
Growth of Sobolev norms and loss of regularity
in transport equations

Gianluca Crippa∗ Tarek Elgindi† Gautam Iyer‡

Anna L. Mazzucato§

October 3, 2021

Abstract

We consider transport of a passive scalar advected by an irregular
divergence free vector field. Given any non-constant initial data ρ̄ ∈
H1

loc(Rd), d > 2, we construct a divergence free advecting velocity field v
(depending on ρ̄) for which the unique weak solution to the transport
equation does not belong to H1

loc(Rd) for any positive positive time. The
velocity field v is smooth, except at one point, controlled uniformly in time,
and belongs to almost every Sobolev space W s,p that does not embed into
the Lipschitz class. The velocity field v is constructed by pulling back and
rescaling an initial data dependent sequence of sine/cosine shear flows on
the torus. This loss of regularity result complements that in Ann. PDE,
5(1):Paper No. 9, 19, 2019.
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1 Introduction
This article concerns the effect of transport by an irregular vector field on a
passive scalar. In what follows, we refer to irregular transport as transport by a
vector field that does not possess Lipschitz regularity in the space variable.
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It is well known that, if the advecting vector field is Lipschitz uniformly in
time, the Cauchy-Lipschitz theory applies and the flow is well-defined pointwise
in space and time. The flow and its inverse are then also Lipschitz and, at least,
Lipschitz regularity of the initial data is preserved under the action of the flow.
In this case, the unique solution to the linear transport equation is obtained by
composing the initial data with the inverse of the flow map.

In this work, we are interested in loss of regularity for the weak solution
of the transport equation, when the advecting vector field is, in some sense to
be made precise, as close as possible to being Lipschitz in space. We therefore
consider vector fields that belong to a suitable Sobolev space in space, uniformly
in time. Informally, we then show that given any (non-constant) initial data
in Rd, d > 2, with square integrable derivative, there exists a divergence-free
vector field that is almost Lipschitz uniformly in time such that the solution of
the associated transport equation loses its regularity instantaneously in time.
The loss of regularity is due to an amplification effect on the derivative of the
solution by the action of the advecting flow.

To fix notation, denote the passive scalar by ρ = ρ(x, t), and the advecting
field by v = v(x, t). Here t > 0, x = (x1, x2, . . . , xd) ∈ Rd. We assume ρ is a
weak solution of the linear transport equation:

∂tρ+ v · ∇ρ = 0, (1)

on Rd × [0,∞), with initial data ρ̄(x).
We also use standard notation for the function spaces we use. We employ

the Sobolev space W k,p(Rd), where k ∈ Z+ and 1 6 p 6∞, defined as:

W k,p(Rd) = {f ∈ Lp(Rd) | ∂αf ∈ Lp(Rd), |α| 6 k},

where we used multi-index notation for derivatives. The spaces W r,p, where
r > 0 and 1 6 p 6∞, are then defined by interpolation. For p = 2, the space
W r,2 coincides with the space Hr, defined via the Fourier Transform. (We refer
the reader to [1] for a comprehensive introduction).

We assume that the advecting vector field v is compactly supported in Rd
and divergence-free, while we assume that the initial condition ρ̄ ∈ H1

loc(Rd).
The vector field we construct to prove loss of regularity belongs to all Sobolev
spaces W r,p(Rd), where 1 6 p < ∞ and 1 6 r < d/p + 1, uniformly in time.
By the Sobolev Embedding Theorem, these spaces give essentially all Sobolev
classes that do not embed in the Lipschitz class W 1,∞(Rd).

The loss of regularity result presented here extends the results by some of
the authors in [2]. There, it was proved that there exists a smooth, compactly
supported initial data ρ̄ and a vector field v ∈ L∞([0,∞);W 1,p(Rd)), for 1 <
p < ∞, such that the weak solution ρ of (1) does not belong to Hs for any
s > 0 instantaneously in time. (In [3], the authors prove, non-constructively,
that loss of regularity is a generic phenomenon in the sense of Baire’s Category
Theorem.) By contrast, we are able to show loss of regularity for all non-constant
initial data in H1

loc (with v depending on the initial data), but we can only prove
ρ(·, t) /∈ Hs

loc, for any s > 1 and for all t > 0.
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In both [2] and this work, we construct at the same time the vector field v
and the advected scalar ρ via an iterative procedure starting from a pair u0,
θ0 (where θ0 solves the transport equation with advecting field u0) which acts
as a building block, and applying a suitable sequence of rescalings, where each
rescaling produces a pair un, θn. In [2], u0 is a vector field that mixes a certain
initial tracer configuration optimally in time, and one can control the growth
of the Hs norm of θ0 from below for all s > 0 via interpolation, since u0 drives
all negative Sobolev norms of the tracer to zero exponentially fast. The action
of each rescaling is to accelerate the growth of the Hs-norms of θn as n→∞.
The different un and θn are combined to give rise to the vector field v and
associated weak solution ρ of (1), the Sobolev norms of which blow up for any
t > 0. This result is optimal from the point of view of the loss of regularity, in
the sense that the only regularity that is propagated generically by a velocity
field with the same regularity as v is essentially a “logarithm” of a derivative
[4, 5]. We mention also the related work [6], where the author gives an example
of a divergence-free vector field in H1 such that its flow is not in any Sobolev
space with positive regularity. His construction is random at its core, while the
one in [2] is deterministic and explicit.

In this note, we also use a suitable sequence of rescalings of basic flows. These
flows are constructed in such a way to lead to growth in time of the H1 Sobolev
norm of any initial data for the passive scalar. Although the vector field depends
on the initial data, it enjoys universal bounds. The vector fields are constructed
using shear flows and, after rescaling, the growth happens on certain cubes that
depend on the initial data ρ̄ for (1).

Our main result is the following.

Theorem 1.1. Let ρ̄ ∈ H1
loc(Rd) be a non-constant function. There exists a

compactly supported divergence-free vector field v ∈ L∞([0,∞)× Rd), depending
on ρ̄, such that the following hold:

(a) The velocity field v is smooth except at one point in Rd. Moreover,

v ∈ L∞([0,∞);W r,p(Rd)) for every 1 6 p <∞ , and 1 6 r <
d

p
+ 1 .

(b) The unique weak solution of (1) in L∞([0,∞);L2
loc(Rd)) with initial data

ρ̄ is such that

ρ(·, t) 6∈ H1
loc(Rd) for every t > 0 .

As mentioned earlier, if r > d/p+ 1 and v ∈ L∞([0,∞);W r,p(Rd)), then the
Sobolev embedding theorem implies that v is Lipschitz in space, uniformly in
time. This in turn implies that H1 regularity of the initial data is preserved and
so the threshold r < d/p+ 1 above can not be improved.

The main idea behind the proof is as follows:

1. The first step is an elementary observation about periodic functions. Take
any non-constant periodic function φ̄. Then, we claim at least one sine
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or cosine shear flow parallel to one of the coordinate axis must increase
the H1 norm of φ̄ by a constant factor (see Lemma 2.1, below).

2. By localizing and rescaling the above flow, we can obtain a countable
(shrinking) family of separated cubes that cluster at one point, so that
in each cube the flow increases the H1 norm of the advected scalar by a
larger and larger factor (see Section 3, below).

3. Now we need to ensure that the rescaling factors and the location of the
cubes can be chosen so that the H1 norm of the solution diverges at
any positive time, but the velocity field remains sufficiently regular. Our
choice ensures v ∈W r,p for every r below the critical Sobolev embedding
threshold (i.e. r < d/p+ 1).

The rest of the paper is organized as follows. In Section 2, we introduce
the basic building block in the construction and show how the building block
leads to growth of the Sobolev norms for solutions of the transport equation (1).
Then, in Section 3 we conclude the proof of loss of regularity. Lastly, in Section
4 we draw some conclusions.

Throughout the paper, we denote the total mass of any measurable (with
respect to the d-dimensional Lebesgue measure) set Ω by |Ω|, while 1Ω denotes
the indicator function of the set Ω, if not empty. We employ the notation . to
denote a bound which holds up to a generic constant that may change from line
to line, and similarly for &.

2 Construction of the basic flow and growth of
Sobolev norms

The aim of this section is to carry out the first step in the proof of the main
theorem. We first prove the elementary observation (Lemma 2.1, below) that
for any non-constant periodic function, at least one sine or cosine shear along
a coordinate axis can be used to increase its H1 norm by a constant factor.
Next we lift this construction to compactly supported cubes in Rd, and iterate
to obtain exponential growth in time (Proposition 2.2, below). This will be
the basic building block that will be rescaled and used in subsequent steps in
Section 3.

To notationally separate the construction of our building block from the
actual rescaled flow in Theorem 1.1, in this section we use u to denote the
advecting velocity field on the torus and φ to denote the passively advected
(periodic) scalar with initial data φ̄. For convenience we will work with 8-periodic
functions on the d-dimensional torus Td obtained by identifying parallel faces of
the cube [0, 8]d.

Lemma 2.1. Let A > 0 and define f1, f2 : R→ R by

f1(z) = A sin(2πz) and f2(z) = A cos(2πz) ,
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and let Ω0 ⊆ Td be a piecewise C1 domain. For any φ̄ ∈ H1(Td), T > 0, there
exists a divergence-free velocity field U (depending on 1Ω0 φ̄ and T ) such that the
following hold:

1. The velocity field U is a shear flow of the form

U(x) = ±fi(xj)ej′ , where j′ =

{
j + 1 j < d

1 j = d .
(2)

Here ej ∈ Rd is the jth standard basis vector, and xj denotes the jth
coordinate of x ∈ Td.

2. The solution to the transport equation

∂tφ+ U · ∇φ = 0 (3)

on Td with initial data φ̄ satisfies

‖∇φ(·, T )‖2L2(ΩT ) >
(

1 +
2π2A2T 2

d

)
‖∇φ̄‖2L2(Ω0) . (4)

Here ΩT is the image of Ω0 under the flow map of the shear flow U after
time T .

Proof. Given i, i′ ∈ {1, 2} and j ∈ {1, . . . , d}, we let

ui,i′,j(x) = (−1)ifi′(xj)ej′ ,

and we let φi,i′,j be the solution of the transport equation (3) with vector field
ui,i′,j . We denote by ΩT,i,i′,j the image of Ω0 under the flow map of the shear
flow ui,i′,j after time T . Since

φi,i′,j(x, t) = φ̄(x− (−1)ifi′(xj)tej′) ,

we compute

∂kφi,i′,j =

{
∂kφ̄− (−1)if ′i(xj)t∂j′ φ̄ k = j ,

∂kφ̄ k 6= j .

We square the expression above and sum over i, i′. Using the fact that
∑
i′ f

2
i′ =

A2, integrating over ΩT,i,i′,j , and changing variables back to the original domain
Ω0 gives∑

i,i′

‖∂kφi,i′,j‖2L2(ΩT,i,i′,j)
=

{
4‖∂j φ̄‖2L2(Ω0) + 8π2A2t2‖∂j′ φ̄‖2L2(Ω0) k = j .

4‖∂kφ̄‖2L2(Ω0) k 6= j ,

Summing over k ∈ {1, . . . , d} and j ∈ {1, . . . , d} then shows that∑
i,i′,j

‖∇φi,i′,j‖2L2(ΩT,i,i′,j)
= 4d‖∇φ̄‖2L2(Ω0) + 8π2A2t2‖∇φ̄‖2L2(Ω0) .

Since there are 4d terms on the sum on the left, there must exist one term that
is at least a 1/(4d) fraction of the right hand side. This immediately yields (4)
as claimed.
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Our next task is to show that for any (non-constant) initial datum, we can
find a smooth compactly supported divergence-free vector field in Rd for which
the solution to the transport equation grows exponentially in H1. This is the
main result of this section, and is what will be used in the proof of Theorem 1.1.

Proposition 2.2. Let θ̄ ∈ H1
loc(Rd) and fix α > 0. There exists a constant

C(α, d) (independent of θ̄) and a divergence-free vector field u : Rd× [0,∞)→ Rd
(depending on θ̄) such that u is piecewise constant in time, supported on the cube
Ω̃0 = (−3, 4)d, satisfies the bound

sup
06τ<∞

‖u(·, τ)‖C1(Rd) 6 C(α, d) ,

and the following two assertions hold.

1. The unique solution of the transport equation

∂tθ + u · ∇θ = 0 (5)

in Rd with initial data θ̄, satisfies

‖∇θ(·, n)‖L2(Ω0) > eαn‖∇θ̄‖L2(Ω0) ,

for all non-negative integer times n ∈ N. Here Ω0 is the cube (0, 1)d in Rd;

2. For all times t > 0, the above solution θ satisfies

‖∇θ(·, t)‖L2(Ω̃0) > eαt−β‖∇θ̄‖L2(Ω0) . (6)

Here β is a constant that depends on α and d, but not on θ̄.

Remark 2.3. With minor modifications to the proof one can ensure that the
velocity field u in Proposition 2.2 is in fact smooth, and satisfies ‖u(·, t)‖Ck 6
C(α, d, k) for all t > 0.

The proof of Proposition 2.2 consists of two steps. The first step involves
pulling back the shear flow on the torus from Lemma 2.1 to a compactly supported
flow in Rd. We do this in Lemma 2.4, below. Once this is established, we simply
iterate this procedure to obtain exponential growth at integer times. Since the
norm of u is controlled uniformly in time, the H1 norm at non-integer times can
be estimated by giving up a small factor.

Lemma 2.4. Let θ̄ ∈ H1
loc(Rd), and fix T > 0, α′ > 1. There exists a divergence-

free vector field u on Rd × [0,∞) (depending on θ̄, α′ and T ) such that the
following hold:

1. The vector field u is piecewise constant in time, supported on the cube
Ω̃0 = (−3, 4)d, and satisfies

sup
06τ6T

‖u(·, τ)‖C1(Rd) 6 C(d)
(

1 +
α′

T

)
,

for some dimensional constant C(d) > 0, that is independent of θ̄.
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2. The weak solution of the transport equation (5) in Rd with initial data θ̄
satisfies

‖∇θ(·, T )‖L2(Ω0) > α′ ‖∇θ̄‖L2(Ω0) ,

where Ω0 = (0, 1)d ⊆ Rd.

Figure 1: The rounded octago-
nal track A′1

Figure 2: The strip S ′1 ⊆ T2.

The main idea behind the proof of Lemma 2.4 is as follows. Momentarily
suppose d = 2 and view Ω0 as a subset of the two-dimensional torus T2 obtained
by identifying parallel sides of the square [0, 8]2. Now, by Lemma 2.1, there is
a horizontal or vertical trigonometric shear, U , that increases the H1 norm by
a constant factor. Suppose this shear was vertical. In this case the flow would
spread out the initial data over the vertical strip S ′1, shown in Figure 2. The
strip S ′1 ⊆ T2 is topologically an annulus, and so we can find an annulus A′1 ⊆ R2

(see Figure 1) and an area preserving diffeomorphism ϕ1 : A′1 → S′1 such that ϕ1

is the identity on Ω0. We use ϕ1 to pullback U to a vector field u on A′1. This
velocity field will spread the initial data out in the track A′1. However, since the
area of Ω0 is one eighth the area of A′1, one can give up a factor of 8, perform a
radial rotation along the track and ensure that the H1 norm in Ω0 itself grows
as desired. We now carry out the details.

Proof of Lemma 2.4. Let A′1 ⊆ R2 be the rounded octagonal track constructed
as follows (see Figure 1): the region Ω′0 is the square (0, 1)2 ⊆ R2, the regions
Ω′0,2, Ω′0,4 and Ω′0,6 are squares of side length 1. The remaining four regions are
quarter annuli with inner radius 2

π −
1
2 and outer radius 2

π + 1
2 . These radii are

chosen so that the area of each piece is 1. We observe that A′1 ⊂ (−3, 4)2.
Let S ′1 = (0, 1)× (0, 8) ⊆ T2 be the strip of width 1 parallel to the x2 axis

(see Figure 2). Let ϕ′1 : Ā′1 → S̄ ′1 ⊆ T2 be an area preserving diffeomorphism
such that

ϕ′1(x′) = x′ for all x′ ∈ Ω′0 .
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This map can be explicitly constructed by simply deforming each of the quarter
annuli into unit squares, and performing the appropriate rotation on each of the
squares Ω′0,2, Ω′0,4 and Ω′0,6.

In d-dimensions, we define A1 = A′1 × (0, 1)d−2 ⊆ Rd, and S1 = S ′1 ×
(0, 1)d−2 ⊆ Td. We observe that A1 ⊂ (−3, 4)d. We define ϕ1 : Ā1 → S̄1 by

ϕ1(x1, . . . , xd) = (ϕ′1(x1, x2), x3, . . . , xd) ,

and note that ϕ1(x) = x for all x ∈ (0, 1)d. Finally, for each j ∈ {2, . . . , d− 1}
we repeat the above procedure along the jth and (j + 1)th axis, and for j = d
we do the same along the jth and 1st axis. This yields the regions Aj , and
corresponding maps ϕj : Āj → Td.

Now, we let φ̄ be an H1 extension of (1Ω0 θ̄) ◦ ϕ−1
1 to Td. We note that

our choice of ϕj implies (1Ω0
θ̄) ◦ ϕ−1

1 = (1Ω0
θ̄) ◦ ϕ−1

j for all j ∈ {1, . . . , d}.
Let A > 0 be a large constant that will be chosen shortly. By Lemma 2.1 there
exists j ∈ {1, . . . , d} and a shear flow U on Td, directed along the jth coordinate
axis, such that U is the form (2) and

‖∇φ(·, T )‖2L2(ΩT ) >
(

1 +
2π2A2T 2

d

)
‖∇φ̄‖2L2(Ω0) .

Here φ is the solution of the transport equation (3) on Td with initial data φ̄.
For simplicity, and without loss of generality, we will now assume j = 1.

Next, we let ũ : A1 → Rd be the pullback of U under ϕ1. That is, we define

ũ = (ϕ−1
1 )∗(U) = (Dϕ−1

1 U) ◦ ϕ1 .

Since ϕ1 preserves the Lebesgue measure, and ∇·U = 0 we must also have ∇·ũ =
0. Now extend ũ to be a C1 divergence-free vector field supported in (−3, 4)d,
and let θ̃ be the solution to the transport equation

∂tθ̃ + ũ · ∇θ = 0

in Rd with initial data θ̄. By the construction of ũ and the fact that θ̄ = φ̄ ◦ ϕ1

on Ω0, we must have

θ̃(x, t) = φ(ϕ1(x), t) for all x ∈ Ωt ,

where Ωt is the image of Ω0 under the flow map of ũ after time t. Hence,

‖∇θ̃(·, T )‖2L2(A1) > ‖∇ϕ
−1
1 ‖
−2
L∞‖∇φ(·, T )‖2L2(S1) > ‖∇ϕ

−1
1 ‖
−2
L∞‖∇φ(·, T )‖2L2(ΩT )

> ‖∇ϕ−1
1 ‖
−2
L∞

(
1 +

2π2A2T 2

d

)
‖∇φ̄‖2L2(Ω0) > α′0‖∇θ̄‖2L2(Ω0),

(7)

where

α′0 = ‖∇ϕ−1
1 ‖
−2
L∞‖∇ϕ1‖−2

L∞

(
1 +

2π2A2T 2

d

)
.

8



To finish the proof, we need to replace the left hand side of the above with
‖∇θ̃(·, T )‖L2(Ω0). To do this we divide A1 into eight regions of equal measure,
and note that on at least one of these regions we must have ‖∇θ̃(·, T )‖2L2(Ω0,i)

>
1
8‖θ̃(·, T )‖2L2(A1). If we now use a flow, w̃, that shifts this region back to Ω0,
then we will have the desired inequality. We elaborate on this below.

The flow w̃ above can be constructed as follows: Let U = −e2, and view U as
a flow on the strip S1 ⊆ Td. Let w̃ be the pullback of U2 under the map ϕ1. By
construction of ϕ1 we note that for every i ∈ {0, 7}, the flow of w̃ will map the
region Ω0,i to the region Ω0,0 = Ω0 in time i. (Here Ω0,i = Ω′0,i× (0, 1)d−2 ⊆ A1,
where Ω′0,i is shown in Figure 1 and described at the beginning of the proof.)

From (7), there must exist i ∈ {0, . . . , 7} such that

‖∇θ̃(·, T )‖2L2(Ω0,i)
>

1

8
‖∇θ̃(·, T )‖2L2(A1) >

α′0
8
‖∇θ̄‖2L2(Ω0) .

With this i we define the desired velocity field u by

u(x, t) =

{
ũ(x) 0 6 t 6 T ,

w̃(x) T < t 6 T + i ,

and let θ solve (5) with initial data θ̄. Notice θ(·, t) = θ̃(·, t) for all t ∈ [0, T ], and

θ(x, T + i) = θ̃(ϕ̃−1
w̃ (x, i)) ,

where ϕ̃w̃(·, t) is the flow map of w̃ after time t. Consequently,

‖∇θ(·, T + i)‖L2(Ω0) > ‖∇ϕ−1
1 ‖
−2
L∞‖∇ϕ1‖−2

L∞‖∇θ(·, T )‖L2(Ω0,i)

> ‖∇ϕ−1
1 ‖
−2
L∞‖∇ϕ1‖−2

L∞
α′0
8
‖∇θ̄‖2L2(Ω0) > α′‖∇θ̄‖L2(Ω0) ,

provided we choose A = α′C(d)/T , for some large dimensional constant C(d)
that only depends on d. Note that

sup
06t6T+i

‖u‖C1 6 max{C1(d)A,C2(d)}

for some dimensional constants C1(d) and C2(d). Thus rescaling time by a factor
of T/(T + i) the velocity field u satisfies all the conditions in the statement of
Lemma 2.4. This concludes the proof.

We conclude this section by repeatedly applying Lemma 2.4 to prove Propo-
sition 2.2.

Proof of Proposition 2.2. We first apply Lemma 2.4 with T = 1 and α′ = eα to
obtain a velocity field u such that

‖∇θ(·, 1)‖L2(Ω0) > eα‖∇θ̄‖L2(Ω0) , and sup
06t61

‖u(·, t)‖C1(Rd) 6 C(α) .
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Now we apply Lemma 2.4 starting at time 1 with initial data θ(·, 1) to obtain a
velocity field u (defined for 1 6 t 6 2) such that

sup
16t62

‖u(·, t)‖C1(Rd) 6 C(α) ,

and
‖∇θ(·, 2)‖L2(Ω0) > eα‖∇θ(·, 1)‖L2(Ω0) > e2α‖∇θ̄‖L2(Ω0) .

Note that the constant C(α) remained unchanged, as we still applied Lemma 2.4
for a time interval of length 1. Proceeding inductively we obtain the first assertion
in Proposition 2.2.

For the second assertion, we let n ∈ N and t ∈ [n, n+ 1). Since the flow of
the velocity field u preserves the domain Ω̃0, and since sup06t<∞‖u‖C1 6 C(α),
we must have

‖∇θ(·, t)‖2
L2(Ω̃0)

>
1

C1(α)
‖∇θ(·, n)‖2

L2(Ω̃0)

>
1

C1(α)
‖∇θ(·, n)‖2L2(Ω0) >

eαn

C1(α)
‖∇θ̄‖2L2(Ω0) ,

for some constant C1(α) that depends on α but not θ̄. This immediately implies
the second assertion, finishing the proof.

3 Loss of regularity for the transport equation
In this section we conclude the proof of Theorem 1.1. The basic idea of the proof
resembles very closely that in [2], but with some important differences.

Both proofs entail an iterative construction in which some “building block” is
replicated on a disjoint family of cubes at smaller spatial scales. The building
block in [2] is an optimal mixer from [7], which enjoys uniform-in-time bounds on
the first-order derivatives and decreases the negative norms of a specific advected
scalar exponentially in time. By interpolation, the positive norms of the scalar
increase exponentially in time, and roughly speaking the iterative construction
entails a rescaling in time that makes the exponential increase an instantaneous
blow up, still keeping under control the W 1,p norm of the vector field for every
p <∞. By contrast, in the present proof we rely on the velocity field constructed
in Section 2, which increases the H1 norm of the advected scalar exponentially
in time, but in general it is not mixing. The advantage of this approach is that
higher regularity norms of the velocity field are controlled uniformly in time,
and that the growth of the Sobolev norm holds for every (nontrivial) advected
scalar with initial data in H1. We will therefore be able to keep under control
higher W r,p norms of the vector field uniformly in time, and to show loss of H1

regularity for every such initial data. In fact, since the construction is local, we
need only assume that the initial data is locally in H1(Rd).

The iterative construction becomes however less explicit, since the location
and the spatial scale of the family of cubes depend on the initial data, as we
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need to select the cubes in such a way that the derivative of the initial data is
large enough in all of the cubes.

Proof of Theorem 1.1. We divide the proof in three steps.
Step 1. Set-up of the geometric construction. We need to determine a

sequence of cubes in Rd on which we replicate rescaled constructions based on
Proposition 2.2. We denote by Qn a cube of side-length λn (both the location of
the cubes and the side-lengths are to be determined), and we denote by Q̃n the
cube with the same center as Qn and side-length 7λn. We will make sure that
{Q̃n} is a disjoint family contained in a bounded set and it clusters to a point.

On every Qn and Q̃n we replicate the construction of the velocity field un in
Proposition 2.2 (we make explicit the dependence of un on the index n, since
the velocity field in Proposition 2.2 depends on the initial data), rescaling in
space by a factor λn and in time by a factor τn (which is also to be determined).
We neglect a rigid motion, needed to make the cube Qn concentric and aligned
with the cube Ω0 in Proposition 2.2, which is irrelevant to compute all needed
norms of velocity field and advected scalar. Then we can define the velocity field
as a rescaling of the vector field un in Proposition 2.2, namely

vn(x, t) =
λn
τn

un

(
x

λn
,
t

τn

)
, (8)

and we observe that vn is supported in the cube Q̃n. Next, we let

v =

∞∑
n=1

vn .

Because the vn are supported in disjoint cubes, it is straightforward to show that
v is divergence-free and that v is C1 in space outside of a point in Rd, which is
given by the limit (in the sense of sets) of the cubes Q̃n as n→∞. By Remark
2.3, v can be taken smooth outside of this point. We let ρ be the unique weak
solution in L∞([0, T ];L2

loc(Rd)) of the transport equation (1) with advecting
field v and initial data ρ̄ (notice that v has compact support).

By a scaling computation (as in Section 3.2 of [2]) and using Remark 2.3 we
see that

‖v(·, t)‖Ẇ r,p(Rd) .
∞∑
n=1

λγn
τn
, ∀ t > 0 ,

where
γ = 1− r +

d

p
> 0 .

But, thanks to the bound (6) provided by Proposition 2.2, for every n ∈ N we
have

‖∇ρ(·, t)‖L2(Q̃n) > exp

(
αt

τn
− β

)
Mn, ∀ t > 0 ,

where we have set
Mn = ‖∇ρ̄‖L2(Qn) ,
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Therefore, using the fact that we will select the cubes Q̃n to be disjoint, it follows
that

‖∇ρ(·, t)‖L2(Rd) &
∞∑
n=1

exp

(
αt

τn

)
Mn, ∀ t > 0 .

We conclude that our task is to determine the location of the disjoint cubes
Qn and choose the sequences {λn} and {τn} in such a way that

∞∑
n=1

et/τnMn =∞, ∀ t > 0, (9)

and
∞∑
n=1

λγn
τn

<∞, ∀ γ > 0 . (10)

Step 2. Choice of the cubes. We set f = |∇ρ̄|2 ∈ L1
loc(Rd), which clearly

entails Mn = ‖f‖1/2L1(Qn). We set

Ar(x) =
1

|Qr(x)|

∫
Qr(x)

f(y) dy ,

where we denote by Qr(x) the cube of side-length r > 0 centered at x ∈ Rd, and
we set

D̃ =

{
x ∈ Rd : ∃ lim

r↓0
Ar(x) = f(x)

}
.

By the Lebesgue differentiation theorem we have |Rd \ D̃| = 0. The assumption
that ρ̄ is not a constant function translates into f 6≡ 0, which in turn guarantees
the existence of δ̄ > 0 and of a bounded set D ⊂ D̃, with |D| > 0, such that

∀x ∈ D, ∃ lim
r↓0

Ar(x) = f(x) > δ̄ > 0 .

This means that, for every x ∈ D, there exists r̄x > 0 with the property:∫
Qr(x)

f(y) dy >
δ̄

2
rd, ∀ 0 < r 6 r̄x .

We can therefore iteratively pick a monotonic sequence {λn} satisfying

0 < λn 6 e−n, λn ↓ 0, (11)

and choose the centers xn ∈ D of the cubes in such a way that the cubes
Q7λn(xn) are disjoint and, setting Qn = Qλn(xn), we have

Mn > Cλd/2n , ∀n . (12)

The existence of the sequences {xn} and {λn} as above is guaranteed by the
fact that we can inductively choose xn and λn > 0 (small enough) to have∣∣∣∣∣D \

n⋃
k=1

Q7λk(xk)

∣∣∣∣∣ > 0, ∀n .
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The fact that D has been chosen to be bounded guarantees that {xn} can
be chosen to be a convergent sequence, and {Q7λn(xn)} to be contained in a
bounded set. We conclude that {Qn} is our desired sequence of cubes.

Step 3. Choice of the sequence τn and conclusion. The lower bound (12)
shows that the condition (9) for the loss of regularity of the solution holds if

∞∑
n=1

et/τnλd/2n =∞, ∀ t > 0 . (13)

We recall condition (10) for the regularity of the velocity field:

∞∑
n=1

λγn
τn

<∞, ∀ γ > 0 . (14)

The sequence {λn} has been implicitly chosen in the previous step to satisfy
(11). We now show how it is possible to choose the sequence {τn} in such a way
that (13) and (14) hold. To this end, we set

τn =

(
log

1

λn

)−2

.

The series in condition (13) becomes

∞∑
n=1

et/τnλd/2n =

∞∑
n=1

(
elog 1

λn

)t log 1
λn
λd/2n

=

∞∑
n=1

(
1

λn

)t log 1
λn

λd/2n =

∞∑
n=1

λt log λn+d/2
n ,

which diverges since λt log λn+d/2
n → +∞ as n→∞ for every t > 0.

On the other hand, choosing N = N(γ) so that(
log

1

λn

)2

6

(
1

λn

)γ/2
, ∀n > N(γ)

(recall that λn ↓ 0), the series in condition (14) can be estimated using (11) as
follows:

∞∑
n=1

λγn
τn

=

∞∑
n=1

(
log

1

λn

)2

λγn 6
N(γ)−1∑
n=1

(
log

1

λn

)2

λγn +

∞∑
n=N(γ)

λγ/2n

6
N(γ)−1∑
n=1

(
log

1

λn

)2

λγn +

∞∑
n=N(γ)

e−γn/2 ,

which is finite for any γ > 0. This concludes the proof of the theorem.
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4 Conclusion
In this work, we study properties of weak solutions to a linear transport equation,
when the advecting velocity is rough, i.e., it has only Sobolev regularity in space.

We extend the results in [2] to show that, given any non-constant initial data
with square integrable derivative, it is possible to choose the advecting vector
field in such a way that the solution loses its regularity instantaneously. To be
more precise, we measure the regularity of the passive scalar in Sobolev spaces
and show that all derivatives of the solution of order greater or equal to 1 blow
up in L2 for any t > 0. This result shows severe ill-posedness in the sense of
Hadamard for the transport equation in Sobolev spaces. This result is sharp in
the scale of Sobolev spaces, that is, the vector field in our example belongs to all
Sobolev spaces that do not embed in the Lipschitz class.

Although the construction is not as explicit as in [2], this example is based
on a judicious choice of shear flows acting on the torus, then extended to the full
space. Our construction is not universal, in the sense that the advecting field
depends on the choice of initial data. It is an open question whether one can
construct one single vector field that make the norm of derivatives of the solution
blow up for (almost) all initial data. Even though the vector field depends in a
strong way on the initial data, the blow-up mechanism described in this work
is distinctively linear, since it is based on rescaling and superposing basic flows
and solutions.
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