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Abstract. Given an image u0, the aim of minimising the Mumford-Shah functional is to find a
decomposition of the image domain into sub-domains and a piecewise smooth approximation u
of u0 such that u varies smoothly within each sub-domain. Since the Mumford-Shah functional
is highly non-smooth, regularizations such as the Ambrosio-Tortorelli approximation can be
considered which is one of the most computationally efficient approximations of the Mumford-
Shah functional for image segmentation. Our main result is the Γ-convergence of the Ambrosio-
Tortorelli approximation of the Mumford-Shah functional for piecewise smooth approximations.
This requires the introduction of an appropriate function space. As a consequence of our Γ-
convergence result, we can infer the convergence of minimizers of the respective functionals.
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1. Introduction

Due to their volume and complexity, image and video data are among the largest and fastest
growing sources of information, and present some of the biggest challenges for data science.
Image segmentation, one of the most fundamental and ubiquitous tasks in image analysis, is the
process of partitioning an image into disjoint regions with certain characteristics. Typical exam-
ples include image editing (separating foreground from background, merging multiple images),
medical applications (segmenting regions with similar grey-scale values), and biological imaging
(detecting cancerous cells, finding cells and nuclei).

Variational models such as the Mumford-Shah model [29] are an important tool for image
segmentation. In their model, Mumford and Shah formulated an energy minimization problem
for computing optimal piecewise smooth approximations of a given image. Particular cases of
the minimal partition problem, its extensions and generalizations are proposed in [9, 10, 32].

We consider the image domain to be represented as Ω ⊂ Rd with d ≥ 1, where Ω is an interval
for d = 1 and, for example, a rectangle in the plane for d = 2. By u0 : Ω → Rm with m ≥ 1,
we denote a given bounded scalar (grey-scale) or vector-valued (colour) image which should be
segmented into two regions. Let C be a closed subset in Ω, made up of a finite set of smooth
curves, and the length of curves making up C is denoted by |C|. We write | · | for the Euclidean
norm.

In the segmentation problem proposed by Mumford and Shah [29], the aim is to find a
decomposition of Ω into sub-domains and an optimal piecewise smooth approximation u of u0

such that u varies smoothly within each sub-domain, and rapidly or discontinuously across the
boundaries of the sub-domains. This problem is solved by minimizing the energy functional

EMS(u,C) :=

∫
Ω
|u− u0|2 dx+ µ

∫
Ω\C
|∇u|2 dx+ ν|C|, (1.1)

where µ, ν > 0 are fixed parameters, weighting the different terms in the energy functional. If
(u,C) is a minimizer of the above functional, then u is an ‘optimal’ piecewise smooth approx-
imation of the initial, possibly noisy image u0, C can be regarded as approximating the edges
of u0, and u is smooth outside of C, i.e., in Ω\C. Theoretical results on the existence and
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regularity of minimizers of (1.1) are provided by Mumford and Shah [29], Morel and Solimini
[26, 27, 28], and De Giorgi et al. [14].

For proving existence of minimizers based on the direct method from the calculus of varia-
tions, it is necessary to find a topology for which the functional is lower semi-continuous, while
ensuring compactness of minimizing sequences. However, the last term in (1.1) is not lower
semi-continuous with respect to any compact topology. This motivates the formulation of (1.1)
proposed by [13] and studied in [12], where the curve C is replaced by the set Ju of jumps of u,
leading to the weak formulation of (1.1)

EwMS(u, Ju) :=

∫
Ω
|u− u0|2 dx+ µ

∫
Ω\Ju

|∇u|2 dx+ ν|Ju|. (1.2)

A constructive existence result for piecewise constant functions u in (1.2) is provided in [26, 27],
and a practical multi-scale algorithm based on regions growing and merging is suggested for this
case in [21]. Ambrosio and Tortorelli proposed two elliptic approximations by Γ-convergence
[3, 4] to the weak formulation (1.2) of the Mumford-Shah functional. Approximation [4] is more
commonly used in practise. For ε > 0 and (u, v) ∈ L2(Ω)2, it is defined as

EATε (u, v) :=


∫

Ω |u− u0|2 dx+ µ
∫

Ω v
2|∇u|2 dx+ ν

∫
Ω

(
ε|∇v|2 + (v−1)2

4ε

)
dx,

(u, v) ∈W 1,2(Ω)2 with 0 ≤ v ≤ 1,

+∞, otherwise.

(1.3)

A minimizer (u, Ju) of EwMS(u, Ju) is approximated by a pair (uε, vε) of smooth functions, such
that uε → u and vε → 1 in the L2(Ω)-topology as ε→ 0 and vε is different from 1 only in a small
neighbourhood of Ju which shrinks as ε→ 0. These elliptic approximations result in a coupled
system of two equations with unknowns uε and vε which can be solved by applying standard
numerical methods for PDEs. Further approximations and numerical results are provided in
[6, 7, 22]. An approximation by Γ-convergence to the weak formulation of (1.1), based on the
finite element method, is discussed in [8]. However, most of the methods for solving the weak
formulation of the Mumford-Shah functional (1.1) do not explicitly compute the partition of the
image and the set of curves C.

The popular active contour model [10], proposed by Chan and Vese and based on the Mumford-
Shah model, can be regarded as a particular case of the Mumford-Shah model (1.1) by restricting
the segmented image u to piecewise constant functions. This model motivates the generalized,
widely used multiphase level set model [32], also introduced by Chan and Vese. Let E ⊂ Ω be

an open subset of Ω inside the boundary curve C = ∂E of length |C|, and let c(1) and c(2) be
unknown constants. In the active contour model for grey-scale images (i.e., m = 1), piecewise
constant approximations are considered and the energy

EPC(C, c(1), c(2)) :=

∫
E
|c(1) − u0|2 dx+

∫
Ω\E

(c(2) − u0)2 dx+ ν|C|

is minimized with respect to c(1), c(2) ∈ R, and C. The parameter ν > 0 is assumed to be given.
The first two terms of EPC penalize the discrepancy between the input image u0 and its piecewise
constant approximation with grey-scale values c(1) in E and c(2) on Ω\E, respectively. The last
term controls the regularity of the segmentation by penalizing the length of the boundary curve
C. Instead of minimizing over all curves C, we can represent C implicitly as the zero-crossing of
a level set function φ : Ω→ R, i.e., C := {x ∈ Ω: φ(x) = 0}, and we assume that the inside (i.e.
the set E) and the outside (i.e., the set Ω\E) of C are distinguished by positive and negative
signs of φ, respectively, to be precise,

φ(x) > 0 in E, φ(x) < 0 on Ω\E, φ(x) = 0 on ∂E.



3

A typical example of a level set function is the signed distance function to the curve. In its level
set formulation, the energy functional can be rewritten as

E lsPC(φ, c(1), c(2)) :=

∫
Ω
|c(1) − u0|2Hδ(φ) dx+

∫
Ω
|c(2) − u0|2(1−Hδ(φ)) dx

+ ν

∫
Ω
|∇Hδ(φ)| dx,

(1.4)

where Hδ with δ > 0 denotes a smooth approximation of the Heaviside function H, defined as
H(z) = 1 for z > 0 and H(z) = 0 for z < 0. Hence, the aim of the active contour model is to

find a two-phase segmentation of the image, given by u(x) := c(1)Hδ(φ(x)) + c(2)(1−Hδ(φ(x))),
x ∈ Ω. In Figure 1, the segmentation of a given image (based on the implementation in [17])
into two regions, marked in black and white, is shown for ν = 0.2 and ν = 0.6. The value of the
parameter ν governs the smoothness of the boundary of the segmentation, i.e., for larger values
of ν the interface between white and black areas becomes smaller. This example also illustrates
how crucial the parameter choice in this class of models is.

(A) Input image (B) ν = 0.2 (C) ν = 0.6

Figure 1. Image segmentation results for different values for parameter ν > 0

Following the level set approach, piecewise smooth segmentations are considered in [31, 32]

by replacing the constants c(1), c(2) by smooth functions in E and on Ω\E, respectively. The
proposed model can be easily extended to vector-valued functions, such as colour images as in
[10], for instance. Based on the Mumford-Shah functional, this leads to the energy functional

E lsPS(φ, c(1), c(2)) :=

∫
Ω
|c(1) − u0|2Hδ(φ) dx+

∫
Ω
|c(2) − u0|2(1−Hδ(φ)) dx

+ µ

∫
Ω

(
|∇c(1)|2Hδ(φ) + |∇c(2)|2(1−Hδ(φ))

)
dx+ ν

∫
Ω
|∇Hδ(φ)|dx

(1.5)

for piecewise smooth functions c(1), c(2), proposed independently by Vese and Chan [32], and

Tsai et al. [31]. Here, the regularity of c(1) and c(2) is controlled by the parameter µ > 0, and
the smoothness of the boundary of the segmentation is governed by ν > 0. Numerical results
have been obtained independently and contemporaneously by Vese and Chan [32] and Tsai et
al. [31]. These results show that piecewise smooth regions can be reconstructed very well by the
model, that jumps are well located and without smearing, and that the piecewise constant case
can be recovered.

In what follows, we want to study (1.5) and its piecewise constant version (1.4). In particular,

the regularity of the piecewise smooth functions c(1), c(2) in (1.5) is controlled by the parameter

µ, and for µ→∞ we expect c(1), c(2) to be piecewise constant. This motivates us to study the
dependence of the energy on µ. In addition, it is desirable to control the smoothness of the
vector-valued approximations c(1), c(2) : Ω→ Rm, using a parameter 1 < p < +∞.



4

The mathematical analysis of (1.5), however, is a highly non-trivial task due to the dependence
of the functional on the level set function φ and on the approximation Hδ of the non-smooth
Heaviside function H as φ is only implicitly defined and the non-smoothness of H causes dif-
ficulties estimating the last term of (1.5). They also render the numerical minimization more
difficult. To get around this, we propose another formulation that is more amendable to math-
ematical analysis. Since the Heaviside function H only takes values in {0, 1}, this suggests to
replace H(φ) by an indicator function v. These considerations lead to the energy functional

EPSµ (v, c(1), c(2)) :=

∫
Ω
|c(1) − u0|p|v|dx+

∫
Ω
|c(2) − u0|p|1− v| dx

+ µ

∫
Ω

(
|∇c(1)|p|v|+ |∇c(2)|p|1− v|

)
dx+ ν

∫
Ω
|∇v| dx,

(1.6)

in place of (1.5).
To overcome the non-smoothness of the last term of (1.6), several regularization methods and

approximations have been proposed in the literature for the numerical minimization. One of the
most computationally efficient approximations of the Mumford-Shah functional was proposed
by Ambrosio and Tortorelli [3, 4], and uses the Ginzburg-Landau functional EGLε defined as

EGLε (v) :=

∫
Ω

(
ε|∇v|2 +

1

ε
W (v)

)
dx (1.7)

which generalizes the approximation in (1.3). Here, ε > 0 is a positive constant, and the function
W : R → [0,+∞) is a double well potential with wells at 0 and 1, satisfying the following
assumption.

Assumption 1.1. Let W : R→ [0,+∞) be such that

• W is continuous,
• W (t) = 0 if and only if t ∈ {0, 1}, and
• there exist L > 0 and T > 0 such that

W (t) ≥ L|t| for all t ∈ R with |t| ≥ T. (1.8)

The most common example for W is W (x) := x2(x − 1)2. The Ginzburg-Landau functional
(1.7) plays an important role due to the work of Modica and Mortola [24, 25] who proved that the
Ginzburg–Landau functional (1.7) can be used for approximating the TV energy, the last term
in (1.6). In the context of image processing, examples of using the Ginzburg-Landau functional
are given by [6, 7], which relate to previous works by Ambrosio and Tortorelli [1, 3] on diffuse
interface approximation models.

The framework (1.6) is a very powerful, flexible method that can segment many types of
images, including those that are either difficult or impossible to segment with classical thresh-
olding or gradient-based methods. Using appropriate approximations of the non-smooth terms,
this model has been implemented successfully, and very impressive numerical results have been
achieved in a large range of applications. However, no analytical results are currently available
for minimizers of (1.6) in the piecewise smooth setting, and this is the goal of this work.

1.1. Contributions. We will prove Γ-convergence of an Ambrosio-Tortorelli approximation of
(1.6),

Eµε,ε(v, c(1), c(2)) :=

∫
Ω

(
|c(1) − u0|p|v|+ |c(2) − u0|p|1− v|

)
dx (1.9)

+ µε

∫
Ω

(
|∇c(1)|p|v|+ |∇c(2)|p|1− v|

)
dx+

ν

cW

∫
Ω

(
ε|∇v|2 +

1

ε
W (v)

)
dx,
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to the functional (1.6), where the positive scaling parameter µε approximates µ > 0, ν > 0 is
another scaling parameter, and

cW := 2

∫ 1

0

√
W (t) dt > 0. (1.10)

In particular, minimizers of (1.9) will converge to minimizers of (1.6), giving new insights into
numerical methods for determining minimizers of (1.6).

Minimizers of (1.9) correspond to the segmentation of the vector-valued images u0 : Ω→ Rm
with m ≥ 1. Since the wells of W are at 0 and 1, this suggests that v is an indicator function in
the limit ε→ 0, and the segmentation, consisting of smooth approximations c(1), c(2) : Ω→ Rm,
is obtained from v : Ω→ R.

For piecewise constant segmentations with constants c(1), c(2) ∈ Rm, the energy functional
(1.9) reduces to Eε : L1(Ω;R)× Rm × Rm, where

Eε(v, c(1), c(2)) :=

∫
Ω

(
|c(1) − u0|p|v|+ |c(2) − u0|p|1− v|

)
dx+

ν

cW

∫
Ω

(
ε|∇v|2 +

1

ε
W (v)

)
dx

for v ∈ W 1,2(Ω;R), and Eε(v, c(1), c(2)) = +∞ otherwise. As an illustrative example, we prove
Γ-convergence of Eεn to E : L1(Ω;R)× Rm × Rm, where

E(v, c(1), c(2)) =

∫
Ω

(
|c(1) − u0|p|v|+ |c(2) − u0|p|1− v|

)
dx+ νTV(v)

for v ∈ BV(Ω; {0, 1}), and E(v, c(1), c(2)) = +∞ otherwise. Here, TV(v) denotes the total
variation of v in Ω.

For piecewise smooth approximations c(1), c(2), any Γ-convergence result requires the functions
c(1) and c(2) to be defined only for x ∈ Ω for which v(x) 6= 0 and 1− v(x) 6= 0, respectively. To
achieve this, we introduce the space CLp(Ω) in Section 2.5, motivated by the space TLp(Ω) in

[16]. Denoting the d-dimensional Lebesgue measure by Ld, we say that (v, c(1), c(2)) ∈ CLp(Ω)

if v ∈ L1((Ω,LdbΩ);R), c(1) ∈ Lp((Ω, λ|v|);Rm), c(2) ∈ Lp((Ω, λ|1−v|);Rm), where λ|v| and λ|1−v|
are defined by

λ|v| :=
|v|

‖v‖L1(Ω;R)
LdbΩ, λ|1−v| :=

|1− v|
‖1− v‖L1(Ω;R)

LdbΩ. (1.11)

We denote the space of distributions on Ω by D′(Ω), and we consider the space

L1,p(Ω) := {f ∈ D′(Ω) : ∇f ∈ Lp(Ω)}

endowed with the seminorm ‖f‖L1,p := ‖∇f‖Lp . The reformulation of the first term in the

second line of the energy functional (1.9) with c(1) ∈ Lp((Ω, λ|v|);Rm), c(2) ∈ Lp((Ω, λ|1−v|);Rm)

requires the definition of metric measure Sobolev spaces L1,p((Ω, λ|v|);Rm), L1,p((Ω, λ|1−v|);Rm),
with seminorms ‖ ·‖L1,p(λ|v|)

and ‖ ·‖L1,p(λ|1−v|)
, respectively, which are introduced in Section 2.2.

The Sobolev space W1,p((Ω, λ|v|);Rm) is defined by

W1,p((Ω, λ|v|);Rm) := Lp((Ω, λ|v|);Rm) ∩ L1,p((Ω, λ|v|);Rm).

Using the notation of metric measure spaces, we consider a rescaled formulation of the energy
functional (1.9):

Eµε,ε(v, c(1), c(2)) := ‖c(1) − u0‖pLp(λ|v|;Rm) + ‖c(2) − u0‖pLp(λ|1−v|;Rm) + µε‖c(1)‖p
L1,p(λ|v|)

+ µε‖c(2)‖p
L1,p(λ|1−v|)

+
ν

cW

∫
Ω

(
ε|∇v|2 +

1

ε
W (v)

)
dx.

(1.12)

We distinguish between two cases for the limit of the positive scaling parameter µε, namely
µε → µ with µ > 0, and µε → +∞ as ε → 0. For +∞ > µ ≥ 0, we define the limit functional
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of (1.12) by

Eµ(v, c(1), c(2)) = ‖c(1) − u0‖pLp(λ|v|;Rm) + ‖c(2) − u0‖pLp(λ|1−v|;Rm)

+ µ‖c(1)‖p
L1,p(λ|v|)

+ µ‖c(2)‖p
L1,p(λ|1−v|)

+ νTV(v)
(1.13)

for any v = χE ∈ BV(Ω; {0, 1}) with E = {x ∈ Ω: v(x) = 1}, c(1) ∈ W1,p((Ω, λ|v|);Rm) and

c(2) ∈ W1,p((Ω, λ|1−v|);Rm), and Eµ(v, c(1), c(2)) = +∞ otherwise. Note that for any Lebesgue
measurable set E ⊂ Ω such that χE ∈ BV(Ω; {0, 1}), the limit functional Eµ reduces to

Eµ(χE , c
(1), c(2)) =

1

|E|

∫
E
|c(1) − u0|p dx+

1

|Ω\E|

∫
Ω\E
|c(2) − u0|p dx

+
µ

|E|
‖c(1)‖p

L1,p(λχE )
+

µ

|Ω\E|
‖c(2)‖p

L1,p(λχΩ\E ))
+ νTV(χE),

where |E| = Ld(E) denotes the d-dimensional Lebesgue measure of E, and λχE , λχΩ\E are defined

as in (1.11). For a bounded domain E with smooth boundary, the norms ‖c(1)‖L1,p(λχE ) and

‖c(1)‖L1,p(E) = ‖∇c(1)‖Lp(E) are equivalent.
Our main result is the Γ-convergence of the variational model (1.12) to (1.13) as ε→ 0.

Theorem 1.2. Let Ω ⊂ Rd be an open, bounded set, let 1 < p < +∞, and let Eµε,ε : CLp(Ω)→
[0,+∞] be defined by

Eµε,ε(v, c(1), c(2)) :=



‖c(1) − u0‖pLp(λ|v|;Rm) + ‖c(2) − u0‖pLp(λ|1−v|;Rm) + µε‖c(1)‖p
L1,p(λ|v|)

+µε‖c(2)‖p
L1,p(λ|1−v|)

+ ν
cW

∫
Ω ε|∇v|

2 + 1
εW (v) dx,

if v ∈W1,2((Ω,LdbΩ);R), c(1) ∈W1,p((Ω, λ|v|);Rm),

c(2) ∈W1,p((Ω, λ|1−v|);Rm),

+∞, otherwise.

(1.14)

Then, the functionals Eµε,ε Γ-converge, with respect to the CLp(Ω) topology,

Eµ(v, c(1), c(2)) :=



∫
Ω |c

(1) − u0|p dλ|v|(x) +
∫

Ω |c
(2) − u0|p dλ|1−v|(x) + µ‖c(1)‖p

L1,p(λ|v|)

+µ‖c(2)‖p
L1,p(λ|1−v|)

+ νTV(v),

if v = χE ∈ BV(Ω; {0, 1}) for E := {x ∈ Ω: v(x) = 1},
c(1) ∈W1,p((Ω, λ|v|);Rm), c(2) ∈W1,p((Ω, λ|1−v|);Rm),

+∞, otherwise,

(1.15)

if µε → µ with µ > 0, as ε→ 0, and

E∞(v, c(1), c(2)) :=



∫
Ω |c

(1) − u0|p dλ|v|(x) +
∫

Ω |c
(2) − u0|p dλ|1−v|(x) + νTV(v),

if v = χE ∈ BV(Ω; {0, 1}) for E := {x ∈ Ω: v(x) = 1},
c(1) = c1 Ld-a.e. x ∈ E, c(2) = c2 Ld-a.e. x ∈ Ω\E for

constants c1, c2 ∈ Rm,
+∞, otherwise,

(1.16)

if µε → +∞ as ε→ 0.

Provided that the compactness property holds, i.e. every bounded sequence (vn, c
(1)
n , c

(2)
n )

satisfying supn∈N Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) < ∞ is relatively compact, the convergence of minimiz-

ers follows from the Γ-convergence of the energy functional Eµε,ε. In particular, we prove the
following corollary.
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Corollary 1.3 (Convergence of minimizers). Let Ω ⊂ Rd be an open, bounded set. Suppose

that (vn, c
(1)
n , c

(2)
n ) ∈ CLp(Ω) is a minimizer of the energy Eµεn ,εn in (1.14), for positive se-

quences {εn}, {µεn} with limn→∞ εn = 0 and limn→∞ µεn = µ ∈ (0,+∞]. Then, there exists

(v, c(1), c(2)) ∈ CLp(Ω) such that, up to a subsequence (not relabeled), (vn, c
(1)
n , c

(2)
n ) converges to

(v, c(1), c(2)) in CLα(Ω) for any 1 ≤ α < p, and (v, c(1), c(2)) minimizes the energy Eµ in (1.15)
and (1.16) for µ < +∞ and µ = +∞, respectively, over CLp(Ω).

While we focus on image segmentations into two segments in this work, the analysis can be
extended to images which are partitioned into more than two segments.

1.2. Overview. In Section 2, we give some preliminary material which includes the definition
of metric measure spaces, transportation theory, Γ-convergence and the space CLp. Section 3 is
devoted to the proof of Theorem 1.2 for piecewise constant segmentations, i.e., c(1), c(2) ∈ Rm.
In Section 4, we prove Theorem 1.2 for piecewise smooth approximations and we show the
convergence of minimizers of the respective functionals.

2. Definitions and preliminary results

2.1. Notation. Throughout this paper, let χE denote the characteristic function of a set E ⊂
Rd. We write Ld for the d-dimensional Lebesgue measure on Rd, and |E| = Ld(E) stands for
the d-dimensional Lebesgue measure of E. For an open set Ω ⊂ Rd, we designate by B(Ω)
the Borel σ-algebra on Ω, and by P(Ω) the set of Borel probability measures on Ω. For the
measure space (Ω,B(Ω), λ), where λ is a measure on (Ω,B(Ω)), we often write (Ω, λ). For the Lp

space of all measurable functions from (Ω, λ) to Rm, we write Lp((Ω, λ);Rm). If the considered
spaces or measures are clear, we may use Lp(Ω) or Lp(λ) for ease of notation. The space of
functions of bounded variation, BV(Ω;R), is defined as the space of all functions v ∈ L1(Ω;R)
whose distributional first-order partial derivatives are finite signed Radon measures, defined
on the Borel σ-algebra B(Ω;R), i.e., for all i = 1, . . . , d, there exists a finite signed measure
vi : B(Ω;R)→ R such that ∫

Ω
v
∂Φ

∂xi
dx = −

∫
Ω

Φ dvi

for all Φ ∈ C∞c (Ω;R). The measure vi is called the weak partial derivative of v with respect to
xi, and is denoted by Div. For v ∈ BV(Ω;R) we set Dv := (D1v, . . . , Ddv). The total variation
of v in Ω for v ∈ L1

loc(Ω;R) is defined by

TV(v) := sup

{∫
Ω
v div Φ dx : Φ ∈ C∞c (Ω;Rd), ‖Φ‖L∞(Ω;Rd) ≤ 1

}
.

2.2. Definition of metric measure spaces. Sobolev spaces can be defined on metric measure
spaces [18, 19, 20]. For completeness, we recall the standard definitions of Sobolev spaces

W1,p(Ω) = {f ∈ D′(Ω) : f ∈ Lp(Ω),∇f ∈ Lp(Ω)},
L1,p(Ω) = {f ∈ D′(Ω) : ∇f ∈ Lp(Ω)},

where Ω ⊂ Rd is an open set, 1 ≤ p ≤ +∞, and D′(Ω) denotes the space of distributions on Ω.
The space W1,p(Ω) is a Banach space when endowed with the norm ‖f‖W1,p := ‖f‖Lp +‖∇f‖Lp ,
L1,p(Ω) is endowed with the seminorm ‖f‖L1,p := ‖∇f‖Lp . Note that W1,p(Ω) 6= L1,p(Ω) in
general.

The definition of Sobolev spaces strongly relies on the Euclidean structure of the underlying
domain Ω. In order to define Sobolev spaces on metric measure spaces, we need to consider a
different approach that does not involve derivatives. From [19, Theorem 2.2], we obtain:
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Theorem 2.1. Let Ω ⊂ Rd be a bounded domain with smooth boundary, and let 1 < p < +∞.
Then f ∈W1,p(Ω), if and only if f ∈ Lp(Ω), and there is 0 ≤ g ∈ Lp(Ω) such that

|f(x)− f(y)| ≤ |x− y|(g(x) + g(y)) Ld-a.e. (2.1)

Moreover, ‖f‖L1,p is equivalent to infg ‖g‖Lp, i.e., there exists a constant C ≥ 1 such that
1
C ‖f‖L1,p ≤ infg ‖g‖Lp ≤ C‖f‖L1,p, where the infimum is taken over the class of all functions g
satisfying (2.1).

This definition can be extended to the case in which Ω is replaced by a metric space (Ω, d)
equipped with a Borel measure λ:

Definition 2.2. Let (Ω, d) be a metric space with a finite positive Borel measure λ and finite
diameter,

diam Ω := sup
x,y∈Ω

d(x, y) < +∞.

Let 1 < p < +∞. The Sobolev spaces L1,p(Ω, d, λ) and W1,p(Ω, d, λ) are defined, respectively, as

L1,p(Ω, d, λ) := {f : Ω→ R : f is measurable, and there exist E ⊂ Ω with λ(E) = 0 and

0 ≤ g ∈ Lp(λ) such that |f(x)− f(y)| ≤ d(x, y)(g(x) + g(y))

for all x, y ∈ Ω\E},
and

W1,p(Ω, d, λ) := Lp(λ) ∩ L1,p(Ω, d, λ).

The space L1,p(Ω, d, λ) is equipped with the seminorm ‖f‖L1,p(λ) := infg ‖g‖Lp(λ) where 0 ≤ g
satisfies

|f(x)− f(y)| ≤ d(x, y)(g(x) + g(y)) Ld-a.e. (2.2)

The space W1,p(Ω, d, λ) is equipped with the norm ‖f‖W1,p(λ) := ‖f‖Lp(λ) + ‖f‖L1,p(λ). If the

metric d is clear, we also write L1,p(Ω, λ) and W1,p(Ω, λ).

Remark 2.3. Note that other modifications of Lp spaces exist, such as the weighted Lp space
with a weight function w on Ω. However, while these spaces are defined on a domain Ω, we are
interested in Lp spaces, and more generally Sobolev spaces, on some measure space (Ω, λ) for
some nonnegative measure λ. For f ∈ L1,p(Ω, λ) where λ = χELdbΩ is the indicator function
of some measurable bounded domain E ⊂ Ω with smooth boundary, we have f ∈ L1,p(E). In
particular, the norms ‖f‖L1,p(λχE ) and ‖f‖L1,p(E) = ‖∇f‖Lp(E) are equivalent.

2.3. Transportation theory.

Definition 2.4. Let Ω ⊂ Rd be an open set, and let λ, λ̃ be probability measures on Ω. We
define the set of couplings Π(λ, λ̃) between λ and λ̃ as

Π(λ, λ̃) := {π ∈ P(Ω× Ω): π(E × Ω) = λ(E), π(Ω× E) = λ̃(E) for all measurable E ⊂ Ω}.

The elements π ∈ Π(λ, λ̃) are also referred to as transportation plans between λ and λ̃.

Definition 2.5. Let 1 ≤ p < +∞, λ ∈ P(Ω) and {λn} ⊂ P(Ω). A sequence of transportation
plans {πn} ⊂ Π(λ, λn) is called stagnating if

lim
n→∞

∫
Ω×Ω
|x− y|p dπn(x, y) = 0 (2.3)

is satisfied.

Since Ω is bounded, the existence of a stagnating sequence of transportation plans is equivalent
to the weak convergence of probability measures, i.e., {λn} converges weakly-∗ to λ if and only
if for any 1 ≤ p < +∞ there is a sequence of transportation plans {πn} ⊂ Π(λ, λn) for which
(2.3) is satisfied [2, 33].
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Lemma 2.6. [16] Let 1 ≤ p < +∞, λ ∈ P(Ω), and let {πn} ⊂ Π(λ, λ) for all n ∈ N. If {πn} is
a stagnating sequence of transportation plans, then for any c ∈ Lp((Ω, λ);Rm)

lim
n→∞

∫
Ω×Ω
|c(x)− c(y)|p dπn(x, y) = 0.

Lemma 2.7. [16] Suppose that the sequence {λn} in P(Ω) converges weakly-∗ to λ ∈ P(Ω). Let
cn ∈ Lp((Ω, λn);Rm), n ∈ N, and let c ∈ Lp((Ω, λ);Rm). Consider two sequences of stagnating
transportation plans {πn} and {π̃n}, with πn, π̃n ∈ Π(λ, λn). Then,

lim
n→∞

∫
Ω×Ω
|c(x)− cn(y)|p dπn(x, y) = 0 ⇐⇒ lim

n→∞

∫
Ω×Ω
|c(x)− cn(y)|p dπ̃n(x, y) = 0.

Definition 2.8. Given a Borel map T : Ω → Ω and λ ∈ P(Ω), the push-forward of λ by T is
denoted by T#λ ∈ P(Ω), and is given by

T#λ(E) := λ(T−1(E)), E ∈ B(Ω).

For any bounded Borel function φ : Ω→ R, the following change of variables holds:∫
Ω
φ(x) d(T#λ)(x) =

∫
Ω
φ(T (x)) dλ(x). (2.4)

Definition 2.9. A Borel map T : Ω → Ω is called a transportation map between the measures
λ ∈ P(Ω) and λ̃ ∈ P(Ω) if λ̃ = T#λ.

For a transportation map T between measures λ, λ̃ ∈ P(Ω), we associate to T the transporta-

tion plan πT ∈ Π(λ, λ̃) given by

πT := (Id× T )#λ, (2.5)

where Id× T : Ω→ Ω×Ω with (Id× T )(x) = (x, T (x)). For any φ ∈ L1(Ω×Ω,R), a change of
variables yields ∫

Ω×Ω
φ(x, y) dπT (x, y) =

∫
Ω
φ(x, T (x)) dλ(x). (2.6)

2.4. Γ-convergence. We recall the notion of Γ-convergence [5, 11].

Definition 2.10. Let (X, d) be a metric space, and let {En} be a sequence of functions En : X →
[−∞,+∞]. We say that {En} Γ-converges to a function E : X → [−∞,+∞] if the following two
properties are satisfied:

• (Liminf inequality) For every x ∈ X and every sequence {xn} ⊂ X such that xn → x
with respect to d,

E(x) ≤ lim inf
n→∞

En(xn).

• (Limsup inequality) For every x ∈ X, there exists a sequence {xn} ⊂ X such that xn → x
with respect to d, and

lim sup
n→∞

En(xn) ≤ E(x).

The limit function E is called the Γ-limit of the sequence {En}, and we write

Γ- lim
n→∞

En = E .

Definition 2.11. Let (X, d) be a metric space. A sequence of nonnegative functionals {En} with
En : X → [−∞,+∞] satisfies the compactness property if for any increasing subsequence {nk}
of natural numbers and any bounded sequence {xk} ⊂ X such that

sup
k∈N
Enk(xk) <∞,

the sequence {xk} is relatively compact in X.
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For functionals {En} satisfying the compactness property, the notion of Γ-convergence is par-
ticular useful since it guarantees the convergence of minimizers (or approximations of minimizers)
of En to minimizers of E . It also guarantees the convergence of the minimum energy of En to
the minimum energy of E . To be precise,

Proposition 2.12. Let En : X → [0,∞] be nonnegative functionals not identically equal to +∞,
satisfying the compactness property, and Γ-converging to the functional E : X → [0,∞] that is
not identically equal to +∞. Then,

lim
n→∞

inf
x∈X
En(x) = min

x∈X
E(x).

Furthermore, every bounded sequence {xn}n∈N in X for which

lim
n→∞

(
En(xn)− inf

x∈X
En(x)

)
= 0 (2.7)

is relatively compact, and each of its cluster points is a minimizer of E. In particular, if E has
a unique minimizer, then a sequence {xn} satisfying (2.7) converges to the unique minimizer
of E.

Theorem 2.13 (Γ-Convergence and Compactness of the Ginzburg-Landau Functional [24, 25,
23, 30]). Let Ω ⊂ Rd be an open, bounded set and εn → 0. Suppose that Assumption 1.1
is satisfied, and define EGLεn by (1.7). Then, Γ- limn→∞ EGLεn = cWTV, with cW as in (1.10).

Furthermore, let {vn} ⊂W1,2(Ω;R) be such that

M := sup
n∈N
EGLεn (vn) < +∞.

Then there exist a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0, 1}) such that

vnk → v in L1(Ω;R).

Using the results of Modica and Mortola [24, 25], Modica [23] and Sternberg [30] independently
proved Theorem 2.13 under the stronger assumption that

1

c
|t|q ≤W (t) ≤ c|t|q

for all |t| ≥ T for some T > 0, c > 0 and q ≥ 2. Fonseca and Tartar [15] showed that the weaker
assumption of linear growth in (1.8) is sufficient for Theorem 2.13.

2.5. The space CLp. Let Ω ⊂ Rd be an open set. We define

CLp(Ω) :=

{
(v, c(1), c(2)) : v ∈ L1((Ω,LdbΩ);R),

c(1) ∈ Lp((Ω, λ|v|);Rm), c(2) ∈ Lp((Ω, λ|1−v|);Rm)

}
,

where λ|v| and λ|1−v| are given by (1.11), i.e. λ|v| and λ|1−v| are probability measures on Ω which

have Lebesgue densities |v|
‖v‖L1(Ω;R)

and |1−v|
‖1−v‖L1(Ω;R)

, respectively. For (v, c(1), c(2)) and (ṽ, c̃(1), c̃(2))
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in CLp(Ω), we define the equivalence relation on CLp as:

(v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2))

⇐⇒



v = ṽ = 0 Ld-a.e., c(1) = c̃(1) λ|v|-a.e., c(2) = c̃(2) λ|1−v|-a.e.,

if ‖v‖L1 = 0 or ‖ṽ‖L1 = 0,

v = ṽ = 1 Ld-a.e., c(1) = c̃(1) λ|v|-a.e., c(2) = c̃(2) λ|1−v|-a.e.,

if ‖1− v‖L1 = 0 or ‖1− ṽ‖L1 = 0,

λ|v| = λ|ṽ| Ld-a.e., λ|1−v| = λ|1−ṽ| Ld-a.e., c(1) = c̃(1) λ|v|-a.e., c(2) = c̃(2) λ|1−v|-a.e.,

otherwise.

By abuse of notation, we also identify CLp(Ω) with the space of equivalence classes CLp(Ω)/ ∼.

For (v, c(1), c(2)) ∈ CLp(Ω) we denote the equivalence class by [(v, c(1), c(2))], i.e.,

[(v, c(1), c(2))] = {(ṽ, c̃(1), c̃(2)) ∈ CLp(Ω) : (v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2))}.

Similarly, let [v], [c(1)], [c(2)] be the usual equivalence classes in L1((Ω,LdbΩ);R), Lp((Ω, λ|v|);Rm)
and Lp((Ω, λ|1−v|);Rm), respectively.

Lemma 2.14. Let (v, c(1), c(2)) ∈ CLp(Ω) with v = w Ld-a.e. for some constant w ∈ R. For
w̃ ∈ R, let vw̃ ∈ L1((Ω,LdbΩ);R) satisfy vw̃ = w̃ Ld-a.e. If w ∈ R\{0, 1}, then

[(v, c(1), c(2))] = ∪w̃∈R\{0,1}[vw̃]× [c(1)]× [c(2)].

If w ∈ {0, 1}, then

[(v, c(1), c(2))] = [v]× [c(1)]× [c(2)].

Proof. Clearly, if v = w Ld-a.e. for w ∈ R\{0, 1}, then

|v|
‖v‖L1

=
1

|Ω|
,

|1− v|
‖1− v‖L1

=
1

|Ω|
Ld-a.e.,

independently of the value of w. For w ∈ {0, 1} the claim immediately follows from the definition
of the equivalence relation.

For the compactness property and Γ-convergence, we can restrict ourselves to (v, c(1), c(2)) ∈
CLp(Ω) with 0 ≤ v ≤ 1 Ld-a.e. To see this, note that for any sequence {(vn, c(1)

n , c
(2)
n )} in

CLp(Ω) and εn → 0 such that supn∈N Eµεn ,εn(vn, c
(1)
n , c

(2)
n ) < +∞ we have vn → v in L1(Ω;R)

with v = χE for some E ⊂ Ω. We may consider

un(x) :=

{
0, vn(x) ≤ 1

2 ,

1, vn(x) > 1
2 ,

(2.8)

instead of vn. To be precise,

Lemma 2.15. Let vn → v in L1(Ω;R), with v = χE for some E ⊂ Ω. Then {un} defined by
(2.8) satisfies

lim
n→∞

‖un − vn‖L1(Ω;R) = 0.
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Proof. We have∫
Ω
|un − vn| dx =

∫
{vn> 1

2
}
|1− vn| dx+

∫
{vn≤ 1

2
}
|vn|dx

≤
∫
{vn> 1

2
}∩E
|χE − vn|dx+

∫
{vn> 1

2
}\E

(1 + vn) dx+

∫
{vn≤ 1

2
}∩E
|vn|dx+

∫
{vn≤ 1

2
}\E
|vn − χE |dx

≤
∫

Ω
|χE − vn| dx+

∫
Ω\E

3|vn| dx+

∫
{vn≤ 1

2
}∩E
|vn − χE |dx+

∫
Ω
|vn − χE | dx,

where all terms go to 0 as n→∞ since vn → v in L1(Ω;R).

For (v, c(1), c(2)), (ṽ, c̃(1), c̃(2)) ∈ CLp(Ω) satisfying (v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2)), where v is
nonconstant Ld-a.e., 0 ≤ v ≤ 1 Ld-a.e., and 0 ≤ ṽ ≤ 1 Ld-a.e., we have v = ṽ Ld-a.e. To see
this, note that the equivalence relation on CLp(Ω) implies v = aṽ Ld-a.e. and 1 − v = b(1 − ṽ)

Ld-a.e. for some a, b ∈ R. For a 6= b, we obtain v = a(1−b)
a−b L

d-a.e., in contradiction to v being

nonconstant Ld-a.e. This implies that a = b = 1, i.e., v = ṽ Ld-a.e.
For (v, c(1), c(2)) and (ṽ, c̃(1), c̃(2)) in CLp(Ω) we define

dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2))) := dTLp((λ|v|, c

(1)), (λ|ṽ|, c̃
(1))) + dTLp((λ|1−v|, c

(2)), (λ|1−ṽ|, c̃
(2)))

where for (µ, f), (λ, g) in TLp(Ω), with

TLp(Ω) := {(µ, f) : µ ∈ P(Ω), f ∈ Lp(Ω, µ)},

the metric

dTLp((µ, f), (λ, g)) := inf
π∈Π(µ,λ)

(∫
Ω×Ω
|x− y|p + |f(x)− g(x)|p dπ(x, y)

) 1
p

is introduced in [16]. If µ, λ have densities, we can write the distance dTLp in the Monge
formulation. To be precise,

dTLp((µ, f), (λ, g)) = inf
T : T#µ=λ

(∫
Ω

[|x− T (x)|p + |f(x)− g(T (x))|p] dµ(x)

) 1
p

.

Proposition 2.16. (CLp(Ω), dCLp) is a metric space.

Proof. Nonnegativity, symmetry and dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2))) = 0 for (v, c(1), c(2)) =

(ṽ, c̃(1), c̃(2)) follow easily from the definition of dTLp . If dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2))) = 0,

then

dTLp((λ|v|, c
(1)), (λ|ṽ|, c̃

(1))) = 0, dTLp((λ|1−v|, c
(2)), (λ|1−ṽ|, c̃

(2))) = 0,

i.e., λ|v| = λ|ṽ| Ld-a.e., λ|1−v| = λ|1−ṽ| Ld-a.e., c(1) = c̃(1) λ|v|-a.e., c(2) = c̃(2) λ|1−v|-a.e., and
these imply

|v|
‖v‖L1

=
|ṽ|
‖ṽ‖L1

Ld-a.e.,
|1− v|
‖1− v‖L1

=
|1− ṽ|
‖1− ṽ‖L1

Ld-a.e.

Hence, (v, c(1), c(2)) ∼ (ṽ, c̃(1), c̃(2)), and we have equality in CLp(Ω).

It was shown in [16, Proposition 3.12] that for (µ, f) ∈ TLp(Ω) and a sequence {(µn, fn)} in
TLp(Ω), (µn, fn) → (µ, f) in TLp(Ω) as n → ∞ if and only if {µn} converges weakly-∗ to µ
and fn ◦ Tn → f in Lp(µ) as n → ∞ for any stagnating sequence of transportation maps {Tn}
between µn and µ with Tn#µ = µn.
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Proposition 2.17. Let (v, c(1), c(2)) ∈ CLp(Ω), and let {(vn, c(1)
n , c

(2)
n )} be a sequence in CLp(Ω).

Then, (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω) if and only if {λ|vn|} converges weakly-∗-∗ to λ|v|,

c
(1)
n ◦ T (1)

n → c(1) in Lp((Ω, λ|v|);Rm) and c
(2)
n ◦ T (2)

n → c(2) in Lp((Ω, λ|1−v|);Rm) as n →
∞, for any sequences of transportation maps {T (1)

n } and {T (2)
n } satisfying T

(1)
n #λ|v| = λ|vn|,

T
(2)
n #λ|1−v| = λ|1−vn|, and ‖T (1)

n − Id ‖Lp(λ|v|) → 0, ‖T (2)
n − Id ‖Lp(λ|1−v|) → 0.

Proof. Assume that (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω). We have that

dTLp((λ|v|, c
(1)), (λ|vn|, c

(1)
n ))→ 0

and, by [16, Proposition 3.12], {λ|vn|} converges weakly-∗ to λ|v| and c
(1)
n ◦ T (1)

n → c(1) in

Lp((Ω, λ|v|);Rm) for any sequence of transportation maps {T (1)
n } satisfying the conditions in the

proposition. Analogously, we obtain c
(2)
n ◦ T (2)

n → c(2) in Lp((Ω, λ|1−v|);Rm).

If {λ|vn|} converges weakly-∗ to λ|v|, c
(1)
n ◦T (1)

n → c(1) in Lp((Ω, λ|v|);Rm) and c
(2)
n ◦T (2)

n → c(2)

in Lp((Ω, λ|1−v|);Rm), then we conclude that

dTLp((λ|v|, c
(1)), (λ|vn|, c

(1)
n ))→ 0 and dTLp((λ|1−v|, c

(2)), (λ|1−vn|, c
(2)
n ))→ 0.

Hence, we obtain that dCLp((v, c
(1), c(2)), (ṽ, c̃(1), c̃(2)))→ 0.

3. Γ-convergence for piecewise constant segmentations

In this section we study the Ginzburg-Landau image segmentation model where c(1), c(2) ∈ Rm
are constants and correspond to the optimal intensity values to approximate each of the two
segments. For constants c(1), c(2), we define Eε : L1(Ω;R)× Rm × Rm by

Eε(v, c(1), c(2)) :=


∫

Ω

(
|c(1) − u0|p|v|+ |c(2) − u0|p|1− v|

)
dx+ ν

cW

∫
Ω

(
ε|∇v|2 + 1

εW (v)
)

dx,

if v ∈W1,2(Ω;R), c(1), c(2) ∈ Rm,
+∞,

otherwise,

(3.1)

where cW is defined in (1.10), and u0 ∈ L∞(Ω;Rm) is given. The aim of this section is to show
that {Eε} Γ-converges to E : L1(Ω;R)× Rm × Rm, defined by

E(v, c(1), c(2)) :=


∫
E |c

(1) − u0|p dx+
∫

Ω\E |c
(2) − u0|p dx+ νTV(v),

if v = χE ∈ BV(Ω; {0, 1}) for E := {x ∈ Ω: v(x) = 1},
c(1), c(2) ∈ Rm,

+∞, otherwise.

(3.2)

Note that Eε and E follow immediately from the definition of Eµ,ε and Eµ when c(1), c(2) constant.
In this case, the CLp(Ω) topology is not practical and we consider the L1(Ω;R)×Rm×Rm topol-
ogy instead. The main results of this section are the compactness property and the Γ-convergence
of Eε for piecewise constant segmentations, which imply the convergence of minimizers:

Theorem 3.1. Let Ω ⊂ Rd be an open, bounded set, let 1 < p < +∞, and let Eε : L1(Ω;R) ×
Rm × Rm → [0,+∞] and E : L1(Ω;R) × Rm × Rm as defined by (3.1) and (3.2), respectively.
Then, the functional Eε satisfies the compactness property and Γ-converges with respect to the
L1(Ω;R)× Rm × Rm topology to E as ε→ 0.
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Let us first state a general lemma which is not only valid for constant functions c(1), c(2),
but more generally for functions c(1) ∈ W 1,p((Ω, λ|v|);Rm), c(2) ∈ W1,p((Ω, λ|1−v|);Rm) for v ∈
L1((Ω,LdbΩ);R) given.

Lemma 3.2. Let Ω ⊂ Rd be an open set with finite measure. Define the energy functional

Eµε,ε as in (1.14), and let εn → 0, {vn} ⊂ W1,2((Ω,LdbΩ);R), {c(1)
n }, {c(2)

n } such that c
(1)
n ∈

W 1,p((Ω, λ|vn|);Rm), c
(2)
n ∈W1,p((Ω, λ|1−vn|);Rm), and assume that

M := sup
n∈N
Eµεn ,εn(vn, c

(1)
n , c(2)

n ) < +∞,

where µεn → µ ∈ (0,+∞] as εn → 0. Then, there exist a subsequence {vnk} of {vn} and
v ∈ BV(Ω; {0, 1}), with v = χE Ld-a.e. for a Lebesgue measurable set E ⊂ Ω, such that vnk → v
in L1(Ω;R).

Proof. Since supn∈N EGLεn (vn) < +∞, where EGLε denotes the Ginzburg-Landau energy functional
defined in (1.7), Theorem 2.13 can be invoked.

As a first step towards proving Theorem 3.1, we show a compactness result based on Lemma
3.2.

Theorem 3.3 (Compactness). Let Ω ⊂ Rd be an open set with finite measure, let εn → 0, and

let {vn} ⊂W1,2(Ω;R), {c(1)
n }, {c(2)

n } ⊂ Rm, be such that

M := sup
n∈N
Eεn(vn, c

(1)
n , c(2)

n ) < +∞.

Then, there exist a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0, 1}), with v = χE for some
Lebesgue measurable set E ⊂ Ω, such that vnk → v in L1(Ω;R). If Ld(E) > 0, then there exists

a converging subsequence {c(1)
nk } of {c(1)

n } with limit c(1) ∈ Rm. If Ld(Ω\E) > 0, then there exists

a converging subsequence {c(2)
nk } of {c(2)

n } with limit c(2) ∈ Rm.

Proof. By Lemma 3.2 we can find a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0, 1}), with
v = χE for some Lebesgue measurable set E ⊂ Ω, such that vnk → v in L1(Ω;R). For Ld(E) > 0

the sequence {c(1)
n } has to be bounded. To see this, note that the energy bound implies that∫

Ω |c
(1)
n −u0|p|vn| dx is uniformly bounded. If the sequence {c(1)

n } would be unbounded, for every
n > 0 there exists some kn ∈ N such that

M ≥ sup
n∈N

∫
Ω
|c(1)
n − u0|p|vn| dx > n

∫
Ω
|vkn | dx,

using the fact that u0 is bounded. Since {vkn}n∈N is bounded in L1 this leads to a contradiction.

Hence, {c(1)
n } is bounded, and the existence of a subsequence of {c(1)

n } converging to c(1) in
Rm follows immediately from the Bolzano–Weierstrass theorem. Similarly, one can show if

Ld(Ω\E) > 0 then {c(2)
n } is bounded, and has a converging subsequence with limit c(2) ∈ Rm.

Proof of Theorem 3.1. Since the compactness property follows from Theorem 3.3, it remains to
show the Γ-convergence. Let

E(1)
(v, c(1), c(2)) :=

∫
Ω

(
|c(1) − u0|p|v|+ |c(2) − u0|p|1− v|

)
dx, (3.3)

so that Eε(v, c(1), c(2)) = E(1)
(v, c(1), c(2)) + ν

cW
EGLε (v) and (when v = χE) E(v, c(1), c(2)) =

E(1)
(v, c(1), c(2)) + νTV(v).
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Let (vn, c
(1)
n , c

(2)
n ) → (v, c(1), c(2)) in CLp(Ω), i.e., vn is bounded in L1(Ω;R), supn∈N |c

(1)
n | <

+∞ and supn∈N |c
(2)
n | < +∞. We have

|E(1)
(vn, c

(1)
n , c(2)

n )− E(1)
(v, c(1), c(2))|

≤
∫

Ω

(
|c(1)
n − u0|p ||vn| − |v||+ |v|

∣∣∣|c(1)
n − u0|p − |c(1) − u0|p

∣∣∣)dx

+

∫
Ω

(
|c(2)
n − u0|p ||1− vn| − |1− v||+ |1− v|

∣∣∣|c(2)
n − u0|p − |c(2) − u0|p

∣∣∣)dx.

Note that for any δ > 0 there exists Cδ > 0 such that for all a, b ∈ Rm we have

|a|p ≤ (1 + δ)|b|p + Cδ|a− b|p,

implying

|c(i)
n − u0|p ≤ (1 + δ)|c(i) − u0|p + Cδ|c(i)

n − c(i)|p.

Hence,

|E(1)
(vn, c

(1)
n , c(2)

n )− E(1)
(v, c(1), c(2))|

≤
(

sup
x∈Ω
|c(1)
n − u0(x)|p

)
‖vn − v‖L1(Ω) +

∫
Ω
|v|
(
δ|c(1) − u0|p + Cδ|c(1)

n − c(1)|p
)

dx

+

(
sup
x∈Ω
|c(2)
n − u0(x)|p

)
‖vn − v‖L1(Ω) +

∫
Ω
|1− v|

(
δ|c(2) − u0|p + Cδ|c(2)

n − c(2)|p
)

dx

≤ C‖vn − v‖L1(Ω) + δE(1)
(v, c(1), c(2)) + Cδ|c(1)

n − c(1)|p‖v‖L1(Ω) + Cδ|c(2)
n − c(2)|p‖1− v‖L1(Ω).

Letting n→∞, we have

lim
n→∞

|E(1)
(vn, c

(1)
n , c(2)

n )− E(1)
(v, c(1), c(2))| ≤ δE(1)

(v, c(1), c(2))

for any δ > 0. Let δ → 0 to obtain

lim
n→∞

E(1)
(vn, c

(1)
n , c(2)

n ) = E(1)
(v, c(1), c(2)).

By the stability of Γ-convergence under its continuous perturbations [12, Proposition 6.20], we
obtain the Γ-convergence of Eε to {E} in L1(Ω;R)× Rm × Rm.

Due to the compactness result in Theorem 3.3, we only consider ∅ ( E ( Ω with 0 < Ld(E) <
Ld(Ω) for minimizers of the function E in (3.2). However, the Γ-limit E in (3.2) is defined for
all sets ∅ ⊂ E ⊂ Ω.

4. Γ-convergence for piecewise smooth approximations

In this section we prove the main result of the paper, stated in Theorem 1.2, namely the
Γ-convergence of the energy functional Eµε,ε in (1.14) for any positive parameter µε. In the
following we differentiate between two regimes depending on the convergence of the positive
parameter µεn as εn → 0:

(1) µεn → µ for a constant µ > 0,
(2) µεn → +∞.

These two cases cover all positive limits of µεn as εn → 0. We note that the analysis is very
similar for limεn→0 µεn = µ > 0 and limεn→0 µεn = +∞. We start by showing compactness:
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Theorem 4.1 (Compactness). Let Ω ⊂ Rd, with d ≥ 2, be an open set with finite measure. Let

εn → 0 and {vn} ⊂ W1,2((Ω,LdbΩ);R), {c(1)
n }, {c(2)

n } be such that c
(1)
n ∈ W1,p((Ω, λ|vn|);Rm),

c
(2)
n ∈W1,p((Ω, λ|1−vn|);Rm), and

M := sup
n∈N
Eµεn ,εn(vn, c

(1)
n , c(2)

n ) < +∞,

for Eµε,ε defined in (1.14), with limn→∞ µεn ∈ (0,+∞]. Then, there exist a subsequence {vnk}
of {vn} and v ∈ BV(Ω; {0, 1}), with v = χE for some Lebesgue measurable set E ⊂ Ω, such

that vnk → v in L1(Ω;R). If Ld(E) > 0 and {c(1)
n }n∈N are bounded in L∞ then (λ|vn|, c

(1)
n ) is

precompact in TLp, and any cluster point (λ|v|, c
(1)) satisfies c

(1)
n ∈ W1,p((Ω, λ|v|);Rm). Simi-

larly, if Ld(Ω\E) > 0 and and {c(2)
n }n∈N are bounded in L∞ then (λ|1−vn|, c

(2)
n ) is precompact in

TLp, and any cluster point (λ|1−v|, c
(2)) satisfies c

(2)
n ∈ W1,p((Ω, λ|1−v|);Rm). In particular, if

0 < Ld(E) < Ld(Ω) and {c(i)
n }n∈N, i = 1, 2, are bounded in L∞ then there exist a subsequence

(vnk , c
(1)
nk , c

(2)
nk ) of (vn, c

(1)
n , c

(2)
n ) and (v, c(1), c(2)) ∈ CLp(Ω) such that {(vnk , c

(1)
nk , c

(2)
nk )} converges

to (v, c(1), c(2)) in CLp(Ω) and Eµ(v, c(1), c(2)) < +∞.

Proof. The existence of a subsequence {vnk} of {vn} and v ∈ BV(Ω; {0, 1}) with v = χE for
a measurable set E ⊂ Ω with finite perimeter such that vnk → v in L1(Ω;R) follows from
Lemma 3.2. In particular, {λ|vn|} and {λ|1−vn|} converge weakly-∗ to λ|v| and λ|1−v|, respectively.

Let us first consider 0 < limn→∞ µεn < +∞, and we assume, without loss of generality, that
µεn are uniformly bounded by positive constants from above and below. Since the existence of

converging subsequences of {c(1)
nkl
◦T (1)

nkl
} → c(1) and {c(2)

nkl
◦T (2)

nkl
} → c(2) can be shown in a similar

way, we restrict ourselves to c
(1)
nkl
◦ T (1)

nkl
→ c(1) and in the following assume that Ld(E) > 0. For

ease of notation, we omit the superscript index (1).
Since {λ|vn|} converges weakly-∗ to λ|v|, then {λ|vn|} converges in the p′-Wasserstein distance

to λ|v|, with 1
p + 1

p′ = 1. In particular, there exists a sequence of transport maps {Tn} satisfying

Tn#λ|v| = λ|vnk | and lim
n→∞

‖Tn − Id ‖Lp′ (E) = 0.

Let ψ ∈ C∞c (Rd) be a standard mollifier, e.g.,

ψ(x) :=

{
C exp

(
1

|x|2−1

)
, |x| < 1,

0, |x| ≥ 1,

where the constant C > 0 is chosen such that
∫
Rd ψ dx = 1. For each a > 0, we set

ψa(x) =
1

ad
ψ
(x
a

)
, x ∈ Rd.

We define convolution in the usual way, i.e., (ψ∗c)(x) :=
∫

Ω ψ(x−y)c(y) dy, and for convenience

we let v̂(x) := v(x)
|E| . We claim that there exists a positive converging sequence {an}n∈N ⊂ R

with limn→∞ an = 0, such that

sup
n∈N
‖∇(ψan ∗ ((cn ◦ Tn)v̂))‖L1(Rd) < +∞, (4.1)

and

lim
n→∞

‖ψan ∗ ((cn ◦ Tn)v̂)− (cn ◦ Tn)v̂‖L1(E) = 0. (4.2)
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Under these assumptions, we show that c ∈W1,p((Ω, λ|v|;Rm). Since

‖ψan ∗ ((cn ◦ Tn)v̂)‖p
Lp(Rd)

=

∫
Rd

∣∣∣∣ 1

|E|

∫
E
ψan(x− y)cn(Tn(y)) dy

∣∣∣∣p dx

≤ 1

|E|p

∫
Rd

∫
E
ψan(x− y)|cn(Tn(y)|p dy dx

=
1

|E|p

∫
E
|cn(Tn(y)|p dy =

1

|E|p−1
‖cn ◦ Tn‖pLp(λ|v|)

,

by the boundedness of {Eµεn ,εn}, we deduce that the sequence ‖ψan ∗ ((cn ◦ Tn)v̂)‖Lp(Rd) is

uniformly bounded in n. The sequence {fn}, with fn := ψan ∗ ((cn ◦ Tn)v̂), is bounded in
W1,1(Rd) by (4.1), and so there exists a subsequence (not relabelled) that converges in Lα(Rd)
to some f ∈W1,1(Rd) for any 1 ≤ α ≤ d

d−1 . Choosing α = 1, we have

lim
n→∞

‖ψan ∗ ((cn ◦ Tn)v̂)− f‖L1(Rd) = 0.

Define c(x) := f(x)|E| for x ∈ E and c(x) = 0 for x 6∈ E. We obtain

‖ψan ∗ ((cn ◦ Tn)v̂)− cv̂‖L1(E) ≤ ‖ψan ∗ ((cn ◦ Tn)v̂)− f‖L1(Rd) → 0.

Together with (4.2), and the fact that

‖cn ◦ Tn − c‖L1(λ|v|)
= ‖(cn ◦ Tn)v̂ − cv̂‖L1(E)

≤ ‖(cn ◦ Tn)v̂ − ψan ∗ ((cn ◦ Tn)v̂)‖L1(E) + ‖ψan ∗ ((cn ◦ Tn)v̂)− cv̂‖L1(E),

we deduce that

lim
n→∞

‖cn ◦ Tn − c‖L1(λ|v|)
= 0.

From the fact that {cn} is bounded in L∞, and extracting a further subsequence (not relabeled),
we can assume that cn ◦ Tn → c pointwise on E, which implies that c is also bounded in L∞.
Moreover,

‖cn ◦ Tn − c‖pLp(λ|v|)
≤ ‖cn ◦ Tn − c‖p−1

L∞(E)‖cn ◦ Tn − c‖L1(λ|v|)
→ 0.

Since cn ∈W 1,p(λ|vn|), by Theorem 2.1 there exist gn ∈ Lp(λ|vn|) and Ωn ⊂ Ω satisfying

|cn(x)− cn(y)| ≤ |x− y|(gn(x) + gn(y))

for all x, y ∈ Ωn, λ|vn|(Ωn) = 1, and ‖gn‖Lp(λ|vn|)
≤ ‖cn‖L1,p(λ|vn|)

+ 1
n . Using the transport maps

Tn, we can rewrite the above as

|cn(Tn(x))− cn(Tn(y))| ≤ |Tn(x)− Tn(y)|(gn(Tn(x)) + gn(Tn(y))) (4.3)

for all x, y ∈ T−1
n (Ωn) ⊂ E, λ|v|(T

−1
n (Ωn)) = 1, and ‖gn ◦ Tn‖Lp(λ|v|) ≤ ‖cn‖L1,p(λ|vn|)

+ 1.

Now λ|v|(T
−1
n (Ωn)) = 1 implies |T−1

n (Ωn)| = |E|, and so (4.3) holds for almost every x, y ∈ E.

Taking the union over all sets T−1
n (Ωn) for n ∈ N, we can further say that there exists Ẽ

with |Ẽ| = |E| such that (4.3) holds for all x, y ∈ Ẽ and n ∈ N. As gn ◦ Tn are bounded in
Lp(λ|v|), there exists a pointwise convergent subsequence to some g ∈ Lp(λ|v|) with ‖g‖Lp(λ|v|) ≤
lim infn→∞ ‖gn◦Tn‖Lp(λ|v|), where the right hand side is finite due to boundedness of the energies.

As {Tn} converges to the identity in Lp
′
, we can find a further subsequence (not relabeled) with

Tn(x)→ x pointwise. In particular, taking the pointwise limit of (4.3), we have

|c(x)− c(y)| ≤ |x− y|(g(x) + g(y))
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for all x, y ∈ Ẽ. It follows that c ∈W1,p((Ω, λ|v|;Rm), and

‖c‖L1,p(λ|v|)
≤ ‖g‖Lp(λ|v|) ≤ lim inf

n→∞
‖gn ◦ Tn‖Lp(λ|v|) = lim inf

n→∞
‖gn‖Lp(λ|vn|)

≤ lim inf
n→∞

(
‖cn‖L1,p(λ|vn|)

+
1

n

)
= lim inf

n→∞
‖cn‖L1,p(λ|vn|)

. (4.4)

If µεn → +∞ as n → ∞, the existence of a converging subsequence {(vnk , c
(1)
nk , c

(2)
nk )} with

limit in CLp(Ω) follows in the same way as for the case limn→∞ µεn < +∞, due to the uniform

boundedness of Eµεn ,εn(vn, c
(1)
n , c

(2)
n ). Furthermore, if µεn → +∞ as n→∞, we have that {c(1)

n }
converges to a constant since, again omitting the superscript (1),

lim sup
n→∞

‖cn‖L1,p(λ|vn|)
= lim sup

n→∞
inf
gn
‖gn‖Lp(λ|vn|)

= lim sup
n→∞

inf
gn
‖gn ◦ Tn‖Lp(λ|v|) = 0

i.e., gn ◦ Tn → 0 in Lp(Ω, λ|v|), and taking the limit on both sides of the following inequality

|cn(Tn(x))− cn(Tn(y))| ≤ |Tn(x)− Tn(y)|(gn(Tn(x)) + gn(Tn(y))) λ|v|-a.e.,

implies that there exists a constant c1 ∈ Rm such that c(1) = c1 Ld-a.e. x ∈ E. Similarly, it
follows that c(2) = c2 Ld-a.e. x ∈ Ω\E for some constant c2 ∈ Rm.

It remains to show (4.1) and (4.2). To show that (4.1) is indeed satisfied, note that we have
for any positive converging sequence {an}n∈N ⊂ R with limn→∞ an = 0 (which will be specified
later),

∇ (ψan ∗ ((cn ◦ Tn)v̂)) (x) =
1

adn|E|
∇
∫
E
ψ

(
x− y
an

)
cn(Tn(y)) dy

=
1

ad+1
n |E|

∫
E
∇ψ

(
x− y
an

)
cn(Tn(y)) dy

=
1

ad+1
n |E|

∫
E
∇ψ

(
x− y
an

)
(cn(Tn(y))− cn(Tn(x))) dy

− 1

ad+1
n |E|

∫
Rd\E

∇ψ
(
x− y
an

)
cn(Tn(x)) dy,

where the last equality follows from the fact that ∇ψ odd and we extended cn to be zero outside
of Ω. Hence,

‖∇(ψan ∗ ((cn ◦ Tn)v̂))‖L1(Rd)

≤ 1

ad+1
n |E|

∫
Rd

∣∣∣∣∫
E
∇ψ

(
x− y
an

)
(cn(Tn(y))− cn(Tn(x))) dy

∣∣∣∣dx
+

1

ad+1
n |E|

∫
Rd

∣∣∣∣∣
∫
Rd\E

∇ψ
(
x− y
an

)
cn(Tn(x)) dy

∣∣∣∣∣dx
=: In + IIn.

Starting with term IIn, a change of variables implies that

IIn ≤
‖cn‖L∞
ad+1
n |E|

∫
E

∫
Rd\E

|∇ψ|
(
x− y
an

)
dy dx

=
‖cn‖L∞
an|E|

∫
x∈E : dist(x,∂E)≤an

∫
w :x−anw∈Rd\E

|∇ψ|(w) dw dx

≤ ‖cn‖L
∞‖∇ψ‖L∞ |B(0, 1)|

|E|
|{x ∈ E ; dist(x, ∂E) ≤ an}|

an
.

By Lemma A.1 we have that IIn = O(1).
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For the term In, we use (4.3) to infer

In ≤
1

ad+1
n |E|

∫
E

∣∣∣∣∫
E
|∇ψ|

(
x− y
an

)
|Tn(x)− Tn(y)| (gn(Tn(x)) + gn(Tn(y))) dy

∣∣∣∣ dx
+

1

ad+1
n |E|

∫
Rd\E

∣∣∣∣∫
E

(∇ψ)

(
x− y
an

)
(cn(Tn(y))) dy

∣∣∣∣ dx
≤ 1

ad+1
n |E|

∫
E

∫
E
|∇ψ|

(
x− y
an

)
(2|Tn(x)− x|+ |x− y|) (gn(Tn(x)) + gn(Tn(y))) dy dx

+
‖cn‖L∞
ad+1
n |E|

∫
Rd\E

∫
E
|∇ψ|

(
x− y
an

)
dy dx.

The second term above can be shown to be O(1) following the same argument as for IIn.
We let

IIIn :=
2

ad+1
n |E|

∫
E

∫
E
|∇ψ|

(
x− y
an

)
|Tn(x)− x|(gn(Tn(x)) + gn(Tn(y))) dy dx

and

IV n :=
1

ad+1
n |E|

∫
E

∫
E
|∇ψ|

(
x− y
an

)
|x− y|(gn(Tn(x)) + gn(Tn(y))) dy dx.

A change of variables implies

IIIn ≤
2

an|E|

∫
E

∫
z :x−anz∈E

|∇ψ|(z)|Tn(x)− x|(gn(Tn(x)) + gn(Tn(x− anz))) dz dx

≤ 2

an|E|

∫
E
|Tn(x)− x|

(
‖∇ψ‖L1gn(Tn(x)) + ‖∇ψ‖L∞

∫
B(0,1)

gn(Tn(x− anz)) dz

)
dx

≤
2‖∇ψ‖L1‖gn ◦ Tn‖Lp(E)

|E|
‖Tn − Id‖Lp′ (E)

an

+
2‖∇ψ‖L∞
|E|

‖Tn − Id‖Lp′ (E)

an

(∫
E

∣∣∣∣∣
∫
B(0,1)

gn(Tn(x− anz)) dz

∣∣∣∣∣
p

dx

) 1
p

,

by Hölder’s inequality, where p′ satisfies 1
p + 1

p′ = 1. Now,∫
E

∣∣∣∣∣
∫
B(0,1)

gn(Tn(x− anz)) dz

∣∣∣∣∣
p

dx ≤ |B(0, 1)|p−1

∫
E

∫
B(0,1)

|gn(Tn(x− anz))|p dz dx

≤ |B(0, 1)|p‖gn ◦ Tn‖pLp(E).

We choose an such that

‖Tn − Id‖Lp′ (E)

an
= O(1),

and so IIIn = O(1). The bound on IV n follows straightforwardly from

IV n =
1

|E|

∫
E

∫
z :x−anz∈E

|∇ψ|(z)|z| (gn(Tn(x)) + gn(Tn(x− anz))) dz dx

≤ ‖∇ψ‖L
∞

|E|

∫
E

∫
B(0,1)

gn(Tn(x)) + gn(Tn(x− anz)) dz dx

≤
2‖∇ψ‖L∞ |B(0, 1)|‖gn ◦ Tn‖L1(E)

|E|
.

Putting the bounds on In, IIn, IIIn and IV n together we can conclude that (4.1) holds.
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To show (4.2) we write

‖ψan ∗ ((cn ◦ Tn)v̂)− (cn ◦ Tn)v̂‖L1(E)

≤
∫
E

∣∣∣∣∫
Rd
ψan(x− y) (cn(Tn(y))− cn(Tn(x))) v̂(y) dy

∣∣∣∣dx
+

∫
E

∣∣∣∣∫
Rd
ψan(x− y)cn(Tn(x)) (v̂(y)− v̂(x)) dy

∣∣∣∣dx
≤
∫
E

∫
Rd
ψan(x− y) |cn(Tn(y))− cn(Tn(x))| v̂(y) dy dx

+

∫
E

∫
Rd
ψan(x− y) |cn(Tn(x))| |v̂(y)− v̂(x)|dy dx

=: Vn + V In.

By (4.3) we can bound Vn by

Vn ≤
1

|E|

∫
E

∫
E
ψan(x− y)|Tn(x)− Tn(y)| (gn(Tn(x)) + gn(Tn(y))) dy dx

≤ 2

|E|

∫
E

∫
E
ψan(x− y)|Tn(x)− Tn(y)||gn(Tn(x))| dy dx

=
2

|E|

∫
E

∫
z :x−anz∈E

ψ(z)|Tn(x)− Tn(x− anz)||gn(Tn(x))| dz dx

≤ 2

|E|

∫
E
|Tn(x)− x||gn(Tn(x))| dx

+
2an
|E|

∫
E

∫
z :x−anz∈E

ψ(z)|z||gn(Tn(x))| dz dx

+
2

|E|

∫
B(0,1)

∫
w :w∈E,
w+anz∈E

ψ(z)|w − Tn(w)|gn(Tn(w + anz))| dw dz

≤ 2‖Tn − Id‖Lp′ (λ|v|)‖gn‖Lp(λ|vn|)
+ 2an‖gn‖L1(λ|vn|)

+ 2‖Tn − Id‖Lp′ (λ|v|)
∫
B(0,1)

ψ(z)

(∫
w :w∈E,
w+anz∈E

|gn(Tn(w + anz)|pv̂(w) dw

) 1
p

dz.

Since∫
B(0,1)

ψ(z)

(∫
w :w∈E,
w+anz∈E

|gn(Tn(w + anz)|pv̂(w) dw

) 1
p

dz ≤ ‖ψ‖L∞ |B(0, 1)|‖gn‖Lp(λ|vn|)

is bounded in n, then Vn → 0. The term V In can be bounded as

V In =

∫
E
|cn(Tn(x))|

∫
Rd\E

ψan(x− y) dy v̂(x) dx

≤ ‖cn ◦ Tn‖Lp(λ|v|)

∫
dist(x,∂E)<an

∣∣∣∣∣
∫
Rd\E

ψan(x− y) dy

∣∣∣∣∣
p′

v̂(x) dx

 1
p′

≤ ‖cn‖Lp(λ|vn|)

(
|{x ∈ E : dist(x, ∂E) < an}|

|E|

) 1
p′

where, again, p′ satisfies 1
p+ 1

p′ = 1. Since an → 0 and ‖cn‖Lp(λ|vn|)
is bounded, we have V In → 0.

which goes to zero by Lemma A.1. Putting the bounds on Vn and V In together, we conclude
that (4.2) holds.
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Theorem 4.2 (Liminf inequality). Let Ω ⊂ Rd be an open, bounded set. Let (v, c(1), c(2)) ∈
CLp(Ω) and consider positive sequences {εn}, {µεn}, with limn→∞ εn = 0 and limn→∞ µεn ∈
(0,+∞]. Assume that {(vn, c(1)

n , c
(2)
n )} ⊂ CLp(Ω) is such that (vn, c

(1)
n , c

(2)
n ) → (v, c(1), c(2)) in

CLp(Ω) and supn∈N max{‖c(1)
n ‖L∞ , ‖c(2)

n ‖L∞} < +∞. Then,

Eµ(v, c(1), c(2)) ≤ lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c(2)

n )

where Eµεn ,εn and Eµ are defined in (1.14) and (1.15), respectively.

Proof. Since the case µεn → +∞ as n→∞ immediately follows from the case µεn → µ > 0 as
n → ∞, we restrict ourselves to considering limn→∞ µεn < +∞ in the sequel. Without loss of
generality, we can assume that

lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c(2)

n ) < +∞,

and by passing to a subsequence (not relabelled) we obtain

lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c(2)

n ) = lim
n→∞

Eµεn ,εn(vn, c
(1)
n , c(2)

n ) < +∞. (4.5)

In particular, we can assume, without loss of generality, that vn ∈ W 1,2((Ω,LdbΩ);R), c
(1)
n ∈

W 1,p((Ω, λ|vn|);Rm), c
(2)
n ∈ W 1,p((Ω, λ|1−vn|);Rm) for all n ∈ N. By Theorem 2.13, the CLp

convergence of (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) and (4.4), we have

lim inf
n→∞

Eµεn ,εn(vn, c
(1)
n , c(2)

n ) = lim inf
n→∞

(
‖c(1)
n − u0‖pLp(λ|vn|)

+ ‖c(2)
n − u0‖pLp(λ|1−vn|)

+ µεn‖c(1)
n ‖

p
L1,p(λ|vn|)

+ µεn‖c(2)
n ‖

p
L1,p(λ|1−vn|)

+
ν

cW
EGL
εn (vn)

)
≥ ‖c(1) − u0‖pLp(λ|v|)

+ ‖c(2) − u0‖pLp(λ|1−v|)
+ µ‖c(1)‖p

L1,p(λ|v|)

+ µ‖c(2)‖p
L1,p(λ|1−v|)

+ νTV(v)

= Eµ(v, c(1), c(2)),

as required.

For the limsup inequality we will make use of the following Lp-convergence of translations
result.

Proposition 4.3. Let f ∈ Lp(Ω;Rm), and let Sn : Ω → Ω be a sequence with Sn → Id Ld-a.e.
Then

lim
n→∞

∫
Ω
|f(Sn(x))− f(x)|p dx = 0.

Proof. Let ε > 0 be given. Since continuous, compactly supported functions are dense in
Lp(Ω), there exists g ∈ Cc(Ω) with ‖f − g‖Lp(Ω) <

ε
3 . For n ∈ N sufficiently small, we have

‖g ◦ Sn − g‖Lp(Ω) <
ε
3 due to the uniform continuity of g. Then,(∫

Ω
|f(Sn(x))− f(x)|p dx

) 1
p

≤ ‖f ◦ Sn − g ◦ Sn‖Lp(Ω) + ‖g ◦ Sn − g‖Lp(Ω) + ‖g − f‖Lp(Ω) < ε,

and this concludes the proof.

We now proceed to the limsup inequality.
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Theorem 4.4 (Limsup inequality). Let Ω ⊂ Rd be an open, bounded set with Lipschitz boundary.

Let (v, c(1), c(2)) ∈ CLp(Ω) with max{‖c(1)‖L∞ , ‖c(2)‖L∞} < ∞, and consider positive sequences
{εn}, {µεn}, with limn→∞ εn = 0 and limn→∞ µεn ∈ (0,+∞]. Then, there exists a sequence

{(vn, c(1)
n , c

(2)
n )} ⊂ CLp(Ω) such that (vn, c

(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω), and

lim sup
n→∞

Eµεn ,εn(vn, c
(1)
n , c(2)

n ) ≤ Eµ(v, c(1), c(2)),

where Eµεn ,εn and Eµ are defined in (1.14) and (1.15), respectively.

Proof. Without loss of generality, we can assume that Eµ(v, c(1), c(2)) < +∞, where v = χE ∈
BV(Ω; {0, 1}) for a measurable set of finite perimeter E := {x ∈ Ω: v(x) = 1}, and c(1) ∈
W1,p((Ω, λ|v|);Rm), c(2) ∈ W1,p((Ω, λ|1−v|);Rm). By Theorem 2.13, there exists a sequence

{vn} ⊂W1,2(Ω) such that vn → v in L1(Ω;R) and

lim sup
n→∞

∫
Ω

(
εn|∇vn|2 +

1

εn
W (vn)

)
dx ≤ cWTV(v).

We are left to find c
(1)
n ∈W1,p((Ω, λ|vn|);Rm), c

(2)
n ∈W1,p((Ω, λ|1−vn|);Rm) such that

lim sup
n→∞

‖c(1)
n − u0‖Lp(λ|vn|)

≤ ‖c(1) − u0‖Lp(λ|v|), (4.6)

lim sup
n→∞

‖c(2)
n − u0‖Lp(λ|1−vn|)

≤ ‖c(2) − u0‖Lp(λ|1−v|), (4.7)

lim sup
n→∞

µεn‖c(1)
n ‖

p
L1,p(λ|vn|)

≤ µ‖c(1)‖p
L1,p(λ|v|)

, (4.8)

lim sup
n→∞

µεn‖c(2)
n ‖

p
L1,p(λ|1−vn|)

≤ µ‖c(2)‖p
L1,p(λ|1−v|)

, (4.9)

and (vn, c
(1)
n , c

(2)
n ) → (v, c(1), c(2)) in CLp(Ω). Let {T (1)

n } and {T (2)
n } be such that T

(1)
n #λ|v| =

λ|vn|, T
(2)
n #λ|1−v| = λ|1−vn|, and ‖T (1)

n − Id ‖Lp(λ|v|) → 0, ‖T (2)
n − Id ‖Lp(λ|1−v|) → 0, where the

existence of T
(1)
n , T

(2)
n is guaranteed by the absolute continuity of λ|v| and {λ|vn|} converges

weakly-∗ to λ|v|. By Proposition 2.17, it suffices to show that

lim
n→∞

‖c(1)
n ◦ T (1)

n − c(1)‖Lp((Ω,λ|v|);Rm) = 0, (4.10)

lim
n→∞

‖c(2)
n ◦ T (2)

n − c(2)‖Lp((Ω,λ|1−v|);Rm) = 0, (4.11)

for (vn, c
(1)
n , c

(2)
n )→ (v, c(1), c(2)) in CLp(Ω).

The proofs for c(2) are analogous to the ones for c(1), so it suffices to show the above statements
for c(1), i.e., (4.6), (4.8), (4.10). For ease of notation, we drop the superscript, write c for c(1),

cn for c
(1)
n and Tn for T

(1)
n , and assume that c is extended by 0 on Rd\Ω.

Let ψ ∈ C∞c (Rd) be a standard mollifier (see the proof of Theorem 4.1). We define cn :=
ψan ∗ c ∈ C∞c (Ω;Rm) for any nonnegative, strictly decreasing sequence {an}n∈N ⊂ R+ with
limn→∞ an = 0.

First, we prove (4.10). For this, note that

‖cn ◦ Tn − c‖pLp(λ|v|)
=

∫
Ω
|cn(Tn(x))− c(x)|p dλ|v|(x)

=

∫
Ω

∣∣∣∣∫
Rd
ψan(Tn(x)− y)(c(y)− c(x)) dy

∣∣∣∣p dλ|v|(x)

≤
∫

Ω

∫
Rd
ψ(z)|c(Tn(x) + anz)− c(x)|p dz dλ|v|(x)

=

∫
Rd
ψ(z)

∫
Ω
|c(Tn(x) + anz)− c(x)|p dλ|v|(x) dz,
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where we used the substitution z := y−Tn(x)
an

. By the reverse Fatou’s Lemma, we obtain

lim sup
n→∞

‖cn ◦ Tn − c‖pLp(λ|v|)
≤
∫
Rd
ψ(z) lim sup

n→∞

∫
Ω
|c(Tn(x) + anz)− c(x)|p dλ|v|(x) dz = 0,

where the last equality follows from Proposition 4.3. This yields (4.10).
To show (4.6), note that

‖cn − u0‖Lp(λ|vn|)
= ‖cn ◦ Tn − u0 ◦ Tn‖Lp(λ|v|)

≤ ‖cn ◦ Tn − c‖Lp(λ|v|) + ‖c− u0‖Lp(λ|v|) + ‖u0 − u0 ◦ Tn‖Lp(λ|v|).

Hence, (4.6) immediately follows from (4.10) and Proposition 4.3.
It remains to prove (4.8). Let {bn}n∈N be a sequence with limn→∞ bn = 0, whose relation to

{an}n∈N will be specified below. We introduce the sequence {Ebn} ⊂ {x ∈ E : dist(x, ∂E) > bn}
with smooth boundary, such that Ebn → E as n → ∞ in the sense that χEbn → χE in L1 and
|∂Ebn |Hd−1 → |∂E|Hd−1 . For x, y ∈ Ebn , we have

|cn(x)− cn(y)| =
∣∣∣∣∫

Rd
ψ(z)(c(x+ anz)− c(y + anz)) dz

∣∣∣∣
≤
∫
Rd
ψ(z)|c(x+ anz)− c(y + anz)|dz

≤ |x− y|
∫
Rd
ψ(z) (g(x+ anz) + g(y + anz)) dz

≤ |x− y|
(∫

Rd
ψ(z)g(x+ anz) dz +

∫
Rd
ψ(z)g(y + anz)|dz

)
≤ |x− y| ((ψan ∗ g)(x) + (ψan ∗ g)(y)) .

Hence, we obtain

‖cn‖L1,p(λ|vn|bEbn ) ≤ ‖ψan ∗ g‖Lp(λ|vn|bEbn ) ≤ ‖ψan ∗ g‖Lp(λ|vn|)
.

Assuming that g is extended by 0 on Rd\E, we have

‖ψan ∗ g‖Lp(λ|vn|)
=

(∫
Ω
|(ψan ∗ g)(x)|p dλ|vn|(x)

) 1
p

=

(∫
Ω
|(ψan ∗ g)(Tn(x))|p dλ|v|(x)

) 1
p

≤
(∫

Ω
|(ψan ∗ g)(Tn(x))− g(x)|p dλ|v|(x)

) 1
p

+ ‖g‖Lp(λ|v|)

≤
(∫

Rd
ψ(z)

∫
Ω
|g(Tn(x) + anz)− g(x)|p dλ|v|(x) dz

) 1
p

+ ‖g‖Lp(λ|v|),

implying, by Proposition 4.3, that

lim sup
n→∞

‖cn‖L1,p(λ|vn|bEbn ) ≤ lim sup
n→∞

‖ψan ∗ g‖Lp(λ|vn|)
≤ ‖g‖Lp(λ|v|).

Since ‖c‖L1,p(λ|v|)
= infg ‖g‖Lp(λ|v|) by the definition of ‖ · ‖L1,p(λ|v|)

, this yields

lim sup
n→∞

‖cn‖L1,p(λ|vn|bEbn ) ≤ ‖c‖L1,p(λ|v|)
.

We denote the complement of Ebn in Rd by Ecbn and, since cn ∈ C∞, we have

‖cn‖L1,p(λ|vn|)
= ‖cn‖L1,p(λ|vn|bEbn ) + ‖cn‖L1,p(λ|vn|bEcbn

).

It remains to show that

lim sup
n→∞

‖cn‖L1,p(λ|vn|bEcbn
) = 0.



24

We have

‖cn‖pL1,p(λ|vn|bEcbn
)

= ‖∇cn‖pLp(λ|vn|bEcbn
) =

∫
Ω\Ebn

|∇cn|p dλ|vn|(x)

=

∫
Ω\Ebn

|(∇ψan ∗ c)(Tn(x))|p dλ|v|(x)

=

∫
Ω\Ebn

∣∣∣∣∫
Rd

1

ad+1
n

∇ψ
(
Tn(x)− y

an

)
c(y) dy

∣∣∣∣p dλ|v|(x)

=

∫
Ω\Ebn

∣∣∣∣∫
Rd

1

an
∇ψ(z)c(Tn(x)− anz) dz

∣∣∣∣p dλ|v|(x)

≤ 1

apn
‖c‖pLp(Ω)‖∇ψ‖

p
L∞

∫
Ω\Ebn

dλ|v|(x).

Suppose that

an :=

(∫
Ω\Ebn

dλ|v|(x)

) 1
2p

, n ∈ N,

so that limn→∞ an = 0 as required above. Then,

lim sup
n→∞

‖cn‖L1,p(λ|vn|bEcbn
) = 0,

which yields

lim sup
n→∞

‖cn‖L1,p(λ|vn|)
≤ ‖c‖L1,p(λ|v|)

.

If limn→∞ µεn = µ > 0, then we have

lim sup
n→∞

µεn‖cn‖L1,p(λ|vn|)
≤ µ‖c‖L1,p(λ|v|)

,

which concludes the limsup inequality.
For limn→∞ µεn = +∞, c is constant Ld-a.e. x ∈ E. This implies that

lim sup
n→∞

‖cn‖pL1,p(λ|vn|)
= ‖c‖p

L1,p(λ|v|)
= 0,

and hence the limsup inequality also holds for limn→∞ µεn = +∞.

Due to the compactness property in Theorem 2.13 and the Γ-convergence of the energy func-
tionals, given by the liminf inequality in Theorem 4.2 and the limsup inequality in Theorem 4.4,

we can conclude the convergence of minimizers (vn, c
(1)
n , c

(2)
n ), see Corollary 1.3, once we have

shown that supn∈N max{‖c(1)
n ‖L∞ , ‖c(2)

n ‖L∞} <∞.

Proof of Corollary 1.3. To show that supn∈N max{‖c(1)
n ‖L∞ , ‖c(2)

n ‖L∞} < ∞, we suppose m = 1
for simplicity, i.e., u0 : Ω→ R. One can proceed in a similar way for m > 1. Let M := ‖u0‖L∞ ,

and assume that (vn, c
(1)
n , c

(2)
n ) is a minimizer of Eµεn ,εn . For a contradiction, we suppose that

there exists i ∈ {1, 2} and n ∈ N such that ‖c(i)
n ‖L∞ > M + 1. We define

c̃(i)
n (x) :=


M, if c

(i)
n (x) > M,

c
(i)
n (x), if c

(i)
n (x) ∈ [−M,M ],

−M, if c
(i)
n (x) < −M.
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Clearly ‖c̃n‖L∞ ≤M . Moreover,

‖c̃(i)
n − u0‖pLp(λ|vn|)

=

∫
|c(i)n (x)|≤M

∣∣∣c(i)
n − u0(x)

∣∣∣p dλ|vn|(x)

+

∫
c
(i)
n (x)∈(−M−1,−M)

|−M − u0(x)|p︸ ︷︷ ︸
≤|c(i)n (x)−u0(x)|p

dλ|vn|(x)

+

∫
c
(i)
n (x)∈(M,M+1)

|M − u0(x)|p︸ ︷︷ ︸
≤|c(i)n (x)−u0(x)|p

dλ|vn|(x)

+

∫
c
(i)
n (x)≤−M−1

|−M − u0(x)|p︸ ︷︷ ︸
≤|c(i)n (x)−u0(x)|p−1

dλ|vn|(x)

+

∫
c
(i)
n (x)∈≥M+1

|M − u0(x)|p︸ ︷︷ ︸
≤|c(i)n (x)−u0(x)|p−1

dλ|vn|(x)

≤ ‖c(i)
n − u0‖pLp(λ|vn|)

−
∣∣∣{x : |c(i)

n (x)| > M + 1
}∣∣∣︸ ︷︷ ︸

>0

.

One can easily check that, for all x, y,∣∣∣c̃(i)
n (x)− c̃(i)

n (y)
∣∣∣ ≤ ∣∣∣c(i)

n (x)− c(i)
n (y)

∣∣∣ ,
and therefore ‖c̃(i)

n ‖L1,p(λ|vn|)
≤ ‖c(i)

n ‖L1,p(λ|vn|)
. We have shown that

Eµεn ,εn(vn, c̃
(1)
n , c̃(2)

n ) < Eµεn ,εn(vn, c
(1)
n , c(2)

n ),

which contradicts the assumption that (vn, c
(1)
n , c

(2)
n ) is a minimizer. Hence, ‖c(i)

n ‖L∞ < M + 1
for all i = 1, 2, and n ∈ N.
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Appendix A. Enlarged Boundaries for Sets of Finite Perimeter

For completeness, we include a bound on the volume of the set∣∣∣{x ∈ Rd : dist(x, ∂E) ≤ a
}∣∣∣

for sets E with finite perimeter which is used in the compactness result in Theorem 4.1.

Lemma A.1. Let E ⊂ Rd be a bounded set with finite perimeter. Then,∣∣∣{x ∈ Rd : dist(x, ∂E) ≤ a
}∣∣∣ ≤ a|∂E|Hd−1

for all a > 0.

Proof. For convenience, we define

∂aA =
{
x ∈ Rd : dist(x, ∂A) < a

}
.

For any ε > 0, since E has finite perimeter, by [1, Theorem 3.42] we can find a polyhedral set
Eε such that

||∂E|Hd−1 − |∂Eε|Hd−1 | < ε, ‖χEε − χE‖L1 < ε.

Pick x ∈ ∂aE. For any y ∈ Rd we have

dist(x, ∂Eε) ≤ |x− y|+ dist(y, ∂Eε).

We choose y ∈ ∂E such that dist(x, ∂E) = |x − y|. Fix δ > 0 and note that, since y ∈ ∂E, as
ε→ 0

|B(y, δ) ∩ Eε| → |B(y, δ) ∩ E| > 0,

and

|B(y, δ) ∩ Ecε| → |B(y, δ) ∩ Ec| > 0.

So for ε > 0 sufficiently small (where sufficiently small depends upon δ, x and y) we have
dist(y, ∂Eε) ≤ δ. Hence,

dist(x, ∂Eε) ≤ dist(x, ∂E) + δ < a+ δ.

In particular, for ε > 0 sufficiently small x ∈ ∂a+δEε, and hence χ∂a+δEε(x) ≥ χ∂aE(x). By
Fatou’s lemma,

lim inf
ε→0

|∂a+δEε| ≥
∫

lim inf
ε→0

χ∂a+δEε(x) dx ≥
∫
χ∂aE(x) dx = |∂aE|. (A.1)

Since Eε is a polyhedral function, we can partition the boundary into a finite number of
subsets that lie in affine hyperplanes. In particular, we write ∂Eε = ∪iF (i), where F (i) lies in a
affine hyperplane. Define the relation i ∼ j if F (i) and F (j) share a boundary. We let

F (i)
a =

{
x ∈ Rd : dist(x, F (i)) = min

j∼i
dist(x, F (j)) and dist(x, F (i)) < a

}
.

I.e., F
(i)
a is the set of points that are at least as close to F (i) as any of its neighbours and are

within a distance a of F (i). The volume of each F
(i)
a is

|F (i)
a | = a|F (i)|Hd−1 .
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By the above argument we have

|∂a+δEε| ≤
∑
i

|F (i)
a+δ| = (a+ δ)

∑
i

|F (i)|Hd−1

= (a+ δ)|∂Eε|Hd−1

≤ (a+ δ) (|∂E|Hd−1 + ε)

Taking the limit as ε→ 0 and applying (A.1), we have

|∂aE| ≤ (a+ δ)|∂E|Hd−1

for any δ > 0. Letting δ → 0 completes the proof.
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