo/N fold way
[BKL75, Mur01, Sch08, Vot07]. The approaches based on Swendsen and Wang Algorithm cannot be used to simulate HEA
because the fundamental structure of the method does not conserve the total concentration of different atomic species. Kinetic
Monte Carlo, on the other hand, is computationally infeasible for HEAs because it requires exhausting all possible pairwise
transitions between all local states (i.e., nearest neighbor configurations), and HEAs have vast configurational entropy. We note
here that although replica exchange can be used to speed up MC simulations of HEA [LZY+21], it is not a local-structure
technique, since it requires non-local exchanges between configurations from parallel runs [SW86].

1.B. The Proposed Approach
An important element of the method proposed in this paper is to identify, via simulated annealing, hierarchical structures of
groups of atoms – that we denote as a cluster – that do not mix at low temperatures in order to sample configuration space more
efficiently. It is well known that naive methods for sampling the canonical ensemble suffer from slow convergence when the
potential energy is characterized by a large number of local minima separated by high barriers [Tuc10]. Thus, by “efficient”, we
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mean that we design our sampling approach such that it can traverse energy barriers in configurational space without degrading
the acceptance rate of the simulation (i.e. the number of accepted moves divided by the total number of iterations). We design
our MC method such that we can tune a set of parameters that can control the degree of mixing and growth of clusters of atoms
of some predefined structure. Our driving hypothesis – that we demonstrate successfully – is that if we choose the predefined
structure of the clusters to be the structure of the clusters of atoms that do not mix at low temperatures, then we can control the
degree of mixing and growth of these clusters in our MC sampling scheme to greatly speed up the approach to equilibrium in
our simulations at all temperatures. We denote the structure of the cluster of atoms at low temperature to be the low-temperature
Cluster Properties of the simulation [Fig. 1]. By first finding the optimal cluster structures and then sampling them directly,
we effectively decouple the problem into numerical optimization followed by an accelerated Monte Carlo simulation. Once
we identify the optimal cluster structures or the low-temperature Cluster Properties, we can control how much clusters of these
structures mix and distribute themselves across the simulation cell by changing how often we swap between pairs of atoms
on the boundary or interior of a cluster. This is significant because if the simulation finds stable local-structures of atoms or
configurations of atoms that correspond to low energy/temperature, the simulation can be made less likely to modify those
structures by decreasing the likelihood of swapping single pairs of atoms that are both in the interior of a cluster. It is relevant
here to note that sampling using local cluster structures – as opposed to strictly using atom-atom swaps – has possible connections
to methods in renormalization more broadly; see, for example, [Swe79, Wil75, Kad66].

A high-level summary of our strategy is outlined below:
1. Find the set of stable local structures or the low temperature atomic configurations
2. Identify all clusters of atoms with these local structures in the simulation
3. Hypothesize a probability distribution for drawing new samples that is optimized for growing and mixing clusters based

on the number of interior and boundary atoms of different local structures
4. Use the probability distribution to propose new samples in the MC simulation

(a) (b)

Figure 1. Example of simulation results for a binary alloy Ising Model system with fixed composition; the colors indicate different spin up
and spin down. Left: an example of a low temperature configuration where the coupling constant between the spins is negative (J < 0); this
results in three low-temperature Cluster Properties, two of which are clusters of aligned spins (i.e., either all aligned up or down) and the other
is a cluster in which the spins are anti-aligned. Right: an example of a low temperature configuration where the coupling constant between the
spins is positive (J > 0). This results in two low-temperature Cluster Properties consisting of clusters of spins that are aligned.

Structure of the Paper. In Section 2, we define key geometric properties of clusters of atoms. In Section 3, we discuss the
identification of low-temperature cluster properties. In Section 4, we outline the MC method that accounts for the cluster swaps
and detailed balance. In Section 5, we show the results of the proposed method.

2. Geometric Properties of Clusters
We first define a cluster as a group of atoms which form a connected subset of a configuration of the system. Eventually we
will wish to identify ways of constructing clusters which are at a lower energy state in their interior and, as a consequence,
have a significant portion of their energy concentrated at their boundary. The process of constructing clusters is driven by the
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(a) A group of atoms joins an existing cluster. (b) A group of atoms cannot join an existing
cluster.

(c) Allowable sub-clusers: the local configura-
tions of atoms in the AS.

Figure 2. Rules of cluster growth in a simple example; colors represent the atomic species. In (a), the group of atoms joins the existing cluster
since after being added they will have a local configuration that is the same as one of the configurations in the AS (shown in (c)). In (b), the
group of atoms cannot join the existing cluster since they will not have a local configuration that is the same as one of the configurations in the
AS, regardless of how it is rotated/reflected or placed.

specification of Allowable Sub-Clusters (AS). We give an example of how a group of atoms can join an existing cluster in the
simulation in Figures 2a and 2b, and use this example to generalize to different possible clusters. The rules of adding atoms to a
cluster, as depicted in Figure 2a, are that

1. The atom or group of atoms must neighbor or be connected to another atom in the cluster
2. The atom or group of atoms can only be added to a cluster if the atom(s) will – upon being added – have a local configuration

(i.e., arrangement of neighboring atoms) that is among those in the Allowable Sub-Clusters AS.

Definition 1 (Allowable Sub-Cluster (AS)). An Allowable Sub-Cluster is a possible local configuration (i.e., an arrangement of
atoms) that an atom must have to be part of a cluster

Figure 2b is an example by which the set of atoms does not satisfy the second rule, so it is not added to the cluster of atoms.
The rules of cluster construction in general should be defined such that any given subset of a cluster is equivalent – up to the
symmetry of the Euclidean group, E (3) (i.e., the group of isometries of R3) – to an element of the Allowable Sub-Clusters when
there is no orientational energy between atoms. Since at all times each atom in a cluster must have a local configuration that is
in the AS, the number of atoms in one local configuration in the AS defines the minimum possible cluster size we can build with
this property. In general, we can define an AS with any number of atoms in its local configurations. We refer to the term Cluster
Minsize to define the minimum possible size of a cluster. The possible Cluster Minsizes are denoted Minsize-1 (meaning the
minimum possible cluster size is 1), Minsize-2, and so on (Fig. 3). In Figures 2a and 2b, both clusters are Cluster Minsize-5.

Definition 2 (Cluster Minsize). The Cluster Minsize is the minimum possible cluster size given a set of Allowable Sub-Clusters.
It is equal to the number of atoms in an Allowable Sub-Cluster.

In general, it is optimal to use only a subset of all the possible local configurations in the AS of a given Cluster Minsize and
number of unique atomic species. For example, a Cluster Minsize-5 with three possible atomic species will have a total of 35 or
243 possible local configurations, but in Figures 2a and 2b we have only two local configurations.

The combination of the Cluster Minsize and AS defines the Cluster Property and dictates the rules by which a cluster is allowed
to grow. Notice that for Cluster Properties with two or more atomic species, the Cluster Minsize and number of configurations
in the AS controls the cluster entropy, i.e., the number of possible atomic configurations of a cluster that are still of the same
Cluster Property. In general, higher Cluster Minsizes along with fewer configurations in the AS result in Cluster Properties with
low cluster entropy.

Definition 3 (Cluster Property). A Cluster Property is the combination of Cluster Minsize and a set of Allowable Sub-Clusters
that dictates the rules by which a cluster is allowed to grow.
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Figure 3. Examples of local configurations for different Cluster Minsizes in 2D. The atomic species are represented by different colored squares.

Cluster
Minsize

Allowable Sub-Clusters

Minsize-5
(a) Cluster Property 1

(b) Cluster ID J merging with Cluster ID 2

Figure 4. A example by which an atom can join an existing cluster. A Cluster Property is defined with Cluster Minsize-5 and a subset of 2 local
configurations chosen out of the possible 243 (i.e. 35) local configurations of three atomic species in Cluster Minsize-5. The atoms marked
with the label 2 indicate they belong to cluster ID 2, and those labeled with J are of an unknown cluster ID. Since the atom with the yellow
atomic species in the bottom part of the figure matches one of the local configurations of cluster property 1, it joins cluster ID 2 along with its
neighbors.

At any time in the simulation, there can be any number of clusters of atoms of the same Cluster Property. Thus we mark
clusters with a unique Cluster ID when we need to explicitly track groups of atoms that belong to the same cluster. Figure 4
gives an example of a group of atoms joining an existing cluster with a certain Cluster ID and Cluster Property. The set of rules
we have constructed gives us the ability to define clusters of atoms of a wide range of possible atomic structure. Figure 5 shows
some examples of the possible structures we can obtain with our set of rules for growing clusters of atoms.

Definition 4 (Cluster ID). A Cluster ID identifies groups of atoms belonging to the same cluster.

Since lower number Cluster Minsizes might match part of the configurations from higher number Cluster Minsizes, we need
to add one more definition to uniquely identify the Cluster Properties of clusters in our simulation. We need to assign different
Cluster Priorities to the different Cluster Properties to uniquely identify the clusters within our simulation. Figure 6 gives an
example of how this definition can uniquely identify Cluster Properties of clusters of atoms within the simulation based on their
Cluster Priorities. Note here that the possible Cluster Properties in the simulation needs to be chosen such that at any time in the
simulation, each atom can be uniquely associated with a cluster.
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(a) (b)

Figure 5. (a) depicts a cluster of two atomic species with only 2 local configurations out of the possible 32 (i.e. 25) local configurations in
Cluster Minsize-5. (b) depicts a cluster of three atomic species with 25 local configurations out of the possible 243 (i.e. 35) local configurations
in Cluster Minsize-5. The local configuration counts were ignored for the atoms on the boundary of the figure.

Definition 5 (Cluster Priority). Cluster Priority is a priority assigned to different Cluster Properties. This is done in order to
uniquely determine the Cluster Properties of clusters in the simulation in cases where different Cluster Properties might share
overlapping configurations.

Cluster Property Cluster
Minsize

Cluster
Priority

Allowable Sub-Clusters

Cluster Property 1 Minsize-1 1

Cluster Property 2 Minsize-1 1

Cluster Property 3 Minsize-2 2
(a) Cluster Properties

(b) Example Cluster Property Assignment

Figure 6. An example of Cluster Property assignment based on Cluster Priority.

3. Identifying Low-temperature Cluster Properties
We present here a divide-and-conquer scheme to search for the low-temperature Cluster Properties of the simulation. The
approach is to start the simulation with finding high cluster entropy Cluster Properties that do not mix, and then refine the
structure with lower cluster entropy Cluster Properties. In order to do this, we need to break up a Cluster Property into its lower
cluster entropy constituents. We accomplish this by creating Cluster Properties that are composed of other Cluster Properties,
called Children Cluster Properties. Children Cluster Properties are thus used to create Parent Cluster Properties (Table. 1). The
natural way to partition a Cluster Property into smaller constituents or new lower cluster entropy Cluster Properties then, is to



6

Parent Cluster Property Cluster Property 1 Cluster Priority: 3
Children Cluster

Minsize
Cluster
Priority

Allowable Sub-Clusters

Cluster Property 1.1 Minsize-5 3.2

Cluster Property 1.2 Minsize-1 3.1

Cluster Property 1.3 Minsize-1 3.1

Table 1. Depiction of a Parent Cluster Property composed of Children Cluster Properties. Each Child is assigned a different Cluster Priority

use a subset of its Children to create new Cluster Properties. Thus, the number of ways to generate m unique Cluster Properties
from a Parent Cluster Property with N children, is equal to the number of ways to distribute N distinguishable objects into m
indistinguishable boxes, such that every box is occupied by at least one object. We call each unique distribution of the N objects
or Cluster Properties into m sets, a partition. The number of possible partitions of a Parent Cluster Property with N children
into m Cluster Properties is thus

1

m!

m−1∑
k=0

(−1)k
(
m

k

)
(m− k)N (3.1)

Although the number of possible partitions exponentially grows as a function of the number of children N , we can use certain
heuristics to limit the amount of partitions to analyze. For example, we can set the value of m to reduce the number of partitions
and restrict ourselves to only partitions that equally distribute the N children into the m sets. If possible, we can also use
information about the sign of the coupling constant between pairs of atoms to reduce the amount of children we assign to the
Parent Cluster Property.

We can go about finding the low-temperature Cluster Properties of the simulation by hypothesizing a probability function for
drawing samples that is optimized for the growth of clusters with the defined Cluster Properties in the simulation. By picking
such a function and defining a hierarchical structure for our Cluster Properties, we expect to obtain phase separated or non-mixing
clusters of high cluster entropy Cluster Properties before lower cluster entropy Cluster Properties. We start off by first defining
a Parent Cluster Property that treats the entire simulation cell as one cluster. We then iteratively partition the Parent Cluster
Property into smaller constituents and only save the partition that gives the simulation the lowest energy or gives the clusters in
the simulation the lowest degree of mixing. This results in a tree of Cluster Properties where the root node is the Parent Cluster
Property that results in the entire simulation cell being one cluster and the leaf nodes are the low-temperature Cluster Properties
of the simulation. Algorithm 1 details the steps in which this tree can be constructed.
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Figure 7. Depiction of a possible Cluster Property tree, where the leaf nodes are the low-temperature Cluster Properties. Only the partitions
of the Parent Cluster Property that resulted in the lowest energy in the simulation are saved in each level of the tree. The different levels
corresponds to different runs in the simulation. The numbers next to the nodes are the Cluster Property identifiers. The Allowable Sub-Clusters
corresponding to each Cluster Property are depicted in Appendix B corresponding to the runs in Figure 8.

Algorithm 1: Steps to find the Cluster Property tree
1 Define the Parent Cluster Property of the simulation cell, such that the entire simulation cell is treated as one cluster.

This cluster property should be composed of children cluster properties. This is always the root node in the Cluster
Property tree.

2 Define m, the desired number of cluster properties to use in the simulation.

3 Generate all possible ways to partition the parent cluster property into m children

4 For each partition, run the New MC method at a low temperature, in parallel, using m cluster properties, for a few
iterations

5 Choose the partition that resulted in the lowest energy, and continue running the simulation corresponding to this
partition until the fluctuation in the number of clusters and their sizes reaches steady state.

6 Save this partition, or the set of m cluster properties that resulted in the lowest energy, into its corresponding place in the
tree.

7 Define n, the current number of clusters in the simulation. Run n parallel simulations, restricting the simulation cell to
only the lattice positions of the clusters for each run. Repeat steps 2-6 for each parallel run treating the corresponding
cluster property of the cluster as the Parent Cluster Property.

8 Repeat step 7 for all parallel runs until the simulation reaches equilibrium.

This Algorithm results in a tree similar to the one depicted in Figure 7, where the leaf nodes are the low-temperature Cluster
Properties of the simulation, since they correspond to the atomic configurations with the lowest energy. This tree only needs
to be computed once. Once we have the tree, we can use it to simulate the system at various temperatures by using Algorithm
1 with steps 3, 4, and 6 omitted and using the partitions as defined by the tree. Figures 7 and 8 depict an example by which a
Cluster Property tree can be used to simulate the equilibrium structure of an atomic system. At higher simulation temperatures,
it might be sufficient to only use or stop at the higher cluster entropy Cluster Properties which are in the lower levels of the
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(a) First calculation (b) Examples from the parallel runs (c) Final Configuration

Figure 8. An example by which the Cluster Property tree shown in Figure 7 can be used to simulate the equilibrium structure of an atomic
system. In the first run, the Parent Cluster Property of the entire simulation cell is partitioned into separate Cluster Properties. This results
in phase-separated clusters with high cluster entropies. In the parallel runs, the Cluster Properties corresponding to the clusters are further
partitioned and the process is repeated until equilibrium is reached.

tree. If we wish to reduce the number of possible partitions generated from the Parent Cluster Property, we can initially run a
separate simulation using Cluster Minsize-1 for each child in the Parent Cluster Property, such that the number of children in
the Parent Cluster Property is equal to the number of atomic species; this is done to determine which subsets of atomic species
tend to cluster together at low temperatures. We can use this information to design our Parent Cluster Property in subsequent
simulations to have fewer children and greater Cluster Minsize numbers. This technique implicitly develops a natural way to
break up the Boltzmann distribution into separable computational components. The hierarchical structure we have developed is
generally valid in the absence of long-range interaction.

4. Swap-types, Expansion Probabilities, and the Proposed MC Method
The proposed method partitions the possible MC trial moves into three different categories, each with different probabilities.
The possible moves in the MC simulation are classified as an exchange of atoms between pairs of boundary-boundary (bb),
boundary-interior (bi), and interior-interior (ii) atoms of two different species and Cluster Properties. Here, boundary-boundary
refers to an exchange between two boundary atoms of different clusters, and boundary-interior refers to an exchange of atoms
between a boundary atom and an interior atom, and interior-interior refers to an exchange of atoms between two interior atoms
(Fig. 9). An interior atom is defined to be an atom whose nearest-neighbor atoms all belong to the same cluster. We define the
swap-type of a pair of atoms to be an indicator for one of the possible three pairs (i.e., a bb, bi, or ii pair). The goal of this new
approach is to propose sample moves according to their likelihood of being accepted at the given temperature.

For example, at low temperatures, boundary-boundary swaps between clusters of atoms are likely to be favored over interior-
interior swaps because the former can reduce the boundary energy and entropy is less important at low temperatures. The rate
of cluster growth–and, as a result, simulation efficiency–can be optimized by proposing boundary-boundary swaps at a higher
probability. Furthermore, we can introduce large changes in configuration space at a single MC step by forming and swapping
pairs of clusters. In this case, the two clusters will be initialized from an initial pair of atoms, and expanded concurrently.
Neighboring atoms are added to each cluster according to a Bernoulli distribution. For conciseness, we refer to the probability
of proposing the initial pair of atoms of being a bb, bi, or ii pair as the swap-type probability of the initial pair. Similarly, the
probability of adding atoms to a cluster is referred to as the expansion probability. Since we must always propose an initial pair
of atoms to swap at each iteration, we have to enforce the following condition:

pIbb + pIbi + pIii + pPbb = 1 (4.1)
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Figure 9. An example with different boundary and interior atoms of a cluster with a Cluster Property that has only one local configuration in
its AS of Cluster Minsize-1. All the atoms are of the same species.

In the above expression pIbb is the probability that the proposed initial pair is a bb pair, pIbi is the probability that the proposed
initial pair is a bi pair, and pIii is the probability that the proposed initial pair is an ii pair. pPbb is only non-zero for parallel runs and
is needed to avoid the use of periodic boundary conditions in the parallel runs. The set of boundary atoms on the outer boundary
of a cluster (i.e. of different Cluster Properties) are included in the parallel runs, but they are only allowed to be exchanged within
this set and only within their respective Cluster Properties. Thus pPbb is the probability of proposing an exchange within this set.
Since the boundary atoms on the outer boundary of a cluster are only exchanged within their Cluster Properties, they are not
expanded to more than a pair swap in one iteration. Note here that the configurations of these set of atoms (i.e., on the outer
boundary of a cluster) are ignored when constructing the final configuration of the simulation cell, since they would have been
accounted for from other parallel runs. The expansion probabilities, on the other hand, follows a Bernoulli distribution, such that
if the probability of adding a neighboring pair is p then the probability of not adding it is 1 − p. The neighboring atoms in the
neighbor pair are only added with some probability p if each atom in the pair belongs to the same clusters as the atoms in the
initial pair; otherwise it is zero. In this new MC scheme, we use different expansion probabilities based on the swap-type of the
proposed initial pair; thus the probability of adding a neighboring pair to a swap labeled by n = 1 (swap pair) and n = 0 (don’t
swap pair) based on the swap-type of the initial pair is

P e
bb =

{
pebb for n = 1

1− pebb for n = 0
(4.2)

P e
bi =

{
pebi for n = 1

1− pebi for n = 0
(4.3)

P e
ii =

{
peii for n = 1

1− peii for n = 0
(4.4)

In the above expressions P e
bb, P e

bi, P e
ii are the probability of adding a neighboring pair based on the swap-type of the initial pair,

and pebb, pebi, peii are the probabilities of accepting the neighboring pair to swap (i.e., the expansion probabilities). To reiterate,
the atoms in the neighboring pair must belong to the same pair of clusters as the atoms in the initial pair for the move to be even
considered.
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5. Simulation Results

We now focus on an implementation of the technique using a 2D Ising model binary alloy system. We make use of the classical
Metropolis-Hastings-Rosenbluth algorithm in order to obey the detailed balance condition [Tuc10]. The form of the acceptance
probability for a proposed MC move to go from state x to state x′ is given by:

A(x→ x′) = min

(
1,

P (x′)Q(x′ → x)

P (x)Q(x→ x′)

)
(5.1)

Here P is the desired Boltzmann distribution and Q is the a priori probability or the probability of drawing the move in the
simulation. We will denote the probability of the forward move, Q(x → x′), as the forward probability, and Q(x′ → x) as the
reverse probability.

Children Cluster
Minsize

Cluster
Priority

Allowable Sub-Clusters

Cluster Property 1.1 Minsize-1 1

Cluster Property 1.2 Minsize-1 1
(a) Parent Cluster Property

(b) Cluster Property Tree

Figure 10. (a) shows the Parent Cluster Property that treats the entire simulation cell as one cluster. This Cluster Property was designed for an
Ising Model system with J > 0. The different colors indicate different spin orientations. (b) shows the corresponding Cluster Property tree
used for this system.

Since we are using the Ising Model for this example, we immediately know the low-temperature Cluster Properties of the
system. We use a positive coupling constant (i.e., J > 0) between the atoms/spins in our system and design the Parent Cluster
Property that treats the entire simulation cell as one cluster according to Figure 10a. Our method requires two or more Cluster
Properties to start off the simulation, so we need to partition this Parent Cluster Property into different Cluster Properties. Since
there are only two Children, there is only one way to partition this Parent Cluster Property into separate Cluster Properties. We
thus partition the Parent Cluster Property into two Cluster Minsize-1 Cluster Properties resulting in the Cluster Property tree in
Figure 10b.

In this example, a 40 × 40 cell size was used with each lattice site initialized with probability 0.5 between the possible two
atomic species. We optimize the code by only tracking the boundary and interior atoms of different Cluster Properties at each
iteration, instead of groups of atoms of a common cluster ID. Since the Cluster Property tree only has two leaf nodes, we do not
perform any parallel runs in this example (Fig. 10b). Note here that if we had parallel runs, we would need to compute the group
of atoms of common Cluster IDs before executing the parallel runs.
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Parameters for βJ = 0.1 (Hot) Case 1 Case 2 Case 3
p0bb 0.55 0.55 0.55
p0bi 0.31 0.31 0.31
p0ii 0.14 0.14 0.14
pebb 0.00 0.26 0.26
pebi 0.00 0.30 0.30
peii 0.00 0.30 0.30
cP N/A False True

Time Complexity per iteration O(1) O(m3) O(m)

Table 2. Parameters at βJ = 0.1.

We use the following form in (5.2) to estimate the swap-type probabilities for the initial proposed pair:

pPbb = 0

pIbb =
p0bbnbb

p0bbnbb + p0binbi + p0iinii

pIbi =
p0binbi

p0bbnbb + p0binbi + p0iinii

pIii =
p0iinii

p0bbnbb + p0binbi + p0iinii

(5.2)

We set pPbb = 0 since we do not have any parallel runs in this simulation. We use this form so that the swap-type probabilities for
the initial pair can be written in terms of constant variables in the simulation. p0bb, p0bi, and p0ii are constants in the simulation and
are denoted as the base probabilities. nbb, nbi, and nii in the above equation are the number of pairs of swap-type bb, bi, and ii
at each iteration of the simulation.

Note here that if the base probabilities are made equally likely (i.e. 1/3 each) and the expansion probabilities are set to zero,
our method is equivalent to the traditional MC scheme or the non-local Kawasaki Algorithm [LB21].

In order to estimate the best base probabilities to use in our simulation, we begin by plotting the probability that a swap is of
a certain swap-type (i.e., (bb), (bi), or (ii)) given that the swap was accepted in the traditional MC simulation. The probabilities
were plotted as a function of the interatomic potential between the atoms, J , and inverse temperature, β, normalized by the
number of pairs of each swap-type that occurred during the entire simulation (Fig. 11). The base probabilities as a function of
βJ were then estimated by fitting a 13-degree polynomial to the different curves in Figure 11. We highlight that while we have
used the original MC scheme to construct Figure 11, we could have used any curve with the same trends without relying on the
original MC method. While in principle we could have simply optimized for the swap-type probabilities at different temperatures
without writing them as functions of the number of pairs of each swap-type (5.2), the optimization will not scale well for different
multi-species systems. This is because the optimal probabilities can be sensitive to different proportions of species type in the
simulation.

The overall procedure of our simulation is as follows:
1. Propose an initial pair of atoms to swap according to the swap-type probabilities for the initial pair (i.e. pIbb, pIbi, and pIii).

Note that the atoms in the pair should belong to different Cluster Properties and have different species.
2. Expand Swaps using the expansion probabilities and the swap-type of the initial pair (see Appendix A the pseudocode)
3. Compute the forward and reverse probabilities of the move
4. Compute the change in energy of the move
5. Accept/reject the move according to (5.1) to ensure that detailed balance is satisfied
6. Repeat these steps until equilibrium is reached

We have tested our method against the traditional MC scheme using three different approaches, or sets of parameters, and ran
them at three different temperatures. In all our simulations, we used a dimensionless coupling constant of J = 20. Tables 2, 3,
and 4 provide the values for the various probabilities for the different βJ values.

In Tables 2, 3, and 4 p0bb, p0bi, and p0ii are the base probabilities used to propose the initial pair of atoms to swap. pebb, pebi, and
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Figure 11. Probabilities of the different swap types as a function of inverse temperature β and atomic coupling constant J .

Parameters for βJ = 0.44 (Transition Temperature) Case 1 Case 2 Case 3
p0bb 0.86 0.86 0.86
p0bi 0.13 0.13 0.13
p0ii 0.01 0.01 0.01
pebb 0.00 0.50 0.50
pebi 0.00 0.50 0.50
peii 0.00 0.50 0.50
cP N/A False True

Time Complexity per iteration O(1) O(m3) O(m)

Table 3. Parameters at βJ = 0.44.

peii are the different expansion probabilities associated with the swap-type of the initial pair. cP is a boolean variable that is only
valid if the expansion probabilities are greater than zero. If true, the forward and reverse probabilities are computed treating the
proposed initial pair of atoms as the only possible initial pair from which the move can be made; if not, the probabilities of the
move are computed with respect to all possible initial pairs of atoms between the pair of flipped clusters (i.e., the flipped spin
values in Ising Model). m is the average size of one of the flipped clusters, or the average number of flipped spins of an atomic
species per iteration.

Our method was compared with the traditional method by plotting the energy of the lattice of atoms against the number of
iterations for each case (i.e., the various sets of parameters in the new method) in Figures 12, 13, and 14. To decide if the
system had reached equilibrium, we performed a running average of the total energy; if the difference between two consecutive
energy values in the running average was less than 3× 10−4 for a thousand iterations, we concluded that our system had reached
equilibrium. This equilibrium condition gave consistent equilibrium energies across the different runs we performed. All energies
are reported in normalized units.

The proposed method does significantly better at low temperatures (i.e., high βJ), since the simulation tends to not re-
sample/swap atoms on the interior of low temperature local configurations as much; thus the low temperature clusters phase
separate faster. This is because entropy is relatively less important than energy at low temperatures, so boundary-boundary swaps
are favored over the other types of swaps. This could also be understood from the fact that higher boundary-boundary swap
sampling probabilities will be optimized for growing our defined Cluster Properties. Since our defined Cluster Properties are the
low-temperature Cluster Properties (i.e the leaf nodes in the Cluster Property tree), we expect that higher boundary-boundary
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Parameters for βJ = 1.5 (Cold) Case 1 Case 2 Case 3
p0bb 0.984 0.984 0.984
p0bi 0.013 0.013 0.013
p0ii 0.003 0.003 0.003
pebb 0.000 0.131 0.131
pebi 0.000 0.340 0.340
peii 0.000 0.010 0.010
cP N/A False True

Time Complexity per iteration O(1) O(m3) O(m)

Table 4. Parameters at βJ = 1.5

βJ

Iterations to
reach equilib-
rium:

Average
Energy

Standard Deviation of Energy
per Spin Acceptance Rate

0.1 84,020 -6.63k 0.720 0.8393
0.44 114,965 -42.0k 1.159 0.3390
1.5 753,218 -60.5k 0.073 0.0087

Table 5. Proposed Method Case 1 Simulation Results. The average and standard deviation of the energy are computed after the system reaches
thermal equilibrium. The Acceptance Rate is the total number of accepted MC moves divided by the total number of iterations.

swap sampling probabilities will drive the system to equilibrium faster at lower temperatures. Since at high temperatures (i.e., low
βJ), clusters of atoms have lower tendencies to phase separate, the performance of our method is comparable to the traditional
method.

Overall, the higher acceptance rates and the lower iteration numbers seen in Tables 5, 6, and 7 compared to those of the
traditional method in Table 8 gives us confidence that our method converges to equilibrium faster than the traditional one. The
consistent values for the average energy and standard deviation of energy per spin between our method and the traditional method,
and also from the different cases in our method, gives us confidence in our equilibrium results. The similar results that we see
in Tables 6 and 7 suggest that computing the forward and reverse probabilities with cP = True is sufficient to meet the detailed
balance condition, implying that this technique can be achieved with a time complexity of O(m) per iteration.

Although this binary alloy system could be easily generalized for any number of atomic species simply by iteratively running
this technique with two species at a time and keeping all other species fixed, such an approach would not readily parallelize.

(a) (b)

Figure 12. At βJ = 0.1, (a) energy vs. log of iteration number, and (b) running average of total energy vs. log of iteration number.
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(a) (b)

Figure 13. At βJ = 0.44, (a) energy vs. log of iteration number, and (b) running average of total energy vs. log of iteration number.

(a) (b)

Figure 14. At βJ = 1.5, (a) energy vs. log of iteration number, and (b) running average of total energy vs. log of iteration number.

6. Conclusion
We have developed a fast MC Scheme that conserves the concentration of different particle types. This scheme achieves the
goal of making large and informed jumps in configuration space without reducing the MC acceptance rates, and presents the
possibility for a divide-and-conquer parallel approach. The significant speedup can enable the understanding of new materials
with complex atomic arrangements, and provides a new tool to aid in the discovery of HEA that have unique mechanical,

βJ

Iterations to
reach equilib-
rium:

Average
Energy

Standard Deviation of Energy
per Spin Acceptance Rate

0.1 76,804 -6.60k 0.726 0.8762
0.44 139,917 -42.0k 1.140 0.3606
1.5 516,942 -60.5k 0.067 0.0070

Table 6. Proposed Method Case 2 Simulation Results. The average and standard deviation of the energy are computed after the system reaches
thermal equilibrium. The Acceptance Rate is the total number of accepted MC moves divided by the total number of iterations.
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βJ

Iterations to
reach equilib-
rium:

Average
Energy

Standard Deviation of Energy
per Spin Acceptance Rate

0.1 97,368 -6.64k 0.734 0.8456
0.44 111,939 -42.0k 1.150 0.3128
1.5 486,220 -60.5k 0.069 0.0069

Table 7. Proposed Method Case 3 Simulation Results. The average and standard deviation of the energy are computed after the system reaches
thermal equilibrium. The Acceptance Rate is the total number of accepted MC moves divided by the total number of iterations.

βJ

Equilibrium
Reached at
Iteration #:

Average
Energy

Standard Deviation of Energy
per Spin Acceptance Rate

0.1 105,897 -6.63k 0.719 0.7819
0.44 212,109 -42.0k 1.215 0.1111
1.5 3,472,401 -60.4k 0.070 0.0007

Table 8. Traditional Method Simulation Results. The average and standard deviation of the energy are computed after the system reaches
thermal equilibrium. The Acceptance Rate is the total number of accepted MC moves divided by the total number of iterations.

chemical, and electrical properties. The method is not limited to HEA, but it can also be used for the characterization of other
systems in which interface effects are important.

Our demonstration of the proof-of-principle has been restricted to binary systems. An important next step, which is straightfor-
ward in principle, is to apply and demonstrate this method in the context of realistic multi-species HEA systems. Another avenue
for future research is to tune the base and expansion probabilities as a function of the dynamical variables within the simulation,
such as number of clusters, average cluster size, and the distribution of cluster size per iteration. Data-driven methods, such as
deep reinforcement learning models, are a potential strategy to achieve this: the base and expansion probabilities will be the
policy we are learning, and the states are the dynamical variables within the simulation. The goal of this reinforcement learning
model would be to maximize for the acceptance probability, our reward function. The acceptance probabilities in this case will
only use the accepted moves for which there is a non-zero change in the energy.

The method in this paper can be extended to settings in which the entropic contribution is comparable to the energetic
contribution. By using Cluster Properties that are on lower levels in the Cluster Property tree as opposed to the ones on the leaf
nodes (Fig. 7); we balance between aggregating atoms in clusters that are energetically favorable while still allowing them to
take on more complex geometric configurations that have higher entropy.

Software Availability

A version of the code developed for this work is available at
https://github.com/azizfall/Local_Structure_MC
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The data of this study will be made available on request.
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A. Expansion Algorithm

Algorithm 2: Expanding Swaps
Input: x0

1, x
0
2, lattice positions of proposed initial pair of atoms to swap (Note: The two positions should have

opposite spin orientations or different atomic species)
Input: pebb, pebi, peii, expansion probabilities
Output: Ca, Array of lattice positions of atoms that will undergo a change in species

1 // Array of lattice positions of atoms that will undergo a change in specie or spin flip
2 Ca ← [ ]
3 // Append the lattice positions of the initial pair of atoms into Ca

4 Ca.append(x0
1)

5 Ca.append(x0
2)

6 pe ← Set to either pebb , pebi, or peii based on swap-type of initial pair

7 // Initialize two empty arrays
8 q1 ← [ ]
9 q2 ← [ ]

10 // Append the lattice position of atom 1 in the initial pair into q1

11 q1.append(x
0
1)

12 // Append the lattice position of atom 2 in the initial pair into q2

13 q2.append(x
0
2)
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14 while q1 is not Empty do
15 // Initialize two empty arrays

16 L1
nei ← [ ]

17 L2
nei ← [ ]

18
For every lattice position in q1: Add all its nearest neighbors that have the same
atomic specie (or belong to the same cluster in case of more complicated cluster
properties) into L1

nei. Do not Add the position if it was ever previously added into L1
nei

for any iteration in the while loop. All lattice positions in L1
nei should be unique.

19
Repeat the above step for every lattice position in q2 while adding lattice positions
into L2

nei.

20

Note: L1
nei and L2

nei must have different sets of atomic species, even in the case of more
complicated cluster properties. If we want, we can also restrict the swap-types of the
expanded pairs to be the same as that of the initial pair.

21 // Empty both q1 and q2
22 q1 ← [ ]
23 q2 ← [ ]

24 // Find the minimum size between L1
nei and L2

nei,

25 m = min(len(L1
nei), len(L

2
nei))

26 // Flip a coin m times and set n as the number of successes, with the probability of a success

being pe

27 n = FlipCoin(pe, m)
28

Pick a random set of n lattice positions in L1
nei and add it into both q1 and Ca

Pick a random set of n lattice positions in L2
nei and add it into both q2 and Ca

29 end while
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