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ABSTRACT. The Ambrosio-Tortorelli approximation scheme with weighted underlying metric is investigated. It
is shown that it I'-converges to a Mumford-Shah image segmentation functional depending on the weight w dz,
where w is a special function of bounded variation, and on its values at the jumps.

1. INTRODUCTION AND MAIN RESULTS

One of the most succesful methods for image denoising involves minimizing an energy of the form
2
MSa(uw) + [lu— u0||L2(Q) )

where Q is a given domain, ug is a (given) corrupted image, the argument of the minimization u € SBV () is a
special function of bounded variation, encoding an image, with its jump set S, representing the edges of such image.
The functional M S, is the so-called Mumford-Shah image segmentation functional, defined as

MSq(u) := a/ |Vu|? de + BHN 1(Su), o, B € RT. (1.1)
Q

L . . . MR1488299, MR2049779 ) )
Ignﬁgsri%%gg‘llg:ﬁg%}%ﬁ is ayailable, from both computational (see e.g. mmremcal points of view (see e.g.
[T, 10]). ”

. ) ) umfordshahori . ) umfordshahori
In the following, we will always take o = 3 in (T.1). The scalar tuning parameter o € Rt in (T.1), which uniformly
determines the regularization strength over the entire image, plays an impor?rant ,}é)ilse The Pli{oble%ongijfégeiflg a

. . . . . eyes structure unisc!
“good” tuning parameter a € RT is still open, and widely discussed (see e.g., [TI, 19]). However, the uniform reg-
ularization strength provided by a scalar tuning parameter a € R is undesirable when both fine details and large
flat areas are present in the same image, which is often the case in image denoising problems. Ideally, one should

impose a weaker regularization strength in regions with fine details, so to preserve them, and a greater regularization
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strength over large flat areas, so to remove the noise.

To this aim, the following Mu fl%sll-glelglgtef%ctional, coupled with a spatially dependent parameter function w:
Q — [0, 40|, was introduced in :

MS.(u) ::/ |Vu\2wdx+/ w™dHN L, (1.2)
JQ ”
_negative_part

where w S?Vgglagﬂlﬁx’ (€2) is positive and bounded away from 0, and w™ is defi e(i in, below. e minimization
umford oriom X . C umf ordshahori . . N
problem (I.2) can be viewed as a weighted version of the minimizing problem (il , with underlying metric wL" [

instead of LN |Q, Wheje QN glslno,tes the N dimensional Lebesgue measure. However, it is well known that the
umfords: ori

mumfordshahoriom

inimization Eroblem (l is numerically difficult to solve in an efficient and robust way, and hence we woul expect

umfordshahorio L. . . . . 1u2016weightedMs

(T-2) to inherit similar issues. To overcome this drawback, an alteﬁngtlve %gtproach has been proposed in . by
lambrosiol ap) n

proximatio:

adopting the approximation scheme of 1}%{8‘%9 i%trtlagy[;[‘ort01relli from [4], and by changing the underlying metric in an
appropriate manner. To be precise, in [T4] the authors introduced the family of elliptic functionals with a spatially
dependent parameter function w

1
AT, «(u,v) ::/ |Vu|? viw dz +/ [a Vo2 + —(v— 1)2} wdz, (1.3)
Q Q 4e

umfordshahoriom22
where (u,v) € WH2(Q) x W12(Q), and a rigorous analysis of properties of the functional (T.3) was undertaken. It
turns out that, for a parameter function w € SBV(Q) satisfying H~ ~1(S,) < +o0 and

0 <l <essinf{w(z): z € Q} <esssup{w(z): z € Q} <lz < +oo, (1.4)
attouchi1984variational
the functionals AT, . T-converge ([5]) to the functional M S,,(u) in the L' x L' topology.

[Liu2016optimal
At this point, how to construct a “good” parameter function w becomqsC rlelevalrﬁtb'isgﬂe Ze | éunflﬁlseczhgoqgg%vgroposed

alatron:

to construct w Yi%iaﬁéé’%’%%%lly dependent bilevel learning scheme (see also [9, 19]). ggq%ggl}a’scge parameter function
w suggested in }'[Zﬂﬁﬁé_lﬁlong to SBV(2) N L*°(1), i.e., the upper bo%gealr?xljﬁe oS eo£§irinsalno guarantee
that the positive lower bound [; exists too. In fact, the analysis in both [I7, 2I] suggests that in cerfain situation a
vanishing parameter function can yield a better denoising result, ﬁg%iié}]eygahrttei&élar, mitigate the so called staircasing
effect. Hence, it is necessary to improve the method proposed in mm positive lower bounded requirement

can be removed, and this is the main topic of this article.

L. umfordshahoriom22 i . umfordshahoriom )
In addition, we remark (I.3) 1S one among many that appro %%csl%}ggggler es to i}?c .iomlgaeea, recalling that the
J{w=TIin ( %)E is th

original Ambrosio and Tortorelli approximation introduced in . e reminiscent of the “first or-

der” Cahn-Hilliard approximation, we may also consider an approximati g‘n?&éa‘ﬁgggﬁ Ctolﬁg “second order” Cahn-Hilliard
approximation or even higher order Cahn-Hilliard approximations (see [I5]).

In view of this, in this article we will consider a family of approximation schemes defined by, for k =1,2,3,.. .,
1 2 1
ATf c(u,v) = / |VU|2U2W dz + 7/ [52’“*1 ‘V(k>v| +—(01- v)g} wdz,
’ Q 2¢ck Ja 4ke
where

. Foo (k) |2 1 2 k,2
¢cp :=inf ’v | +4—k(l—v) dx: ve W7 (0,400)
0

loc
v(0) =v'(0) = ---v*1(0) = 0, v(t) =1 if t > K}, for some K} > 0 depends on k}

R3429728

It has been observed in FS‘]—EF&E for w(z) = @ € RT and k = 2, the second order Ambrosio and Tortorelli approxima-
tion, i.e., AT2(u,v), shows several advantages. For example, certain structure that are larger than a typical noise,
but still not relevant for the segmentation (edge), can be suppressed. Hence, we should expect that the weighted
version of AT2, i.e., AT2, to inherit similar advantages.

In order to state the main result of our paper, we first introduce some notations.

Notation 1.1. Let @ C RN be an open, bounded, Lipschitz regular domain, and let w € SBV(Q) be a non-negative
function.

mumfordshahoriom
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1. We say that S € R(Q) if S is aﬁzols—ig%g@%kg%%gsnd HN=1(S\ S) = 0 (note that S is HV ~!-rectifiable implies
that S is HN ~1-rectifiable. See [3], Proposition 2.76).
2. Set Fl(w):={z € Q: w(z)>t}, for t >0, and
P (w) = ﬂ Fl'(w) and PO(w) = ﬂ (2\ F'(w)). (1.5)
t>0 t>0
3. Define As := {x € Q: dist(z, A) < §} for AC Q and § > 0.
We can now introduce the parameter functions used in our main theorem.
Definition 1.2 (The spatially dependent parameter function). Let w: Q — [0, +o0] belong to SBV (2).
1. We say that w € P(Q) if HV~1(S,) < +oo, and PO(w) € R(Q).
2. We say that w € Pr(Q) if w € P(Q), and
lim wdHN L+ / wdHN "t =o0. (1.6)
620J5((P>°(w))5) A((PO(w))s)

infinite_small_cover
We remark that any positive, bounded, and contin oozésléggcgggg w satisfies (I.6).
3. We say that w € Py(Q) if w € P(Q), and satisfies (I.A).

Our main result is the following:

Theorem 1.3. Let Q C RN be an open, bounded, Lipschitz regular domain, let w € Pr(Q), and for k € N, ¢ > 0,
let AT{Z’E: LY(Q) x L1(Q) — [0, +00] be given by

ATE (w,v) if (u,0) € WH2(Q) x WH2(Q), 0 <v < 1,

400 otherwise.

ATE’E(u, v) = {

Then the functionals AT{Z’E T-converge, with respect to the L' x L' topology, to
MSy,(u) ifue GSBV,() andv =1 a.e.,

400 otherwise,

arameter_space
where GSBV,,(Q) is defined in Definition 2.3,

1iu2016optimal
Although the parameter function proposed in [2ZI] belongs to L, hef we allow w to be unbounded, although the
infinite_small_cover

structure of the set P°° () has to satisfy the restrictive requirement (

MS, (u,v) =

The proof of the I'-liminf requires only w € P(). To this aim, we first restrict our analysis to the domain
0 . . . 0 . .

Q\ (P%(w))s, with 6 > 0. Hence w is bounded away from zero in Q\ (P”(w))s. Together with a trupcation argument

on w, we have wr = w A K € Py(Q\ (P°(w))s), and hence the T-liminf result obtained in can be applied.

Second, we take the limit § — 0, and using the assumption 9(P%(w)) € R(Q), we can obtain the lower bound in

2\ P%(w). Finally, by using the definition of P%(w), we recover the I'-lim inf inequality in the entire domain €.

The proof of the I-limsup is more delicate, requiring the extra assumption w € Pr(Q). Still, similarly to the

' — lim inf ine 1{@%&1’1& \é&/‘i%af}rs‘.c resﬁigifcitni(%g_rsn%%x_l%%iesr to the subset 2 of Q such that w € P, (), and apply the con-

struction from . en, using (II.6), we can construct the recovery sequence in th(]ét engire domain Q. To conclude

this section, we state a lower semiconti uibtly re'is%ltl, which will be used in Section ¥, which can be viewed as the
. . . lambrosio1994Tower
weighted version of the main theorem of [2].

1lsc_SBV_thm
Theorem 1.4 (Theorem h.? . Assume that w € SBV(Q) has a positive lower bound, and define
F,(u) ::/f(m,u,Vu)wdm+/ wTdHN Y
Q Su

where f(x,s,p) is integrable in x, continuous in s, convexr with respect to p, and satisfies

plI* < f(z,5,p) < a(z) + S(Is))(1 + [p|*) for all (z,s5,p) € 2 x R x RY
for some a € L*(Q), and some continuous function ®: [0,400) — [0,+00). Then the functional F,, is L} () is
lower semicontinuous in SBV (2) N L ().

. S . . . Bef_&eﬁ . . L. Lo
This article is orgaglge&;lo a%efgllows: in Section 2 we will introduce the rgt ain (geﬁmtlons, and recall several preliminary

results. In Section B} we prove the I-lim inf inequality, an% sicns§6actgnorllntrty\?e_construct the recovery sequence by using
fine properties of SBV functions, and we prove Theorem T.4.

’regularity_assumption

’infinite_small_cover
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2. DEFINITIONS AND PRELIMINARY RESULTS
Throughout this paper, & C RY is an open, bounded set with Lipschitz boundary, and I := (—1,1).
Definition 2.1. We say that a subset P C Q is (N — 1) polyhedral if it is the intersection of Q with finitely many

(N — 1)-dimensional simplezes of RV .

Definition 2.2. We say that u € BV(R) 4s a special functjon of hounded. variation, and we write uw € SBV (), if
the Cantor part of its derivative, Du, is zero, so that (see [3, equation (3.89)])

Du = D%+ DVu = VulN [Q+ (ut —u ) HY 1S
Moreover, we say that

1. uw € SBV2(Q) if u € SBV(Q) and Vu € L3(Q);
2. ue GSBV(Q) if K ANuV —K € SBV(Q) for all K € N.

Here we always identify u € SBV () with its representative u, where u(z) := (u+ () +u™ (a:)) /2, with

ut(z) ;= inf {t €R: lim LY (B(z,r) O {u > t}) = O} ,

r—0 rN

and

r—0 rN (2.1)

_ levans2015measure
We note that u~, ut, and % are all Borel measurable (see [T2, Lemma 1]).

Definition 2.3. Letw € P(Q) be given. We say that u € SBV,,(Q) ifu € L' (), u € SBV(Q\ (P°(w))s) for every
6 >0, and

u” (x) 1= sup {t €R: lim LY (B(a,r) O {u < t}) = 0} .

/|Vu|2wdm+/ ‘u+—u_’wd7{N—1 < 400, (2.2)
Q S9

where the jump set SO of u € SBV,,(Q), with a vanishing parameter w, is defined by

SO .= USﬁ U PO (w).
6>0

Here S8 denotes the jump set of u in SBV(Q2\ (P%(w))s). Moreover, we say that u € GSBV,(Q) if K AuV —K €
SBV,,(Q) for all K € N.

Remark 2.4. Since u € SBV(Q\ (P%(w))s) for every § > 0, Vu is defined £V a.e. in Q\ (P°(w))s, and hence
LN ae. in Q\ PO(w). Recalling that P(w) € R(Q), which implies that HN~1 (Po(w)) < 400, we have that
ldefine_zero_int
Vu is defined £V a.e., hence the first integl:ial in b.? is well defined. Similarly, u® is well defined for HN ~1-a.e.

£5 int
z € 2\ PO(w), hence the second integral in (b%ell defined. Finally, it is clear that if w has a positive lower
bounded, then P°(w) = @ and S2 = S,,.

Notation 2.5. Let I' C Q be a HV~I-rectifiable set, and let = € T be given.

1. We denote by vr(zx) the normal vector at « with respect to I', and by Q.. (z,r) the cube centered at x with side
length r and two faces normal to vr(z);

2. Ty, denotes the hyperplane through = and normal to vp(z), and Py .. denotes the projection operator from I
onto T vr;

3. we define, for t € R, the hyperplane Ty v (t) := Ty up + tvr(z);

4. we define the half-spaces and half-cubes by,

Hyp (@) = {y e RV« wp(e) - (y —2) > ()0}
and
pr (%,7) == Qup(z,7) N Hyp, (x)ia
respectively;

5. for given 7 > 0, we denote by R up(z,r) the part of Qu.(x,r) which lies strictly between the two hyperplanes
Tywp (—7r) and Ty (77).

absolutely_cont_

mm_negative_part

define_zero_int
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evans2015measure
ne_properties_BV | Theorem 2.6 (h?],—'ﬂm 3, page 213). Assume that u € BV(Q). Then, for HN"1-a.e. 9 € S,

H

N
lim ’u(w)—ui(wo)|N’1 dz =0,
r=0.JB(ag.n)NHa g, (20)*

and

lim /
>0 N1 5,00, (@0.0)

‘u+(:c) — uf(x)‘ dHN Y (z) = ’u+(a:o) - uf(cc())| .

brezis2010functional
equivalent_norm| Theorem 2.7 ([7], Remark 8). Let Q C RYN be an open and bounded domain. Then, for any & < do,
_ 1
C(b0,k, 2) 8 [|VullZaq) < 6% HID ulLaq) + 555 11— ullia(a)
where |a| =k, and C(d0,k, Q) > 0 is some constant depending on do, k € N, and Q.

3. THE I'-lim inf INEQUALITY
0_D_Toy_Sec
In this section we will prove the I'-lim inf inequality.

liminf_part_c| Proposition 3.1. (T-liminf) Given u € LY(Q), let w € P(), and

MS; (u) :=inf { liminf ATF _(ue,ve) :
e—0 !
(ue,ve) € W1’2(Q) X Wl‘z(Q), ue 5w in LY ve 51 in LY, 0 < ve < 1}.

Then M S5 (u) > MSy,(u).
bdd—awaY—zero dd_away_zero Liminf_part_c
3.1. Special case: w € Py(2). In Section E%I we prove Proposition b.l wﬁen

0<ly <essinf{w(z): z € O} <esssup{w(z): z € Q} <ls < +o0o, (3.1)

and, without loss of generality, [; = 1.

Liu2016optimal
liminf_part_ref | Proposition 3.2 ([2Z1], Proposition 3.1). Given w € Py(Q) and u € LY(Q), let

MS; (u) :=inf { lim ianTul) c(ue,ve) :
e—0 ’
(ue,ve) € WH2(Q) x Wh2(Q), ue = u in LY, ve = 1 in LY, 0 < v < 1 a.e.}.

Then MSg, (u) > MS,(u).
liminf_part_
3.2. General case: w € P(2). Now we are ready to prove Proposition Eml.n nafrﬁecfollowing7 we set
Ly i={z € Q: wx)>3}n (2\ (P'w))s),

0 . . [Muckenhoupt_Function_Space
where PY(w) is from Definition [I.2, and

wp =l A w, 1 >0.
levans2015measure
We recall from [TZ, Theorem 1] that, for £! a.e. § > 0, Ls has finite perimeter.
liminf_part_c
Proof of Proposition I3.1. Without loss of generality, assume that M := MS, (u) < oo. Let {(ue,ve)}.5q C

Wh2(Q) x W12(Q) be such that ue — w in LY(Q), v — 1 in L(Q), and limc0 ATE _(ue,ve) = MSG (u).
Fix 6 > 0 and [ > 0, and note that

liminf AT _ (ue,ve)
e—0 ’

1 1
> liminf/ [Vue|? 02wy de + — |:52k_1 |V(k)v5|2 + 1= ve)? | wy dx
e—0 Ls Ck JLs ed
2/ [Vu|? w da:+/ w; dHNL,
Ls SSNLs

. . . . liminf_part_ref ) .
where in the last inequality we used Proposition b.?. _etting | ' 400 on the right hand side, we have

lim inf AT® _ (ue, ve) 2/ |Vul? wde + w™dHN !
e—0 ’ Ls SSNLs
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for £ a.e. § > 0.

lregularity_assumption 5 5’
Finally, taking the limit § N\, 0 on the right hand side, in view of (lé ; and the fact that SSNLs C S, NLg
for § > &', by the Monotone Convergence Theorem we infer

|Vu\2wd:1:+/ w™dHN 1
SOAPO(w)

liminf AT _ (ue,ve) > /
e—0 ’ Q\PO(w)

:/ |Vu|? wdz + w™dHN 1 =/ |Vu|2wdm+/ wTdHN L,
Q Q s9

SOA\PO(w)
where in the last equality we used the fact that w™ (z) < w(0) = 0 in P%(w). O

4. THE I'-lim sup INEQUALITY

AT_n_intro
This section is devoted to the proof of the I'-lim sup inequality, and Theorem [I.3; under the additional assumption

w € Pr(2).
The main goal is to prove the following proposition.
Proposition 4.1. (I-limsup) Given u € L*(2) N L (Q), let w € Pr (), and

MS} (u) :=inf { lim sup ATL“’E(UE,UE) :

e—0

(ue,ve) € WHE(Q) x WH2(Q),ue — w in LY (Q), ve = 1 in L1(Q), 0 < ve < 1}.

Then EJ (u) < Ey(u).
To prove this result, we will establish some preliminary results on the lower semicontinuity of convex integrals in the

space SBV,, () N L>° (), under the condition that w € P(£2) has a positive lower bound.

4.1. Lower semicontinuity results in the space SBV,,(Q2) N L* with a positive lower bounded w. In this
section we study the lower semicontinuity of integral functionals defined in SBV,,(Q2), with respect to the L (Q)
topology. Consider

Fu(u) = /Qf(m,u,Vu)wdm—s—/S wmdHN Y,

where f(z,s,p) is a nonnegative Carathéodory function in z, and continuous in (s, p), and the parameter function
w € P(QQ) is assumed to be bounded from below by a constant [ > 0, i.e.

essinf {wf(z) S Q} =1>0. (4.1)

Without loss of generality, we take { = 1. This condition implies that the space SBV,, is embedded in SBV (2), and
hence we may apply results concerning SBV (2).

The main result is the following.

1111_om_1lsc_F
Theorem 4.2. Given w € P(Q) satisfying (hl . assume that f(z,s,p) is convexr with respect to p, and satisfies the
condition

Ipl? < £z, 5,) < a(z) + B(s))(1 + pl?) for all (z,5,p) € D x R x RY
for some a € LY(Q), and some continuous function ®: [0,+0c0) — [0,+0c0). Then, for any sequence {ue}oso C
L>(Q) such that ue — u in L1(Q), and
sup {HUsHLoo(Q) te> 0} < oo, (4.2)

we have
lim inf Fi, (ue) > Fu,(u).
e—0

Proof. Without loss of generality, we may assume that M := liminf._,o F(us) < +o00. Hence,

Fi(ue) < Fuo(ue) <M +1 (4.3)

SBV_om_1lsc_F

1111 _om_1lsc_F

bugingyuandebdd

finite_jump_num_
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uqingyuandabbidosio2000functions

for all sufficiently small € > 0. Therefore, by (A.2) and [3; Theorem 4.7], there exists u € SBV(Q) N L*° () such
that ue — u in BV(Q). Fix K € N, and define

fK(xzszp) = f(m7 S7p)(w A K)7
lambrosio1994lower
and by [2, Theorem 0.1], we have

liminf | f(x,ue, Vue)wdz > liminf | fx(z,ue, Vue)dax > / fr(z,u, Vu) dz.
Q Q

e—0 Q e—0

Letting K +00, we recover

liminf/f(z,uE,Vus)wdwz/f(z,u,Vu)wdx.
Q Q

e—0

timint [ wma¥ > [ wman (4.4)
e—0 Sue

We next show that
Su
To thﬁu%%b \%vglaﬁrst prove it in the case N = 1, and then recover the general case N > 1 using the slicing argument

from [2T, Lemma 3.9].

In the case N = 1, we need to show that

lién_)igf w”(z) > Z w™ (z). (4.5) | lower_bdd_2dnd

€Sy, zE€Sy
. finite_jump_num_as
Recalling (4.3), note

sup H°(Su,) < +o0 and H(Sy) < 400,
e>0

and, without loss of generality, we may assume that S,. = {zc}, and S, = {z}. Hence, the convergence v — u in

BV () implies that z. — z. We claim that
liminfw™ (z:) > w™ (z). (4.6)

e—0

If z ¢ So, then there exists § > 0 such that
SwN(z—68z+6) =2,
lower_bdd_1dnd . . _ . . .
so J,?e?‘}f,‘%’_lﬁg‘ﬁly continuous in (z — 6§, + §), and (hG is trivially satisfied with w(z) = w™ (z), with the inequality
in % 6) b

. eing actually an equality.

Suppose that x € S, and, without loss of generality, assume that 2 = 0. Since H%(S,) < oo, choose ¥ > 0
such that
SN (0=7,0+7F) =0.
leoni2009first
As w is absolutely continuous in (—7,0) and (0, 7), we may extend w uniquely to z = 0 to the left and right (see [20,
Exercise 3.7, (1)]), which allows us to define

w(0T) := lim w(z) and w(07) := lim w(x).
\0t z 0~

’ lemma_jump_jiuehuishi

This gives immediately

liminfw™ (z:) > w(07).
e—0

ifine_properties_BV
We next claim that w(0~) = w™(0). By part 2 of Theorem b.G, we have
1 0
w™(0) = lim — w(t)dt = w(07),

r=0T J_p

vTvlﬁere( Igwgl}rl% dl(?,qgnﬁqualit Jowe %39(% dggmsic properties of absolutely continuous functions, and the definition of w(07).
us %.6} holds, h

ence . olds too.




finite_down_a
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= lim inf > (@)ewsteo)®) | dHY (@)
[Qus (woﬂ“o)}us(wo) t€S(ue), Vs(wo)ﬂ[QuS(a:g,m)]z v g (50)
> liminf (w})%ys(xo)(t) dHN_l(m)
e—=0 J1,( )
g(Zo,T0 tes(us)m,us(zo)H[QVS(IO’TO)}I,VS(IO)HS
> /T< )h;njgf > (W) aws ey () | dHN V(@)
g(xo,r0 tes(“sh,us(zo)ﬂ[Q”S(IO’TO)}m,uS(mO)nS
:/ wi(z) dHN " (z) :/ wl;(z',lxo(a:’))dﬁNfl(ac').
Ty (zo,m0) Tq(z0,70)

. .. . [Liu2016weightedMS
Using a similar argument as in , equation (3.33)], we have, for any 7,17 > 0,

1iminf/ w dHN T > 1iminf/ wie dHN 71 > liminf E / wie dHN !
e—0 Sug e—0 Sug e—0 Heo SueNQ
€

1 " 1 "
> wodHN > — / we dHN 7! — ||w o .
- WQZEQ/SQQ K NV < 5, K loscllzeom

lower_bdd_3dnd
Taking first the limits 7 N\, 0 and 1 \( 0, and then K 7 400, gives (h?wzlef *

1111 _om_lsc_F
Lemma 4.3. Given u € SBV,,(Q) N L>(Q) satisfying MS, (u) < +o0, where w € Pr() and satisfies (h , there

exists a sequence {uc}. 5o C SBV2(Q) N L>®(Q) such that the following assertions hold:

L luell oo < llull oo 5

2. Su, CQ\ (P(w))o(e) (note that esssup {w(:r) c e (P‘x’(w)o(g)} < +00);

3.

lim/ \Vu€|2wdz+/ wodHN L :/ |Vu|? wdz + wTdHN L.
Q Sue Q Su

e—0

Proof. Let € > 0 be sufficiently small, so that
/ |Vu|? wdz < ofe).
(P (@) o(e)
Let K¢ be a compact subset of Sy \ (P (w))e(s) such that
HVNL(S, \K:) <e and / w” <e.
SU\KE

Consider the minimization problem

min {/ |Vol? wdz + wodHN T 4 wodHN !
Q Sv\K:—: KE

1
+7/ lu—vwde: v e SBV2(Q) and S, CQ\(P‘X’(w))O(E)}.
ela

By a truncation argument, we may impose the restriction that v satisfies Hv||Loo(Q) < HuHLDQ(Q). Let {vn}p-; bea

minimizing sequence. Then,
17
/ |V |? do+ HN 7Y (S, \ Ko) + HV 1 (Ke) + 7/ lu —vn|? da
Q eJq

1

_limit
where M. is defined as the minimum of (%18 ifmévith e > 0 fixed.

O

(47)

(4.8)

1 1
< - / |Von|? wde + wdHN L +/ wdHN T 4 7/ lu —vp P wde| < = (M +1),
U l/a Sy \Ke Ke ela l

finite_down_shri
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ambrosio2000functions
Assume first that M. < +oo. By [3, Theorem 4.7[, there exists ue € SBV(Q2) such that v, — u. in BV(Q2), and for
HN"Lae. xlgc_b;h_,tglere exists xp € Sy, such that xn, — z, which implies that Su. C Q\ (P*°(w)),(c)- Moreover,
by Theorem &I.Z, we have ue € SBV,, N L>°(Q), and

1
/ \Vu5|2 dx + wTdHN T 4+ wTdHN T 4 7/ Ju — u5|2wdac
Q Sue\Ke 4y

n—o0o

KE
1
< liminf/ \V’Un|2wdx+/ widHN T 4+ wdHN T 4 7/ [u —vp|?wdz.  (4.9)
Q Sup \ Ko Ke ela

Define
{u(r) if 2 € Q\ (P (@))ao(e):

0 otherwise.
Then S5, C Q \ (Poo(w))o(s)v and

/|Vﬂg|2wdx§/ |Vu|? w dz.
Q Q

. infinite_small_cover
In view of (I.6),

/ wdHN ! g/ wTdHN T+ wmdHN ! g/ wTdHN T+ 0(e),
Sie u (P> (w))e) u

i_limi ifinite_down lyshrliimkit2
hence M. < +00. Let v = %, in (%.85, 5;1 (A 1:an -9), v;e have

1
/ |Vu5|2wdz+/ wodHN T 4 wdHN T 4 7/ lu — ue|? wdz
Q Suc \Ke K. e
1
S/ \Vﬂ5|2wdm+/ wdHN T+ wodHN L _1_7/ lu — te|? wdx
Q Sa. \Ke Ke el
g/ \Vu|2wd:c+/ W™ dHN T 4+ 0(e) 4 0()/0(e) < C < +oo. (4.10)
Q Su

In particular,

/ \u—u5|2wd$ < Ce — 0.
Q

i_limit2 lsc_SBV_thm
By (%.9}, Theorem b.Z, and essinfw > [ > 0, up to a subsequence it holds

lim/ |Vu5\2wd:c2/ |Vu|? wdz, and lim w™ dHN ! 2/ wTdHN L
Q Q

e—0 e—0 Sue

w
o i limit3
Hence, in view of (.10),

/ \Vu|2wdx+/ wTdHN ! Sliminf/ |Vu5\2wdx+/ w™dHN 1
Q e—=0 JQ Sug

u

e—=0

. 1r
Slimsup/ |Vu5\2wdx+/ wdHN T 4 wdeNflJrf/ [u — ue|? wdz
Q we \Ke Ke eJa
< / |Vu|? wdz +/ w™ dHY T +limsup(O(e) + o(e) /O(e))
Q Su

e—0
:/ |Vu|2wdx+/ w”dHN L
Q

u

Finally, we obtain

lim/ \Vug|2wdac+/ w™dHN ! :/ \Vu|2wd:v+/ wTdHN T
c—=0Jq Su. Q Su

and

lim w™ =0, and lim w™ :/ w™, (4.11)
e—0 Suc\Ke e—0JK, Su

concluding the proof ]
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Remark 4.4. We note that uc is a local minimum for the function

1
/ \Vv|2wdac+/ wfd’HNfl—&—f/ lu — v|? wdz
Q Sy €JQ

lim [ w” =0,
E20/(Su \Su )N(Q\K:)

lim w™ =0. 4.12 - limit5
e—0 Sus \Su5 ( ) yi_iimi

i_limits i_limit_sec
Although (% 1Z) could simplify the argument used in Section E.B, and relax the assumptions on P*°(w), to keep this
article self contained, we refrain from using this fact.

in Q\ K.. It can be shown that

: 1imitd
which, together with (%1 lm,lylelds

’ first_step_finites ‘

4.2. Construction of recovery sequence with w € P, ().

[Liu2016optimal
Proposition 4.5 ([21, Proposition 4.1]). Given w € Py(R2) and u € L*(2) N L2 (Q), set

MSY (u) := inf { lim sup AT:,VE (e, ve) :

e—0

(ue,ve) € WHE(Q) x WH2(Q),ue = w in LY, ve = 1 in LY, 0 < ve < 1}.

Then MSJ (u) < MSy,(u).

4.3. Proof of Proposition 4.1. We are now ready to prove the main result of this section. To do so, we define
localized versions of M S,, and ATJi6 by
MS,(u)(A) := / [Vul?wde + wTdHN L
JA SunA

and
1 2 1
ATE _(u,v)(A) := / |Vu|? v2wdz + —/ |:€2k_1 ’V(k)v| + —(1- v)2:| wdzx,
’ A 2¢k Ja 4k
respectively. Here A C ) is an open set.
[Muckenhoupt_Function_Space

limsup_n_c
Proof of Proposition [J.1. Let w € Pr(2) be given. By Definition [[.2] we have for any 7 > 0,
essinf {w(a:) t e\ (Po(w))n} > 0.

Define
I A if z € (P°(w))y/3
" u(z) otherwise.

Then we have Sy, C Q\ (P°(w)),/4, and observe that

MSw(u-r):/ \Vun|2wdx+/ w_d:rg/ |Vu|2wd:v+/ w_d:rJr/ w”dz
Q Suy Q S9 JO((p% (w))n)

u

§/ \Vu|2wdx+/ w=dx 4+ O(n) = MSy,(u) + O(n).
Q SO

w))n/4, gives a sequence uy,; such that

finite_down
Applying Lemma h.} n U, inside Q \ (p°
O(W))y/a) < MS(ur) +O(1) < MS(u) + O(7) + O(n),

P(
MS(un,7)(Q\ (p”(w)
) o1 ( )
Suy C.Q\ (Po(w))n/4 U(P®(w))r) and w € Py (2 (Po(w))n/4 U(P®(w))r)) -
Then, by Proposition Wexists
{in,mes Bnirietosg C© W2 (N ((PO(@))y/a U (P ())r)) x W2 (2N ((P°(@))ya U (P=(w))r))
such that either

limsup AT}, _ (in, e, Tn,7,e) (2\ ((PO(@))na U (P®(@))7)) < MS(un, )@\ (0°(@))/4);

e—0
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or

AT (7,0, On,me) (2N ((PO(@)ya U (P(@))r)) < MS(un,)(Q\ (0°(w))n/a) + O(e)
holds.
Let ¢n,+ to be a cut off function such that ¢, - € C*(Q),

enr(@) = 1in Q\ ((P°(w))y/3 U (P®(w))2r) and ¢y(x) = 0in ((PO(w))ya U (P (w))r) -
Define
Un,r,e ‘= (1 - 8077,7)7171,7,67
and
Vn,r,e 1= Tyre A Be(dist(D [(PO(@)) /4 U (P (w))r])),

L 1iu2016weightedMs
with 9. from [T4, equation (4.29)].

Hence, we have {uy,r.c,vn,rc} Cc Wh2(Q) x Wh2(Q), and

e>0

limsupAbm(un,T,E,vnmg) < MSw(u,,,T)Jr/ whapN -1t +/ wrdHN L. (4.13)
A((PO(w))y/a)

e—=0 (P2 (w))r)
last_need_1111
We claim that the last term on the right hand side of (h 3) vanishes. Indeed, we have

limsup/ whdnN—1 = limsup/ (2w —wT)dHN L < limsup/
n—=0 JO((P%(w))p/a) n—=0 JO((PO(w))y/a) n—=0 JO((P%(w))p/a)

infinite_small_cover last_need_1111
where in the last equality we used (I.6). This, together with (&Ll 3), concludes the proof by letting n — 0. O

AT_n_int liminf_part
Proof of Theorem [T. ‘)’n. T rﬁoe lim inf inequality follows from Proposition Em.n ( Eralrfhce other hand, for any given u €
GSBV(Q) such that M S, (u) < oo, we have, by Lebesgue Monotone Convergence Theorem,

MS,(u) = lim MSu,(KAuV—K).
K—oco

2wdHN "1 =0,

. . ) . limsup_n_c
Using a diagonal argument, together with Proposition h - concludes the proof. O
APPENDIX

We consider the one-di e{ﬂf&?&%} 1?1%%9{51\7 = 1 first, and then extend to the general case N > 1 via the slicing
argument introduced in [T4]. To avoid confusion, when N = 1, we define the approximating functional, with a

spatially dependent parameter w € P(I), as
2 1 1
TF (u,v) = / |u/’ viwde + —/ |:E2k71 [Vol? + —(1 — U)2] wdzx,
’ T 2¢k Jr1 2ke
and the one-dimensional Mumford-Shah functional, with a spatially dependent parameter w € P(I), by

T (u) :/I|u/|2wdx+ Z w™ (z).

€Sy,

We recall that w € P(I) implies H?(S.,) < co. Also, we note that w™ is defined #°-a.e, hence everywhere in I. We
begin with an auxiliary result.

s1_small_contral | Proposition A.1. Let {ve}.o o C WH2(I) be such that 0 < ve <1, ve — 1 in L*(I) and a.e., and

limsup/ g2kl
e—0 I

Then, for any 0 < n < 1, there exists an open set Hy C I such that I\ Hy, is a collection of finitely many points in
I, and for every set T CC H,, we have T C BZ for all sufficiently small € > 0, where

Bg::{ze[:v?(x)zn}.

|

€

1
+ T%(l _US)Z] dx < oo.

!

k
' o ®

v e

lequivalent_norm
Proof. Using Theorem b.?, we have there exists C := C(eg, k, Q) > 0 such that
2 1 2 1
limsup/ {e + —(1- vg)z} dr < Climsup/ g2k—1 + 1= ve)?| dx < oco.
e—0 JI de e—0 JI 4Fe

lambrosio1990approximation
Hence, by the arguments from [4; pages - - we conclude the proof. O




represent_constant_k

liminf_part_1d_c
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We next study the minimization problem

ck::inf{/ ’ (k)| 17v)2dx: vewh

[ 2(0, +00)
v(0) =v'(0) = - ~-U(k_1)(0) =0, v(t) =1if t > Ky, for some K}, > 0 depends on k}
Lemma A.2. The constant cy is positive and

—+o0
ck :inf{ / |v(k)(:£)|2 + 4%(1 —v(x))2dz : ve W20, +o0),
J0

loc

T—r00

v(0) =2’ (0) = ---o*~D(0) =0, lim v(z):l},

. [fonseca2000second . .
Proof. The proof employs the arguments used in [I5, Lemma 2.5]. Moreover, by solving the associated Euler-Lagrange
equation, we have also

_vay_out
Proposition A.3. (T-liminf) Given u € LY(I), let w € P(I) satisfying (Ffs ,W?J,nodu
T, (u) :=inf { liminf T _(ue, ve) :
e—0 ’
(ue,ve) € WHEI) x WH2E(I),ue = win LY, ve = 1 in LY, 0 < ve < 1}.

Then T, (u) > Ty (u).

Proof. Assume that M := T, (u) < oo, and choose ucs and ve that are admissible for T,; (u), such that lim¢_0 Tk - (ue,

— . . . . k e ulvalent _norm
T, (u). Since infzer w(z) > 1, we have liminfe_0 77 (ue,ve) < hmlnfsﬁoT (ue,ve) < 400. By TheoremE 7 we

have
1a(u57Us)<CkT1 e (ue,ve) < G T35 E(u57v€) <M+1,

lambrosio1990approximation

and by [4], we get also

u € GSBV(I) and H°(Sy) < +oo. (A.1)

The proof would be complete provided we show the following inequalities:
/ o | wde < 1iminf/ ul 2v§wda¢ < +o0, (A.2)

I e—0 I
and
Z - e L 21| ()| 1 2
w™ (z) < liminf — € Ve + — (1 —ve)* | wdz < 0. (A.3)
e—=0 Cr Jr 2ke

€Sy
Up to a (not relabeled) subsequence, we have u. — u and v — 1 a.e. in I, with

1 1 2
+ —01- v5)2 dx < limsup — g2k—1 fugm
2ke T

e—0 Ck

2
— k
EZk 1 U( )

1
limsup —
e—0 Ck JI
losl_small_contral
By Proposition AT, we deduce that, for a fixed n € (1/2,1), there exists a set H,, such that for every T CC Hy, it
holds

1
+ 2T6(1 — 05)2:| wdxr < +o0o.

/ |u/}2wda:§liminf/ |u | wdz < 711m1nf §|u;’2wdx. (A.4)

e—0 e—0 I

fonseca2015modern liminf_2
Here we used [I3, Theorem 6.3.7] in the first inequality. By tagmg the limit 7" * Hy on the left hand side of (A.4)

first, and then the limit n 1 on the right hand side, we get (

se_la_nonsm2
We next show (Eﬁ 3). Let t € S, be given, and for simplicity, assume that ¢t = 0 and ¢ € S,. By the same

lambrosi61990a roxlmatlon 1 2 o
arguments in [4, page 0% , we can prove that there exist {t } {t } e and {sp},—; such that

-1< tn <sp < tn <1,and lim tn = lim tn = lim s, =0,

n—oo n—oo n—oo

use_la_nonsmO

use_la_nonsml

use_la_nonsm2
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and, up to a subsequence, also
lim vs(n)(t}l) = lim 116(”)(75%) =1, and lim w.p)(sn) =0.
n— oo n—oo n—r o0
. lrepresent_constant_k
We conclude, using Lemma [A.2; that

NP T e 2k—1 (k)|?
lim inf . e(n) ’(US(H)) ‘ +
tTL

1
—_— 1—
n— 00 QCk 4 E(TL)
and, since w is positive,
2

o1 tn 2k—1 (k) |2
lim inf — ) e(n) |(”E(”)) | +
t

n—oo ZCk Jth

1
T=() 1- vg(n))Q} w(x)dx

1 [ o 1
> (i et w00 ) iminr 2 { [ (s [+ ks =] a9

notn

t2
+/ [s(n)%f1 |(U5(n))<k)|2 +
Sn

lrevel_1d_c_lower
Moreover, if t € Sy \ Su, we may use the above arguments to infer that (EXS holds also with w™(0) replaced by
w(0), since t =0 ¢ S, implies w™ (0) = w(0).

1
4ke(n)

(1 = vegm)?] dx} > (5+3) % © =70

) . luse_la_nonsmO . . . .
Finally, since Sy, C I\ Hy, by (ATI) we have that S, is a finite collection of points, and we may repeat the above
arguments for all S 1Sa’uml)nzmg)artitioning I into disjoint intervals, each of which containing at most one single point
of Sy, to deduce (A-3)." O

liminf_part_c

. 1iu2016weightedMs . .
We next recall some not ations agg results from [I4], and prove Proposition 3.1 wi > 1, under the assumption
that w € W(I) satisfies (E |

Let SN—1 be the unit sphere in RV, and let v € SN~ be a fixed direction. We set

HV::{JJG]RN: (w7y>:0}, Q:={z€ll,: Q. #0},

Qzi={y=z+tr: teR}NQ, -
g (t) == u(z+tv), z €, t€QL .

Set z = (z/,zn) € RN, where 2/ € RN~ denotes the first N — 1 components of z € R, and given I: R¥N—1 - R
and G C RN~ we define the graph of [ over G as

F(;G) = {($/,.Z’N) eRY 2 €@, ay = l(a:')}.
If [ is Lipschitz regular, then we call F'(I; G) a Lipschitz - (N — 1) - graph.

lambrosio1990approximation N . N-1
slice_deri_dirc | Theorem A.4 ([4], Theorem 3.3). Let v € SV~ be given, and assume that u € W12(Q). Then, for HN "1-a.e.
x € Qu, Uz, belongs to WH2(Qy,,) and uy o, (t) = (Vu(z + tv),v).

L 1iu2016weightedMS N—1 i . N N—1
ject_lemma_lip_h Proposition A.5 , Proposition 3.6]). Let v € SV~ be a fized direction, I' C RY be such that H (") < oo,
slicin, otation
and P,: RN — 11, be a projection operator, where by (&Yﬁi, T, C R is a hyperplane in RN~=1. Then

HN (B, (1) < HY (D),

’ project_lemma_lip_1 ‘

and, for HN"1-a.e. x €11,

'HO(QLV NT) < +oo. (A7) ’ project_lemma_lip_2 ‘

1iu2016weightedMS
slicing_single| Lemma A.6 ([I4, Lemma 3.9]). Let T > 0 and n > 0 be given. Let u € SBV () and assume that HV ~1(S,) < oo.
The following statements hold:

slicing_singlea a. there exist a set S C Sy, with HN~1(S, \ S) <, and a countable collection Q of mutually disjoint, open cubes
N-1 —0-
centered on elements of Sy, such that UQGQ QCQ, and H (S \ UQGQ Q) =0,

slicing_singleb b. for every Q € Q there exists a direction vector vy € SN=1 such that HO(SFTQI,VQ) =1forHN"1 a.e. z €QNS;
slicing_singlec c. SNQ is contained in a Lipschitz (N — 1)- graph T'q, with Lipschitz constant not exceeding T.

il Ll
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Now we are ready to prove the main result of this Section.

Liminf_part t
Proof of Proposition ?.ml,nwlalﬁr % satisfying (b 17, Ksstime that M := MSg (u) < oo. Let {(ue, ve)} .59 C WH() x
W12(Q) be such that uec — uin L', vc — 1 in L1(Q), and lim¢ 0 AT _(uc,ve) = MS; (u). Since infyeqw(z) > 1,

we have

lambrosio1990approximation

and by [4], we deduce that

We show separately that

and

1
lim inf —
e—0 QCk

hm 1anT1 (ue,ve) < liminf ATF e (ue,ve) < 00,

e—0

u € GSBV(Q) and HVN71(S,) < o0

liminf/ |Vug|2v5wdx2/ |Vu|? w de,
Q Q

e—=0

1
(azkfl [V ®0|* 4 ——(1 - UE)Q) wdz > / w dHN T
4ke

(A.S) first_part_ATCw_
(A.9) second_part_ATCw

u

slicing notation
Let A be an open subset of Q. Fix v € S¥N~1, and define A, W Aglc ., and A, as in (A6)_ For K ¢ Rt

UK = KANuV K [groslowgonpp

and Theorem 2.3 in {[4j that

hmmf [Vue|? v? wd:c>/
A

/ /1 uKm,j‘ we,p dt dHN 71 /|VuK(m ), )2 wd.
A

\sllce derl dirc pise_ %.a nonsmi

we _observe, by Fubini’s Theorem, Fatou’s Lemma, Theorem [AZ, equation (A-Z),

roximation

2
lim inf |(u5); V‘ (vg)i L wa,w dt dHN "1(z)
e—0 A1

(a10)

Taking the limit K — oo, and using Dominated Convergence Theorem, we have

lim inf |Vug\2vgwd:62/ [(Vu(a), v)]? wda. (A.11)
e—=0 JA A

Let én(x) := [(Vu(z), vn)|? w for LV-ae. z € Q, where {vn}32 , is a dense subset of SV 1, and let
w(A) = hmmf/ |Vue|? v2 wda.
e—0

Then o 1s£ositive, super-

slicecont
and (A-TT), we conclude

using similar arguments as in

1
liminf—/
e—0 2ck A

Next, given arbitrary 7 A
according to Lemma

rigid motions,

[Liminf_cont_later_slice

In (A.12); set A= Qug(®o,r0

/[QVS (x0,70)]

vs(zo)

" . . . raides2002gamma
ki omany pa oLopep gebadbapd 1 wih disioin closures andﬁr%%eitﬁgleﬁmﬁ%u 0351020,
BS). W We.

rove ((A.9). By Fubini’s Theorem, Fatou’s Lemma, (A.7), an 3), an

se_below_f
(A710), we have

1
(EQk—l’V(k)v5’2+E(1_UE)2)wd$ > /

Z w;u(t) dHN_l(:E). (A.12) liminf_cont_late

nAl

x,v

Ay
tes

Ug, v

nld n > 0, we choose a set S C Sy and a collection Q of mutulally dlbioint cubes

ﬁlrﬁ—gﬁ—nL
W1

respect to Sy. Fix one such cube Qg4 (x0,70) € Q. By Lemma [A76, we have, up to

o = {(ylvl%(y/)) DY €Tuoug N st(woﬂ’o)} and [|Viz, || poc <7

teSy

@vs(0)

slicing_single
) and v = vg(zo). Using the same notation from the proof of Lemma A6, we obtain

> ©r e ® | YT @)

N[Qug (w0,70)]

2,

g

z,vg(zo)

w*(m)dHNfl(x):/ W (@ lag (@) dCN (). (A.13)
(z0,70) Tg(z0,70)



Page 15 Section .0

_ ambrosio2000functions
Next, considering that wg ., (t) = w™ (z + tv) (see [3, Remark 3.109]), we have that
/ wodHN ! =/ W (@ 1o () V1 + | Vi () |2da’
Qug (zo,m0)NS Tzy,vgNQug (z0,70)
\/1+7'2/ w (@ lzo (2'))da’,

Tug,vgNQug (z0,70)

withou_t_above2

) . liminf_cont_1dsbaplsd iiaet _tm
which, together with (A~ an 13), yields

liminf/ (62"‘*1 | ®e |
e—=0 JO
1
> hminf/ (e%—l |V ® |+ (1 - v5)2> wda

L / — o N-1 1 / — g N-1
> — w™ dH P w— dH —|lw|l700m ] -
V1472 QZG:Q s5NQ V1i+72 \Us, Il

) second_part_ATCw_m . )
Finally, (A.9) follows by the arbitrariness of  and 7. O

aishligbahéiehdébhoyGudehao T
We recall Qug  (z0,7) and Trg,vg , (1) from Notation 2.5, 1, and 2, and define I(to, t) := (to —t,to +t) C R for to € R

and t € RT.

1
+ 4T€(1 - ’Ug)2) wdx

eady_coro_limsup | Proposition A.7. Let w € W(Q) and T € (0,1/4) be given. Then, there exist a set S C S.,, and a countable family
of disjoint cubes F = {stw T, r")}nzl’ with rn < T, such that the following assertions hold:

HN=1(S,\S) < T and S C Un:l Qug,, (Tn,mn) C Y

dist(Qug,, (Tn,7n)s Qug,, (Tns,Tns)) > 0 for n # n';

SN Qug, (Tn, ™) C Reyavs, (Zn,Tn);

(1+ 72)—1 NS HN T (SN Qug, (0, ) < (L4 TP T

jrcl_small

jrcl_disjoint

jrcl_subinter

jrcl_fenduan

& 0 &8

_ineq_finite_sum e. ZZO 1 -1 < AHN— 1(5 );
jrcl_ineq_main f. for each n € N, there exists tn € (2.57rn,3.57rn) and 0 < tg, r, < tn, depending on T, Ty, and xn, such

that T, g, (—tn te,,r,) N Qug, (Tn,mn) C Qug (Tn,Tn) \ Rejaus, (zn,rn) and, where we recall I(tn,t) :=
(—tn —t,—tn + 1),

sup 7/ / w (x)dHN ~Ldl
0<t<tayym (s O 100.6) JQug (@nsrn) N Tap v (—1)

S/ W dHN T O(r)rV L
SNQug (Tn,mn)

(A.14) ’ upper_sup_ready_limsup_jum

L. . Riu2016weightedMS
Proof. The proof uses similar arguments as in [T4, Proposition 4.4]. O

Since this proof is quite lengthy, we summarize the main ideas. We modify the bulk part of S, by replacing it with
(N —1) polyhedra located in the —vg  direction of S., and note that both the L'-norm of v and the L%-norm of Vu
do not change much. This will be done via a reflection argument around suitable hyperplanes. For the remaining
part of S, we shall cover them using a finite collection of cubes, and change the value of u to 0 over such cubes.
Hence, in this way, we transfer the jump set of S;, to a finite union of polyhedra.

irst_step_finite | Proposition A.8. Let u € SBV2(Q) N L>®(Q) be given, satisfying HN ~1(Sy) < 400 and w € W(Q). Then there
exists a sequence {(ue,ve)},5o C WH2(Q) x WH2(Q) such that

lim sup B e (ue, ve) < Bu(u).
e—0

Proof. Without loss of generality, we assume that FE,,(u) < 400, which implies HN~1(S,) < S5 %84y coro_linsu
Step 1: Assume HY~1((S,, \ Su) U (Su \ Sw)) = 0. Fix 7 € (0,1/4). Applying Proposition &Y o w, we obtain a set

[e3¢] . . er_sup_ready_limsup_jum
S+, a collection Fr = {Qusw xn,rn)}nzl, and corresponding ¢, € (2.57ry,3.57ry,) and tg, r,, for which (FAEPM’)_P—Y—M_E
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M,
holds. Extract a finite collection T, = {QVSw (zn, rn)}nil from Fr with M; > 0, large enough such that

M,
HN_l Sr \ U QVSW (xnﬂ"n) <T,
n=1
M,
and set Fir := S, N [Un:l stw (zn, rn)] Note that
HY (S, \ Fr) S HV 7Y (Su\ Sr) + HY 1S\ Fr) < 27 (A.15)
We observe that
M, M, M,
N (e e al) #ar (@)} =N | | Jva | <) £Nwn) <72 el <o),
n=1 n=1 n=1

) X . . jump_ready|jrctoihemsdpnite_sum
where in the last inequality we used Propositions [A77 and k. We note tha

a. ur is a reflection of 4 within the set with measure less than O(7);

b LN{a#u}) <30 LN (Qm) < O(r);
c. u€ SBVZ(Q)N L>®(Q).

Then,

lim / |tr —u| de =0 and lim / Vi, — Vu|? dz = 0. (A.16)
Q T—=0JQ

T—0

For brevity, in the rest of the proof we abbreviate Qug (n,7n) by Qn, Tz, vg, by T, , and Tu, ,vg, (—tn) by
T, (—tn). Note that the jump set of @, is contained in

M, M, Y, Y,
Py = U [Te, (—tn) N Qn] U U Qn N Ty U U OQm U U ORpm,
n=1 n=1 m=1 m=1

and Si, C Pr and Pr are both union of finitely many polyhedra. We also observe that, denoting by cl(-) the closure
of a set,

M, Y, Y,
HN-1 |l U 9Qn NTn | U U aQm | U U ORm
n=1 m=1 m=1
M, Y, Y,
<D RN OQuNT) + Y HN T 0Qm) + Y HN T (ORm) (A7)
n=1 m=1 m=1

o0
<2r4+Cr erjflf +2HN (S \ Su) < O(r) + 2HY 1S\ Su) < +o0,
n=1
jump_|feadqd f IRmE um _
where we used Proposition [A77 e, (A1), an e assumption that ’}-[Nfl(Su) < 4o0.
Let € > 0 be such that

e? + Ve < min{ar, tg, r, for 1 <n < M;}.
L jump_ready|jcctoihémsmpin
Hence, by Propositions k; and E, We have
2 1
e? + Ve <twprn < ltn] < 77 <7

We set ure := (1 — pe)tr, where . is such that ¢, € C(2;[0,1]), v« = 1 on (Sa7)52/4, and ¢ = 0 in
R finite_size_redefine R
Q\ (Sa, )e2/2- By (A.I7) we have HN—1(Sz,) < +oo, hence {ure}no C W12(Q). Moreover, by the Dominated

[Liomcont ) 1
Convergence Theorem, and (IA716), we conclude that ur . — u in L'(Q).

ext_fint_part

qu_left_F_cont

finite_size_rede

finite_small_pos

finite_small_pos
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Consider the sequence {vre} o C W12(Q) given by vre(z) := ¥e(d-(z)), where d-(z) := dist(z, P;) and . are
defined by

0 if t < &2,
De(t) == —e_%tjz +1 ife? <t< . e+e?,
1—e 3vE ift > e +e2
An explicit computation shows that
W) = 5o (1= 3(0)
for 2 <t < /e +e? and . € Wlt’cg (R), and we remark that

1 __1_
lim —e 2ve =0,
e—0¢€

and
Cdt \2

. [Liomcont
Moreover, since Sy, C Pr and by (A716), we conclude that

d(lu—@mf)zu—mwmanzo

/|Vu.,—75\zv,2_7€wdx§/ \Vﬁ-r\zwdxg/ |Vu|? wdz + O(r).
Q Q Q

Step 2: For the general case HN~1(S, \ S,,) > 0, the proof follows by applying the same construction in Step 1 on
Su, and noticing that w™ (z) = w(z) if z € Sy \ Sw. O
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