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Abstract. The Ambrosio-Tortorelli approximation scheme with weighted underlying metric is investigated. It
is shown that it Γ-converges to a Mumford-Shah image segmentation functional depending on the weight ω dx,
where ω is a special function of bounded variation, and on its values at the jumps.

1. Introduction and Main Results

One of the most succesful methods for image denoising involves minimizing an energy of the form
MSα(u) + ‖u− u0‖2L2(Ω) ,

where Ω is a given domain, u0 is a (given) corrupted image, the argument of the minimization u ∈ SBV (Ω) is a
special function of bounded variation, encoding an image, with its jump set Su representing the edges of such image.
The functional MSα is the so-called Mumford-Shah image segmentation functional, defined as

MSα(u) := α

ˆ
Ω
|∇u|2 dx+ βHN−1(Su), α, β ∈ R+. (1.1) mumfordshahori

Extensive literature is available, from both computational (see e.g.
MR1488299, MR2049779
[16, 18]) and theoretical points of view (see e.g.ambrosio1989variational, de1989existence

[1, 10]).

In the following, we will always take α = β in (
mumfordshahori
1.1). The scalar tuning parameter α ∈ R+ in (

mumfordshahori
1.1), which uniformly

determines the regularization strength over the entire image, plays an important role. The problem of finding a
“good” tuning parameter α ∈ R+ is still open, and widely discussed (see e.g.,

reyes2015structure, kunisch2013bilevel
[11, 19]). However, the uniform reg-

ularization strength provided by a scalar tuning parameter α ∈ R+ is undesirable when both fine details and large
flat areas are present in the same image, which is often the case in image denoising problems. Ideally, one should
impose a weaker regularization strength in regions with fine details, so to preserve them, and a greater regularization
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strength over large flat areas, so to remove the noise.

To this aim, the following Mumford-Shah functional, coupled with a spatially dependent parameter function ω:
Ω→ [0,+∞], was introduced in

liu2016weightedMS
[14]:

MSω(u) :=
ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω− dHN−1, (1.2) mumfordshahoriom

where ω ∈ SBV (Ω)∩L∞(Ω) is positive and bounded away from 0, and ω− is defined in (
mm_negative_part
2.1) below. The minimization

problem (
mumfordshahoriom
1.2) can be viewed as a weighted version of the minimizing problem (

mumfordshahori
1.1), with underlying metric ωLN bΩ

instead of LN bΩ, where LN denotes the N dimensional Lebesgue measure. However, it is well known that the
minimization problem (

mumfordshahori
1.1) is numerically difficult to solve in an efficient and robust way, and hence we would expect

(
mumfordshahoriom
1.2) to inherit similar issues. To overcome this drawback, an alternative approach has been proposed in

liu2016weightedMS
[14], by

adopting the approximation scheme of Ambrosio and Tortorelli from
ambrosio1990approximation
[4], and by changing the underlying metric in an

appropriate manner. To be precise, in
liu2016weightedMS
[14] the authors introduced the family of elliptic functionals with a spatially

dependent parameter function ω

ATω,ε(u, v) :=
ˆ

Ω
|∇u|2 v2ω dx+

ˆ
Ω

[
ε |∇v|2 +

1
4ε

(v − 1)2
]
ω dx, (1.3) mumfordshahoriom22

where (u, v) ∈ W 1,2(Ω)×W 1,2(Ω), and a rigorous analysis of properties of the functional (
mumfordshahoriom22
1.3) was undertaken. It

turns out that, for a parameter function ω ∈ SBV (Ω) satisfying HN−1(Sω) < +∞ and

0 < l1 ≤ ess inf {ω(x) : x ∈ Ω} ≤ ess sup {ω(x) : x ∈ Ω} ≤ l2 < +∞, (1.4) pos_lower_ass2

the functionals ATω,ε Γ-converge (
attouch1984variational
[5]) to the functional MSω(u) in the L1 × L1 topology.

At this point, how to construct a “good” parameter function ω becomes relevant. In
liu2016optimal
[21], the author proposed

to construct ω via a spatially dependent bilevel learning scheme (see also
calatroni2015bilevel,kunisch2013bilevel

[9, 19]). Although the parameter function
ω suggested in

liu2016optimal
[21] does belong to SBV (Ω) ∩ L∞(Ω), i.e., the upper bound l2 in (

pos_lower_ass2
1.4) exists, there is no guarantee

that the positive lower bound l1 exists too. In fact, the analysis in both
2016arXiv160901074H, liu2016optimal
[17, 21] suggests that in certain situation a

vanishing parameter function can yield a better denoising result, and in particular, mitigate the so called staircasing
effect. Hence, it is necessary to improve the method proposed in

liu2016weightedMS
[14] so that the positive lower bounded requirement

can be removed, and this is the main topic of this article.

In addition, we remark (
mumfordshahoriom22
1.3) is one among many that approximation schemes to (

mumfordshahoriom
1.2). Indeed, recalling that the

original Ambrosio and Tortorelli approximation introduced in
ambrosio1990approximation
[4] (ω ≡ 1 in (

mumfordshahoriom22
1.3)) is the reminiscent of the “first or-

der” Cahn-Hilliard approximation, we may also consider an approximation by using the “second order” Cahn-Hilliard
approximation or even higher order Cahn-Hilliard approximations (see

fonseca2000second
[15]).

In view of this, in this article we will consider a family of approximation schemes defined by, for k = 1, 2, 3, . . .,

ATkω,ε(u, v) :=
ˆ

Ω
|∇u|2 v2ω dx+

1
2ck

ˆ
Ω

[
ε2k−1

∣∣∇(k)v
∣∣2 +

1
4kε

(1− v)2
]
ω dx,

where

ck := inf
{ ˆ +∞

0

∣∣v(k)
∣∣2 +

1
4k

(1− v)2dx : v ∈Wk,2
loc (0,+∞)

v(0) = v′(0) = · · · v(k−1)(0) = 0, v(t) = 1 if t > Kk for some Kk > 0 depends on k

}
.

It has been observed in
MR3429728
[8] that, for ω(x) ≡ α ∈ R+ and k = 2, the second order Ambrosio and Tortorelli approxima-

tion, i.e., AT 2
α(u, v), shows several advantages. For example, certain structure that are larger than a typical noise,

but still not relevant for the segmentation (edge), can be suppressed. Hence, we should expect that the weighted
version of AT 2

α, i.e., AT 2
ω , to inherit similar advantages.

In order to state the main result of our paper, we first introduce some notations.

haishiyoudehao2 Notation 1.1. Let Ω ⊂ RN be an open, bounded, Lipschitz regular domain, and let ω ∈ SBV (Ω) be a non-negative
function.
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1. We say that S ∈ R(Ω) if S̄ is HN−1-rectifiable and HN−1(S̄ \ S) = 0 (note that S̄ is HN−1-rectifiable implies
that S is HN−1-rectifiable. See

ambrosio2000functions
[3], Proposition 2.76).

2. Set F t(ω) := {x ∈ Ω : ω(x) > t}, for t > 0, and

P∞(ω) :=
⋂
t>0

F t(ω) and P 0(ω) :=
⋂
t>0

(
Ω \ F t(ω)

)
. (1.5) regularity_assumption

3. Define Aδ := {x ∈ Ω : dist(x,A) < δ} for A ⊂ Ω and δ > 0.
We can now introduce the parameter functions used in our main theorem.

Muckenhoupt_Function_Space Definition 1.2 (The spatially dependent parameter function). Let ω: Ω→ [0,+∞] belong to SBV (Ω).
1. We say that ω ∈ P(Ω) if HN−1(Sω) < +∞, and P 0(ω) ∈ R(Ω).
2. We say that ω ∈ Pr(Ω) if ω ∈ P(Ω), and

lim
δ→0

ˆ
∂((P∞(ω))δ)

ω dHN−1 +
ˆ
∂((P0(ω))δ)

ω dHN−1 = 0. (1.6) infinite_small_cover

We remark that any positive, bounded, and continuous function ω satisfies (
infinite_small_cover
1.6).

3. We say that ω ∈ Pb(Ω) if ω ∈ P(Ω), and satisfies (
pos_lower_ass2
1.4).

Our main result is the following:
AT_n_intro Theorem 1.3. Let Ω ⊂ RN be an open, bounded, Lipschitz regular domain, let ω ∈ Pr(Ω), and for k ∈ N, ε > 0,

let AT kω,ε: L1(Ω)× L1(Ω)→ [0,+∞] be given by

AT kω,ε(u, v) :=
{
ATkω,ε(u, v) if (u, v) ∈W 1,2(Ω)×W 1,2(Ω), 0 ≤ v ≤ 1,
+∞ otherwise.

Then the functionals AT kω,ε Γ-converge, with respect to the L1 × L1 topology, to

MSω(u, v) :=
{
MSω(u) if u ∈ GSBVω(Ω) and v = 1 a.e.,
+∞ otherwise,

where GSBVω(Ω) is defined in Definition
parameter_space
2.3.

Although the parameter function proposed in
liu2016optimal
[21] belongs to L∞, here we allow ω to be unbounded, although the

structure of the set P∞(Ω) has to satisfy the restrictive requirement (
infinite_small_cover
1.6).

The proof of the Γ-lim inf requires only ω ∈ P(Ω). To this aim, we first restrict our analysis to the domain
Ω\ (P 0(ω))δ, with δ > 0. Hence ω is bounded away from zero in Ω\ (P 0(ω))δ. Together with a truncation argument
on ω, we have ωK := ω ∧ K ∈ Pb(Ω \ (P 0(ω))δ), and hence the Γ-lim inf result obtained in

liu2016optimal
[21] can be applied.

Second, we take the limit δ → 0, and using the assumption ∂(P 0(ω)) ∈ R(Ω), we can obtain the lower bound in
Ω \ P 0(ω). Finally, by using the definition of P 0(ω), we recover the Γ-lim inf inequality in the entire domain Ω.

The proof of the Γ-lim sup is more delicate, requiring the extra assumption ω ∈ Pr(Ω). Still, similarly to the
Γ − lim inf inequality, we first restrict our analysis to the subset Ω′ of Ω such that ω ∈ Pb(Ω′), and apply the con-
struction from

liu2016optimal
[21]. Then, using (

infinite_small_cover
1.6), we can construct the recovery sequence in the entire domain Ω. To conclude

this section, we state a lower semicontinuity result, which will be used in Section
t_n_D_C
4, which can be viewed as the

weighted version of the main theorem of
ambrosio1994lower
[2].

lsc_SBV_thm_intro Theorem 1.4 (Theorem
lsc_SBV_thm
4.2). Assume that ω ∈ SBV (Ω) has a positive lower bound, and define

Fω(u) :=
ˆ

Ω
f(x, u,∇u)ω dx+

ˆ
Su

ω−dHN−1,
intro_om_lsc_F

where f(x, s, p) is integrable in x, continuous in s, convex with respect to p, and satisfies

|p|2 ≤ f(x, s, p) ≤ a(x) + Φ(|s|)(1 + |p|2) for all (x, s, p) ∈ Ω× R× RN

for some a ∈ L1(Ω), and some continuous function Φ: [0,+∞) → [0,+∞). Then the functional Fω is L1
loc(Ω) is

lower semicontinuous in SBV (Ω) ∩ L∞(Ω).
This article is organized as follows: in Section

Def_Preres
2 we will introduce the main definitions, and recall several preliminary

results. In Section
O_D_Toy_Sec
3, we prove the Γ-lim inf inequality, and in Section

t_n_D_C
4 we construct the recovery sequence by using

fine properties of SBV functions, and we prove Theorem
lsc_SBV_thm_intro
1.4.
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2. Definitions and Preliminary Results
Def_Preres

Throughout this paper, Ω ⊂ RN is an open, bounded set with Lipschitz boundary, and I := (−1, 1).

polyhedral Definition 2.1. We say that a subset P ⊂ Ω is (N − 1) polyhedral if it is the intersection of Ω with finitely many
(N − 1)-dimensional simplexes of RN .

SBV_SBV2_GSBV Definition 2.2. We say that u ∈ BV (Ω) is a special function of bounded variation, and we write u ∈ SBV (Ω), if
the Cantor part of its derivative, Dcu, is zero, so that (see

ambrosio2000functions
[3, equation (3.89)])

Du = Dau+Dju = ∇uLN bΩ + (u+ − u−)νuHN−1bSu. absolutely_cont_part_add

Moreover, we say that
1. u ∈ SBV 2(Ω) if u ∈ SBV (Ω) and ∇u ∈ L2(Ω);
2. u ∈ GSBV (Ω) if K ∧ u ∨ −K ∈ SBV (Ω) for all K ∈ N.

Here we always identify u ∈ SBV (Ω) with its representative ū, where ū(x) :=
(
u+(x) + u−(x)

)
/2, with

u+(x) := inf
{
t ∈ R : lim

r→0

LN (B(x, r) ∩ {u > t})
rN

= 0
}
,

and

u−(x) := sup
{
t ∈ R : lim

r→0

LN (B(x, r) ∩ {u < t})
rN

= 0
}
. (2.1) mm_negative_part

We note that u−, u+, and ū are all Borel measurable (see
evans2015measure
[12, Lemma 1]).

parameter_space Definition 2.3. Let ω ∈ P(Ω) be given. We say that u ∈ SBVω(Ω) if u ∈ L1(Ω), u ∈ SBV (Ω\ (P 0(ω))δ) for every
δ > 0, and ˆ

Ω
|∇u|2 ω dx+

ˆ
S0
u

∣∣u+ − u−
∣∣ω dHN−1 < +∞, (2.2) define_zero_int

where the jump set S0
u of u ∈ SBVω(Ω), with a vanishing parameter ω, is defined by

S0
u :=

(⋃
δ>0

Sδu

)
∪ P 0(ω).

Here Sδu denotes the jump set of u in SBV (Ω \ (P 0(ω))δ). Moreover, we say that u ∈ GSBVω(Ω) if K ∧ u ∨−K ∈
SBVω(Ω) for all K ∈ N.

Remark 2.4. Since u ∈ SBV (Ω \ (P 0(ω))δ) for every δ > 0, ∇u is defined LN a.e. in Ω \ (P 0(ω))δ, and hence
LN a.e. in Ω \ P 0(ω). Recalling that P 0(ω) ∈ R(Ω), which implies that HN−1

(
P 0(ω)

)
< +∞, we have that

∇u is defined LN a.e., hence the first integral in (
define_zero_int
2.2) is well defined. Similarly, u± is well defined for HN−1-a.e.

x ∈ Ω\P 0(ω), hence the second integral in (
define_zero_int
2.2) us also well defined. Finally, it is clear that if ω has a positive lower

bounded, then P 0(ω) = ∅ and S0
u = Su.

haishiyoudehao Notation 2.5. Let Γ ⊂ Ω be a HN−1-rectifiable set, and let x ∈ Γ be given.
haishiyoudehao_Q 1. We denote by νΓ(x) the normal vector at x with respect to Γ, and by QνΓ (x, r) the cube centered at x with side

length r and two faces normal to νΓ(x);
haishiyoudehao_T 2. Tx,νΓ denotes the hyperplane through x and normal to νΓ(x), and Px,νΓ denotes the projection operator from Γ

onto Tx,νΓ ;
haishiyoudehao_Tt 3. we define, for t ∈ R, the hyperplane Tx,νΓ (t) := Tx,νΓ + tνΓ(x);

4. we define the half-spaces and half-cubes by,

HνΓ (x)+(−) :=
{
y ∈ RN : νΓ(x) · (y − x) ≥ (≤)0

}
and

Q±νΓ (x, r) := QνΓ (x, r) ∩HνΓ (x)±,
respectively;

haishiyoudehao_R 5. for given τ > 0, we denote by Rτ,νΓ (x, r) the part of QνΓ (x, r) which lies strictly between the two hyperplanes
Tx,νΓ (−τr) and Tx,νΓ (τr).
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fine_properties_BV Theorem 2.6 (
evans2015measure
[12], Theorem 3, page 213). Assume that u ∈ BV (Ω). Then, for HN−1-a.e. x0 ∈ Su,

lim
r→0

 
B(x0,r)∩HνSu (x0)±

∣∣u(x)− u±(x0)
∣∣ N
N−1 dx = 0,

and
lim
ε→0

1
εN−1

ˆ
Su∩QνSu (x0,ε)

∣∣u+(x)− u−(x)
∣∣ dHN−1(x) =

∣∣u+(x0)− u−(x0)
∣∣ .

equivalent_norm Theorem 2.7 (
brezis2010functional
[7], Remark 8). Let Ω ⊂ RN be an open and bounded domain. Then, for any δ < δ0,

C(δ0, k,Ω) δ ‖∇u‖2L2(Ω) ≤ δ
2k−1 ‖Dαu‖2L2(Ω) +

1
2kδ
‖1− u‖2L2(Ω) ,

where |α| = k, and C(δ0, k,Ω) > 0 is some constant depending on δ0, k ∈ N, and Ω.

3. The Γ-lim inf inequality
O_D_Toy_Sec

In this section we will prove the Γ-lim inf inequality.

liminf_part_c Proposition 3.1. (Γ-lim inf) Given u ∈ L1(Ω), let ω ∈ P(Ω), and

MS−ω (u) := inf
{

lim inf
ε→0

ATkω,ε(uε, vε) :

(uε, vε) ∈W 1,2(Ω)×W 1,2(Ω), uε → u in L1, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

Then MS−ω (u) ≥MSω(u).
bdd_away_zero

3.1. Special case: ω ∈ Pb(Ω). In Section
bdd_away_zero
3.1 we prove Proposition

liminf_part_c
3.1 when

0 < l1 ≤ ess inf {ω(x) : x ∈ Ω} ≤ ess sup {ω(x) : x ∈ Ω} ≤ l2 < +∞, (3.1) easy_way_out

and, without loss of generality, l1 = 1.

liminf_part_ref Proposition 3.2 (
liu2016optimal
[21], Proposition 3.1). Given ω ∈ Pb(Ω) and u ∈ L1(Ω), let

MS−ω (u) := inf
{

lim inf
ε→0

AT 1
ω,ε(uε, vε) :

(uε, vε) ∈W 1,2(Ω)×W 1,2(Ω), uε → u in L1, vε → 1 in L1, 0 ≤ vε ≤ 1 a.e.
}
.

Then MS−ω (u) ≥MSω(u).

3.2. General case: ω ∈ P(Ω). Now we are ready to prove Proposition
liminf_part_c
3.1. In the following, we set

Lδ := {x ∈ Ω : ω(x) > δ} ∩
(
Ω \ (P 0(ω))δ

)
,

where P 0(ω) is from Definition
Muckenhoupt_Function_Space
1.2, and

ωl := l ∧ ω, l > 0.
We recall from

evans2015measure
[12, Theorem 1] that, for L1 a.e. δ > 0, Lδ has finite perimeter.

Proof of Proposition
liminf_part_c
3.1. Without loss of generality, assume that M := MS−ω (u) < ∞. Let {(uε, vε)}ε>0 ⊂

W 1,2(Ω) × W 1,2(Ω) be such that uε → u in L1(Ω), vε → 1 in L1(Ω), and limε→0 ATkω,ε(uε, vε) = MS−ω (u).
Fix δ > 0 and l > 0, and note that

lim inf
ε→0

ATkω,ε(uε, vε)

≥ lim inf
ε→0

ˆ
Lδ

|∇uε|2 v2
ε ωl dx+

1
ck

ˆ
Lδ

[
ε2k−1

∣∣∇(k)vε
∣∣2 +

1
ε4k

(1− vε)2
]
ωl dx

≥
ˆ
Lδ

|∇u|2 ωl dx+
ˆ
Sδu∩Lδ

ω−
l
dHN−1,

where in the last inequality we used Proposition
liminf_part_ref
3.2. Letting l↗ +∞ on the right hand side, we have

lim inf
ε→0

ATkω,ε(uε, vε) ≥
ˆ
Lδ

|∇u|2 ω dx+
ˆ
Sδu∩Lδ

ω− dHN−1
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for L1 a.e. δ > 0.

Finally, taking the limit δ ↘ 0 on the right hand side, in view of (
regularity_assumption
1.5), and the fact that Sδu ∩ Lδ ⊂ Sδ

′
u ∩ Lδ′

for δ > δ′, by the Monotone Convergence Theorem we infer

lim inf
ε→0

ATkω,ε(uε, vε) ≥
ˆ

Ω\P0(ω)
|∇u|2 ω dx+

ˆ
S0
u\P0(ω)

ω− dHN−1

=
ˆ

Ω
|∇u|2 ω dx+

ˆ
S0
u\P0(ω)

ω− dHN−1 =
ˆ

Ω
|∇u|2 ω dx+

ˆ
S0
u

ω− dHN−1,

where in the last equality we used the fact that ω−(x) ≤ ω(0) = 0 in P 0(ω). �

4. The Γ-lim sup Inequality
t_n_D_C

This section is devoted to the proof of the Γ-lim sup inequality, and Theorem
AT_n_intro
1.3, under the additional assumption

ω ∈ Pr(Ω).

The main goal is to prove the following proposition.

limsup_n_c Proposition 4.1. (Γ-lim sup) Given u ∈ L1(Ω) ∩ L∞(Ω), let ω ∈ Pr(Ω), and

MS+
ω (u) := inf

{
lim sup
ε→0

ATkω,ε(uε, vε) :

(uε, vε) ∈W 1,2(Ω)×W 1,2(Ω), uε → u in L1(Ω), vε → 1 in L1(Ω), 0 ≤ vε ≤ 1
}
.

Then E+
ω (u) ≤ Eω(u).

To prove this result, we will establish some preliminary results on the lower semicontinuity of convex integrals in the
space SBVω(Ω) ∩ L∞(Ω), under the condition that ω ∈ P(Ω) has a positive lower bound.

lsc_SBV_om
4.1. Lower semicontinuity results in the space SBVω(Ω) ∩ L∞ with a positive lower bounded ω. In this
section we study the lower semicontinuity of integral functionals defined in SBVω(Ω), with respect to the L∞(Ω)
topology. Consider

Fω(u) :=
ˆ

Ω
f(x, u,∇u)ω dx+

ˆ
Su

ω−dHN−1,
SBV_om_lsc_F

where f(x, s, p) is a nonnegative Carathéodory function in x, and continuous in (s, p), and the parameter function
ω ∈ P(Ω) is assumed to be bounded from below by a constant l > 0, i.e.

ess inf
{
ω−(x) : x ∈ Ω

}
= l > 0. (4.1) llll_om_lsc_F

Without loss of generality, we take l = 1. This condition implies that the space SBVω is embedded in SBV (Ω), and
hence we may apply results concerning SBV (Ω).

The main result is the following.

lsc_SBV_thm Theorem 4.2. Given ω ∈ P(Ω) satisfying (
llll_om_lsc_F
4.1), assume that f(x, s, p) is convex with respect to p, and satisfies the

condition
|p|2 ≤ f(x, s, p) ≤ a(x) + Φ(|s|)(1 + |p|2) for all (x, s, p) ∈ Ω× R× RN

for some a ∈ L1(Ω), and some continuous function Φ: [0,+∞) → [0,+∞). Then, for any sequence {uε}ε>0 ⊂
L∞(Ω) such that uε → u in L1(Ω), and

sup
{
‖uε‖L∞(Ω) : ε > 0

}
< +∞, (4.2) buqingyuandebdd

we have
lim inf
ε→0

Fω(uε) ≥ Fω(u).

Proof. Without loss of generality, we may assume that M := lim infε→0 F (uε) < +∞. Hence,

F1(uε) ≤ Fω(uε) ≤M + 1 (4.3) finite_jump_num_asp
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for all sufficiently small ε > 0. Therefore, by (
buqingyuandebdd
4.2) and

ambrosio2000functions
[3, Theorem 4.7], there exists u ∈ SBV (Ω) ∩ L∞(Ω) such

that uε ⇀ u in BV (Ω). Fix K ∈ N, and define
fK(x, s, p) := f(x, s, p)(ω ∧K),

and by
ambrosio1994lower
[2, Theorem 0.1], we have

lim inf
ε→0

ˆ
Ω
f(x, uε,∇uε)ω dx ≥ lim inf

ε→0

ˆ
Ω
fK(x, uε,∇uε) dx ≥

ˆ
Ω
fK(x, u,∇u) dx.

Letting K ↗ +∞, we recover

lim inf
ε→0

ˆ
Ω
f(x, uε,∇uε)ω dx ≥

ˆ
Ω
f(x, u,∇u)ω dx.

We next show that
lim inf
ε→0

ˆ
Suε

ω−dHN−1 ≥
ˆ
Su

ω−dHN−1. (4.4) lower_bdd_3dnd

To this aim, we first prove it in the case N = 1, and then recover the general case N > 1 using the slicing argument
from

liu2016optimal
[21, Lemma 3.9].

In the case N = 1, we need to show that

lim inf
ε→0

∑
x∈Suε

ω−(x) ≥
∑
x∈Su

ω−(x). (4.5) lower_bdd_2dnd

Recalling (
finite_jump_num_asp
4.3), note that

sup
ε>0
H0(Suε ) < +∞ and H0(Su) < +∞,

and, without loss of generality, we may assume that Suε = {xε}, and Su = {x}. Hence, the convergence u ⇀ u in
BV (Ω) implies that xε → x. We claim that

lim inf
ε→0

ω−(xε) ≥ ω−(x). (4.6) lower_bdd_1dnd

If x /∈ Sω , then there exists δ > 0 such that
Sω ∩ (x− δ, x+ δ) = ∅,

so ω is absolutely continuous in (x− δ, x+ δ), and (
lower_bdd_1dnd
4.6) is trivially satisfied with ω(x) = ω−(x), with the inequality

in (
lower_bdd_1dnd
4.6) being actually an equality.

Suppose that x ∈ Sω and, without loss of generality, assume that x = 0. Since H0(Sω) < ∞, choose r̄ > 0
such that

Sω ∩ (0− r̄, 0 + r̄) = 0.
As ω is absolutely continuous in (−r̄, 0) and (0, r̄), we may extend ω uniquely to x = 0 to the left and right (see

leoni2009first
[20,

Exercise 3.7, (1)]), which allows us to define
ω(0+) := lim

x↘0+
ω(x) and ω(0−) := lim

x↗0−
ω(x).

lemma_jump_jiuehuishi
This gives immediately

lim inf
ε→0

ω−(xε) ≥ ω(0−).

We next claim that ω(0−) = ω−(0). By part 2 of Theorem
fine_properties_BV
2.6, we have

ω−(0) = lim
r→0

1
r

ˆ 0

−r
ω(t) dt = ω(0−),

where in the last equality we used basic properties of absolutely continuous functions, and the definition of ω(0−).
Thus (

lower_bdd_1dnd
4.6) holds, hence (

lower_bdd_2dnd
4.5) holds too.

We now claim (
lower_bdd_3dnd
4.4). Define ωK := ω ∧ K, and by Lemma

slicing_single
A.6, we obtain a set S ⊂ Su such that Lemmas

slicing_single
A.6,

slicing_singlea
a-

slicing_singlec
c, are satisfied. Fixed one such Q ∈ Q, and observe that, due to ω−x,ν(t) = ω−(x+ tν) (see

ambrosio2000functions
[3, Remark 3.109]),

we have

lim inf
ε→0

ˆ
Suε∩Q

ω−K dHN−1
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= lim inf
ε→0

ˆ
[QνS (x0,r0)]

νS(x0)

 ∑
t∈S(uε)x,νS(x0)

∩[QνS (x0,r0)]
x,νS(x0)

(ω−K)x,νS(x0)(t)

 dHN−1(x)

≥ lim inf
ε→0

ˆ
Tg(x0,r0)

 ∑
t∈S(uε)x,νS(x0)

∩[QνS (x0,r0)]
x,νS(x0)∩S

(ω−K)x,νS(x0)(t)

 dHN−1(x)

≥
ˆ
Tg(x0,r0)

lim inf
ε→0

 ∑
t∈S(uε)x,νS(x0)

∩[QνS (x0,r0)]
x,νS(x0)∩S

(ω−K)x,νS(x0)(t)

 dHN−1(x)

=
ˆ
Tg(x0,r0)

ω−K(x) dHN−1(x) =
ˆ
Tg(x0,r0)

ω−K(x′, lx0 (x′))dLN−1(x′).

Using a similar argument as in
liu2016weightedMS
[14, equation (3.33)], we have, for any τ, η > 0,

lim inf
ε→0

ˆ
Suε

ω− dHN−1 ≥ lim inf
ε→0

ˆ
Suε

ω−K dHN−1 ≥ lim inf
ε→0

∑
Q∈Q

ˆ
Suε∩Q

ω−K dHN−1

≥
1

√
1 + τ2

∑
Q∈Q

ˆ
S∩Q

ω−K dHN−1 ≥
1

√
1 + τ2

(ˆ
Su

ω−K dHN−1 − ‖ωK‖L∞ η

)
.

Taking first the limits τ ↘ 0 and η ↘ 0, and then K ↗ +∞, gives (
lower_bdd_3dnd
4.4). �

finite_down Lemma 4.3. Given u ∈ SBVω(Ω) ∩ L∞(Ω) satisfying MSω(u) < +∞, where ω ∈ Pr(Ω) and satisfies (
llll_om_lsc_F
4.1), there

exists a sequence {uε}ε>0 ⊂ SBV 2
ω (Ω) ∩ L∞(Ω) such that the following assertions hold:

finite_down_a 1. ‖uε‖L∞ ≤ ‖u‖L∞ ;
finite_down_b 2. Suε ⊂ Ω \ (P∞(ω))o(ε) (note that ess sup

{
ω(x) : x ∈ Ω \ (P∞(ω)o(ε)

}
< +∞);

regu_smooth_approxfinite_down_c 3.
lim
ε→0

ˆ
Ω
|∇uε|2 ω dx+

ˆ
Suε

ω−dHN−1 =
ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω−dHN−1.

Proof. Let ε > 0 be sufficiently small, so thatˆ
(P∞(ω))o(ε)

|∇u|2 ωdx < o(ε). (4.7) finite_down_shrink

Let Kε be a compact subset of Su \ (P∞(ω))o(ε) such that

HN−1 (Su \Kε) ≤ ε and
ˆ
Su\Kε

ω− ≤ ε.

Consider the minimization problem

min
{ˆ

Ω
|∇v|2 ω dx+

ˆ
Sv\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1

+
1
ε

ˆ
Ω
|u− v|2 ω dx : v ∈ SBV 2

ω (Ω) and Sv ⊂ Ω \ (P∞(ω))o(ε)
}
. (4.8) yi_limit

By a truncation argument, we may impose the restriction that v satisfies ‖v‖L∞(Ω) ≤ ‖u‖L∞(Ω). Let {vn}∞n=1 be a
minimizing sequence. Then,ˆ

Ω
|∇vn|2 dx+HN−1 (Svn \Kε) +HN−1 (Kε) +

1
ε

ˆ
Ω
|u− vn|2 dx

≤
1
l

[ˆ
Ω
|∇vn|2 ω dx+

ˆ
Svn\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1 +
1
ε

ˆ
Ω
|u− vn|2 ω dx

]
<

1
l
(Mε + 1),

where Mε is defined as the minimum of (
yi_limit
4.8), with ε > 0 fixed.
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Assume first that Mε < +∞. By
ambrosio2000functions
[3, Theorem 4.7], there exists uε ∈ SBV (Ω) such that vn ⇀ uε in BV (Ω), and for

HN−1-a.e. x ∈ Suε , there exists xn ∈ Svn such that xn → x, which implies that Suε ⊂ Ω \ (P∞(ω))o(ε). Moreover,
by Theorem

lsc_SBV_thm
4.2, we have uε ∈ SBVω ∩ L∞(Ω), and

ˆ
Ω
|∇uε|2 dx+

ˆ
Suε\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1 +
1
ε

ˆ
Ω
|u− uε|2 ω dx

≤ lim inf
n→∞

ˆ
Ω
|∇vn|2 ω dx+

ˆ
Svn\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1 +
1
ε

ˆ
Ω
|u− vn|2 ω dx. (4.9) yi_limit2

Define

ūε :=
{
u(x) if x ∈ Ω \ (P∞(ω))2o(ε),

0 otherwise.

Then Sūε ⊂ Ω \ (P∞(ω))o(ε), and ˆ
Ω
|∇ūε|2 ω dx ≤

ˆ
Ω
|∇u|2 ω dx.

In view of (
infinite_small_cover
1.6),ˆ

Sūε

ω−dHN−1 ≤
ˆ
Su

ω−dHN−1 +
ˆ
∂((P∞(ω))ε)

ω−dHN−1 ≤
ˆ
Su

ω−dHN−1 +O(ε),

hence Mε < +∞. Let v = ūε in (
yi_limit
4.8), by (

finite_down_shrink
4.7) and (

yi_limit2
4.9), we haveˆ

Ω
|∇uε|2 ω dx+

ˆ
Suε\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1 +
1
ε

ˆ
Ω
|u− uε|2 ω dx

≤
ˆ

Ω
|∇ūε|2 ωdx+

ˆ
Sūε\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1 +
1
ε

ˆ
Ω
|u− ūε|2 ω dx

≤
ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω− dHN−1 +O(ε) + o(ε)/O(ε) ≤ C < +∞. (4.10) yi_limit3

In particular, ˆ
Ω
|u− uε|2 ω dx ≤ Cε→ 0.

By (
yi_limit2
4.9), Theorem

lsc_SBV_thm
4.2, and ess inf ω > l > 0, up to a subsequence it holds

lim
ε→0

ˆ
Ω
|∇uε|2 ω dx ≥

ˆ
Ω
|∇u|2 ω dx, and lim

ε→0

ˆ
Suε

ω− dHN−1 ≥
ˆ
Su

ω− dHN−1.

Hence, in view of (
yi_limit3
4.10),ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω− dHN−1 ≤ lim inf
ε→0

ˆ
Ω
|∇uε|2 ω dx+

ˆ
Suε

ω− dHN−1

≤ lim sup
ε→0

ˆ
Ω
|∇uε|2 ω dx+

ˆ
Suε\Kε

ω−dHN−1 +
ˆ
Kε

ω−dHN−1 +
1
ε

ˆ
Ω
|u− uε|2 ω dx

≤
ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω− dHN−1 + lim sup
ε→0

(O(ε) + o(ε)/O(ε))

=
ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω− dHN−1.

Finally, we obtain

lim
ε→0

ˆ
Ω
|∇uε|2 ω dx+

ˆ
Suε

ω− dHN−1 =
ˆ

Ω
|∇u|2 ω dx+

ˆ
Su

ω− dHN−1,

and

lim
ε→0

ˆ
Suε\Kε

ω− = 0, and lim
ε→0

ˆ
Kε

ω− =
ˆ
Su

ω−, (4.11) yi_limit4

concluding the proof �
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Remark 4.4. We note that uε is a local minimum for the functionˆ
Ω
|∇v|2 ω dx+

ˆ
Sv

ω−dHN−1 +
1
ε

ˆ
Ω
|u− v|2 ω dx

in Ω \Kε. It can be shown that

lim
ε→0

ˆ
(Suε\Suε )∩(Ω\Kε)

ω− = 0,

which, together with (
yi_limit4
4.11), yields

lim
ε→0

ˆ
Suε\Suε

ω− = 0. (4.12) yi_limit5

Although (
yi_limit5
4.12) could simplify the argument used in Section

yi_limit_sec
4.3, and relax the assumptions on P∞(ω), to keep this

article self contained, we refrain from using this fact.
first_step_finites

4.2. Construction of recovery sequence with ω ∈ Pb(Ω).

limsup_n_ref Proposition 4.5 (
liu2016optimal
[21, Proposition 4.1]). Given ω ∈ Pb(Ω) and u ∈ L1(Ω) ∩ L∞(Ω), set

MS+
ω (u) := inf

{
lim sup
ε→0

AT 1
ω,ε(uε, vε) :

(uε, vε) ∈W 1,2(Ω)×W 1,2(Ω), uε → u in L1, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

Then MS+
ω (u) ≤MSω(u).

yi_limit_sec
4.3. Proof of Proposition

limsup_n_c
4.1. We are now ready to prove the main result of this section. To do so, we define

localized versions of MSω and ATkω,ε by

MSω(u)(A) :=
ˆ
A
|∇u|2 ω dx+

ˆ
Su∩A

ω− dHN−1,

and
ATkω,ε(u, v)(A) :=

ˆ
A
|∇u|2 v2ω dx+

1
2ck

ˆ
A

[
ε2k−1

∣∣∇(k)v
∣∣2 +

1
4kε

(1− v)2
]
ω dx,

respectively. Here A ⊂ Ω is an open set.

Proof of Proposition
limsup_n_c
4.1. Let ω ∈ Pr(Ω) be given. By Definition

Muckenhoupt_Function_Space
1.2, we have for any τ > 0,

ess inf
{
ω(x) : x ∈ Ω \ (P 0(ω))η

}
> 0.

Define

uη :=
{

0 if x ∈ (P 0(ω))η/3,
u(x) otherwise.

Then we have Suη ⊂ Ω \ (P 0(ω))η/4, and observe that

MSω(uτ ) =
ˆ

Ω
|∇uη |2 ω dx+

ˆ
Suη

ω−dx ≤
ˆ

Ω
|∇u|2 ω dx+

ˆ
S0
u

ω−dx+
ˆ
∂((p0(ω))η)

ω−dx

≤
ˆ

Ω
|∇u|2 ω dx+

ˆ
S0
u

ω−dx+O(η) = MSω(u) +O(η).

Applying Lemma
finite_down
4.3 on uη , inside Ω \ (p0(ω))η/4, gives a sequence uη,τ such that

MS(uη,τ )(Ω \ (p0(ω))η/4) ≤MS(uτ ) +O(τ) ≤MS(u) +O(τ) +O(η),

and
Suη,τ ⊂ Ω \

(
(P 0(ω))η/4 ∪ (P∞(ω))τ

)
and ω ∈ Pb

(
Ω \
(
(P 0(ω))η/4 ∪ (P∞(ω))τ

))
.

Then, by Proposition
limsup_n_ref
4.5, there exists

{ũη,τ,ε, ṽη,τ,ε}ε>0 ⊂W
1,2
(
Ω \
(
(P 0(ω))η/4 ∪ (P∞(ω))τ

))
×W 1,2

(
Ω \
(
(P 0(ω))η/4 ∪ (P∞(ω))τ

))
such that either

lim sup
ε→0

AT 1
ω,ε(ũη,τ,ε, ṽη,τ,ε)

(
Ω \
(
(P 0(ω))η/4 ∪ (P∞(ω))τ

))
≤MS(uη,τ )(Ω \ (p0(ω))η/4),
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or
AT 1

ω,ε(ũη,τ,ε, ṽη,τ,ε)
(
Ω \
(
(P 0(ω))η/4 ∪ (P∞(ω))τ

))
≤MS(uη,τ )(Ω \ (p0(ω))η/4) +O(ε)

holds.
Let ϕη,τ to be a cut off function such that ϕη,τ ∈ C∞(Ω),

ϕη,τ (x) ≡ 1 in Ω \
(
(P 0(ω))η/3 ∪ (P∞(ω))2τ

)
and ϕη(x) ≡ 0 in

(
(P 0(ω))η/4 ∪ (P∞(ω))τ

)
.

Define
uη,τ,ε := (1− ϕη,τ ) ũη,τ,ε,

and
vη,τ,ε := ṽη,τ,ε ∧ ṽε(dist(∂

[
(P 0(ω))η/4 ∪ (P∞(ω))τ

]
)),

with ṽε from
liu2016weightedMS
[14, equation (4.29)].

Hence, we have {uη,τ,ε, vη,τ,ε}ε>0 ⊂W
1,2(Ω)×W 1,2(Ω), and

lim sup
ε→0

A1
ω,η(uη,τ,ε, vη,τ,ε) ≤MSω(uη,τ ) +

ˆ
∂((P0(ω))η/4)

ω+dHN−1 +
ˆ
∂((P∞(ω))τ )

ω+dHN−1. (4.13) last_need_1111

We claim that the last term on the right hand side of (
last_need_1111
4.13) vanishes. Indeed, we have

lim sup
η→0

ˆ
∂((P0(ω))η/4)

ω+dHN−1 = lim sup
η→0

ˆ
∂((P0(ω))η/4)

(2ω − ω−) dHN−1 ≤ lim sup
η→0

ˆ
∂((P0(ω))η/4)

2ω dHN−1 = 0,

where in the last equality we used (
infinite_small_cover
1.6). This, together with (

last_need_1111
4.13), concludes the proof by letting η → 0. �

Proof of Theorem
AT_n_intro
1.3. The lim inf inequality follows from Proposition

liminf_part_c
3.1. On the other hand, for any given u ∈

GSBV (Ω) such that MSω(u) <∞, we have, by Lebesgue Monotone Convergence Theorem,
MSω(u) = lim

K→∞
MSω(K ∧ u ∨ −K).

Using a diagonal argument, together with Proposition
limsup_n_c
4.1, concludes the proof. �

Appendix

We consider the one-dimensional case N = 1 first, and then extend to the general case N > 1 via the slicing
argument introduced in

liu2016weightedMS
[14]. To avoid confusion, when N = 1, we define the approximating functional, with a

spatially dependent parameter ω ∈ P(I), as

Tkω,ε(u, v) =
ˆ
I

∣∣u′∣∣2 v2ω dx+
1

2ck

ˆ
I

[
ε2k−1 |∇v|2 +

1
2kε

(1− v)2
]
ω dx,

and the one-dimensional Mumford-Shah functional, with a spatially dependent parameter ω ∈ P(I), by

Tω(u) =
ˆ
I

∣∣u′∣∣2 ω dx+
∑
x∈Su

ω−(x).

We recall that ω ∈ P(I) implies H0(Sω) <∞. Also, we note that ω− is defined H0-a.e, hence everywhere in I. We
begin with an auxiliary result.

osl_small_contral Proposition A.1. Let {vε}ε>0 ⊂W 1,2(I) be such that 0 ≤ vε ≤ 1, vε → 1 in L1(I) and a.e., and

lim sup
ε→0

ˆ
I

[
ε2k−1

∣∣∣v(k)
ε

∣∣∣2 +
1

4kε
(1− vε)2

]
dx <∞.

Then, for any 0 < η < 1, there exists an open set Hη ⊂ I such that I \Hη is a collection of finitely many points in
I, and for every set T ⊂⊂ Hη, we have T ⊂ Bηε for all sufficiently small ε > 0, where

Bηε :=
{
x ∈ I : v2

ε(x) ≥ η
}
.

Proof. Using Theorem
equivalent_norm
2.7, we have there exists C := C(ε0, k,Ω) > 0 such that

lim sup
ε→0

ˆ
I

[
ε
∣∣v′ε∣∣2 +

1
4ε

(1− vε)2
]
dx ≤ C lim sup

ε→0

ˆ
I

[
ε2k−1

∣∣∣v(k)
ε

∣∣∣2 +
1

4kε
(1− vε)2

]
dx <∞.

Hence, by the arguments from
ambrosio1990approximation
[4, pages 1020-1021], we conclude the proof. �
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We next study the minimization problem

ck := inf
{ ˆ +∞

0

∣∣v(k)
∣∣2 +

1
4k

(1− v)2dx : v ∈Wk,2
loc (0,+∞)

v(0) = v′(0) = · · · v(k−1)(0) = 0, v(t) = 1 if t > Kk for some Kk > 0 depends on k

}
.

represent_constant_k Lemma A.2. The constant ck is positive and

ck = inf
{ ˆ +∞

0

∣∣v(k)(x)
∣∣2 +

1
4k

(1− v(x))2dx : v ∈Wk,2
loc (0,+∞),

v(0) = v′(0) = · · · v(k−1)(0) = 0, lim
x→∞

v(x) = 1
}
.

Proof. The proof employs the arguments used in
fonseca2000second
[15, Lemma 2.5]. Moreover, by solving the associated Euler-Lagrange

equation, we have also
c1 =

1
2
, c2 =

1
8
√

2, c3 =
1
16
.

�

liminf_part_1d_c Proposition A.3. (Γ-lim inf) Given u ∈ L1(I), let ω ∈ P(I) satisfying (
easy_way_out
3.1), and

T−ω (u) := inf
{

lim inf
ε→0

Tkω,ε(uε, vε) :

(uε, vε) ∈W 1,2(I)×W 1,2(I), uε → u in L1, vε → 1 in L1, 0 ≤ vε ≤ 1
}
.

Then T−ω (u) ≥ Tω(u).

Proof. Assume thatM := T−ω (u) <∞, and choose uε and vε that are admissible for T−ω (u), such that limε→0 Tkω,ε(uε, vε) =
T−ω (u). Since infx∈I ω(x) ≥ 1, we have lim infε→0 Tk1,ε(uε, vε) ≤ lim infε→0 Tkω,ε(uε, vε) < +∞. By Theorem

equivalent_norm
2.7 we

have
T 1

1,ε(uε, vε) ≤ CkTk1,ε(uε, vε) ≤ CkTkω,ε(uε, vε) ≤M + 1,
and by

ambrosio1990approximation
[4], we get also

u ∈ GSBV (I) and H0(Su) < +∞. (A.1) use_la_nonsm0

The proof would be complete provided we show the following inequalities:ˆ
I

∣∣u′∣∣2 ω dx ≤ lim inf
ε→0

ˆ
I

∣∣u′ε∣∣2 v2
ε ω dx < +∞, (A.2) use_la_nonsm1

and ∑
x∈Su

ω−(x) ≤ lim inf
ε→0

1
ck

ˆ
I

[
ε2k−1

∣∣∣v(k)
ε

∣∣∣2 +
1

2kε
(1− vε)2

]
ω dx < +∞. (A.3) use_la_nonsm2

Up to a (not relabeled) subsequence, we have uε → u and vε → 1 a.e. in I, with

lim sup
ε→0

1
2ck

ˆ
I

[
ε2k−1

∣∣∣v(k)
ε

∣∣∣2 +
1

2kε
(1− vε)2

]
dx ≤ lim sup

ε→0

1
2ck

ˆ
I

[
ε2k−1

∣∣∣v(k)
ε

∣∣∣2 +
1

2kε
(1− vε)2

]
ω dx < +∞.

By Proposition
osl_small_contral
A.1, we deduce that, for a fixed η ∈ (1/2, 1), there exists a set Hη such that for every T ⊂⊂ Hη , it

holds ˆ
T

∣∣u′∣∣2 ω dx ≤ lim inf
ε→0

ˆ
T

∣∣u′ε∣∣2 ω dx ≤ 1
η

lim inf
ε→0

ˆ
I
v2
ε

∣∣u′ε∣∣2 ω dx. (A.4) liminf_2

Here we used
fonseca2015modern
[13, Theorem 6.3.7] in the first inequality. By taking the limit T ↗ Hη on the left hand side of (

liminf_2
A.4)

first, and then the limit η ↗ 1 on the right hand side, we get (
use_la_nonsm1
A.2).

We next show (
use_la_nonsm2
A.3). Let t ∈ Su be given, and for simplicity, assume that t = 0 and t ∈ Sω . By the same

arguments in
ambrosio1990approximation
[4, page 1021], we can prove that there exist

{
t1n
}∞
n=1

,
{
t2n
}∞
n=1

, and {sn}∞n=1 such that

−1 < t1n < sn < t2n < 1, and lim
n→∞

t1n = lim
n→∞

t2n = lim
n→∞

sn = 0,
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and, up to a subsequence, also

lim
n→∞

vε(n)(t1n) = lim
n→∞

vε(n)(t2n) = 1, and lim
n→∞

vε(n)(sn) = 0.

We conclude, using Lemma
represent_constant_k
A.2, that

lim inf
n→∞

1
2ck

ˆ sn

t1n

[
ε(n)2k−1

∣∣(vε(n))(k)
∣∣2 +

1
4kε(n)

(1− vε(n))2
]
dx ≥

ck

2ck
=

1
2
,

and, since ω is positive,

lim inf
n→∞

1
2ck

ˆ t2n

t1n

[
ε(n)2k−1

∣∣(vε(n))(k)
∣∣2 +

1
4kε(n)

(1− vε(n))2
]
ω(x) dx

≥
(

lim inf
n→∞

ess inf
r∈(t1n,t2n)

ω(r)
)

lim inf
n→∞

1
2ck

{ˆ sn

t1n

[
ε(n)2k−1

∣∣(vε(n))(k)
∣∣2 +

1
4kε(n)

(1− vε(n))2
]
dx (A.5) revel_1d_c_lower

+
ˆ t2n

sn

[
ε(n)2k−1

∣∣(vε(n))(k)
∣∣2 +

1
4kε(n)

(1− vε(n))2
]
dx

}
≥
(1

2
+

1
2

)
ω−(0) = ω−(0).

Moreover, if t ∈ Su \ Sω , we may use the above arguments to infer that (
revel_1d_c_lower
A.5) holds also with ω−(0) replaced by

ω(0), since t = 0 /∈ Sω implies ω−(0) = ω(0).

Finally, since Su ⊂ I \ Hη , by (
use_la_nonsm0
A.1) we have that Su is a finite collection of points, and we may repeat the above

arguments for all t ∈ Su by partitioning I into disjoint intervals, each of which containing at most one single point
of Su, to deduce (

use_la_nonsm2
A.3). �

We next recall some notations and results from
liu2016weightedMS
[14], and prove Proposition

liminf_part_c
3.1 with N > 1, under the assumption

that ω ∈ W(I) satisfies (
easy_way_out
3.1).

Let SN−1 be the unit sphere in RN , and let ν ∈ SN−1 be a fixed direction. We set
Πν :=

{
x ∈ RN : 〈x, ν〉 = 0

}
, Ων := {x ∈ Πν : Ωx,ν 6= ∅} ,

Ω1
x,ν := {t ∈ R : x+ tν ∈ Ω} for x ∈ Πν ,

Ωx,ν := {y = x+ tν : t ∈ R} ∩ Ω,
ux,ν(t) := u(x+ tν), x ∈ Ων , t ∈ Ω1

x,ν .

(A.6) slicing_notation

Set x = (x′, xN ) ∈ RN , where x′ ∈ RN−1 denotes the first N − 1 components of x ∈ RN , and given l: RN−1 → R
and G ⊂ RN−1, we define the graph of l over G as

F (l;G) :=
{

(x′, xN ) ∈ RN : x′ ∈ G, xN = l(x′)
}
.

If l is Lipschitz regular, then we call F (l;G) a Lipschitz - (N − 1) - graph.

slice_deri_dirc Theorem A.4 (
ambrosio1990approximation
[4], Theorem 3.3). Let ν ∈ SN−1 be given, and assume that u ∈ W 1,2(Ω). Then, for HN−1-a.e.

x ∈ Ων , ux,ν belongs to W 1,2(Ωx,ν) and u′x,ν(t) = 〈∇u(x+ tν), ν〉.

project_lemma_lip_h Proposition A.5 (
liu2016weightedMS
[14, Proposition 3.6]). Let ν ∈ SN−1 be a fixed direction, Γ ⊂ RN be such that HN−1(Γ) <∞,

and Pν : RN → Πν be a projection operator, where by (
slicing_notation
A.6), Πν ⊂ RN is a hyperplane in RN−1. Then

HN−1(Pν(Γ)) ≤ HN−1(Γ),
project_lemma_lip_1

and, for HN−1-a.e. x ∈ Πν ,
H0(Ωx,ν ∩ Γ) < +∞. (A.7) project_lemma_lip_2

slicing_single Lemma A.6 (
liu2016weightedMS
[14, Lemma 3.9]). Let τ > 0 and η > 0 be given. Let u ∈ SBV (Ω) and assume that HN−1(Su) <∞.

The following statements hold:
slicing_singlea a. there exist a set S ⊂ Su with HN−1(Su \ S) < η, and a countable collection Q of mutually disjoint, open cubes

centered on elements of Su, such that
⋃
Q∈QQ ⊂ Ω, and HN−1

(
S \
⋃
Q∈QQ

)
= 0;

slicing_singleb b. for every Q ∈ Q there exists a direction vector νQ ∈ SN−1 such that H0(S∩Qx,νQ ) = 1 for HN−1 a.e. x ∈ Q∩S;
slicing_singlec c. S ∩Q is contained in a Lipschitz (N − 1)- graph ΓQ, with Lipschitz constant not exceeding τ .
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Now we are ready to prove the main result of this Section.

Proof of Proposition
liminf_part_c
3.1, with ω satisfying (

easy_way_out
3.1). Assume that M := MS−ω (u) <∞. Let {(uε, vε)}ε>0 ⊂W 1,2(Ω)×

W 1,2(Ω) be such that uε → u in L1, vε → 1 in L1(Ω), and limε→0 ATkω,ε(uε, vε) = MS−ω (u). Since infx∈Ω ω(x) ≥ 1,
we have

lim inf
ε→0

ATk1,ε(uε, vε) ≤ lim inf
ε→0

ATkω,ε(uε, vε) <∞,

and by
ambrosio1990approximation
[4], we deduce that

u ∈ GSBV (Ω) and HN−1(Su) <∞.

We show separately that

lim inf
ε→0

ˆ
Ω
|∇uε|2 vε ω dx ≥

ˆ
Ω
|∇u|2 ω dx, (A.8) first_part_ATCw_m

and

lim inf
ε→0

1
2ck

ˆ
Ω

(
ε2k−1

∣∣∇(k)vε
∣∣2 +

1
4kε

(1− vε)2
)
ω dx ≥

ˆ
Su

ω−dHN−1. (A.9) second_part_ATCw_m

Let A be an open subset of Ω. Fix ν ∈ SN−1, and define Ax,ν , A1
x,ν , and Aν as in (

slicing_notation
A.6). For K ∈ R+, set

uK := K ∧ u ∨ −K, K ∈ N, and we observe, by Fubini’s Theorem, Fatou’s Lemma, Theorem
slice_deri_dirc
A.4, equation (

use_la_nonsm1
A.2),

and Theorem 2.3 in
ambrosio1990approximation
[4], that

lim inf
ε→0

ˆ
A
|∇uε|2 v2

ε ω dx ≥
ˆ
Aν

lim inf
ε→0

ˆ
A1
x,ν

∣∣(uε)′x,ν∣∣2 (vε)2
x,ν ωx,ν dt dHN−1(x)

≥
ˆ
Aν

ˆ
A1
x,ν

∣∣(uK)′x,ν
∣∣2 ωx,ν dt dHN−1(x) ≥

ˆ
A
|〈∇uK(x), ν〉|2 ω dx.

(A.10) use_below_ff

Taking the limit K →∞, and using Dominated Convergence Theorem, we have

lim inf
ε→0

ˆ
A
|∇uε|2 v2

ε ω dx ≥
ˆ
A
|〈∇u(x), ν〉|2 ω dx. (A.11) lfslicecont

Let φn(x) := |〈∇u(x), νn〉|2 ω for LN -a.e. x ∈ Ω, where {νn}∞n=1 is a dense subset of SN−1, and let

µ(A) := lim inf
ε→0

ˆ
A
|∇uε|2 v2

ε ω dx.

Then µ is positive, super-additive on any pair of open sets A and B with disjoint closures, and, by
braides2002gamma
[6, Lemma 15.2]

and (
lfslicecont
A.11), we conclude (

first_part_ATCw_m
A.8). Now we prove (

second_part_ATCw_m
A.9). By Fubini’s Theorem, Fatou’s Lemma, (

project_lemma_lip_2
A.7), and (

use_la_nonsm2
A.3), and

using similar arguments as in (
use_below_ff
A.10), we have

lim inf
ε→0

1
2ck

ˆ
A

(
ε2k−1

∣∣∇(k)vε
∣∣2 +

1
4kε

(1− vε)2
)
ω dx ≥

ˆ
Aν

 ∑
t∈Sux,ν∩A1

x,ν

ω−x,ν(t)

 dHN−1(x). (A.12) liminf_cont_later_slice

Next, given arbitrary τ > 0 and η > 0, we choose a set S ⊂ Su and a collection Q of mutually disjoint cubes
according to Lemma

slicing_single
A.6 with respect to Su. Fix one such cube QνS (x0, r0) ∈ Q. By Lemma

slicing_single
A.6, we have, up to

rigid motions,
Γx0 =

{
(y′, lx0 (y′)) : y ∈ Tx0,νS ∩QνS (x0, r0)

}
and ‖∇lx0‖L∞ < τ.

In (
liminf_cont_later_slice
A.12), set A = QνS (x0, r0) and ν = νS(x0). Using the same notation from the proof of Lemma

slicing_single
A.6, we obtain

ˆ
[QνS (x0,r0)]

νS(x0)

 ∑
t∈Sux,νS(x0)∩[QνS (x0,r0)]

x,νS(x0)

ω−
x,νS(x0)(t)

 dHN−1(x)

≥
ˆ
Tg(x0,r0)

ω−(x) dHN−1(x) =
ˆ
Tg(x0,r0)

ω−(x′, lx0 (x′))dLN−1(x′). (A.13) single_int_tmp
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Next, considering that ω−x,ν(t) = ω−(x+ tν) (see
ambrosio2000functions
[3, Remark 3.109]), we have that

ˆ
QνS (x0,r0)∩S

ω− dHN−1 =
ˆ
Tx0,νS∩QνS (x0,r0)

ω−(x′, lx0 (x′))
√

1 + |∇lx0 (x′)|2dx′

≤
√

1 + τ2
ˆ
Tx0,νS∩QνS (x0,r0)

ω−(x′, lx0 (x′))dx′,
withou_t_above2

which, together with (
liminf_cont_later_slice
A.12) and (

single_int_tmp
A.13), yields

lim inf
ε→0

ˆ
Ω

(
ε2k−1

∣∣∇(k)vε
∣∣2 +

1
4kε

(1− vε)2
)
ω dx

≥ lim inf
ε→0

ˆ
∪Q∈QQ

(
ε2k−1

∣∣∇(k)vε
∣∣2 +

1
4kε

(1− vε)2
)
ω dx

≥
1

√
1 + τ2

∑
Q∈Q

ˆ
S∩Q

ω− dHN−1 ≥
1

√
1 + τ2

(ˆ
Su

ω− dHN−1 − ‖ω‖L∞ η

)
.

withou_t_above

Finally, (
second_part_ATCw_m
A.9) follows by the arbitrariness of η and τ . �

We recall QνSω (x0, r) and Tx0,νSω (l) from Notation
haishiyoudehao
2.5,

haishiyoudehao_Q
1, and

haishiyoudehao_T
2, and define I(t0, t) := (t0− t, t0 + t) ⊂ R for t0 ∈ R

and t ∈ R+.

jump_ready_coro_limsup Proposition A.7. Let ω ∈ W(Ω) and τ ∈ (0, 1/4) be given. Then, there exist a set S ⊂ Sω, and a countable family
of disjoint cubes F =

{
QνSω (xn, rn)

}∞
n=1

, with rn < τ , such that the following assertions hold:

jrcl_small a. HN−1(Sω \ S) < τ and S ⊂
⋃∞
n=1QνSω (xn, rn) ⊂ Ω;

jrcl_disjoint b. dist(QνSω (xn, rn), QνSω (xn′ , rn′ )) > 0 for n 6= n′;
jrcl_subinter c. S ∩QνSω (xn, rn) ⊂ Rτ/2,νSω (xn, rn);
jrcl_fenduan d. (1 + τ2)−1rN−1

n ≤ HN−1
(
S ∩QνSω (xn, rn)

)
≤ (1 + τ2)rN−1

n ;
jrcl_ineq_finite_sum e.

∑∞
n=1 r

N−1
n ≤ 4HN−1(Sω);

jrcl_ineq_main f. for each n ∈ N, there exists tn ∈ (2.5τrn, 3.5τrn) and 0 < txn,rn < tn, depending on τ , rn, and xn, such
that Txn,νSω (−tn ± txn,rn ) ∩ QνSω (xn, rn) ⊂ Q−νSω (xn, rn) \ Rτ/2,νSω (xn, rn) and, where we recall I(tn, t) :=
(−tn − t,−tn + t),

sup
0<t≤txn,rn

1
|I(tn, t)|

ˆ
I(tn,t)

ˆ
QνSω

(xn,rn)∩Txn,νSω (−l)
ω−(x)dHN−1dl

≤
ˆ
S∩QνSω (xn,rn)

ω− dHN−1 +O(τ)rN−1.

(A.14) upper_sup_ready_limsup_jump

Proof. The proof uses similar arguments as in
liu2016weightedMS
[14, Proposition 4.4]. �

Since this proof is quite lengthy, we summarize the main ideas. We modify the bulk part of Su by replacing it with
(N −1) polyhedra located in the −νSω direction of Sω , and note that both the L1-norm of u and the L2-norm of ∇u
do not change much. This will be done via a reflection argument around suitable hyperplanes. For the remaining
part of Su, we shall cover them using a finite collection of cubes, and change the value of u to 0 over such cubes.
Hence, in this way, we transfer the jump set of Su to a finite union of polyhedra.

first_step_finite Proposition A.8. Let u ∈ SBV 2(Ω) ∩ L∞(Ω) be given, satisfying HN−1(Su) < +∞ and ω ∈ W(Ω). Then there
exists a sequence {(uε, vε)}ε>0 ⊂W 1,2(Ω)×W 1,2(Ω) such that

lim sup
ε→0

Eω,ε(uε, vε) ≤ Eω(u).

Proof. Without loss of generality, we assume that Eω(u) < +∞, which implies HN−1(Su) < +∞.
Step 1: Assume HN−1((Sω \ Su) ∪ (Su \ Sω)) = 0. Fix τ ∈ (0, 1/4). Applying Proposition

jump_ready_coro_limsup
A.7 to ω, we obtain a set

Sτ , a collection Fτ =
{
QνSω (xn, rn)

}∞
n=1

, and corresponding tn ∈ (2.5τrn, 3.5τrn) and txn,rn , for which (
upper_sup_ready_limsup_jump
A.14)
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holds. Extract a finite collection Tτ =
{
QνSω (xn, rn)

}Mτ
n=1

from Fτ with Mτ > 0, large enough such that

HN−1

[
Sτ \

Mτ⋃
n=1

QνSω (xn, rn)

]
< τ,

ext_fint_part
and set Fτ := Sτ ∩

[⋃Mτ
n=1 QνSω (xn, rn)

]
. Note that

HN−1 (Su \ Fτ ) ≤ HN−1(Su \ Sτ ) +HN−1(Sτ \ Fτ ) < 2τ. (A.15) qu_left_F_cont

We observe that

LN ({x ∈ Ω, ū(x) 6= ūτ (x)}) = LN
(
Mτ⋃
n=1

Un

)
≤

Mτ∑
n=1

LN (Un) ≤ 7τ2
Mτ∑
n=1

rN−1
n ≤ O(τ),

where in the last inequality we used Propositions
jump_ready_coro_limsup
A.7 and

jrcl_ineq_finite_sum
e. We note that

a. ūτ is a reflection of ū within the set with measure less than O(τ);
b. LN ({ū 6= u}) ≤

∑Yτ
m=1 L

N (Qm) ≤ O(τ);
c. u ∈ SBV 2(Ω) ∩ L∞(Ω).

Then,

lim
τ→0

ˆ
Ω
|ūτ − u| dx = 0 and lim

τ→0

ˆ
Ω
|∇ūτ −∇u|2 dx = 0. (A.16) L1omcont

For brevity, in the rest of the proof we abbreviate QνSω (xn, rn) by Qn, Txn,νSu by Txn , and Txn,νSu (−tn) by
Txn (−tn). Note that the jump set of ūτ is contained in

Pτ :=
Mτ⋃
n=1

[Txn (−tn) ∩Qn] ∪
Mτ⋃
n=1

∂Qn ∩ Un ∪
Yτ⋃
m=1

∂Qm ∪
Yτ⋃
m=1

∂Rm,

poly_p_tau
and Sūτ ⊂ Pτ and Pτ are both union of finitely many polyhedra. We also observe that, denoting by cl(·) the closure
of a set,

HN−1

[
cl

((
Mτ⋃
n=1

∂Qn ∩ Un

)
∪

(
Yτ⋃
m=1

∂Qm

)
∪

(
Yτ⋃
m=1

∂Rm

))]

≤
Mτ∑
n=1

HN−1(∂Qn ∩ Un) +
Yτ∑
m=1

HN−1(∂Qm) +
Yτ∑
m=1

HN−1(∂Rm)

≤ 2τ + Cτ

∞∑
n=1

rN−1
n τ + 2HN−1(Su \ Su) ≤ O(τ) + 2HN−1(Su \ Su) < +∞,

(A.17) finite_size_redefine

where we used Proposition
jump_ready_coro_limsup
A.7

jrcl_ineq_finite_sum
e, (

qu_left_F_cont
A.15), and the assumption that HN−1(Su) < +∞.

Let ε > 0 be such that

ε2 +
√
ε� min { aτ , txn,rn for 1 ≤ n ≤Mτ} .

finite_small_pos
Hence, by Propositions

jump_ready_coro_limsup
A.7 and

jrcl_ineq_main
f, we have

ε2 +
√
ε < txn,rn < |tn| <

1
4
τrn < rn.

finite_small_pos2
We set uτ,ε := (1 − ϕε)ūτ , where ϕε is such that ϕε ∈ C∞c (Ω; [0, 1]), ϕε ≡ 1 on (Sūτ )ε2/4, and ϕε ≡ 0 in
Ω \ (Sūτ )ε2/2. By (

finite_size_redefine
A.17) we have HN−1(Sūτ ) < +∞, hence {uτ,ε}ε>0 ⊂ W 1,2(Ω). Moreover, by the Dominated

Convergence Theorem, and (
L1omcont
A.16), we conclude that uτ,ε → u in L1(Ω).
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Consider the sequence {vτ,ε}ε>0 ⊂ W 1,2(Ω) given by vτ,ε(x) := ṽε(dτ (x)), where dτ (x) := dist(x, Pτ ) and ṽε are
defined by

ṽε(t) :=


0 if t ≤ ε2,

−e−
1
2
t−ε2
ε + 1 if ε2 ≤ t ≤

√
ε+ ε2,

1− e−
1

2
√
ε if t >

√
ε+ ε2.

benshen
An explicit computation shows that

ṽ′ε(t) =
1
2ε

(1− ṽε(t))
benzun

for ε2 ≤ t ≤
√
ε+ ε2 and ṽε ∈W 1,2

loc (R), and we remark that

lim
ε→0

1
ε
e
− 1

2
√
ε = 0,

ele_multi_ago1
and

−
d

dt

(1
2

(1− ṽε(t))2
)

= (1− ṽε(t)) ṽ′ε(t) ≥ 0.
ele_multi_ago2

Moreover, since Suτ ⊂ Pτ and by (
L1omcont
A.16), we conclude thatˆ

Ω
|∇uτ,ε|2 v2

τ,ε ω dx ≤
ˆ

Ω
|∇ūτ |2 ω dx ≤

ˆ
Ω
|∇u|2 ω dx+O(τ).

cont_naj_est2
Step 2: For the general case HN−1(Su \ Sω) > 0, the proof follows by applying the same construction in Step 1 on
Su, and noticing that ω−(x) = ω(x) if x ∈ Su \ Sω . �
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