HIGHER ORDER AMBROSIO-TORTORELLI SCHEME WITH NON-NEGATIVE SPATIALLY DEPENDENT PARAMETERS

IRENE FONSECA
Department of Mathematics, Carnegie Mellon University 5000 Forbes Avenue, Pittsburgh, PA, 15213
PAN LIU
Department of Radiology,
First Medical Center of Chinese PLA General Hospital, Beijing 100853, China

XIN YANG LU
Department of Mathematical Sciences, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada

August 25, 2021

Abstract. The Ambrosio-Tortorelli approximation scheme with weighted underlying metric is investigated. It is shown that it Γ-converges to a Mumford-Shah image segmentation functional depending on the weight $\omega d x$, where ω is a special function of bounded variation, and on its values at the jumps.

1. Introduction and Main Results

One of the most succesful methods for image denoising involves minimizing an energy of the form

$$
M S_{\alpha}(u)+\left\|u-u_{0}\right\|_{L^{2}(\Omega)}^{2},
$$

where Ω is a given domain, u_{0} is a (given) corrupted image, the argument of the minimization $u \in \operatorname{SBV}(\Omega)$ is a special function of bounded variation, encoding an image, with its jump set S_{u} representing the edges of such image. The functional $M S_{\alpha}$ is the so-called Mumford-Shah image segmentation functional, defined as

$$
\begin{equation*}
M S_{\alpha}(u):=\alpha \int_{\Omega}|\nabla u|^{2} d x+\beta \mathcal{H}^{N-1}\left(S_{u}\right), \alpha, \beta \in \mathbb{R}^{+} . \tag{1.1}
\end{equation*}
$$

 [1,10$]$).
 determines the regularization strength over the entire image, plays an important role The problem of finding a "good" tuning parameter $\alpha \in \mathbb{R}^{+}$is still open, and widely discussed (see e.g., $[11,19]$). However, the uniform regularization strength provided by a scalar tuning parameter $\alpha \in \mathbb{R}^{+}$is undesirable when both fine details and large flat areas are present in the same image, which is often the case in image denoising problems. Ideally, one should impose a weaker regularization strength in regions with fine details, so to preserve them, and a greater regularization

[^0]strength over large flat areas, so to remove the noise.

To this aim, the following Mumford-Shah functional, coupled with a spatially dependent parameter function ω : $\Omega \rightarrow[0,+\infty]$, was introduced in $[14]$:

$$
\begin{equation*}
M S_{\omega}(u):=\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1} \tag{1.2}
\end{equation*}
$$

 problem (11.2) can be viewed as a weighted version of the minimizing problem (11.1), with underlying metric $\omega \mathcal{L}^{N}\lfloor\Omega$ instead of $\mathcal{L}^{N}\left\lfloor\Omega\right.$, where $\mathcal{C}^{N}{ }^{N}$ denotes the N dimensional Lebesgue measure. However, it is well known that the minimization problem (11.1) is numerically difficult to solve in an efficient and robust way, and hence we would expect $(\overline{1.2)}$ to inherit similar issues. To overcome this drawback, an alternative approach has been proposed in $[14]$, by adopting the approximation scheme of Ambrosio and Tortorelli from [4], and by changing the underlying metric in an appropriate manner. To be precise, in $[14]$ the authors introduced the family of elliptic functionals with a spatially dependent parameter function ω

$$
\begin{equation*}
A T_{\omega, \varepsilon}(u, v):=\int_{\Omega}|\nabla u|^{2} v^{2} \omega d x+\int_{\Omega}\left[\varepsilon|\nabla v|^{2}+\frac{1}{4 \varepsilon}(v-1)^{2}\right] \omega d x \tag{1.3}
\end{equation*}
$$

where $(u, v) \in W^{1,2}(\Omega) \times W^{1,2}(\Omega)$, and a rigorous analysis of properties of the functional (11.3) was undertaken. It turns out that, for a parameter function $\omega \in S B V(\Omega)$ satisfying $\mathcal{H}^{N-1}\left(S_{\omega}\right)<+\infty$ and

$$
\begin{equation*}
0<l_{1} \leq \operatorname{ess} \inf \{\omega(x): x \in \Omega\} \leq \operatorname{ess} \sup \{\omega(x): x \in \Omega\} \leq l_{2}<+\infty \tag{1.4}
\end{equation*}
$$

> pos_lower_ass2
the functionals $A T_{\omega, \varepsilon} \Gamma$-converge ([t]t) to the functional $M S_{\omega}(u)$ in the $L^{1} \times L^{1}$ topology.
 to construct ω via a spatially dependent bilevel learning scheme (see also [9, 19]). Although the parameter function ω suggested in $[21]$ does belong to $S B V(\Omega) \cap L^{\infty}(\Omega)$, i.e., the upper bound l_{2} in $(1) 4$ that the positive lower bound l_{1} exists too. In fact, the analysis in both $[17,21]$ suggests that in certain situation a vanishing parameter function can yield a better denoising result, and in particular, mitigate the so called staircasing effect. Hence, it is necessary to improve the method proposed in $[14]$ so that the positive lower bounded requirement can be removed, and this is the main topic of this article.
 original Ambrosio and Tortorelli approximation introduced in $[4](\omega \equiv 1$ in $(1.3))$ is the reminiscent of the "first order" Cahn-Hilliard approximation, we may also consider an approximation by using the "second order" Cahn-Hilliard approximation or even higher order Cahn-Hilliard approximations (see [15]).

In view of this, in this article we will consider a family of approximation schemes defined by, for $k=1,2,3, \ldots$,

$$
A T_{\omega, \varepsilon}^{k}(u, v):=\int_{\Omega}|\nabla u|^{2} v^{2} \omega d x+\frac{1}{2 c_{k}} \int_{\Omega}\left[\varepsilon^{2 k-1}\left|\nabla^{(k)} v\right|^{2}+\frac{1}{4^{k} \varepsilon}(1-v)^{2}\right] \omega d x
$$

where

$$
\begin{aligned}
c_{k}:=\inf & \left\{\int_{0}^{+\infty}\left|v^{(k)}\right|^{2}+\frac{1}{4^{k}}(1-v)^{2} d x: v \in W_{\mathrm{loc}}^{k, 2}(0,+\infty)\right. \\
& \left.v(0)=v^{\prime}(0)=\cdots v^{(k-1)}(0)=0, v(t)=1 \text { if } t>K_{k} \text { for some } K_{k}>0 \text { depends on } k\right\} .
\end{aligned}
$$

It has been observed in $[8]$ HR3429728 that, for $\omega(x) \equiv \alpha \in \mathbb{R}^{+}$and $k=2$, the second order Ambrosio and Tortorelli approximation, i.e., $A T_{\alpha}^{2}(u, v)$, shows several advantages. For example, certain structure that are larger than a typical noise, but still not relevant for the segmentation (edge), can be suppressed. Hence, we should expect that the weighted version of $A T_{\alpha}^{2}$, i.e., $A T_{\omega}^{2}$, to inherit similar advantages.

In order to state the main result of our paper, we first introduce some notations.
Notation 1.1. Let $\Omega \subset \mathbb{R}^{N}$ be an open, bounded, Lipschitz regular domain, and let $\omega \in S B V(\Omega)$ be a non-negative function.

1. We say that $S \in \mathcal{R}(\Omega)$ if \bar{S} is $\mathcal{H}_{\text {dmbrosio2dtofifanable and }}^{N-1} \mathcal{H}^{N-1}(\bar{S} \backslash S)=0$ (note that \bar{S} is \mathcal{H}^{N-1}-rectifiable implies that S is \mathcal{H}^{N-1}-rectifiable. See 年3] 3 , Prosioposition 2.76).
2. Set $F^{t}(\omega):=\{x \in \Omega: \omega(x)>t\}$, for $t>0$, and

$$
\begin{equation*}
P^{\infty}(\omega):=\bigcap_{t>0} F^{t}(\omega) \text { and } P^{0}(\omega):=\bigcap_{t>0}\left(\Omega \backslash F^{t}(\omega)\right) . \tag{1.5}
\end{equation*}
$$

3. Define $A_{\delta}:=\{x \in \Omega: \operatorname{dist}(x, A)<\delta\}$ for $A \subset \Omega$ and $\delta>0$.

We can now introduce the parameter functions used in our main theorem.
Definition 1.2 (The spatially dependent parameter function). Let $\omega: \Omega \rightarrow[0,+\infty]$ belong to $S B V(\Omega)$.

1. We say that $\omega \in \mathcal{P}(\Omega)$ if $\mathcal{H}^{N-1}\left(S_{\omega}\right)<+\infty$, and $P^{0}(\omega) \in \mathcal{R}(\Omega)$.
2. We say that $\omega \in \mathcal{P}_{r}(\Omega)$ if $\omega \in \mathcal{P}(\Omega)$, and

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{\partial\left(\left(P^{\infty}(\omega)\right)_{\delta}\right)} \omega d \mathcal{H}^{N-1}+\int_{\partial\left(\left(P^{0}(\omega)\right)_{\delta}\right)} \omega d \mathcal{H}^{N-1}=0 \tag{1.6}
\end{equation*}
$$

We remark that any positive, bounded, and continuous function ω satisfies ($\frac{\text { infinite_small_cover }}{1.6)}$
3. We say that $\omega \in \mathcal{P}_{b}(\Omega)$ if $\omega \in \mathcal{P}(\Omega)$, and satisfies (1.4).

Our main result is the following:
Theorem 1.3. Let $\Omega \subset \mathbb{R}^{N}$ be an open, bounded, Lipschitz regular domain, let $\omega \in \mathcal{P}_{r}(\Omega)$, and for $k \in \mathbb{N}$, $\varepsilon>0$, let $\mathcal{A} \mathcal{T}_{\omega, \varepsilon}^{k}: L^{1}(\Omega) \times L^{1}(\Omega) \rightarrow[0,+\infty]$ be given by

$$
\mathcal{A} \mathcal{T}_{\omega, \varepsilon}^{k}(u, v):= \begin{cases}A T_{\omega, \varepsilon}^{k}(u, v) & \text { if }(u, v) \in W^{1,2}(\Omega) \times W^{1,2}(\Omega), 0 \leq v \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

Then the functionals $\mathcal{A} \mathcal{T}_{\omega, \varepsilon}^{k} \Gamma$-converge, with respect to the $L^{1} \times L^{1}$ topology, to

$$
\mathcal{M} \mathcal{S}_{\omega}(u, v):= \begin{cases}M S_{\omega}(u) & \text { if } u \in G S B V_{\omega}(\Omega) \text { and } v=1 \text { a.e. } \\ +\infty & \text { otherwise }\end{cases}
$$

where $G S B V_{\omega}(\Omega)$ is defined in Definition ${ }^{\text {param }}$ 2.3.
Although the parameter function proposed in [21] belongs to L^{∞}, here we allow ω and to be unbounded, although the structure of the set $P^{\infty}(\Omega)$ has to satisfy the restrictive requirement (in.6).

The proof of the Γ-liminf requires only $\omega \in \mathcal{P}(\Omega)$. To this aim, we first restrict our analysis to the domain $\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}$, with $\delta>0$. Hence ω is bounded away from zero in $\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}$. Together with a truncation argument on ω, we have $\omega_{K}:=\omega \wedge K \in \mathcal{P}_{b}\left(\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}\right)$, and hence the Γ-lim inf result obtained in [21] can be applied. Second, we take the limit $\delta \rightarrow 0$, and using the assumption $\partial\left(P^{0}(\omega)\right) \in \mathcal{R}(\Omega)$, we can obtain the lower bound in $\Omega \backslash \overline{P^{0}(\omega)}$. Finally, by using the definition of $P^{0}(\omega)$, we recover the Γ-liminf inequality in the entire domain Ω.

The proof of the Γ-limsup is more delicate, requiring the extra assumption $\omega \in \mathcal{P}_{r}(\Omega)$. Still, similarly to the Γ - liminf inequality, we first restrict our analysis to the subset Ω^{\prime} of Ω such that $\omega \in \mathcal{P}_{b}\left(\Omega^{\prime}\right)$, and apply the construction from $[21]$. Then, using (1.6), we can construct the recovery sequence in the entire domain Ω. To conclude this section, we state a lower semicontinuity result, which will be used in Section 4 , which can be viewed as the weighted version of the main theorem of $[2]$.

$$
F_{\omega}(u):=\int_{\Omega} f(x, u, \nabla u) \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}
$$

where $f(x, s, p)$ is integrable in x, continuous in s, convex with respect to p, and satisfies

$$
|p|^{2} \leq f(x, s, p) \leq a(x)+\Phi(|s|)\left(1+|p|^{2}\right) \text { for all }(x, s, p) \in \Omega \times \mathbb{R} \times \mathbb{R}^{N}
$$

for some $a \in L^{1}(\Omega)$, and some continuous function $\Phi:[0,+\infty) \rightarrow[0,+\infty)$. Then the functional F_{ω} is $L_{\mathrm{loc}}^{1}(\Omega)$ is lower semicontinuous in $S B V(\Omega) \cap L^{\infty}(\Omega)$.

 fine properties of $S B V$ functions, and we prove Theorem $\frac{1}{1.4}$.

SBV_SBV2_GSBV

haishiyoudehao haishiyoudehao_Q

haishiyoudehao_T
haishiyoudehao_Tt

Throughout this paper, $\Omega \subset \mathbb{R}^{N}$ is an open, bounded set with Lipschitz boundary, and $I:=(-1,1)$.
Definition 2.1. We say that a subset $P \subset \Omega$ is $(N-1)$ polyhedral if it is the intersection of Ω with finitely many $(N-1)$-dimensional simplexes of \mathbb{R}^{N}.

Definition 2.2. We say that $u \in B V(\Omega)$ is a special function of bounded variation, and we write $u \in S B V(\Omega)$, if the Cantor part of its derivative, $D^{c} u$, is zero, so that (see [3, equation (3.89)])

$$
D u=D^{a} u+D^{j} u=\nabla u \mathcal{L}^{N}\left\lfloor\Omega+\left(u^{+}-u^{-}\right) \nu_{u} \mathcal{H}^{N-1}\left\lfloor S_{u}\right.\right.
$$

absolutely_cont_
Moreover, we say that

1. $u \in S B V^{2}(\Omega)$ if $u \in S B V(\Omega)$ and $\nabla u \in L^{2}(\Omega)$;
2. $u \in G S B V(\Omega)$ if $K \wedge u \vee-K \in S B V(\Omega)$ for all $K \in \mathbb{N}$.

Here we always identify $u \in S B V(\Omega)$ with its representative \bar{u}, where $\bar{u}(x):=\left(u^{+}(x)+u^{-}(x)\right) / 2$, with

$$
u^{+}(x):=\inf \left\{t \in \mathbb{R}: \lim _{r \rightarrow 0} \frac{\mathcal{L}^{N}(B(x, r) \cap\{u>t\})}{r^{N}}=0\right\}
$$

and

$$
\begin{equation*}
u^{-}(x):=\sup \left\{t \in \mathbb{R}: \lim _{r \rightarrow 0} \frac{\mathcal{L}^{N}(B(x, r) \cap\{u<t\})}{r^{N}}=0\right\} \tag{2.1}
\end{equation*}
$$

We note that u^{-}, u^{+}, and \bar{u} are all Borel measurable (see $[12$, Levans2015measure 1$\left.]\right)$.

2. Definitions and Preliminary Results

Definition 2.3. Let $\omega \in \mathcal{P}(\Omega)$ be given. We say that $u \in S B V_{\omega}(\Omega)$ if $u \in L^{1}(\Omega)$, $u \in S B V\left(\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}\right)$ for every $\delta>0$, and

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}^{0}}\left|u^{+}-u^{-}\right| \omega d \mathcal{H}^{N-1}<+\infty \tag{2.2}
\end{equation*}
$$

where the jump set S_{u}^{0} of $u \in S B V_{\omega}(\Omega)$, with a vanishing parameter ω, is defined by

$$
S_{u}^{0}:=\left(\bigcup_{\delta>0} S_{u}^{\delta}\right) \cup P^{0}(\omega)
$$

Here S_{u}^{δ} denotes the jump set of u in $S B V\left(\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}\right)$. Moreover, we say that $u \in G S B V_{\omega}(\Omega)$ if $K \wedge u \vee-K \in$ $S B V_{\omega}(\Omega)$ for all $K \in \mathbb{N}$.

Remark 2.4. Since $u \in S B V\left(\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}\right)$ for every $\delta>0, \nabla u$ is defined \mathcal{L}^{N} a.e. in $\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}$, and hence \mathcal{L}^{N} a.e. in $\Omega \backslash \overline{P^{0}(\omega)}$. Recalling that $P^{0}(\omega) \in \mathcal{R}(\Omega)$, which implies that $\mathcal{H}^{N-1}\left(\overline{P^{0}(\omega)}\right)<+\infty$, we have that ∇u is defined \mathcal{L}^{N} a.e., hence the first integral in $\left(\frac{\text { define_zero int }}{2.2) \text { is }}\right.$ is well defined. Similarly, $u^{ \pm}$is well defined for \mathcal{H}^{N-1}-a.e. $x \in \Omega \backslash \overline{P^{0}(\omega)}$, hence the second integral in (㐬.2) us also well defined. Finally, it is clear that if ω has a positive lower bounded, then $P^{0}(\omega)=\varnothing$ and $S_{u}^{0}=S_{u}$.
Notation 2.5. Let $\Gamma \subset \Omega$ be a \mathcal{H}^{N-1}-rectifiable set, and let $x \in \Gamma$ be given.

1. We denote by $\nu_{\Gamma}(x)$ the normal vector at x with respect to Γ, and by $Q_{\nu_{\Gamma}}(x, r)$ the cube centered at x with side length r and two faces normal to $\nu_{\Gamma}(x)$;
2. $T_{x, \nu_{\Gamma}}$ denotes the hyperplane through x and normal to $\nu_{\Gamma}(x)$, and $\mathbb{P}_{x, \nu_{\Gamma}}$ denotes the projection operator from Γ onto $T_{x, \nu_{\Gamma}}$;
3. we define, for $t \in \mathbb{R}$, the hyperplane $T_{x, \nu_{\Gamma}}(t):=T_{x, \nu_{\Gamma}}+t \nu_{\Gamma}(x)$;
4. we define the half-spaces and half-cubes by,

$$
H_{\nu_{\Gamma}}(x)^{+(-)}:=\left\{y \in \mathbb{R}^{N}: \nu_{\Gamma}(x) \cdot(y-x) \geq(\leq) 0\right\}
$$

and

$$
Q_{\nu_{\Gamma}}^{ \pm}(x, r):=Q_{\nu_{\Gamma}}(x, r) \cap H_{\nu_{\Gamma}}(x)^{ \pm}
$$

respectively;
5. for given $\tau>0$, we denote by $R_{\tau, \nu_{\Gamma}}(x, r)$ the part of $Q_{\nu_{\Gamma}}(x, r)$ which lies strictly between the two hyperplanes $T_{x, \nu_{\Gamma}}(-\tau r)$ and $T_{x, \nu_{\Gamma}}(\tau r)$.
ne_properties_BV
Theorem 2.6 (evans2015measure
$\lim _{r \rightarrow 0} f_{B\left(x_{0}, r\right) \cap H_{\nu_{S u}}\left(x_{0}\right)^{ \pm}}\left|u(x)-u^{ \pm}\left(x_{0}\right)\right|^{\frac{N}{N-1}} d x=0$,
and

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon^{N-1}} \int_{S_{u} \cap Q_{\nu_{S_{u}}}\left(x_{0}, \varepsilon\right)}\left|u^{+}(x)-u^{-}(x)\right| d \mathcal{H}^{N-1}(x)=\left|u^{+}\left(x_{0}\right)-u^{-}\left(x_{0}\right)\right|
$$

Theorem 2.7 ([brezis2010functional Remark 8). Let $\Omega \subset \mathbb{R}^{N}$ be an open and bounded domain. Then, for any $\delta<\delta_{0}$,

$$
C\left(\delta_{0}, k, \Omega\right) \delta\|\nabla u\|_{L^{2}(\Omega)}^{2} \leq \delta^{2 k-1}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2^{k} \delta}\|1-u\|_{L^{2}(\Omega)}^{2}
$$

where $|\alpha|=k$, and $C\left(\delta_{0}, k, \Omega\right)>0$ is some constant depending on $\delta_{0}, k \in \mathbb{N}$, and Ω.

3. The Γ-lim inf inequality

In this section we will prove the Γ-lim inf inequality.
Proposition 3.1. (Γ-liminf) Given $u \in L^{1}(\Omega)$, let $\omega \in \mathcal{P}(\Omega)$, and

$$
\begin{aligned}
M S_{\omega}^{-}(u):= & \inf \left\{\liminf _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right):\right. \\
& \left.\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W^{1,2}(\Omega) \times W^{1,2}(\Omega), u_{\varepsilon} \rightarrow u \text { in } L^{1}, v_{\varepsilon} \rightarrow 1 \text { in } L^{1}, 0 \leq v_{\varepsilon} \leq 1\right\}
\end{aligned}
$$

Then $M S_{\omega}^{-}(u) \geq M S_{\omega}(u)$.
3.1. Special case: $\omega \in \mathcal{P}_{b}(\Omega)$. In Section |bdd_away_zero 3.1 we prove Proposition |liminf_part_c

$$
\begin{equation*}
0<l_{1} \leq \operatorname{ess} \inf \{\omega(x): x \in \Omega\} \leq \operatorname{ess} \sup \{\omega(x): x \in \Omega\} \leq l_{2}<+\infty \tag{3.1}
\end{equation*}
$$

and, without loss of generality, $l_{1}=1$.
Proposition 3.2 ([21]2016optimal , Proposition 3.1). Given $\omega \in \mathcal{P}_{b}(\Omega)$ and $u \in L^{1}(\Omega)$, let

$$
\begin{aligned}
M S_{\omega}^{-}(u):=\inf \{ & \left\{\liminf _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{1}\left(u_{\varepsilon}, v_{\varepsilon}\right):\right. \\
& \left.\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W^{1,2}(\Omega) \times W^{1,2}(\Omega), u_{\varepsilon} \rightarrow u \text { in } L^{1}, v_{\varepsilon} \rightarrow 1 \text { in } L^{1}, 0 \leq v_{\varepsilon} \leq 1 \text { a.e. }\right\}
\end{aligned}
$$

Then $M S_{\omega}^{-}(u) \geq M S_{\omega}(u)$.
3.2. General case: $\omega \in \mathcal{P}(\Omega)$. Now we are ready to prove Proposition liminf_part_c 3.1. In the following, we set

$$
L_{\delta}:=\{x \in \Omega: \omega(x)>\delta\} \cap\left(\Omega \backslash\left(P^{0}(\omega)\right)_{\delta}\right)
$$

where $P^{0}(\omega)$ is from Definition $\frac{\text { Muckenhoupt_Function_Space }}{1.2 \text { and }}$

$$
\omega_{l}:=l \wedge \omega, \quad l>0
$$

We recall from $\stackrel{\text { evans2015measure }}{[12, \text { Theorem }} 1]$ that, for \mathcal{L}^{1} a.e. $\delta>0, L_{\delta}$ has finite perimeter.
Proof of Proposition $\frac{\text { liminf } 13.1 \text {. Withort }}{}$. $W^{1,2}(\Omega) \times W^{1,2}(\Omega)$ be such that $u_{\varepsilon} \rightarrow u$ in $L^{1}(\Omega), v_{\varepsilon} \rightarrow 1$ in $L^{1}(\Omega)$, and $\lim _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right)=M S_{\omega}^{-}(u)$. Fix $\delta>0$ and $l>0$, and note that

$$
\begin{aligned}
& \liminf _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) \\
& \quad \geq \liminf _{\varepsilon \rightarrow 0} \int_{L_{\delta}}\left|\nabla u_{\varepsilon}\right|^{2} v_{\varepsilon}^{2} \omega_{l} d x+\frac{1}{c_{k}} \int_{L_{\delta}}\left[\varepsilon^{2 k-1}\left|\nabla^{(k)} v_{\varepsilon}\right|^{2}+\frac{1}{\varepsilon 4^{k}}\left(1-v_{\varepsilon}\right)^{2}\right] \omega_{l} d x \\
& \quad \geq \int_{L_{\delta}}|\nabla u|^{2} \omega_{l} d x+\int_{S_{u}^{\delta} \cap L_{\delta}} \omega_{l}^{-} d \mathcal{H}^{N-1}
\end{aligned}
$$

where in the last inequality we used Proposition ${ }_{3}^{\text {liminf_part_ref }}$ 3. Letting $\nearrow+\infty$ on the right hand side, we have

$$
\liminf _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) \geq \int_{L_{\delta}}|\nabla u|^{2} \omega d x+\int_{S_{u}^{\delta} \cap L_{\delta}} \omega^{-} d \mathcal{H}^{N-1}
$$

for \mathcal{L}^{1} a.e. $\delta>0$.
Finally, taking the limit $\delta \searrow 0$ on the right hand side, in view of ($\begin{gathered}\text { (regularity assumption } \\ 1.5) \text {, and the fact that } S_{u}^{\delta} \cap L_{\delta} \subset S_{u}^{\delta^{\prime}} \cap L_{\delta^{\prime}} .\end{gathered}$ for $\delta>\delta^{\prime}$, by the Monotone Convergence Theorem we infer

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) & \geq \int_{\Omega \backslash \overline{P^{0}(\omega)}}|\nabla u|^{2} \omega d x+\int_{S_{u}^{0} \backslash \overline{P^{0}(\omega)}} \omega^{-} d \mathcal{H}^{N-1} \\
& =\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}^{0} \backslash P^{0}(\omega)} \omega^{-} d \mathcal{H}^{N-1}=\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}^{0}} \omega^{-} d \mathcal{H}^{N-1}
\end{aligned}
$$

where in the last equality we used the fact that $\omega^{-}(x) \leq \omega(0)=0$ in $P^{0}(\omega)$.

4. The Γ-lim sup Inequality

 $\omega \in \mathcal{P}_{r}(\Omega)$.

The main goal is to prove the following proposition.
Proposition 4.1. (Γ-limsup) Given $u \in L^{1}(\Omega) \cap L^{\infty}(\Omega)$, let $\omega \in \mathcal{P}_{r}(\Omega)$, and

$$
\begin{aligned}
M S_{\omega}^{+}(u):=\inf & \left\{\limsup _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right):\right. \\
& \left.\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W^{1,2}(\Omega) \times W^{1,2}(\Omega), u_{\varepsilon} \rightarrow u \text { in } L^{1}(\Omega), v_{\varepsilon} \rightarrow 1 \text { in } L^{1}(\Omega), 0 \leq v_{\varepsilon} \leq 1\right\}
\end{aligned}
$$

Then $E_{\omega}^{+}(u) \leq E_{\omega}(u)$.
To prove this result, we will establish some preliminary results on the lower semicontinuity of convex integrals in the space $S B V_{\omega}(\Omega) \cap L^{\infty}(\Omega)$, under the condition that $\omega \in \mathcal{P}(\Omega)$ has a positive lower bound.
4.1. Lower semicontinuity results in the space $S B V_{\omega}(\Omega) \cap L^{\infty}$ with a positive lower bounded ω. In this section we study the lower semicontinuity of integral functionals defined in $S B V_{\omega}(\Omega)$, with respect to the $L^{\infty}(\Omega)$ topology. Consider

$$
F_{\omega}(u):=\int_{\Omega} f(x, u, \nabla u) \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}
$$

where $f(x, s, p)$ is a nonnegative Carathéodory function in x, and continuous in (s, p), and the parameter function $\omega \in \mathcal{P}(\Omega)$ is assumed to be bounded from below by a constant $l>0$, i.e.

$$
\begin{equation*}
\operatorname{ess} \inf \left\{\omega^{-}(x): x \in \Omega\right\}=l>0 \tag{4.1}
\end{equation*}
$$

Without loss of generality, we take $l=1$. This condition implies that the space $S B V_{\omega}$ is embedded in $S B V(\Omega)$, and hence we may apply results concerning $S B V(\Omega)$.

The main result is the following.
 condition

$$
|p|^{2} \leq f(x, s, p) \leq a(x)+\Phi(|s|)\left(1+|p|^{2}\right) \text { for all }(x, s, p) \in \Omega \times \mathbb{R} \times \mathbb{R}^{N}
$$

for some $a \in L^{1}(\Omega)$, and some continuous function $\Phi:[0,+\infty) \rightarrow[0,+\infty)$. Then, for any sequence $\left\{u_{\varepsilon}\right\}_{\varepsilon>0} \subset$ $L^{\infty}(\Omega)$ such that $u_{\varepsilon} \rightarrow u$ in $L^{1}(\Omega)$, and

$$
\begin{equation*}
\sup \left\{\left\|u_{\varepsilon}\right\|_{L^{\infty}(\Omega)}: \varepsilon>0\right\}<+\infty \tag{4.2}
\end{equation*}
$$

we have

$$
\liminf _{\varepsilon \rightarrow 0} F_{\omega}\left(u_{\varepsilon}\right) \geq F_{\omega}(u)
$$

Proof. Without loss of generality, we may assume that $M:=\liminf _{\varepsilon \rightarrow 0} F\left(u_{\varepsilon}\right)<+\infty$. Hence,

$$
\begin{equation*}
F_{1}\left(u_{\varepsilon}\right) \leq F_{\omega}\left(u_{\varepsilon}\right) \leq M+1 \tag{4.3}
\end{equation*}
$$

for all sufficiently small $\varepsilon>0$. Therefore, by (bugingyuandedbdardosio2000functions (4.2) and $\left\{3\right.$, Theorem 4.7], there exists $u \in S B V(\Omega) \cap L^{\infty}(\Omega)$ such that $u_{\varepsilon} \rightharpoonup u$ in $B V(\Omega)$. Fix $K \in \mathbb{N}$, and define

$$
f_{K}(x, s, p):=f(x, s, p)(\omega \wedge K)
$$

and by $\left[\begin{array}{l}\text { ambrosio19941ower } \\ {[2, \text { Theorem 0.1] }}\end{array}\right.$, we have

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega} f\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \omega d x \geq \liminf _{\varepsilon \rightarrow 0} \int_{\Omega} f_{K}\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) d x \geq \int_{\Omega} f_{K}(x, u, \nabla u) d x
$$

Letting $K \nearrow+\infty$, we recover

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega} f\left(x, u_{\varepsilon}, \nabla u_{\varepsilon}\right) \omega d x \geq \int_{\Omega} f(x, u, \nabla u) \omega d x .
$$

We next show that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{S_{u_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1} \geq \int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1} \tag{4.4}
\end{equation*}
$$

To this aim we first prove it in the case $N=1$, and then recover the general case $N>1$ using the slicing argument from [21, Lemma 3.9].

In the case $N=1$, we need to show that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \sum_{x \in S_{u_{\varepsilon}}} \omega^{-}(x) \geq \sum_{x \in S_{u}} \omega^{-}(x) \tag{4.5}
\end{equation*}
$$

lower_bdd_2dnd

$$
\sup _{\varepsilon>0} \mathcal{H}^{0}\left(S_{u_{\varepsilon}}\right)<+\infty \text { and } \mathcal{H}^{0}\left(S_{u}\right)<+\infty
$$

and, without loss of generality, we may assume that $S_{u_{\varepsilon}}=\left\{x_{\varepsilon}\right\}$, and $S_{u}=\{x\}$. Hence, the convergence $u \rightharpoonup u$ in $B V(\Omega)$ implies that $x_{\varepsilon} \rightarrow x$. We claim that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \omega^{-}\left(x_{\varepsilon}\right) \geq \omega^{-}(x) \tag{4.6}
\end{equation*}
$$

lower_bdd_1dnd

If $x \notin S_{\omega}$, then there exists $\delta>0$ such that

$$
S_{\omega} \cap(x-\delta, x+\delta)=\varnothing,
$$

so ω_{1} is absolutely continuous in $(x-\delta, x+\delta)$, and ($\left.{ }^{10.6}\right)^{10}$ is trivially satisfied with $\omega(x)=\omega^{-}(x)$, with the inequality in (4.6) being actually an equality.

Suppose that $x \in S_{\omega}$ and, without loss of generality, assume that $x=0$. Since $\mathcal{H}^{0}\left(S_{\omega}\right)<\infty$, choose $\bar{r}>0$ such that

$$
S_{\omega} \cap(0-\bar{r}, 0+\bar{r})=0
$$

As ω is absolutely continuous in $(-\bar{r}, 0)$ and $(0, \bar{r})$, we may extend ω uniquely to $x=0$ to the left and right (see 12 eoni Exercise 3.7, (1)]), which allows us to define

$$
\omega\left(0^{+}\right):=\lim _{x \searrow 0^{+}} \omega(x) \text { and } \omega\left(0^{-}\right):=\lim _{x \nearrow 0^{-}} \omega(x) .
$$

This gives immediately

$$
\liminf _{\varepsilon \rightarrow 0} \omega^{-}\left(x_{\varepsilon}\right) \geq \omega\left(0^{-}\right)
$$

We next claim that $\omega\left(0^{-}\right)=\omega^{-}(0)$. By part 2 of Theorem $\begin{gathered}\varepsilon \rightarrow 0 \\ \text { fine_properties_BV } \\ 2.6 \text { we have }\end{gathered}$

$$
\omega^{-}(0)=\lim _{r \rightarrow 0} \frac{1}{r} \int_{-r}^{0} \omega(t) d t=\omega\left(0^{-}\right)
$$

where in the last equality we used basic properties of absolutely continuous functions, and the definition of $\omega\left(0^{-}\right)$. Thus (4.6) holds, hence (4.5) holds too.

 we have

$$
\liminf _{\varepsilon \rightarrow 0} \int_{S_{u_{\varepsilon} \cap Q}} \omega_{K}^{-} d \mathcal{H}^{N-1}
$$

$$
\begin{aligned}
& =\liminf _{\varepsilon \rightarrow 0} \int_{\left[Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right]_{\nu_{S}\left(x_{0}\right)}}\left(\sum_{t \in S_{\left(u_{\varepsilon}\right)_{x, \nu_{S}\left(x_{0}\right)}} \cap\left[Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right]_{x, \nu_{S}\left(x_{0}\right)}}\left(\omega_{K}^{-}\right)_{x, \nu_{S}\left(x_{0}\right)}(t)\right) d \mathcal{H}^{N-1}(x) \\
& \geq \liminf _{\varepsilon \rightarrow 0} \int_{T_{g}\left(x_{0}, r_{0}\right)}\left(\sum_{\left.t \in S_{\left(u_{\varepsilon}\right)_{x, \nu_{S}\left(x_{0}\right)}} \cap\left[Q_{\left.\nu_{S}\left(x_{0}, r_{0}\right)\right]_{x, \nu_{S}\left(x_{0}\right)} \cap S}\left(\omega_{K}^{-}\right)_{x, \nu_{S}\left(x_{0}\right)}(t)\right) d \mathcal{H}^{N-1}(x) .{ }^{n}\right)}\right. \\
& \geq \int_{T_{g}\left(x_{0}, r_{0}\right)} \liminf \left(\sum_{t \in S_{\left(u_{\varepsilon}\right)_{x, \nu_{S}\left(x_{0}\right)}} \cap\left[Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right]_{x, \nu_{S}\left(x_{0}\right)} \cap S}\left(\omega_{K}^{-}\right)_{x, \nu_{S}\left(x_{0}\right)}(t)\right) d \mathcal{H}^{N-1}(x) \\
& =\int_{T_{g}\left(x_{0}, r_{0}\right)} \omega_{K}^{-}(x) d \mathcal{H}^{N-1}(x)=\int_{T_{g}\left(x_{0}, r_{0}\right)} \omega_{K}^{-}\left(x^{\prime}, l_{x_{0}}\left(x^{\prime}\right)\right) d \mathcal{L}^{N-1}\left(x^{\prime}\right) .
\end{aligned}
$$

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow 0} \int_{S_{u_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1} & \geq \liminf _{\varepsilon \rightarrow 0} \int_{S_{u_{\varepsilon}}} \omega_{K}^{-} d \mathcal{H}^{N-1} \geq \liminf _{\varepsilon \rightarrow 0} \sum_{Q \in \mathcal{Q}} \int_{S_{u_{\varepsilon}} \cap Q} \omega_{K}^{-} d \mathcal{H}^{N-1} \\
& \geq \frac{1}{\sqrt{1+\tau^{2}}} \sum_{Q \in \mathcal{Q}} \int_{S \cap Q} \omega_{K}^{-} d \mathcal{H}^{N-1} \geq \frac{1}{\sqrt{1+\tau^{2}}}\left(\int_{S_{u}} \omega_{K}^{-} d \mathcal{H}^{N-1}-\left\|\omega_{K}\right\|_{L^{\infty}} \eta\right) .
\end{aligned}
$$

Taking first the limits $\tau \searrow 0$ and $\eta \searrow 0$, and then $K \nearrow+\infty$, gives (${ }^{\text {(4.4)wer_bdd_3dnd }}$

finite_down_a

finite_down_b
regu_fm்netb_dpproz
 exists a sequence $\left\{u_{\varepsilon}\right\}_{\varepsilon>0} \subset S B V_{\omega}^{2}(\Omega) \cap L^{\infty}(\Omega)$ such that the following assertions hold:

1. $\left\|u_{\varepsilon}\right\|_{L^{\infty}} \leq\|u\|_{L^{\infty}}$;
2. $S_{u_{\varepsilon}} \subset \Omega \backslash\left(P^{\infty}(\omega)\right)_{o(\varepsilon)}$ (note that ess $\sup \left\{\omega(x): x \in \Omega \backslash\left(P^{\infty}(\omega)_{o(\varepsilon)}\right\}<+\infty\right)$;

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \omega d x+\int_{S_{u_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1}=\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}
$$

Proof. Let $\varepsilon>0$ be sufficiently small, so that

$$
\begin{equation*}
\int_{\left(P^{\infty}(\omega)\right)_{o(\varepsilon)}}|\nabla u|^{2} \omega d x<o(\varepsilon) \tag{4.7}
\end{equation*}
$$

Let K_{ε} be a compact subset of $S_{u} \backslash\left(P^{\infty}(\omega)\right)_{o(\varepsilon)}$ such that

$$
\mathcal{H}^{N-1}\left(S_{u} \backslash K_{\varepsilon}\right) \leq \varepsilon \quad \text { and } \quad \int_{S_{u} \backslash K_{\varepsilon}} \omega^{-} \leq \varepsilon
$$

Consider the minimization problem

$$
\begin{align*}
\min \left\{\int_{\Omega}|\nabla v|^{2} \omega d x+\int_{S_{v} \backslash K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}\right. & +\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1} \\
& \left.+\frac{1}{\varepsilon} \int_{\Omega}|u-v|^{2} \omega d x: v \in S B V_{\omega}^{2}(\Omega) \text { and } S_{v} \subset \Omega \backslash\left(P^{\infty}(\omega)\right)_{o(\varepsilon)}\right\} \tag{4.8}
\end{align*}
$$

By a truncation argument, we may impose the restriction that v satisfies $\|v\|_{L^{\infty}(\Omega)} \leq\|u\|_{L^{\infty}(\Omega)}$. Let $\left\{v_{n}\right\}_{n=1}^{\infty}$ be a minimizing sequence. Then,

$$
\begin{aligned}
\int_{\Omega}\left|\nabla v_{n}\right|^{2} d x & +\mathcal{H}^{N-1}\left(S_{v_{n}} \backslash K_{\varepsilon}\right)+\mathcal{H}^{N-1}\left(K_{\varepsilon}\right)+\frac{1}{\varepsilon} \int_{\Omega}\left|u-v_{n}\right|^{2} d x \\
& \leq \frac{1}{l}\left[\int_{\Omega}\left|\nabla v_{n}\right|^{2} \omega d x+\int_{\substack{S_{v_{n} \backslash K_{\varepsilon}} \backslash K^{\prime}}} \omega^{-} d \mathcal{H}^{N-1}+\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}\left|u-v_{n}\right|^{2} \omega d x\right]<\frac{1}{l}\left(M_{\varepsilon}+1\right)
\end{aligned}
$$

where M_{ε} is defined as the minimum of $\left(\frac{y^{\mathrm{i}} \bar{y}^{\text {limit }}}{4.8)}\right.$, with $\varepsilon>0$ fixed.

Assume first that $M_{\varepsilon}<+\infty$. By $\left[3\right.$, Theorem 4.7], there exists $u_{\varepsilon} \in S B V(\Omega)$ such that $v_{n} \rightharpoonup u_{\varepsilon}$ in $B V(\Omega)$, and for
 by Theorem 4.2 , we have $u_{\varepsilon} \in S B V_{\omega} \cap L^{\infty}(\Omega)$, and

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x+\int_{S_{u_{\varepsilon}} \backslash K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}\left|u-u_{\varepsilon}\right|^{2} \omega d x \\
& \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla v_{n}\right|^{2} \omega d x+\int_{S_{v_{n} \backslash K_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1}+\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}\left|u-v_{n}\right|^{2} \omega d x \tag{4.9}
\end{align*}
$$

Define

$$
\bar{u}_{\varepsilon}:= \begin{cases}u(x) & \text { if } x \in \Omega \backslash\left(P^{\infty}(\omega)\right)_{2 o(\varepsilon)} \\ 0 & \text { otherwise }\end{cases}
$$

Then $S_{\bar{u}_{\varepsilon}} \subset \Omega \backslash\left(P^{\infty}(\omega)\right)_{o(\varepsilon)}$, and

$$
\int_{\Omega}\left|\nabla \bar{u}_{\varepsilon}\right|^{2} \omega d x \leq \int_{\Omega}|\nabla u|^{2} \omega d x
$$

In view of (linfini

$$
\int_{S_{\bar{u}_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1} \leq \int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}+\int_{\partial\left(\left(P^{\infty}(\omega)\right)_{\varepsilon}\right)} \omega^{-} d \mathcal{H}^{N-1} \leq \int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}+O(\varepsilon)
$$

$$
\begin{align*}
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \omega d x & +\int_{S_{u_{\varepsilon}} \backslash K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}\left|u-u_{\varepsilon}\right|^{2} \omega d x \\
& \leq \int_{\Omega}\left|\nabla \bar{u}_{\varepsilon}\right|^{2} \omega d x+\int_{S_{\bar{u}_{\varepsilon} \backslash K_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1}+\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}\left|u-\bar{u}_{\varepsilon}\right|^{2} \omega d x \\
& \leq \int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}+O(\varepsilon)+o(\varepsilon) / O(\varepsilon) \leq C<+\infty \tag{4.10}
\end{align*}
$$

In particular,

$$
\int_{\Omega}\left|u-u_{\varepsilon}\right|^{2} \omega d x \leq C \varepsilon \rightarrow 0
$$

By ($\frac{\text { yi.limit2 }}{4.9), \text { Theorem }} \frac{1 \text { sc_SBV_thm }}{4.2}$, and $\operatorname{ess} \inf \omega>l>0$, up to a subsequence it holds

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \omega d x \geq \int_{\Omega}|\nabla u|^{2} \omega d x, \text { and } \lim _{\varepsilon \rightarrow 0} \int_{S_{u_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1} \geq \int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}
$$

Hence, in view of $\left(\frac{y \text { in limit3 }}{4.10)}\right.$

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} \omega d x & +\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1} \leq \liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \omega d x+\int_{S_{u_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1} \\
& \leq \limsup _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \omega d x+\int_{S_{u_{\varepsilon} \backslash K_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1}+\int_{K_{\varepsilon}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}\left|u-u_{\varepsilon}\right|^{2} \omega d x \\
& \leq \int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}+\limsup _{\varepsilon \rightarrow 0}(O(\varepsilon)+o(\varepsilon) / O(\varepsilon)) \\
& =\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}
\end{aligned}
$$

Finally, we obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} \omega d x+\int_{S_{u_{\varepsilon}}} \omega^{-} d \mathcal{H}^{N-1}=\int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}
$$

and

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{S_{u_{\varepsilon}} \backslash K_{\varepsilon}} \omega^{-}=0, \text { and } \lim _{\varepsilon \rightarrow 0} \int_{K_{\varepsilon}} \omega^{-}=\int_{S_{u}} \omega^{-} \tag{4.11}
\end{equation*}
$$

concluding the proof

Remark 4.4. We note that u_{ε} is a local minimum for the function

$$
\int_{\Omega}|\nabla v|^{2} \omega d x+\int_{S_{v}} \omega^{-} d \mathcal{H}^{N-1}+\frac{1}{\varepsilon} \int_{\Omega}|u-v|^{2} \omega d x
$$

in $\Omega \backslash K_{\varepsilon}$. It can be shown that

$$
\lim _{\varepsilon \rightarrow 0} \int_{\left(\overline{S_{u_{\varepsilon}}} \backslash S_{u_{\varepsilon}}\right) \cap\left(\Omega \backslash K_{\varepsilon}\right)} \omega^{-}=0
$$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int \frac{\omega^{-}=0 .}{} \quad{ }^{S_{u_{\varepsilon}}} \backslash S_{u_{\varepsilon}} \tag{4.12}
\end{equation*}
$$

 article self contained, we refrain from using this fact.
4.2. Construction of recovery sequence with $\omega \in \mathcal{P}_{b}(\Omega)$.

Proposition $4.5\left(\frac{[142016 o p t i m a l}{[21, ~ P r o p o s i t i o n ~ 4.1]) . ~ G i v e n ~} \omega \in \mathcal{P}_{b}(\Omega)\right.$ and $u \in L^{1}(\Omega) \cap L^{\infty}(\Omega)$, set

$$
\begin{aligned}
M S_{\omega}^{+}(u):= & \inf \left\{\underset{\varepsilon \rightarrow 0}{ } \limsup A T_{\omega, \varepsilon}^{1}\left(u_{\varepsilon}, v_{\varepsilon}\right):\right. \\
& \left.\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W^{1,2}(\Omega) \times W^{1,2}(\Omega), u_{\varepsilon} \rightarrow u \text { in } L^{1}, v_{\varepsilon} \rightarrow 1 \text { in } L^{1}, 0 \leq v_{\varepsilon} \leq 1\right\}
\end{aligned}
$$

Then $M S_{\omega}^{+}(u) \leq M S_{\omega}(u)$.
yi_limit_sec
4.3. Proof of Proposition $\frac{1 \text { imsup }_{-} n_{-} c}{4.1 \text {. } \overline{W e}}$ are now ready to prove the main result of this section. To do so, we define localized versions of $M S_{\omega}$ and $A T_{\omega, \varepsilon}^{k}$ by

$$
M S_{\omega}(u)(A):=\int_{A}|\nabla u|^{2} \omega d x+\int_{S_{u} \cap A} \omega^{-} d \mathcal{H}^{N-1}
$$

and

$$
A T_{\omega, \varepsilon}^{k}(u, v)(A):=\int_{A}|\nabla u|^{2} v^{2} \omega d x+\frac{1}{2 c_{k}} \int_{A}\left[\varepsilon^{2 k-1}\left|\nabla^{(k)} v\right|^{2}+\frac{1}{4^{k} \varepsilon}(1-v)^{2}\right] \omega d x
$$

respectively. Here $A \subset \Omega$ is an open set.

$$
\operatorname{ess} \inf \left\{\omega(x): x \in \Omega \backslash\left(P^{0}(\omega)\right)_{\eta}\right\}>0
$$

Define

$$
u_{\eta}:= \begin{cases}0 & \text { if } x \in\left(P^{0}(\omega)\right)_{\eta / 3} \\ u(x) & \text { otherwise }\end{cases}
$$

Then we have $S_{u_{\eta}} \subset \Omega \backslash\left(P^{0}(\omega)\right)_{\eta / 4}$, and observe that

$$
\begin{aligned}
M S_{\omega}\left(u_{\tau}\right) & =\int_{\Omega}\left|\nabla u_{\eta}\right|^{2} \omega d x+\int_{S_{u_{\eta}}} \omega^{-} d x \leq \int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}^{0}} \omega^{-} d x+\int_{\partial\left(\left(p^{0}(\omega)\right)_{\eta}\right)} \omega^{-} d x \\
& \leq \int_{\Omega}|\nabla u|^{2} \omega d x+\int_{S_{u}^{0}} \omega^{-} d x+O(\eta)=M S_{\omega}(u)+O(\eta)
\end{aligned}
$$

Applying Lemma $\frac{\text { finite_down }}{4.3 \text { on } u_{\eta}}$, inside $\Omega \backslash\left(p^{0}(\omega)\right)_{\eta / 4}$, gives a sequence $u_{\eta, \tau}$ such that

$$
M S\left(u_{\eta, \tau}\right)\left(\Omega \backslash\left(p^{0}(\omega)\right)_{\eta / 4}\right) \leq M S\left(u_{\tau}\right)+O(\tau) \leq M S(u)+O(\tau)+O(\eta)
$$

and

$$
S_{u_{\eta, \tau}} \subset \underset{\text { limsup_n_ref }}{\subset} \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right) \text { and } \omega \in \mathcal{P}_{b}\left(\Omega \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right)\right)
$$

$$
\left\{\tilde{u}_{\eta, \tau, \varepsilon}, \tilde{v}_{\eta, \tau, \varepsilon}\right\}_{\varepsilon>0} \subset W^{1,2}\left(\Omega \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right)\right) \times W^{1,2}\left(\Omega \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right)\right)
$$

such that either

$$
\limsup _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{1}\left(\tilde{u}_{\eta, \tau, \varepsilon}, \tilde{v}_{\eta, \tau, \varepsilon}\right)\left(\Omega \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right)\right) \leq M S\left(u_{\eta, \tau}\right)\left(\Omega \backslash\left(p^{0}(\omega)\right)_{\eta / 4}\right)
$$

or

$$
A T_{\omega, \varepsilon}^{1}\left(\tilde{u}_{\eta, \tau, \varepsilon}, \tilde{v}_{\eta, \tau, \varepsilon}\right)\left(\Omega \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right)\right) \leq M S\left(u_{\eta, \tau}\right)\left(\Omega \backslash\left(p^{0}(\omega)\right)_{\eta / 4}\right)+O(\varepsilon)
$$

holds.

Let $\varphi_{\eta, \tau}$ to be a cut off function such that $\varphi_{\eta, \tau} \in C^{\infty}(\Omega)$,

$$
\varphi_{\eta, \tau}(x) \equiv 1 \text { in } \Omega \backslash\left(\left(P^{0}(\omega)\right)_{\eta / 3} \cup\left(P^{\infty}(\omega)\right)_{2 \tau}\right) \text { and } \varphi_{\eta}(x) \equiv 0 \text { in }\left(\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right)
$$

Define

$$
u_{\eta, \tau, \varepsilon}:=\left(1-\varphi_{\eta, \tau}\right) \tilde{u}_{\eta, \tau, \varepsilon}
$$

and

$$
v_{\eta, \tau, \varepsilon}:=\tilde{v}_{\eta, \tau, \varepsilon} \wedge \tilde{v}_{\varepsilon}\left(\operatorname{dist}\left(\partial\left[\left(P^{0}(\omega)\right)_{\eta / 4} \cup\left(P^{\infty}(\omega)\right)_{\tau}\right]\right)\right)
$$

with \tilde{v}_{ε} from liu2016weightedMS 14, equation (4.29)].
Hence, we have $\left\{u_{\eta, \tau, \varepsilon}, v_{\eta, \tau, \varepsilon}\right\}_{\varepsilon>0} \subset W^{1,2}(\Omega) \times W^{1,2}(\Omega)$, and

$$
\begin{equation*}
\limsup _{\varepsilon \rightarrow 0} A_{\omega, \eta}^{1}\left(u_{\eta, \tau, \varepsilon}, v_{\eta, \tau, \varepsilon}\right) \leq M S_{\omega}\left(u_{\eta, \tau}\right)+\int_{\partial\left(\left(P^{0}(\omega)\right)_{\eta / 4}\right)} \omega^{+} d \mathcal{H}^{N-1}+\int_{\partial\left(\left(P^{\infty}(\omega)\right)_{\tau}\right)} \omega^{+} d \mathcal{H}^{N-1} \tag{4.13}
\end{equation*}
$$

last_need_1111
We claim that the last term on the right hand side of (last_need_1111 4.13$)$ vanishes. Indeed, we have
$\limsup _{\eta \rightarrow 0} \int_{\partial\left(\left(P^{0}(\omega)\right)_{\eta / 4}\right)} \omega^{+} d \mathcal{H}^{N-1}=\limsup _{\eta \rightarrow 0} \int_{\partial\left(\left(P^{0}(\omega)\right)_{\eta / 4}\right)}\left(2 \omega-\omega^{-}\right) d \mathcal{H}^{N-1} \leq \limsup _{\eta \rightarrow 0} \int_{\partial\left(\left(P^{0}(\omega)\right)_{\eta / 4}\right)} 2 \omega d \mathcal{H}^{N-1}=0$,
where in the last equality we used (linfinite_small_Thever . This, together with (14.13), concludes the proof by letting $\eta \rightarrow 0$.
 $G S B V(\Omega)$ such that $M S_{\omega}(u)<\infty$, we have, by Lebesgue Monotone Convergence Theorem,

$$
M S_{\omega}(u)=\lim _{K \rightarrow \infty} M S_{\omega}(K \wedge u \vee-K)
$$

Using a diagonal argument, together with Proposition $\frac{\text { limsup_n_c }}{4.1, \text { concludes the proof. }}$

Appendix

We consider the one-dimensional case $N=1$ first, and then extend to the general case $N>1$ via the slicing argument introduced in [14]. To avoid confusion, when $N=1$, we define the approximating functional, with a spatially dependent parameter $\omega \in \mathcal{P}(I)$, as

$$
T_{\omega, \varepsilon}^{k}(u, v)=\int_{I}\left|u^{\prime}\right|^{2} v^{2} \omega d x+\frac{1}{2 c_{k}} \int_{I}\left[\varepsilon^{2 k-1}|\nabla v|^{2}+\frac{1}{2^{k} \varepsilon}(1-v)^{2}\right] \omega d x
$$

and the one-dimensional Mumford-Shah functional, with a spatially dependent parameter $\omega \in \mathcal{P}(I)$, by

$$
T_{\omega}(u)=\int_{I}\left|u^{\prime}\right|^{2} \omega d x+\sum_{x \in S_{u}} \omega^{-}(x)
$$

We recall that $\omega \in \mathcal{P}(I)$ implies $\mathcal{H}^{0}\left(S_{\omega}\right)<\infty$. Also, we note that ω^{-}is defined \mathcal{H}^{0}-a.e, hence everywhere in I. We begin with an auxiliary result.
Proposition A.1. Let $\left\{v_{\varepsilon}\right\}_{\varepsilon>0} \subset W^{1,2}(I)$ be such that $0 \leq v_{\varepsilon} \leq 1, v_{\varepsilon} \rightarrow 1$ in $L^{1}(I)$ and a.e., and

$$
\limsup _{\varepsilon \rightarrow 0} \int_{I}\left[\varepsilon^{2 k-1}\left|v_{\varepsilon}^{(k)}\right|^{2}+\frac{1}{4^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right] d x<\infty
$$

Then, for any $0<\eta<1$, there exists an open set $H_{\eta} \subset I$ such that $I \backslash H_{\eta}$ is a collection of finitely many points in I, and for every set $T \subset \subset H_{\eta}$, we have $T \subset B_{\varepsilon}^{\eta}$ for all sufficiently small $\varepsilon>0$, where

$$
B_{\varepsilon}^{\eta}:=\left\{x \in I: v_{\varepsilon}^{2}(x) \geq \eta\right\}
$$

$$
\limsup _{\varepsilon \rightarrow 0} \int_{I}\left[\varepsilon\left|v_{\varepsilon}^{\prime}\right|^{2}+\frac{1}{4 \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right] d x \leq C \limsup _{\varepsilon \rightarrow 0} \int_{I}\left[\varepsilon^{2 k-1}\left|v_{\varepsilon}^{(k)}\right|^{2}+\frac{1}{4^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right] d x<\infty
$$

Hence, by the arguments from $\left[\begin{array}{l}\text { ambrosio1990approximation } \\ 44, \text { pages } 1020-1021] \text {, we conclude the proof. }\end{array}\right.$

We next study the minimization problem

$$
\begin{aligned}
c_{k}:=\inf & \left\{\int_{0}^{+\infty}\left|v^{(k)}\right|^{2}+\frac{1}{4^{k}}(1-v)^{2} d x: v \in W_{\mathrm{loc}}^{k, 2}(0,+\infty)\right. \\
& \left.v(0)=v^{\prime}(0)=\cdots v^{(k-1)}(0)=0, v(t)=1 \text { if } t>K_{k} \text { for some } K_{k}>0 \text { depends on } k\right\}
\end{aligned}
$$

Lemma A.2. The constant c_{k} is positive and

$$
\begin{gathered}
c_{k}=\inf \left\{\int_{0}^{+\infty}\left|v^{(k)}(x)\right|^{2}+\frac{1}{4^{k}}(1-v(x))^{2} d x: v \in W_{\operatorname{loc}}^{k, 2}(0,+\infty),\right. \\
\left.v(0)=v^{\prime}(0)=\cdots v^{(k-1)}(0)=0, \lim _{x \rightarrow \infty} v(x)=1\right\} .
\end{gathered}
$$

Proof. The proof employs the arguments used in $\stackrel{f \text { fonseca2000second }}{\dagger 15, ~ L e m m a ~ 2.5] . ~ M o r e o v e r, ~ b y ~ s o l v i n g ~ t h e ~ a s s o c i a t e d ~ E u l e r-L a g r a n g e ~}$ equation, we have also

$$
c_{1}=\frac{1}{2}, \quad c_{2}=\frac{1}{8} \sqrt{2}, \quad c_{3}=\frac{1}{16}
$$

liminf_part_1d_c
Proposition A.3. (Γ-liminf) Given $u \in L^{1}(I)$, let $\omega \in \mathcal{P}(I)$ satisfying (kasy_way_out

$$
\begin{aligned}
& T_{\omega}^{-}(u):=\inf \left\{\liminf _{\varepsilon \rightarrow 0} T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right):\right. \\
& \\
& \left.\quad\left(u_{\varepsilon}, v_{\varepsilon}\right) \in W^{1,2}(I) \times W^{1,2}(I), u_{\varepsilon} \rightarrow u \text { in } L^{1}, v_{\varepsilon} \rightarrow 1 \text { in } L^{1}, 0 \leq v_{\varepsilon} \leq 1\right\}
\end{aligned}
$$

Then $T_{\omega}^{-}(u) \geq T_{\omega}(u)$.
Proof. Assume that $M:=T_{\omega}^{-}(u)<\infty$, and choose u_{ε} and v_{ε} that are admissible for $T_{\omega}^{-}(u)$, such that $\lim _{\varepsilon \rightarrow 0} T_{\psi_{\text {e equivalent norm }}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right)=}^{=}$ $T_{\omega}^{-}(u)$. Since $\inf _{x \in I} \omega(x) \geq 1$, we have $\liminf _{\varepsilon \rightarrow 0} T_{1, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq \liminf _{\varepsilon \rightarrow 0} T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right)<+\infty$. By Theorem 2.7 we have
ambrosio1990approximation $T_{1, \varepsilon}^{1}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq C_{k} T_{1, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq C_{k} T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq M+1$,
and by $[4]$, we get also

$$
\begin{equation*}
u \in G S B V(I) \text { and } \mathcal{H}^{0}\left(S_{u}\right)<+\infty \tag{A.1}
\end{equation*}
$$

The proof would be complete provided we show the following inequalities:

$$
\begin{equation*}
\int_{I}\left|u^{\prime}\right|^{2} \omega d x \leq \liminf _{\varepsilon \rightarrow 0} \int_{I}\left|u_{\varepsilon}^{\prime}\right|^{2} v_{\varepsilon}^{2} \omega d x<+\infty \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{x \in S_{u}} \omega^{-}(x) \leq \liminf _{\varepsilon \rightarrow 0} \frac{1}{c_{k}} \int_{I}\left[\varepsilon^{2 k-1}\left|v_{\varepsilon}^{(k)}\right|^{2}+\frac{1}{2^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right] \omega d x<+\infty \tag{A.3}
\end{equation*}
$$

use_la_nonsm2

Up to a (not relabeled) subsequence, we have $u_{\varepsilon} \rightarrow u$ and $v_{\varepsilon} \rightarrow 1$ a.e. in I, with

$$
\limsup _{\varepsilon \rightarrow 0} \frac{1}{2 c_{k}} \int_{I}\left[\varepsilon^{2 k-1}\left|v_{\varepsilon}^{(k)}\right|^{2}+\frac{1}{2^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right] d x \leq \limsup _{\varepsilon \rightarrow 0} \frac{1}{2 c_{k}} \int_{I}\left[\varepsilon^{2 k-1}\left|v_{\varepsilon}^{(k)}\right|^{2}+\frac{1}{2^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right] \omega d x<+\infty
$$

By Proposition $\bar{A} . \overline{1}$, we deduce that, for a fixed $\eta \in(1 / 2,1)$, there exists a set H_{η} such that for every $T \subset \subset H_{\eta}$, it holds

$$
\begin{equation*}
\int_{T}\left|u^{\prime}\right|^{2} \omega d x \leq \liminf _{\varepsilon \rightarrow 0} \int_{T}\left|u_{\varepsilon}^{\prime}\right|^{2} \omega d x \leq \frac{1}{\eta} \liminf _{\varepsilon \rightarrow 0} \int_{I} v_{\varepsilon}^{2}\left|u_{\varepsilon}^{\prime}\right|^{2} \omega d x \tag{A.4}
\end{equation*}
$$

 first, and then the limit $\eta \nearrow 1$ on the right hand side, we get ($\frac{\text { use }}{A} .2$ a $)$.

We next show (() (Ase 1 la_nonsm 2 arguments in [4, page 1021], we can prove that there exist $\left\{t_{n}^{1}\right\}_{n=1}^{\infty},\left\{t_{n}^{2}\right\}_{n=1}^{\infty}$, and $\left\{s_{n}\right\}_{n=1}^{\infty}$ such that

$$
-1<t_{n}^{1}<s_{n}<t_{n}^{2}<1, \text { and } \lim _{n \rightarrow \infty} t_{n}^{1}=\lim _{n \rightarrow \infty} t_{n}^{2}=\lim _{n \rightarrow \infty} s_{n}=0
$$

and, up to a subsequence, also

$$
\lim _{n \rightarrow \infty} v_{\varepsilon(n)}\left(t_{n}^{1}\right)=\lim _{n \rightarrow \infty} v_{\varepsilon(n)}\left(t_{n}^{2}\right)=1, \text { and } \lim _{n \rightarrow \infty} v_{\varepsilon(n)}\left(s_{n}\right)=0
$$

We conclude, using Lemma $\underset{\text { A.present_c }}{\text { A. }}$, that

$$
\liminf _{n \rightarrow \infty} \frac{1}{2 c_{k}} \int_{t_{n}^{1}}^{s_{n}}\left[\varepsilon(n)^{2 k-1}\left|\left(v_{\varepsilon(n)}\right)^{(k)}\right|^{2}+\frac{1}{4^{k} \varepsilon(n)}\left(1-v_{\varepsilon(n)}\right)^{2}\right] d x \geq \frac{c_{k}}{2 c_{k}}=\frac{1}{2}
$$

and, since ω is positive,

$$
\begin{align*}
\liminf _{n \rightarrow \infty} & \frac{1}{2 c_{k}} \int_{t_{n}^{1}}^{t_{n}^{2}}\left[\varepsilon(n)^{2 k-1}\left|\left(v_{\varepsilon(n)}\right)^{(k)}\right|^{2}+\frac{1}{4^{k} \varepsilon(n)}\left(1-v_{\varepsilon(n)}\right)^{2}\right] \omega(x) d x \\
\geq & \left(\liminf _{n \rightarrow \infty} \operatorname{essinf}_{r \in\left(t_{n}^{1}, t_{n}^{2}\right)} \omega(r)\right) \liminf _{n \rightarrow \infty} \frac{1}{2 c_{k}}\left\{\int_{t_{n}^{1}}^{s_{n}}\left[\varepsilon(n)^{2 k-1}\left|\left(v_{\varepsilon(n)}\right)^{(k)}\right|^{2}+\frac{1}{4^{k} \varepsilon(n)}\left(1-v_{\varepsilon(n)}\right)^{2}\right] d x\right. \tag{A.5}\\
& \left.+\int_{s_{n}}^{t_{n}^{2}}\left[\varepsilon(n)^{2 k-1}\left|\left(v_{\varepsilon(n)}\right)^{(k)}\right|^{2}+\frac{1}{4^{k} \varepsilon(n)}\left(1-v_{\varepsilon(n)}\right)^{2}\right] d x\right\} \geq\left(\frac{1}{2}+\frac{1}{2}\right) \omega^{-}(0)=\omega^{-}(0)
\end{align*}
$$

 $\omega(0)$, since $t=0 \notin S_{\omega}$ implies $\omega^{-}(0)=\omega(0)$.

Finally, since $S_{u} \subset I \backslash H_{\eta}$, by (Ase la_nonsm0 (we have that S_{u} is a finite collection of points, and we may repeat the above arguments for all $t \in T_{\text {use }} u_{\text {norsm }}$ bartitioning I into disjoint intervals, each of which containing at most one single point of S_{u}, to deduce ($\left(\frac{\text { use }}{\mathrm{A}} .3\right)$.
 that $\omega \in \mathcal{W}(I)$ satisfies (3.1).

Let \mathcal{S}^{N-1} be the unit sphere in \mathbb{R}^{N}, and let $\nu \in \mathcal{S}^{N-1}$ be a fixed direction. We set

$$
\left\{\begin{array}{l}
\Pi_{\nu}:=\left\{x \in \mathbb{R}^{N}:\langle x, \nu\rangle=0\right\}, \Omega_{\nu}:=\left\{x \in \Pi_{\nu}: \Omega_{x, \nu} \neq \emptyset\right\} \tag{A.6}\\
\Omega_{x, \nu}^{1}:=\{t \in \mathbb{R}: x+t \nu \in \Omega\} \text { for } x \in \Pi_{\nu} \\
\Omega_{x, \nu}:=\{y=x+t \nu: t \in \mathbb{R}\} \cap \Omega \\
u_{x, \nu}(t):=u(x+t \nu), x \in \Omega_{\nu}, t \in \Omega_{x, \nu}^{1}
\end{array}\right.
$$

Set $x=\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}$, where $x^{\prime} \in \mathbb{R}^{N-1}$ denotes the first $N-1$ components of $x \in \mathbb{R}^{N}$, and given $l: \mathbb{R}^{N-1} \rightarrow \mathbb{R}$ and $G \subset \mathbb{R}^{N-1}$, we define the graph of l over G as

$$
F(l ; G):=\left\{\left(x^{\prime}, x_{N}\right) \in \mathbb{R}^{N}: x^{\prime} \in G, x_{N}=l\left(x^{\prime}\right)\right\} .
$$

If l is Lipschitz regular, then we call $F(l ; G)$ a Lipschitz - $(N-1)$ - graph.
Theorem A. 4 ([|4], Theorem 3.3). Let $\nu \in \mathcal{S}^{N-1}$ be given, and assume that $u \in W^{1,2}(\Omega)$. Then, for $\mathcal{H}^{N-1}-$ a.e. $x \in \Omega_{\nu}, u_{x, \nu}$ belongs to $W^{1,2}\left(\Omega_{x, \nu}\right)$ and $u_{x, \nu}^{\prime}(t)=\langle\nabla u(x+t \nu), \nu\rangle$.
 and $\mathbb{P}_{\nu}: \mathbb{R}^{N} \rightarrow \Pi_{\nu}$ be a projection operator, where by $\left(\frac{\text { slicing notation }}{\mathbb{A} .6), ~} \Pi_{\nu} \subset \mathbb{R}^{N}\right.$ is a hyperplane in \mathbb{R}^{N-1}. Then

$$
\mathcal{H}^{N-1}\left(\mathbb{P}_{\nu}(\Gamma)\right) \leq \mathcal{H}^{N-1}(\Gamma)
$$

and, for \mathcal{H}^{N-1}-a.e. $x \in \Pi_{\nu}$,

$$
\begin{equation*}
\mathcal{H}^{0}\left(\Omega_{x, \nu} \cap \Gamma\right)<+\infty \tag{A.7}
\end{equation*}
$$

Now we are ready to prove the main result of this Section.
Proof of Proposition ${ }^{\text {liminf_part_c }}$ 3.1, with ω satisfying (${ }^{\text {easy_way_out }}$ (3.1). Assume that $M:=M S_{\omega}^{-}(u)<\infty$. Let $\left\{\left(u_{\varepsilon}, v_{\varepsilon}\right)\right\}_{\varepsilon>0} \subset W^{1,2}(\Omega) \times$ $W^{1,2}(\Omega)$ be such that $u_{\varepsilon} \rightarrow u$ in $L^{1}, v_{\varepsilon} \rightarrow 1$ in $L^{1}(\Omega)$, and $\lim _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right)=M S_{\omega}^{-}(u)$. Since $\inf _{x \in \Omega} \omega(x) \geq 1$, we have

$$
\liminf _{\varepsilon \rightarrow 0} A T_{1, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq \liminf _{\varepsilon \rightarrow 0} A T_{\omega, \varepsilon}^{k}\left(u_{\varepsilon}, v_{\varepsilon}\right)<\infty
$$

and by lambrosio1990approximation

$$
u \in G S B V(\Omega) \text { and } \mathcal{H}^{N-1}\left(S_{u}\right)<\infty
$$

We show separately that

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} v_{\varepsilon} \omega d x \geq \int_{\Omega}|\nabla u|^{2} \omega d x \tag{A.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \frac{1}{2 c_{k}} \int_{\Omega}\left(\varepsilon^{2 k-1}\left|\nabla^{(k)} v_{\varepsilon}\right|^{2}+\frac{1}{4^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right) \omega d x \geq \int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1} \tag{A.9}
\end{equation*}
$$

 $u_{K}:=K \wedge u \vee-K, K \in \mathbb{K}, \mathbb{N}$, and we observe, by Fubini's Theorem, Fatou's Lemma, Theorem A.4, equation $(\mathbb{A} . \overline{2})$, and Theorem 2.3 in [4], that

$$
\begin{align*}
\liminf _{\varepsilon \rightarrow 0} \int_{A}\left|\nabla u_{\varepsilon}\right|^{2} v_{\varepsilon}^{2} \omega d x & \geq \int_{A_{\nu}} \liminf _{\varepsilon \rightarrow 0} \int_{A_{x, \nu}^{1}}\left|\left(u_{\varepsilon}\right)_{x, \nu}^{\prime}\right|^{2}\left(v_{\varepsilon}\right)_{x, \nu}^{2} \omega_{x, \nu} d t d \mathcal{H}^{N-1}(x) \tag{A.10}\\
& \geq \int_{A_{\nu}} \int_{A_{x, \nu}^{1}}\left|\left(u_{K}\right)_{x, \nu}^{\prime}\right|^{2} \omega_{x, \nu} d t d \mathcal{H}^{N-1}(x) \geq \int_{A}\left|\left\langle\nabla u_{K}(x), \nu\right\rangle\right|^{2} \omega d x
\end{align*}
$$

Taking the limit $K \rightarrow \infty$, and using Dominated Convergence Theorem, we have

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \int_{A}\left|\nabla u_{\varepsilon}\right|^{2} v_{\varepsilon}^{2} \omega d x \geq \int_{A}|\langle\nabla u(x), \nu\rangle|^{2} \omega d x \tag{A.11}
\end{equation*}
$$

Let $\phi_{n}(x):=\left|\left\langle\nabla u(x), \nu_{n}\right\rangle\right|^{2} \omega$ for \mathcal{L}^{N}-a.e. $x \in \Omega$, where $\left\{\nu_{n}\right\}_{n=1}^{\infty}$ is a dense subset of \mathcal{S}^{N-1}, and let

$$
\mu(A):=\liminf _{\varepsilon \rightarrow 0} \int_{A}\left|\nabla u_{\varepsilon}\right|^{2} v_{\varepsilon}^{2} \omega d x .
$$

 using similar arguments as in (A.IV), we have

$$
\begin{equation*}
\liminf _{\varepsilon \rightarrow 0} \frac{1}{2 c_{k}} \int_{A}\left(\varepsilon^{2 k-1}\left|\nabla^{(k)} v_{\varepsilon}\right|^{2}+\frac{1}{4^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right) \omega d x \geq \int_{A_{\nu}}\left[\sum_{t \in S_{u_{x, \nu} \cap A_{x, \nu}^{1}}} \omega_{x, \nu}^{-}(t)\right] d \mathcal{H}^{N-1}(x) \tag{A.12}
\end{equation*}
$$

Next, given arbitrary ${ }_{\mid s l i c i n g} \overbrace{\text { single }}^{0} \operatorname{and}^{\text {and }} \eta>0$, we choose a set $S \subset S_{u}$ and a collection \mathcal{Q} of mutually disioint cubes according to Lemma A. 6 with respect to S_{u}. Fix one such cube $Q_{\nu_{S}}\left(x_{0}, r_{0}\right) \in \mathcal{Q}$. By Lemma A. \mathfrak{A}, we have, up to rigid motions,

$$
\Gamma_{x_{0}}=\left\{\left(y^{\prime}, l_{x_{0}}\left(y^{\prime}\right)\right): y \in T_{x_{0}, \nu_{S}} \cap Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right\} \text { and }\left\|\nabla l_{x_{0}}\right\|_{L^{\infty}}<\tau
$$

In $\left(\frac{\text { liminf_cont_later_slice }}{A .12)}, \operatorname{set} A=Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right.$ and $\nu=\nu_{S}\left(x_{0}\right)$. Using the same notation from the proof of Lemma $\frac{\text { slicing_single }}{A} .6$, we obtain

$$
\begin{align*}
& \int_{\left[Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right]_{\nu_{S}\left(x_{0}\right)}}\left(\sum_{t \in S_{u_{x, \nu_{S}\left(x_{0}\right)}}} \cap_{\left[Q_{\nu_{S}}\left(x_{0}, r_{0}\right)\right]_{x, \nu_{S}\left(x_{0}\right)}} \omega_{x, \nu_{S}\left(x_{0}\right)}^{-}(t)\right) d \mathcal{H}^{N-1}(x) \\
& \geq \int_{T_{g}\left(x_{0}, r_{0}\right)} \omega^{-}(x) d \mathcal{H}^{N-1}(x)=\int_{T_{g}\left(x_{0}, r_{0}\right)} \omega^{-}\left(x^{\prime}, l_{x_{0}}\left(x^{\prime}\right)\right) d \mathcal{L}^{N-1}\left(x^{\prime}\right) \tag{A.13}
\end{align*}
$$

Next, considering that $\omega_{x, \nu}^{-}(t)=\omega^{-}(x+t \nu)\left(\right.$ see $\left[\begin{array}{l}\text { Qmbrosio2000functions } \\ 3, \operatorname{Remark} 3.109\}\end{array}\right)$, we have that

$$
\begin{aligned}
\int_{Q_{\nu_{S}}\left(x_{0}, r_{0}\right) \cap S} \omega^{-} d \mathcal{H}^{N-1} & =\int_{T_{x_{0}, \nu_{S}} \cap Q_{\nu_{S}}\left(x_{0}, r_{0}\right)} \omega^{-}\left(x^{\prime}, l_{x_{0}}\left(x^{\prime}\right)\right) \sqrt{1+\left|\nabla l_{x_{0}}\left(x^{\prime}\right)\right|^{2}} d x^{\prime} \\
& \leq \sqrt{1+\tau^{2}} \int_{T_{x_{0}, \nu_{S}} \cap Q_{\nu_{S}}\left(x_{0}, r_{0}\right)} \omega^{-}\left(x^{\prime}, l_{x_{0}}\left(x^{\prime}\right)\right) d x^{\prime},
\end{aligned}
$$

withou_t_above2
which, together with $\left(\frac{1 \text { iminf_cont_1 }}{\text { A.12 }) \text { and }(A .13), \text { yieldid }}\right.$

$$
\begin{aligned}
\liminf _{\varepsilon \rightarrow 0} & \int_{\Omega}\left(\varepsilon^{2 k-1}\left|\nabla^{(k)} v_{\varepsilon}\right|^{2}+\frac{1}{4^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right) \omega d x \\
& \geq \liminf _{\varepsilon \rightarrow 0} \int_{\cup_{Q \in \mathcal{Q}}}\left(\varepsilon^{2 k-1}\left|\nabla^{(k)} v_{\varepsilon}\right|^{2}+\frac{1}{4^{k} \varepsilon}\left(1-v_{\varepsilon}\right)^{2}\right) \omega d x \\
& \geq \frac{1}{\sqrt{1+\tau^{2}}} \sum_{Q \in \mathcal{Q}} \int_{S \cap Q} \omega^{-} d \mathcal{H}^{N-1} \geq \frac{1}{\sqrt{1+\tau^{2}}}\left(\int_{S_{u}} \omega^{-} d \mathcal{H}^{N-1}-\|\omega\|_{L^{\infty}} \eta\right)
\end{aligned}
$$

Finally, ($\frac{\text { second_part_ATCw_m }}{\text { A.9 }}$) follows by by arbitrariness of η and τ.
 and $t \in \mathbb{R}^{+}$.

Proposition A.7. Let $\omega \in \mathcal{W}(\Omega)$ and $\tau \in(0,1 / 4)$ be given. Then, there exist a set $S \subset S_{\omega}$, and a countable family of disjoint cubes $\mathcal{F}=\left\{Q_{\nu_{S \omega}}\left(x_{n}, r_{n}\right)\right\}_{n=1}^{\infty}$, with $r_{n}<\tau$, such that the following assertions hold:
a. $\mathcal{H}^{N-1}\left(S_{\omega} \backslash S\right)<\tau$ and $S \subset \bigcup_{n=1}^{\infty} Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right) \subset \Omega$;
b. $\operatorname{dist}\left(Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right), Q_{\nu_{S \omega}}\left(x_{n^{\prime}}, r_{n^{\prime}}\right)\right)>0$ for $n \neq n^{\prime}$;
c. $S \cap Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right) \subset R_{\tau / 2, \nu_{S_{\omega}}}\left(x_{n}, r_{n}\right)$;
d. $\left(1+\tau^{2}\right)^{-1} r_{n}^{N-1} \leq \mathcal{H}^{N-1}\left(S \cap Q_{\nu_{S \omega}}\left(x_{n}, r_{n}\right)\right) \leq\left(1+\tau^{2}\right) r_{n}^{N-1}$;
e. $\sum_{n=1}^{\infty} r_{n}^{N-1} \leq 4 \mathcal{H}^{N-1}\left(S_{\omega}\right)$;
f. for each $n \in \mathbb{N}$, there exists $t_{n} \in\left(2.5 \tau r_{n}, 3.5 \tau r_{n}\right)$ and $0<t_{x_{n}, r_{n}}<t_{n}$, depending on τ, r_{n}, and x_{n}, such that $T_{x_{n}, \nu_{S \omega}}\left(-t_{n} \pm t_{x_{n}, r_{n}}\right) \cap Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right) \subset Q_{\nu_{S_{\omega}}}^{-}\left(x_{n}, r_{n}\right) \backslash R_{\tau / 2, \nu_{S_{\omega}}}\left(x_{n}, r_{n}\right)$ and, where we recall $I\left(t_{n}, t\right):=$ $\left(-t_{n}-t,-t_{n}+t\right)$,

$$
\begin{align*}
\sup _{0<t \leq t_{x_{n}, r_{n}}} & \frac{1}{\left|I\left(t_{n}, t\right)\right|} \int_{I\left(t_{n}, t\right)} \int_{Q_{\nu_{S \omega}}\left(x_{n}, r_{n}\right) \cap T_{x_{n}, \nu_{S_{\omega}}}(-l)} \omega^{-}(x) d \mathcal{H}^{N-1} d l \tag{A.14}\\
& \leq \int_{S \cap Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right)} \omega^{-} d \mathcal{H}^{N-1}+O(\tau) r^{N-1}
\end{align*}
$$

Proof. The proof uses similar arguments as in $\frac{1142016 \text { weightedMS }}{[14, ~ P r o p o s i t i o n ~ 4.4] . ~}$

Since this proof is quite lengthy, we summarize the main ideas. We modify the bulk part of S_{u} by replacing it with $(N-1)$ polyhedra located in the $-\nu_{S_{\omega}}$ direction of S_{ω}, and note that both the L^{1}-norm of u and the L^{2}-norm of ∇u do not change much. This will be done via a reflection argument around suitable hyperplanes. For the remaining part of S_{u}, we shall cover them using a finite collection of cubes, and change the value of u to 0 over such cubes. Hence, in this way, we transfer the jump set of S_{u} to a finite union of polyhedra.

Proposition A.8. Let $u \in S B V^{2}(\Omega) \cap L^{\infty}(\Omega)$ be given, satisfying $\mathcal{H}^{N-1}\left(\overline{S_{u}}\right)<+\infty$ and $\omega \in \mathcal{W}(\Omega)$. Then there exists a sequence $\left\{\left(u_{\varepsilon}, v_{\varepsilon}\right)\right\}_{\varepsilon>0} \subset W^{1,2}(\Omega) \times W^{1,2}(\Omega)$ such that

$$
\limsup _{\varepsilon \rightarrow 0} E_{\omega, \varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \leq E_{\omega}(u)
$$

Proof. Without loss of generality, we assume that $E_{\omega}(u)<+\infty$, which implies $\mathcal{H}^{N-1}\left(S_{u}\right)_{\text {jjump_ready_coro_limsup }}^{+\infty}$
Step 1: Assume $\mathcal{H}^{N-1}\left(\left(S_{\omega} \backslash S_{u}\right) \cup\left(S_{u} \backslash S_{\omega}\right)\right)=0$. Fix $\tau \in(0,1 / 4)$. Applying Proposition A.7 to ω, we obtain a set $\overline{S_{\tau}}$, a collection $\mathcal{F}_{\tau}=\left\{Q_{\nu_{S \omega}}\left(x_{n}, r_{n}\right)\right\}_{n=1}^{\infty}$, and corresponding $t_{n} \in\left(2.5 \tau r_{n}, 3.5 \tau r_{n}\right)$ and $t_{x_{n}, r_{n}}$, for which (upper_sup_ready_limsup_jump
holds. Extract a finite collection $\mathcal{T}_{\tau}=\left\{Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right)\right\}_{n=1}^{M_{\tau}}$ from \mathcal{F}_{τ} with $M_{\tau}>0$, large enough such that

$$
\mathcal{H}^{N-1}\left[S_{\tau} \backslash \bigcup_{n=1}^{M_{\tau}} Q_{\nu_{S \omega}}\left(x_{n}, r_{n}\right)\right]<\tau
$$

and set $F_{\tau}:=S_{\tau} \cap\left[\bigcup_{n=1}^{M_{\tau}} Q_{\nu_{S \omega}}\left(x_{n}, r_{n}\right)\right]$. Note that

$$
\begin{equation*}
\mathcal{H}^{N-1}\left(S_{u} \backslash F_{\tau}\right) \leq \mathcal{H}^{N-1}\left(S_{u} \backslash S_{\tau}\right)+\mathcal{H}^{N-1}\left(S_{\tau} \backslash F_{\tau}\right)<2 \tau \tag{A.15}
\end{equation*}
$$

We observe that

$$
\mathcal{L}^{N}\left(\left\{x \in \Omega, \bar{u}(x) \neq \bar{u}_{\tau}(x)\right\}\right)=\mathcal{L}^{N}\left(\bigcup_{n=1}^{M_{\tau}} U_{n}\right) \leq \sum_{n=1}^{M_{\tau}} \mathcal{L}^{N}\left(U_{n}\right) \leq 7 \tau^{2} \sum_{n=1}^{M_{\tau}} r_{n}^{N-1} \leq O(\tau)
$$

where in the last inequality we used Propositions A.7-and e. We note that
a. \bar{u}_{τ} is a reflection of \bar{u} within the set with measure less than $O(\tau)$;
b. $\mathcal{L}^{N}(\{\bar{u} \neq u\}) \leq \sum_{m=1}^{Y_{\tau}} \mathcal{L}^{N}\left(Q_{m}\right) \leq O(\tau)$;
c. $u \in S B V^{2}(\Omega) \cap L^{\infty}(\Omega)$.

Then,

$$
\begin{equation*}
\lim _{\tau \rightarrow 0} \int_{\Omega}\left|\bar{u}_{\tau}-u\right| d x=0 \text { and } \lim _{\tau \rightarrow 0} \int_{\Omega}\left|\nabla \bar{u}_{\tau}-\nabla u\right|^{2} d x=0 \tag{A.16}
\end{equation*}
$$

For brevity, in the rest of the proof we abbreviate $Q_{\nu_{S_{\omega}}}\left(x_{n}, r_{n}\right)$ by $Q_{n}, T_{x_{n}, \nu_{S_{u}}}$ by $T_{x_{n}}$, and $T_{x_{n}, \nu_{S_{u}}}\left(-t_{n}\right)$ by $T_{x_{n}}\left(-t_{n}\right)$. Note that the jump set of \bar{u}_{τ} is contained in

$$
P_{\tau}:=\bigcup_{n=1}^{M_{\tau}}\left[T_{x_{n}}\left(-t_{n}\right) \cap Q_{n}\right] \cup \bigcup_{n=1}^{M_{\tau}} \partial Q_{n} \cap \overline{U_{n}} \cup \bigcup_{m=1}^{Y_{\tau}} \partial Q_{m} \cup \bigcup_{m=1}^{Y_{\tau}} \partial R_{m}
$$

and $S_{\bar{u}_{\tau}} \subset P_{\tau}$ and P_{τ} are both union of finitely many polyhedra. We also observe that, denoting by $\operatorname{cl}(\cdot)$ the closure of a set,

$$
\begin{align*}
\mathcal{H}^{N-1} & {\left[\operatorname{cl}\left(\left(\bigcup_{n=1}^{M_{\tau}} \partial Q_{n} \cap \overline{U_{n}}\right) \cup\left(\bigcup_{m=1}^{Y_{\tau}} \partial Q_{m}\right) \cup\left(\bigcup_{m=1}^{Y_{\tau}} \partial R_{m}\right)\right)\right] } \\
& \leq \sum_{n=1}^{M_{\tau}} \mathcal{H}^{N-1}\left(\partial Q_{n} \cap \overline{U_{n}}\right)+\sum_{m=1}^{Y_{\tau}} \mathcal{H}^{N-1}\left(\partial Q_{m}\right)+\sum_{m=1}^{Y_{\tau}} \mathcal{H}^{N-1}\left(\partial R_{m}\right) \tag{A.17}\\
& \leq 2 \tau+C \tau \sum_{n=1}^{\infty} r_{n}^{N-1} \tau+2 \mathcal{H}^{N-1}\left(\overline{S_{u}} \backslash S_{u}\right) \leq O(\tau)+2 \mathcal{H}^{N-1}\left(\overline{S_{u}} \backslash S_{u}\right)<+\infty
\end{align*}
$$

Let $\varepsilon>0$ be such that

$$
\varepsilon^{2}+\sqrt{\varepsilon} \ll \min \left\{a_{\tau}, t_{x_{n}, r_{n}} \text { for } 1 \leq n \leq M_{\tau}\right\}
$$

$$
\varepsilon^{2}+\sqrt{\varepsilon}<t_{x_{n}, r_{n}}<\left|t_{n}\right|<\frac{1}{4} \tau r_{n}<r_{n}
$$

We set $u_{\tau, \varepsilon}:=\left(1 \underset{\text { finite size redefine }}{ } \varphi_{\varepsilon}\right) \bar{u}_{\tau}$, where φ_{ε} is such that $\varphi_{\varepsilon} \in C_{c}^{\infty}(\Omega ;[0,1]), \varphi_{\varepsilon} \equiv 1$ on $\left(\overline{S_{\bar{u}_{\tau}}}\right)_{\varepsilon^{2} / 4}$, and $\varphi_{\varepsilon} \equiv 0$ in
 Convergence Theorem, and $(\mathbb{A} .16)$, we conclude that $u_{\tau, \varepsilon} \rightarrow u$ in $L^{1}(\Omega)$.

Consider the sequence $\left\{v_{\tau, \varepsilon}\right\}_{\varepsilon>0} \subset W^{1,2}(\Omega)$ given by $v_{\tau, \varepsilon}(x):=\tilde{v}_{\varepsilon}\left(d_{\tau}(x)\right)$, where $d_{\tau}(x):=\operatorname{dist}\left(x, P_{\tau}\right)$ and \tilde{v}_{ε} are defined by

$$
\tilde{v}_{\varepsilon}(t):= \begin{cases}0 & \text { if } t \leq \varepsilon^{2}, \\ -e^{-\frac{1}{2} \frac{t-\varepsilon^{2}}{\varepsilon}}+1 & \text { if } \varepsilon^{2} \leq t \leq \sqrt{\varepsilon}+\varepsilon^{2}, \\ 1-e^{-\frac{1}{2 \sqrt{\varepsilon}}} & \text { if } t>\sqrt{\varepsilon}+\varepsilon^{2} .\end{cases}
$$

An explicit computation shows that

$$
\tilde{v}_{\varepsilon}^{\prime}(t)=\frac{1}{2 \varepsilon}\left(1-\tilde{v}_{\varepsilon}(t)\right)
$$

benshen

Step 2: For the general case $\mathcal{H}^{N-1}\left(S_{u} \backslash S_{\omega}\right)>0$, the proof follows by applying the same construction in Step 1 on S_{u}, and noticing that $\omega^{-}(x)=\omega(x)$ if $x \in S_{u} \backslash S_{\omega}$.

Acknowledgements

The authors warmly thank the Center for Nonlinear Analysis, where this work was carried out. The research of the first author was partially funded by the National Science Foundation under Grants No. DMS - 1411646 and No. DMS - 1906238. The second author was partially supported by the National Science Foundation under Grant No. DMS - 1411646. The third author was partially supported by his Lakehead University startup grant, and NSERC Discovery Grant "Regularity of minimizers and pattern formation in geometric minimization problems". We are also grateful to Todd J. Falkenholt, and the NSERC USRA grant supporting him when he was working under the supervision of the third author during the semester of Summer 2021, for useful comments and suggestions. Part of this work was carried out when the second author was a Ph.D. student of Carnegie Mellon University.

References

[1] L. Ambrosio. Variational problems in SBV and image segmentation. Acta Appl. Math., 17(1):1-40, 1989.
[2] L. Ambrosio. On the lower semicontinuity of quasiconvex integrals in $\operatorname{SBV}\left(\Omega, \mathbb{R}^{k}\right)$. Nonlinear Anal., 23(3):405425, 1994.
[3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[4] L. Ambrosio and V. M. Tortorelli. Approximation of functionals depending on jumps by elliptic functionals via Г-convergence. Comm. Pure Appl. Math., 43(8):999-1036, 1990.
[5] H. Attouch. Variational convergence for functions and operators. Applicable Mathematics Series. Pitman (Advanced Publishing Program), Boston, MA, 1984.
[6] A. Braides. Γ-convergence for beginners, volume 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2002.
[7] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
[8] M. Burger, T. Esposito, and C. I. Zeppieri. Second-order edge-penalization in the Ambrosio-Tortorelli functional. Multiscale Model. Simul., 13(4):1354-1389, 2015.
[9] L. Calatroni, C. Chung, J. C. D. L. Reyes, C.-B. Schönlieb, and T. Valkonen. Bilevel approaches for learning of variational imaging models. arXiv preprint arXiv:1505.02120, 2015.
[10] E. De Giorgi, M. Carriero, and A. Leaci. Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal., 108(3):195-218, 1989.

evans2015measure
fonseca2015modern
liu2016weightedMS
fonseca2000second

MR1488299

2016arXiv160901074H

MR2049779
kunisch2013bilevel
leoni2009first
liu2016optimal
[11] J. C. De Los Reyes, C.-B. Schönlieb, and T. Valkonen. The structure of optimal parameters for image restoration problems. J. Math. Anal. Appl., 434(1):464-500, 2016.
[12] L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[13] I. Fonseca and G. Leoni. Modern methods in the calculus of variations: Sobolev spaces. Springer Monographs in Mathematics. Unpublished yet, 2015.
[14] I. Fonseca and P. Liu. The Ambrosio - Tortorelli Approximation with spatially dependent parameters. arXiv:1608.03878, Aug. 2016.
[15] I. Fonseca and C. Mantegazza. Second order singular perturbation models for phase transitions. SIAM J. Math. Anal., 31(5):1121-1143 (electronic), 2000.
[16] M. Gobbino. Finite difference approximation of the Mumford-Shah functional. Comm. Pure Appl. Math., 51(2):197-228, 1998.
[17] M. Hintermüller, K. Papafitsoros, and C. N. Rautenberg. Analytical aspects of spatially adapted total variation regularisation. ArXiv e-prints, Sept. 2016.
[18] M. Hintermüller and W. Ring. An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. J. Math. Imaging Vision, 20(1-2):19-42, 2004. Special issue on mathematics and image analysis.
[19] K. Kunisch and T. Pock. A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci., 6(2):938-983, 2013.
[20] G. Leoni. A first course in Sobolev spaces, volume 105 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009.
[21] P. Liu. The spatially dependent bi-level learning scheme for image reconstruction problem. Submitted.

[^0]: E-mail addresses: fonseca@andrew.cmu.edu, dragonrider.liupan@gmail.com, xlu8@lakeheadu.ca.

