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Abstract. In heat exchangers, an incompressible fluid is heated initially and
cooled at the boundary. The goal is to transfer the heat to the boundary as
efficiently as possible. In this paper we study a related steady version of this
problem where a steadily stirred fluid is uniformly heated in the interior and
cooled on the boundary. For a given large Péclet number, how should one stir
to minimize some norm of the temperature? This version of the problem was
previously studied by Marcotte, Doering et al. (SIAM Appl. Math ’18) in a
disk, where the authors showed that when the Péclet number, Pe, is sufficiently
large one can stir the fluid in a manner that ensures the total heat is O(1/ Pe).
In this paper we instead study the problem on an infinite strip. By forming
standard convection rolls we show that one can stir the fluid in a manner
that ensures that the temperature of the hottest point is O(1/ Pe4/7), up to a
logarithmic factor. The same upper bound is expected to be true for the total
heat and other Lp-norms of the temperature. We do not, however, know if this
is optimal in a strip and are presently unable to prove a matching lower bound.

1. Introduction
A heat exchanger is a system used to transfer heat between a fluid and a heat

source or sink, for either heating or cooling. These are used for both heating
and cooling processes and have a broad range applications including combustion
engines, sewage treatment, nuclear power plants and cooling CPU’s in personal
computers. The study of heat exchanger is a vibrant field of research despite having
a very long history. The literature in the field is vast, ranging from engineering
textbooks to cutting edge research articles. We give here a very non-exhaustive
list of representatives [WBZ92, QM02, VP14, SuHS+19, AK18,WWZ+18, LL20].
Mathematically, although there have been some rigorous treaments [DT19,MDTY18],
a lot still remain to be explored.

The temperature of the fluid in the heat exchanger evolves according to the
advection diffusion equation

(1.1) ∂tθ + v · ∇θ − κ∆θ = 0 in Ω ,

where Ω ⊆ Rd is the region occupied by the fluid. Here θ is the temperature of
the fluid, κ is the thermal diffusivity and v = v(x, t) is velocity field of the fluid.
Throughout this paper we will assume the fluid is incompressible and doesn’t flow
through the container walls. That is, we require hence require

(1.2) ∇ · v = 0 in Ω , and v · n̂ = 0 on ∂Ω .
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Some portion of the boundary of Ω may be insulated, and some portion may be
connected to a heat source/sink maintained at a constant temperature. Denoting
these pieces by ∂NΩ and ∂DΩ respectively, and normalizing so that the temperature
of the heat source/sink is 0, we study (1.1) with mixed Dirichlet/Neumann boundary
conditions

∂n̂θ = 0 on ∂NΩ , and θ = 0 on ∂DΩ .

A problem of practical interest is to minimize some norm of the temperature θ
under a constraint on the stirring velocity field v. Note, here we assume (1.1) is
a passive scalar equation – the velocity field v is arbitrarily prescribed and is not
coupled to the temperature profile. The active scalar case entails coupling v to θ
via the Boussinesq system and leads to Rayleigh–Bénard convection which has been
extensively studied [Ray16,SG88,Kad01,DOR06].

In order to simplify matters, we set κ = 1
2 , assume v is time independent, and

assume the initial temperature θ0 is identically 1. In this case we set T =
∫∞

0 θ(x, t) dt
and observe

(1.3) − 1
2∆T + v · ∇T = 1 ,

in Ω, with boundary conditions

(1.4) T = 0 on ∂DΩ , and ∂n̂T = 0 on ∂NΩ .

In this case the analog of the above minimization problem would be to minimize
some norm of T under a size constraint on the advecting velocity field v.

In the recent paper [MDTY18], the authors studied this minimization problem
when Ω ⊆ R2 is a disk of radius 1, and ∂NΩ = ∅. Given p ∈ [1,∞) and Pe > 0 let
VpPe be the set of all Lp velocity fields satisfying (1.2) such that

(1.5) ‖v‖Lp(Ω) 6 Pe ,

and define
Ep,q(Pe) def= inf

v∈VpPe

‖T v‖q .

Physically when p = 2, the constraint (1.5) limits the kinetic energy of the
ambient fluid. The quantity Pe is the Péclet number associated to (1.3) and is
a non-dimensional ratio measuring the relative strength of the advection to the
diffusion. When the Péclet number is sufficiently large, the authors of [MDTY18]
use matched asymptotics to show

(1.6) E2,1(Pe) 6 O
( 1

Pe

)
,

and support their results with numerics (see Remark 1.4). Here T v is simply
the solution to (1.3)–(1.4), and we introduced the superscript v to emphasize the
dependence of T on v.

In this paper we revisit this problem and aim to provide mathematically rigorous
proofs of the bounds in [MDTY18]. Making matched asymptotics rigorous arises
in many situations and has been extensively studied (see for instance [BLP78,
Kus84,Ngu89,Eva90,All92,PS08]). In this situation, however, the flow considered
in [MDTY18] leads to a degenerate homogenization problem, for which one can not
use these standard techniques. Instead we reformulate the problem probabilistically
and use asymmetric large deviations estimates handle the degenerate diffusivity.
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To simplify the proofs, we study the problem in a horizontal strip instead of the
disk. For boundary conditions we cool the top of the strip, insulate the bottom,
and impose 1-periodic boundary conditions in the horizontal direction. In this case,
a natural ansatz to consider is vertical convection rolls, with height O(1) whose
width and amplitude depend on the Péclet number. Moreover, as we will shortly
see, it is more efficient to concentrate the entire velocity field in the boundary of
these convection rolls, and have large stagnation zones in the interior (see Figure 1,
below). Our main result shows that by tuning the width and amplitude of these
convection rolls, up to a logarithmic factor, one can ensure Ep,∞ 6 O(1/Pe2p/(4p−1))
for all p > 1. For p = 2 this gives E2,∞ 6 O(1/Pe4/7) (up to a logarithmic factor).

Figure 1. Convection rolls with velocity field focussed on the
boundary layer.

To formulate our result precisely, let let S = R × (0, 1) ⊆ R2 be an infinite
horizontal strip and ∂DS = R × {1} be the top boundary (where we impose
homogeneous Dirichlet boundary conditions), and ∂NS = R × {0} the bottom
boundary (where we impose homogeneous Neumann boundary conditions). We will
impose 1-periodic boundary conditions in the horizontal direction and identify the
function spaces H1(S) and L2(S) can be identified with 1-periodic functions that
are in H1(Ω) or L2(Ω) respectively, where Ω def= (0, 1)2 is the unit square.

Theorem 1.1. Given v ∈ VpPe let T v be the solution to (1.3) in S with T v = 0
on ∂DS, ∂2T

v = 0 on ∂NS and 1-periodic boundary conditions in the horizontal
direction. Then there exists a finite constant C such that for every µ > 0,

(1.7) Ep,∞(Pe) 6 Rµp (Pe) def= C|ln Pe|13
( 1

Pe

) 2p
4p−1

for sufficiently large Pe. The velocity field attaining (1.7) can be chosen to be

focussed on the boundary of convection rolls of height 1 and width O
(
|ln Pe|

1
p

Pe
p

4p−1

)
.

Remark 1.2. Note that the bound in Theorem 1.1 is weaker than the bound (1.6)
obtained in [MDTY18]. However, the spatial domains in each case are different.
The bounds in Theorem 1.1 apply to a strip, where as the bounds in [MDTY18]
apply to the unit disk. We do not know whether the optimal bounds are universal
(i.e. domain independent), and thus we do not know whether mismatch in powers is
intrinsic or a deficiency of the proof.
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Remark 1.3. For the velocity field v ∈ VpPe that we construct it is not hard to show
that for every q ∈ [1,∞], there exists a constant Cp,q such that

(1.8) Rp,µ(Pe)
Cp,q,µ

6 ‖T v‖Lq 6 Cp,q,µRp(Pe) ,

when Pe is sufficiently large. Moreover, for any non-degenerate velocity field focussed

on the boundary of convection rolls with height O(1) and width O
(
|ln Pe|

1
p

Pe
p

4p−1

)
, one

can also show that (1.8) holds. The proof of this is similar to that of Theorem 1.1.

Remark 1.4. More generally, one may consider velocity fields with convection rolls
with a width and height that vanish as Pe→∞. We consider this in Section 6, below,
and show that the optimal choice is keep the height O(1) as Pe→∞. Moreover, one
may also consider convection rolls arising from Hamiltonians with degenerate critical
points. One can show that even in this case the bounds for ‖T v‖L∞ are larger
than the bounds obtained in Theorem 1.1. As a result, it appears that standard
convection rolls in a strip will never yield the O(1/Pe) bound obtained in [MDTY18]
for a disk. As mentioned in Remark 1.2, we do not know if the best bound in a
strip is indeed that provided by Theorem 1.1 or not.

Remark 1.5. The study of the effect of such convection rolls also arises in the study
of magma flow in the Earth’s mantle and other contexts [TS02,KJ03,GHZ11,YVL15,
OM17].

Plan of the paper. In Section 2 we use an elementary scaling argument to reduce
Theorem 1.1 to obtaining an upper bound on a degenerate cell problem (Propo-
sition 2.3). In Section 3 we prove Proposition 2.3 using probabilistic techniques,
modulo two lemmas concerning exit from / the return to the boundary layer. These
lemmas are proved in Sections 4 and 5. The proofs of these lemmas rely on certain
large deviations estimates, and these are presented in Appendix A. Finally, in
Section 6 we confirm that choosing convection rolls whose width and height depend
on the Péclet number provides no improvement to Theorem 1.1.

2. Proof of the Main theorem
First note that by doubling the domain and using symmetry and rescaling we

can reduce the problem to proving (1.7) when ∂NS = ∅ and ∂DS = (0, 1)× {0, 1}.
In this section we prove Theorem 1.1 by producing a velocity field v (depending
on Pe) such that we have

(2.1) ‖T v‖∞ 6 C|ln Pe|13
( 1

Pe

) 2p
4p−1

,

for all Pe sufficiently large. We do this by forming convection rolls with height 1,
width ε and amplitude Aε/ε2 for some small ε and large Aε (see Figure 1). Moreover,
as we will see shortly, it is most efficient to to only stir near the boundary of cells,
and that ε and Aε should be chosen according to

(2.2) A
1− 1

2p
ε

ε2 = Pe .

To construct v, consider a Hamiltonian H : R2 → R such that H(x1, 0) =
H(x1, 1) = 0 and

H(x1 + 1, x2) = H(x1, x2) for all (x1, x2) ∈ R2 .
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To focus the stirring on cell boundaries, we truncate H in cell interiors as follows.
Fix N > 0 be a large constant, and GN be a smooth increasing function such
that GN (0) = 0, and

(2.3) (GN )′(h) =


1 h 6

N√
Aε

0 h >
2N√
Aε

.

Define

HN (x1, x2) = GN ◦H(x1, x2) , vN = ∇⊥HN =
(
∂2H

N

−∂1H
N

)
.

For notational convenience, let

H0 = H , v0 = ∇⊥H =
(
∂2H
−∂1H

)
.

To obtain convection rolls of width ε and height 1, we rescale the horizontal
variable. For k ∈ {0, N} define

Hk,ε(x1, x2) = Hk
(x1

ε
, x2

)
, and vk,ε = Aε

ε
∇⊥Hk,ε = Aε

ε

(
∂2H

k,ε

−∂1H
k,ε

)
,

and let Tk,ε = T v
k,ε . By uniqueness of solutions we see that Tk,ε satisfies Tk,ε(x1 +

ε, x2) = Tk,ε(x1, x2). Thus, we change variables and define

(2.4) y1 = x1

ε
, y2 = x2 , and vk = ∇⊥y Hk .

In these coordinates we see that Tk,ε satisfies

(2.5) Aεv
k · ∇yTk,ε −

1
2∂

2
y1
Tk,ε −

1
2ε

2∂2
y2
Tk,ε = ε2 .

Remark 2.1. Throughout the paper, N is a large fixed natural number, and we only
consider the Hamiltonians HN or H0. All the statements we make below will apply
to both Hamiltonians, unless explicitly stated otherwise.

Remark 2.2. As we will see shortly, the main result of this paper, Theorem (1.1), is
achieved using the Hamiltonian HN . We include H0 here in parallel because there
will be a technical step (in the proof of Lemma 4.2) that requires us to compare
HN to H0.

Examining (2.5) we see that in the horizontal direction the diffusion has strength 1.
However, since we impose periodic boundary conditions in this direction, there are
no boundaries that provide a cooling effect directly felt by the horizontal diffusion.
In the vertical direction, the diffusion coefficient is ε2, and so the cooling effect from
the Dirichlet boundary ∂S will be felt in the domain in time O(1/ε2). Since our
source (the right hand side of (2.5)) is also ε2, we expect that the diffusion alone
will ensure Tε is of size O(1) as ε→ 0. This would lead to the bound E∞(Pe) 6 C,
which is far from optimal.

We claim that the convection term reduces this bound dramatically. Indeed,
through convection one can travel an O(1) distance in the vertical direction in time
1/Aε. Do to our no flow requirement v · n̂ = 0 on ∂S, one can never reach the
boundary of S through convection alone. Thus, the cooling effect of the boundary ∂S
must propagate into the domain through a combination of the effects of the slow
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vertical diffusion ε2∂2
y2

and the fast convection Aεv · ∇y. Our aim is to estimate
how much improvement this can provide over the crude O(1) bound that can be
obtained through diffusion alone. This is our next result.

Proposition 2.3. There exists a smooth Hamiltonian H and a constant C such
that for every ν > 0 and Aε chosen such that Aε > 1/εν as ε → 0, we have, for
k ∈ {0, N},

(2.6) ‖Tk,ε‖L∞ 6 Cε2
(

1 + |ln ε|
13

ε
√
Aε

)
for all sufficiently small ε.

Remark 2.4. We believe the bound (2.6) is true for every smooth, non-degenerate
cellular flow v (with a constant C that depends on v), provided ν > 2. To obtain (2.6)
for all ν > 0, our proof requires the velocity field v to be exactly linear near the
vertical cell boundaries. We do not know whether (2.6) remains true for ν ∈ (0, 2)
without this assumption. We note, however, that choosing ν ∈ (0, 2) does not lead
to an improved bound as in this range the constant term on the right of (2.6) will
eliminate any benefit obtained from further increasing the amplitude.

Remark 2.5. For simplicity, the velocity field we construct to prove Proposition 2.3
will be chosen to be exactly linear near cell corners. This assumption is mainly
present as it leads to a technical simplification of the proof of Proposition 2.3.
Since the proof of Theorem 1.1 only requires us to produce one velocity field v
satisfying (2.1), we only state and prove Proposition 2.3 for a specific cellular flow,
instead of generic cellular flows.

We prove Proposition 2.3 using probabilistic techniques in the next section.
Theorem 1.1 follows immediately from Proposition 2.3 by scaling.

Proof of Theorem 1.1. We only show the calculation for k = N in Proposition 2.3.
The calculation for k = 0 is easier and gives a worse bound so we omit it here.
Fix y, v be as in (2.4), and ν > 0 to be chosen later. By definition, we have

vN,ε(x1, x2) = Aε
ε
∇⊥HN,ε(x1, x2) =


0 H(y1, y2) > 2N√

Aε
,

Aε
ε2

(
εvN1 (y1, y2)
vN2 (y1, y2)

)
H(y1, y2) 6 N√

Aε
.

When 1/ε ∈ N we note∫
Ω
|vN,ε|p dx = Apε

ε2p

∫
Ω

(ε2(vN1 )2 + (vN2 )2)
p
2 dx1dx2

= Apε
ε2p

∫{
H6 N√

Aε

}(ε2v2
1 + v2

2)
p
2 dy1 dy2 ,

and so Pe = ‖vε‖Lp = O
((
A

2p−1
2p

ε |lnAε|
1
p
)
/ε2) as ε → 0. Choosing Aε = 1/εγ for

some γ > ν, we then have, for large enough Pe,

Pe 6 Cγ
1
p |ln ε|

1
p

ε
γ(2p−1)

2p +2
.
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which means

(2.7) ε 6 Cγ
1
p |ln ε|

1
p

( 1
Pe

) 1
γ(2p−1)

2p +2 .

Now, choose ν small enough such that
2

ν(2p−1)
2p + 2

= 1− µ

2 .

Combining this with (2.6) and using the fact that γ > ν,

(2.8) ‖TN,ε‖L∞ 6 C
(
ε2 + ε1+γ/2|ln ε|13

)
.

The right hand side of the above inequality is minimized when the two terms are
equal. For simplicity, we pick γ = 2, so that

‖TN,ε‖L∞ 6 C2
2
p |ln ε|13+ 2

p

( 1
Pe

) 2
2(2p−1)

2p +2 6 C|ln ε|13+ 2
p

( 1
Pe

) 2p
4p−1

.

Substitute this into (2.7), we find the width of the convection rolls

ε = O
( |ln Pe|

1
p

Pe
p

4p−1

)
.

Theorem 1.1 follows immediately. �

Remark 2.6. For the sake of presentation, we slightly abuse the notation and write
v, T,A,H for vk,ε, Tk,ε, Aε, HN , respectively. All statements apply to both standard
and cut-off Hamiltonians, with the exception of Lemma 4.12, in which we will
indicate explicitly that it works only for the standard Hamiltonian H0.

3. Proof of Proposition 2.3
Our aim in this section is to prove Proposition 2.3. Let Zε be a solution to the

SDE

(3.1) dZεt = Av(Zε) ds+
(

1 0
0 ε

)
dBt ,

where B is a standard two dimensional Brownian motion. For convenience let
Zε = (Zε1 , Zε2), and let

τε = inf{t | Zε2,t 6∈ (0, 1)}
be the first exit time of Zε from the strip S. By the Dynkin formula we know Tε(z) =
ε2Ezτε.

Before delving into the details of the proof of Proposition 2.3, we now briefly
explain the main idea. Consider many tracer particles evolving according to (3.1).
First, we note that particles near ∂S get convected away from ∂S in time O(1/A). In
this time, these particles can travel a distance of O(ε/

√
A) in the vertical direction

through diffusion. Thus, if we can ensure particles get to within a distance of
O(ε/

√
A) from ∂S, then they will exit quickly with probability at least p0, for some

small p0 > 0 that is independent of ε.
We claim that in the boundary layer, every O(1/

√
A) seconds1 tracer particles

will pass within a distance of O(ε/
√
A) from ∂S. Every pass has an O(ε) probability

1The reason the time taken is O(1/
√

A) and not the convection time O(1/A) is because the
diffusion may carry particles into the interior of the cell before they exit at ∂S.
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of being within ε/
√
A away from ∂S, and so a probability O(ε) of exiting from ∂S.

This suggests

(3.2) sup
z∈Ω

Ezτε 6 C
(

1 + ε√
A

+ (1− ε)2ε√
A

+ (1− ε)23ε√
A

+ · · ·
)

= C
(

1 + 1
ε
√
A

)
,

which is dramatically better than the crude O(1/ε2) bound obtained by using
diffusion alone.

A second look at the above argument suggests that (3.2) should have a logarithmic
correction. Indeed, the flow v has hyperbolic saddles at cell {0, 1} × Z which causes
a logarithmic slow down of particles close to it. As a result, we are able to prove
the following bound on Eτε.

Proposition 3.1. Let ν > 0 and A > 1/εν . There exists a cellular flow v and a
constant C such that

(3.3) sup
z∈Ω

Ezτε 6 C
(

1 + | ln ε|
13

ε
√
A

)
,

holds for all sufficiently small ε.

Of course Proposition 3.1 immediately implies Proposition 2.3.

Proof of Proposition 2.3. Since T (z) = ε2Ezτε, (3.3) implies

‖T‖L∞(Ω) 6
Cε|ln ε|13
√
A

,

which yields (2.6) as desired. �

We now describe the flow v that will be used in Proposition 3.1. As remarked
earlier, we expect Proposition 3.1 to hold for any generic non-degenerate cellular
flow. However, the specific form we describe below simplifies many technicalities.
For notational convenience, we will now use the domain

Ω′ def= (0, 2)× (0, 1) ,

and assume that all functions are 2-periodic in the horizontal direction.
Assumption 1: The function H : R2 → [−1, 1] is C2 with ‖H‖C2 6 100 and is

2-periodic x1, 1-periodic in x2. The level set {H = 0} is precisely (R×Z)∪ (Z×R).
Moreover, H(1/2, 1/2) = 1, H(3/2, 1/2) = −1 and these both correspond to non-
degenerate critical points of H. All other critical points of H are hyperbolic and
like on the integer lattice Z2.

Assumption 2: There exists c0 ∈ (0, 1/10) such that every square of side length 4c0
centered at an integer lattice point the Hamiltonian H is quadratic.

Apart from non-degeneracy and normalization, the main content of the first
assumption is that H only has one critical point in the interior of every square
(m,m + 1) × (n, n + 1) with m,n ∈ Z. The second assumption requires H to be
exactly quadratic around all hyperbolic critical points. These are what lead to
technical simplification of the proof. For normalization, we will further assume the
following:
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Assumption 3:

(3.4) H(x1, x2) =


x1x2 (x1, x2) ∈ Q0 ,

(1− x1)x2 (x1, x2) ∈ Q0 + (1, 0) ,
x1(1− x2) (x1, x2) ∈ Q0 + (0, 1) ,
(1− x1)(1− x2) (x1, x2) ∈ Q0 + (1, 1) ,

where Q0 = (−2c0, 2c0)2.
Assumption 4: There exists a constant h0 such that for x ∈ {|H| < h0} and

i ∈ {1, 2},
sign ∂2

iH = − signH .

Finally, we assume that the vertical component of the velocity field doesn’t change
near the sides of the convection rolls. Without this assumption, the exit time bounds
we obtain (Lemma 3.2, below) will only be valid if A > 1/ε2, and we elaborate on
this in Remark 3.3 below.

Assumption 5: In the region {|H| 6 h0} ∩ (i+ (−c, c))× R, where i ∈ Z,

(3.5) ∂1v2 = −∂2
1H = 0 .

Now we split Proposition 3.1 into two steps: estimating the time taken to reach
the boundary layer, and then estimating the time taken to exit from the boundary
layer. Given c > 0 define the boundary layer Bc by

Bc = Bεc
def=
{
|H| < c√

A

}
where δ

def= ε√
A
.

Lemma 3.2. Let ν > 0 and suppose A > 1/εν . There exists a constant C such that

(3.6) sup
z∈B̄1

Ezτε 6
C|ln δ|13

ε
√
A

.

Remark 3.3. In the proof of Lemma 3.2 we will see that if H doesn’t satisfy
Assumption 5, then Lemma 3.2 is only valid if ν > 2 (see Remark A.5, below). It
turns out that choosing ν 6 2 provides no additional advantage in this paper. This
is because when ν 6 2, the constant term on the right of (3.3) dominates we get no
improvement on Ezτε.

Lemma 3.4. Let α ∈ [0, 1), and ηα = ηεα = inf
{
t > 0

∣∣ Zεt ∈ ∂Bα} be the first time
the process Zεt hits ∂Bα. There exists a constant C, independent of α, such that

sup
z∈Bcα

Ezηε1 6 C

for all sufficiently small ε. (Here Bcα is the compliment of Bα.)

A proof of Lemma 3.4 using a blow-up argument can be found in [IS12]. Another
method is to use the horizontal diffusion alone to reach the vertical boundary Z×(0, 1)
in time O(1). In Section 5, below, we present a different proof of this fact by
constructing a supersolution based on the Freidlin averaging problem [FW12].

Momentarily postponing the proofs of Lemmas 3.2–3.4 we prove Proposition 3.1.

Proof of Proposition 3.1. If z 6∈ B1, the strong Markov property and Lemma 3.2
imply

Ezτε = Ezηε1 + (τε − ηε1) = Ez
(
ηε1 + (τε − ηε1) | Fηε1

)
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6 C + Ez sup
z′∈B̄1

Ez′τε 6 C
(

1 + |ln δ|
13

ε
√
A

)
.(3.7)

If z ∈ B1, then Lemma 3.2 directly implies (3.7). Thus in either case we have (3.3),
as desired. �

4. Exit from the Boundary layer (Lemma 3.2)
In this section, we will prove Lemma 3.2. We will fix ν > 0 and suppose A > 1/εν

as in the hypothesis of Lemma 3.2 through out this section. Furthermore, for
notational convenience, we will now drop the explicit ε dependence from Zε and A.

Lemma 4.1. For every d ∈ N, there exists a constant C = C(d) such that

(4.1) inf
z∈Bd

P z(τε < ηεd+4) > Cε

|ln δ|12

for all sufficiently small ε.

Lemma 4.2. There exists a constant C such that

(4.2) sup
z∈B1

Ezηε5 6
C|ln δ|
A

for all sufficiently small ε.

Lemma 4.3. There exists a constant C such that there exists an ε0, where

(4.3) sup
z∈∂B5

Ezηε1 6 C
|ln δ|√
A

for all ε < ε0.

Intuitively, estimate (4.1) measures the success of exit the domain after each trial
when the process Zεt starts inside the layer boundary B1. Estimate (4.2) measures
the expected time for the process Zεt to escape away from he separatix after a failed
attempt. Estimate (4.3) measures the expected time for the process Zεt to get back
to the boundary layer after a failed attempt of escape.

We can now give a proof for Lemma 3.2.

Proof of Lemma 3.2. In this proof, the constant C may vary from line to line but
does not depend on ε. We first define two sequences of barrier stopping times,

σ0 = 0 , σ̃0 = inf
{
t > σ0

∣∣ Zεt ∈ ∂B5
}
,

σn = inf
{
t > σ̃n−1

∣∣ Zεt ∈ ∂B1
}
, σ̃n = inf

{
t > σn

∣∣ Zεt ∈ ∂B5
}
.

We have

Ezτε =
∫ ∞

0
P z
(
τε > t

)
dt

= Ez
∞∑
n=1

∫ σn

σn−1

1{τε>t} dt 6
∞∑
n=1

Ez1{τε>σn−1}(σn − σn−1)

=
∞∑
n=1

Ez1{τε>σn−1}E
Zε(σn−1)σ1

6
∞∑
n=1

P z(τε > σn−1) sup
z′∈∂B1

Ez′σ1 .(4.4)
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We will now estimate each term on the right.
First, by the strong Markov property and Lemmas 4.2–4.3 we have

(4.5) Ezσ1 = Ez
(
σ̃0 + EZε(σ̃0)η1

)
6 Ez

(
η5 + sup

z′∈∂B5

Ez′η1

)
6
C|ln δ|√

A
.

for every z ∈ ∂B1. To estimate P z(τε > σn), we use Lemma 4.1 and the fact that
σ1 > σ̃0 = η5 to obtain

sup
z∈∂B1

P z(τε > σ1) 6 sup
z∈∂B1

P z(τε > η5) = 1− inf
z∈∂B1

P z(τε < η5) 6 1− Cε

(ln δ)12 .

Now, by the strong Markov property,
sup
z∈B1

P z
(
τε > σn

)
= sup
z∈B1

Ez
(
1{τε>σn−1}E

Zε(σn−1)1{τε>σ1}
)

6 sup
z∈B1

Ez1{τε>σn−1} sup
z′∈∂B1

P z′(τε > σ1)

6
(

1− Cε

(ln δ)12

)
Ez1{τε>σn−1} .

Hence by induction

(4.6) sup
z∈B1

P z
(
τε > σn

)
6
(

1− Cε

|ln δ|12

)n
,

for all n ∈ N.
Using (4.5) and (4.6) in (4.4) yields

Ezτε 6
C|ln δ|√

A

∞∑
n=0

(
1− Cε

|ln δ|12

)n
finishing the proof. �

4.1. Proof of Lemma 4.1. In this subsection, we will give the proof of Lemma 4.1.
We let the coordinate processes of Z be Z1 and Z2 respectively (i.e. Z = (Z1, Z2)).
We also denote δ = ε/

√
A and γt the deterministic curve defined by

(4.7) ∂tγt = Av(γt) ,
where v = ∇⊥H as before. We again need a few results to prove Lemma 4.1.

The first result we state is a “tube lemma” estimating the probability that the
process Z stays within a small tube around the deterministic trajectories. This
is well studied and many such estimates can be found in the literature (see for
instance [FW12]). The standard estimates, however, work well for times of order
1/A. Due to the degeneracy, and the hyperbolic saddles near cell corners, we need
an estimate that works for time scales of order |ln δ|/A. We state this estimate here.

Lemma 4.4. Let z0 ∈ Q0/2+(j, k) where j, k ∈ {−1, 0} and suppose γ satisfies (4.7)
with γ0 = z0. Let,
(4.8) T = inf{t > 0 | |γ2

t | 6 δ or |γ1
t | = c0 or |γ2

t | = c0}
and recall σ1 = 1, σ2 = ε. There exists ε0 so that for every ε < ε0,

P z0
(

sup
06t6T

|Zi,t − γi,t| 6
σi√
|ln δ|A

,∀i ∈ {1, 2}
)
>

C

|ln δ|2 .

Remark 4.5. By a direct calculation, we can check that T 6 |ln δ|/A.
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The proof of Lemma 4.4 uses the Girsanov theorem and is greatly simplified by
the fact that H is exactly quadratic near cell corners. Since it is similar to the
standard proofs, we present it in Appendix A.

Once Lemma 4.4 is established it quickly gives an estimate on the probability of
getting within a distance of O(1/

√
A) away from cell boundaries.

Lemma 4.6. Let z0 ∈ B1. There exists constants C,M > 0 such that for small
enough ε,

(4.9) P z0
(
λ0 < ηε4M

)
>

C

|ln δ|2 .

Here, λ0
def= inf

{
t > 0

∣∣ Zt ∈ {dist(z, ∂Ω) 6M/
√
A}
}
.

Proof. Note first that by Taylor expansion of H, for small ε there exists M > 0
such that dist(z0, ∂Ω) 6M/

√
A for all z0 outside the corners Q0/2 + (j, k), where

j, k ∈ {−1, 0}. So now, we assume z0 ∈ Q0/2 + (j, k) for some j, k ∈ {−1, 0}. For
brevity, we only present the proof when z0 ∈ Q0/2, as the other cases are identical.

If dist(z0, ∂Ω) 6 1/
√
A we are done, so we now suppose z0 ∈ Q0/2 with

dist(z0, ∂Ω) > 1/
√
A. Let γ be the deterministic trajectory defined by (4.7) with

γ0 = z0, and let T be as in (4.8). Note that since dist(z0, ∂Ω) > 1/
√
A we can not

have |γ2,T | 6 δ. Thus, either |γ1,T | = c0 or |γ1,T | = c0. In either case there exists a
constant M such that |γ2,T | 6M/

√
A or |γ1,T | 6M/

√
A, respectively. Now using

Lemma 4.4 we obtain (4.9) as desired. �

Remark 4.7. For notational convenience, we assume that M = 1 for the rest of the
paper.

Another consequence of Lemma 4.4 is a lower bound on the probability of reaching
O(δ) away from the top boundary before re-entering the cell interior.

Lemma 4.8. Let Qδtop = (−2c0, 2c0)× (−4δ, 0) be a box of height 4δ at the top of
the cell corner. Let λ def= inf{t > 0 | Zt ∈ Qδtop}. Then, there exists a constant C > 0
such that

(4.10) inf
z0∈(−δ,δ)×(−c0,0)

P z0
(
λ < ηε4

)
>

C

(ln δ)2 .

Proof. Let T = inf
{
t > 0

∣∣ |γ2,t| 6 δ
}
the time the deterministic process hits the top

boundary layer with width δ. By Lemma 4.4, there exists a constant C > 0 so that

P z0
(

sup
06t6T

|Zi,t − γi,t| 6
σi√
|ln δ|A

,∀i ∈ {1, 2}
)
>

C

(ln δ)2 .

As z0 ∈ (−δ, δ)× (−c0, 0), γ1,T ∈ (−c0, 0). Therefore,{
sup

06t6T
|Zi,t − γi,t| 6

σi√
|ln δ|A

,∀i ∈ {1, 2}
}
⊆
{
ηε4 > λ

}
,

from which (4.10) follows. �

Next, we bound the probability of exiting from the top when trajectories start
in Qδtop.

Lemma 4.9. There exists a constant C > 0 such that
(4.11) inf

z0∈Qδtop

P z0
(
τε < ηε4

)
> C .
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Proof. Let T̃ = 1/A. When A is sufficiently large, we note that givenX0 = z0 ∈ Qδtop,
there exists n > 1, independent of ε, such that the deterministic flow γt starting at
z0 still remains in the top edge of the boundary layer {|H| 6 nδ}∩ [−1, 0]× [−nδ, 0]
for time T̃ . Define γ̃t by

∂tγ̃t = Au(γ̃t) ,
where u is chosen to satisfy the following condition γ̃t = (γ1,t, γ̃2,t), where γ1,t is
the first coordinate of γ, and γ̃2,t is some continuous function such that

γ̃2,0 = γ2,0 , |v2 − u2| 6 2nδ and γ̃2,T̃ > nδ .

An example of such γ̃ is γ̃t = (γ1,t, γ2,t + 2Anδt). By continuity,

E3
def=
{

sup
06t6T̃

|Z2,t − γ̃2,t| 6 δ
}
⊂
{
τε < ηε4

}
.

Now a standard large deviation estimate will show that P z0(E3) > Cε, for some
constant Cε that vanishes as ε → 0. In order to prove Lemma 4.9, we need
to remove this ε dependence. We do this here using the fact that in this box
|∂1v2| 6 O(ε), and |v2 − u2| 6 O(δ). We claim that if we go through the standard
large deviation estimate with these additional assumptions, the constant Cε can be
made independent of ε. Since the details are not too different from the standard
proof, we carry them out in Lemma A.3 in Appendix A, below. Hence, we see that
there exists a constant C (independent of z0, ε) so that

P z0(E3) > C ,
proving (4.11). �

Lemma 4.10. Let λ̃ def= inf
{
t > 0

∣∣Zt ∈ (−δ, δ)× (−c0, 0)
}
. There exists a constant

C > 0 such that
(4.12) inf

z0∈{dist(z,∂Ω)61/
√
A}

P z0
(
λ̃ < ηε4

)
> C

ε

(ln δ)8 .

Proof. Define the regions �1, . . . , �5 by

�1
def=
(
− 1√

A
,

1√
A

)
×
(
−1 + 1√

A
,− 1√

A

)
,

�2
def=
(
−1 + 1√

A
, 0
)
×
(
−1,−1 + 1√

A

)
,

�3
def=
(
−1,−1 + 1√

A

)
×
(
−1,− 1√

A

)
,

�4
def=
(
−1,− 1√

A

)
×
(
− 1√

A
, 0
)
,

�5
def=
(
− 1√

A
, 0
)2
,

as shown in Figure 2. If dist(z0, ∂Ω) 6 1/
√
A, then z0 must be in one of the boxes �1,

. . . , �5. Suppose first z0 ∈ �1. Let γ(t) is the deterministic trajectory such that
γ0 = z0, T0

def= inf
{
t > 0 : γ2,t = −c0/2

}
6 m/A for some m > 1, and

E4
def=
{

sup
06t6T0

|Z1,t − γ1,t| 6
2√
A
, sup
06t6T0

|Z2,t − γ2,t| 6 ε√
A
, |Z1,T0 | 6

ε

2
√
A
,
}
.

By continuity, we have that
E4 ⊂

{
λ̃ < ηε4

}
.
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Figure 2. ∂Bn and �i.

We claim

(4.13) P z0
(
λ̃ < ηε4

)
> P z0(E4) > Cε ,

where C > 0 independent of z0. The proof of (4.13) is presented with the other
tube lemmas we use in Appendix A. We in fact prove a more general estimate
(Lemma A.4 applied to the deterministic flow), from which (4.13) follows.

Now, let z0 ∈ �2, define �2R = �2 ∩ [−c0, 0] × [−1,−1 + 2/
√
A], and let

λ1 = inf
{
t > 0

∣∣ Zt ∈ �2R
}
. Proceeding as the case for �1 with γ(t) being the

deterministic trajectory so that γ(0) = z0, T1 = inf{t > 0 : γ1,t = −1 + c0/2}, we
have

(4.14) P z0
(
λ1 < ηε4

)
> P z0

(
sup

06t6T1

|Zt − γt| 6
1√
A

)
> C .

To see why the last lower bound is true, we consider by Itô formular,

sup
06t6T1

Ez0 |Zt − γt|2 6 2A‖v‖C1

∫ T1

0
Ez0 sup

06t6T1

|Zt − γt|2 + (ε2 + 1)T1,

which, by Gronwall’s inequality and Assumption 1, implies

sup
06t6T1

Ez0 |Zt − γt|2 6 (1 + ε2)T1e
200T1 .

Inequality (4.14) follows by Chebychev’s inequality.
Now let λ′ = inf

{
t > 0

∣∣ Zt ∈ �1
}
. Using Lemmas 4.4 and Markov property,

there exists a constant C (independent of z0) so that

(4.15) P z0
(
λ′ < ηε4

)
> P z0

(
λ1 < ηε4

)
inf

z1∈�2R
P z1

(
λ′ < ηε4

)
>

C

(ln δ)2 .
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Combining (4.13), (4.15) and using the Markov property gives

P z0
(
λ̃ < ηε4

)
> P z0

(
λ′ < ηε4

)
inf

z1∈�1
P z1

(
λ̃ < ηε4

)
>

Cε

(ln δ)2 .

Repeating this argument again for �3, . . . , �5 we see that we obtain an extra
C/|ln δ|2 factor every time we pass a corner. Combining these estimates gives (4.12)
as claimed. �

We are now ready to give the proof for Lemma 4.1.

Proof of Lemma 4.1. Let z0 ∈ B1 and denote D1
def=
{

dist(z, ∂Ω) 6 1/
√
A
}
, D2

def=
(−δ, δ) × (−c0, 0) and D3

def= (−2c0, 2c0) × (−4δ, 0). As ηε4 < ηε5 when z0 ∈ B1, by
Lemmas 4.6–4.10 and Markov property, we have that

P z0(τε < ηε5) > Ez01{τε<ηε5}1{λ<ηε5}1{λ0<ηε5}1{λ̃<ηε5}

= Ez01{λ0<ηε5}E
z0
(

1{τε<ηε5}1{λ̃<ηε5}1{λ<ηε5}
∣∣∣ Fλ0

)
= Ez01{λ0<ηε5}E

Zλ0

(
1{τε<ηε5}1{λ̃<ηε5}1{λ<ηε5}

)
> Ez01{λ0<ηε5} inf

z1∈D1
Ez1

(
1{λ<ηε5}1{λ̃<ηε5}1{τε<ηε5}

)
> Ez01{λ0<ηε5} inf

z1∈D1
Ez11{λ̃<ηε5} inf

z2∈D2
Ez21{λ<ηε5} inf

z3∈D3
Ez31{τε<ηε5}

>
Cε

|ln δ|12 ,

where C is independent of z0. Taking the infimum over z0, we achieve the desired
result. �

4.2. Proof of Lemma 4.2. In this subsection, we give a proof of Lemma 4.2. The
strategy then will be similar to that of the proof of Lemma 4.1 as will will estimate
the probability for a typical particle to successfully enter the inner region after each
time it goes around the boundary layer B5. To do this, we first need a few results.

Lemma 4.11. Let �̃1 = B5 ∩ {x2 ∈ [−1 + c0,−c0]}. There exists a constant C
such that

(4.16) inf
z0∈�̃1

P z0
(
ηε5 <

1
A

)
> C .

Proof. Since we restrict our attention to region of the boundary layer on the sides,
for each ε > 0 there exists an interval Rε with length |Rε| = 1/

√
A such that

dist
(
Rε × [−1 + c0,−c0] ,B5 ∩ {x2 ∈ [−1 + c0,−c0]}

)
= 1√

A
.

Let M be independent of ε such that

Rε× [−1+ c0,−c0]∪
(
B5∩{x2 ∈ [−1+ c0,−c0]}

)
⊆
(
− M√

A
,
M√
A

)
× [−1+ c0,−c0] ,

and z0 ∈ �̃1. By Lemma A.4 applied to the deterministic curve γ (given by (4.7))
with γ0 = z0, we have

P z0
(
ηε5 <

1
A

)
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> P z0
(

sup
06t61/A

|Z1,t − γ1
t | 6

M√
A
, sup
06t61/A

|Z2,t − γ2,t| 6
ε√
A
,Z1,T0 ∈ Rε

)
> C ,

where C is independent of z0 as desired. �

Lemma 4.12. Consider only the velocity v0 coming from the standard Hamiltonian
H0. Let λ̃2 = inf

{
t > 0

∣∣ Z2,t ∈ {−1 + c0,−c0}
}
and z0 ∈ B5 − �̃1. Then

(4.17) lim
ε→0

inf
B5−�̃1

P z0
(
λ̃2 6

5|ln δ|
A

)
→ 1 .

Proof. Let q > 2 be some large number to be chosen later, and let z̃0 be the closest
point on {H = A−1/q} to z0. Let d̃ = A|z0 − z̃0| and γt be the deterministic curve
(defined by (4.7)) with γ0 = z̃0. Note that, by Assumptions 1–2,

(4.18) d̃

A
6

C

A1/2q .

By Itô formula, we have

Ez0 |Zt − γt|2 6
d̃2

A2 + 2A‖v‖C1

∫ t

0
Ez0 |Zs − γs|2 ds+ (1 + ε2)t .

By Gronwall’s inequality and Assumption 1, it follows that

Ez0 |Zt − γt|2 6
( d̃2

A2 + (1 + ε2)t
)
e200At .

Now, let T = inf{t > 0 : γt ∈ {−1 + 2c0,−2c0}}, and note that T 6 D lnA/(Aq)
for some constant D > 0. By (4.18), we have

P z0
(
|ZT − γT | >

c0
10

)
6

100
c20

( C

A2q + (1 + ε2)D lnA
Aq

)
e200D lnA/q

6 CA200D/q−1 lnA .

Picking q such that 200D/q − 1 < −1/2, we have

(4.19) P z0
(
|ZT − γT | <

c0
10

)
> 1− C lnA

A1/4 .

As q > 2 , T < 5|ln δ|/A. Therefore, by continuity, it follows that{
Z2
T ∈ [−1 + 2c0,−2c0]

}
⊆
{
λ̃2 6

5|ln δ|
A

}
.

Combining this with (4.19), we deduce

lim
ε→0

inf
B5−�̃1

P z0
(
λ̃2 6

5|ln δ|
A

)
= 1 ,

as desired. �

We are now ready for the proof of Lemma 4.2.

Proof of Lemma 4.2. Step 1: We first claim that for each z0 ∈ B5 and ε > 0, there
exists a constant C > 0, independent of z0 and ε, such that

(4.20) P z0
(

sup
06t66|ln δ|/A

|H(Zt)| >
5√
A

)
> C .
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To prove this, suppose for contradiction there exists a subsequence {zn, εn}∞n=1
such that

(4.21) lim
n→∞

P zn
(

sup
06t66|ln δ|/A

|H(Zt)| >
5√
A

)
= 0 .

Let C0 be the lower bound in Lemma 4.11 and denote λ̃1 = inf
{
t > 0

∣∣ Zt ∈ �̃1
}
.

By Lemma 4.11 and the strong Markov property,

P zn
(

sup
06t66|ln δ|/A

|H(Zt)| >
5√
A

)
> Ezn

(
Ezn

(
1{

sup06t6λ̃1
|H(Zt)|6 5√

A

}1{
λ̃165|ln δ|/A

}1{
ηε5<λ̃1+1/A

} | Fλ̃1

))
= Ezn

(
1{

sup06t6λ̃1
|H(Zt)|6 5√

A

}1{
λ̃165|ln δ|/A

}EZλ̃1 1{
ηε5<1/A

})
> Ezn

(
1{

sup06t6λ̃1
|H(Zt)|6 5√

A

}1{
λ̃165|ln δ|/A

}) inf
z∈�̃1

Ez1{
ηε5<1/A

}
> C0P zn

(
sup

06t6λ̃1

|H(Zt)| 6
5√
A

; λ̃1 6
5|ln δ|
A

)
.

The second equality follows from the fact that ηε5 > λ̃1 under the event{
sup

06t6λ̃1

|H(Zt)| 6
5√
A

}
.

We claim that for large enough n, we have

P zn
(

sup
06t6λ̃1

|H(Zt)| 6
5√
A

; λ̃1 6
5|ln δ|
A

)
>

1
2 ,

which contradicts our assumption (4.21). To see that this lower bound is true, we
first note that zi 6∈ �̃1 by Lemma 4.11. Thus, we only consider the case zn ∈ B5−�̃1.

Recall λ̃2 = inf
{
t > 0

∣∣ Z2
t ∈ {−1 + c0,−c0}

}
. We need to be careful here as

we want to apply Lemma 4.12 but it is only valid when v = v0. Therefore, denote
λ̃k2 = λ̃2 when v = vk, k ∈ {0, N}.

Observe that, if v = v0,
1{sup06t6λ̃0

1
|H0(Zt)|6 5√

A
}1{λ̃0

165|ln δ|/A}

= 1{sup06t6λ̃0
1
|H0(Zt)|6 5√

A
}1{λ̃0

265|ln δ|/A} .

By (4.17) and (4.21) and, we can pick n large enough such that

P zn
(

sup
06t6λ̃0

1

|H0(Zt)| 6
5√
A

; λ̃0
1 6 5|ln δ|/A

)
> P zn

(
sup

06t66|ln δ|/A
|H0(Zt)| 6

5√
A

; λ̃0
2 6 5|ln δ|/A

)
>

1
2 .

On the other hand, if v = vN , since H0 = HN when h 6 N/
√
A (recall (2.3))

and zn ∈ B5, we have

1{sup06t6λ̃N1
|HN (Zt)|6 5√

A
}1{λ̃N1 65|ln δ|/A}

= 1{sup06t6λ̃0
1
|H0(Zt)|6 5√

A
}1{λ̃0

165|ln δ|/A} ,
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which implies

P zn
(

sup
06t6λ̃N1

|HN (Zt)| 6
5√
A

)
>

1
2 .

In both cases, there is a contradiction, proving (4.20) as desired.
Step 2: Once (4.20) is established, we can estimate Eηε5 as the expected time to
success of a Bernoulli trial using a similar argument as in the proof of Lemma 3.2.
Explicitly, let ∆t = 6|ln δ|/A, and observe that by (4.20),

P z0
(
ηε5 < ∆t

)
= P z0

(
sup

06t66|ln δ|/A
|H(Zt)| >

5√
A

)
> C .

By the strong Markov property and estimate (4.20), we have that for i > 1,

P z0
(
ηε5 > i∆t

)
= Ez0Ez0

(
1{ηε5>i∆t}1{ηε5>(i−1)∆t} | F(i−1)∆t

)
= Ez01{ηε5>(i−1)∆t}E

Z(i−1)∆t1{ηε5>∆t}

6 Ez01{ηε5>(i−1)∆t} sup
z∈B5

Ez1{ηε5>∆t}

= Ez01{ηε5>(i−1)∆t}
(
1− inf

z∈B5
P z
(
ηε5 < ∆t

))
= Ez01{ηε5>(i−1)∆t}(1− C) 6 (1− C)i ,

where C is the constant in (4.20). Therefore,

Ez0ηε5 =
∫ ∞

0
P z0(ηε5 > t) dt 6

∞∑
i=1

∫ i∆t

(i−1)∆t
P z0

(
ηε5 > t

)
dt

6 ∆t
∞∑
i=0

P z0
(
ηε5 > i∆t

)
6 ∆t

∞∑
i=0

(1− C)i 6 6|ln δ|
(1− C)A ,

from which (4.2) follows immediately. �

4.3. Proof of Lemma 4.3. In this subsection, we restrcit our attention to a
particular cell and therefore assume for simplicity that |H| = H. By Assumption 4,
∂2
iH 6 0 for i ∈ {1, 2}. Let z ∈ Bc1 and denote Uε(z) = Ezηε1. Then, Uε solves the

following equation

(4.22)
{
−∂2

1Uε − ε2∂2
2Uε +Av · ∇Uε = 1 in Bc1 ,

Uε = 0 on ∂B1 .

In order to prove Lemma 4.3, we construct an explicit supersolution to (4.22),
independent of ε. Recall by Lemma 3.4,

S
def= sup

ε>0
‖Uε‖∞ <∞ .

Let d1 � 1 be a small constant that will be chosen later, and define

Λ =
{ 1√

A
6 |H| 6 d1

}
R2 = Λ ∩ {y ∈ [−1 + c0,−c0]} and R1 = Λ−R2 .
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Figure 3. Λ, Ra1 (green), Rb1 (red) and R2 (blue).

Denote by (θ, h) the curvilinear coordinate, where θ = Θ(x1, x2) is the “angle”
and h = H(x1, x2) the level of the Hamiltonian H (See Appendix 5). Let f (to be
specified later) be a smooth periodic function of Θ that satisfies

(4.23)
0 < inf f < sup f <∞ ,

−∞ < inf f ′(Θ) 6 sup f ′(Θ) < −1 on R1 ,

and sup|f ′′| <∞ .

Then, consider the function
φ = χ1 + χ2 ,

where
χ1 = − S

d1
H lnH and χ2 = −f(Θ)

AH
+ ‖f‖∞√

A
.

By construction, φ(Θ, H) > 0 on Λ. We claim that for an appropriate f , φ is a
desired supersolution.

Lemma 4.13. Let Uε be the solution to equation (4.22). Then, there exists a
function f that satisfies the requirement (4.23) so that for small enough d1,

φ > Uε on Λ .

Postponing the proof of this lemma, we now give the proof of Lemma 4.3.

Proof of Lemma 4.3. By construction, on B5 − B1 and for small enough ε, we have
5√
A
6 d1. Therefore, when H = 5/

√
A,

φ 6 − S
d1

5√
A

ln
( 5√

A

)
+ ‖f‖∞√

A
6
|ln δ|√
A
.

It follows that
Ezηε1 = U(z) 6 φ(z) 6 |ln δ|√

A
,

for every z ∈ ∂B5, as desired. �
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Proof of Lemma 4.13. Step 1: Recall that v = ∇⊥H and H > 1/
√
A. We have

that
∇χ2 = −f

′(Θ)
AH

∇Θ + f(Θ)
AH2∇H ,

−∂2
1χ2 = 1

A

(f ′′(Θ)
H

(∂1Θ)2 − 2f
′(Θ)
H2 ∂1Θ∂1H + f ′(Θ)

H
∂2

1Θ
)

+ 1
A

(2f(Θ)
H3 (∂1H)2 − f(Θ)

H2 ∂2
1H
)

>
1
A

(f ′′(Θ)
H

(∂1Θ)2 − 2f
′(Θ)
H2 ∂1Θ∂1H + f ′(Θ)

H
∂2

1Θ
)
,

and
−∂2

2χ2 >
1
A

(f ′′(Θ)
H

(∂2Θ)2 − 2f
′(Θ)
H2 ∂2Θ∂2H + f ′(Θ)

H
∂2

2Θ
)
.

Therefore, by (4.23) and H > 1/
√
A,

(4.24) − (∂2
1 + ε∂2

2)χ2 > −
2
A

(f ′(Θ)
H2

(
∂1Θ∂1H + ε∂2Θ∂2H

))
− C√

A
.

Step 2: On the other hand,

∇χ1 = − S
d1

(1 + lnH)∇H

and
−∂2

1χ1 = S

d1
∂2

1H(lnH + 1) + S

d1

(∂1H)2

H

We note that there exists a function ρ = ρ(x) > 0 that

∇Θ = ρ(x)∇⊥H = ρ(x)v(x) ,
and λ1 6 ρ 6 λ2 on

{
|H| 6 c0

}
for some 0 < λ1 < λ2. Therefore, by (4.24) and

H > 1/
√
A,

− ∂2
1φ− ε∂2

2φ+Av · ∇φ

>
S

d1
∂2

1H(lnH + 1) + S

d1

(∂1H)2

H
− f ′(Θ)|∇H|2

H
ρ(4.25)

− 2
A

(f ′(Θ)
H2

(
∂1Θ∂1H + ε∂2Θ∂2H

))
− C√

A
.

Recall
R2 = Λ ∩ {z2 ∈ [−1 + c0,−c0]} and R1 = Λ−R2 .

We would like to estimate the above quantity in R1 and R2.
Step 3: For R1, we decompose this set further

Ra1 = R1 ∩ {−1 + c0 6 z1 6 −c0} and Rb1 = R1 −Ra1 .

In Ra1 , there exists a constant C̃ such that |∇H|2 > C̃. Therefore, by (4.23), (4.25)
and H > 1/

√
A,

−∂2
1φ− ε∂2

2φ+Av · ∇φ > −f
′(Θ)|∇H|2

H
ρ− C‖f ′‖L∞

>
λ1C̃ infR1 |f ′(Θ)|

d1
− C‖f ′‖L∞ .
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By (4.23), we could then pick d1 small, independent of ε, to make the following hold
−∂2

1φ− ε∂2
2φ+Av · ∇φ > 1

in Ra1 .
On the other hand, in Rb1, we have |∇H(z1, z2)|2 = z2

1 + z2
2 . Therefore, by

Cauchy-Schwarz inequality,

(4.26)
∣∣∣f ′(Θ) |∇H|

2

H

∣∣∣ = −f ′(Θ) |∇H|
2

H
= −f ′(Θ)z

2
1 + z2

2
z1z2

> 2 inf
R1
|f ′| .

Also, note that in Rb1 it holds that |∂iΘ∂iH| = (∂iH)2 for i = 1, 2. Thus, by (4.23)–
(4.26) and H > 1/

√
A, we choose f such that λ1 infR1 |f ′| > 2 and ε small enough

to get
− ∂2

1φ− ε∂2
2φ+Av · ∇φ

> −f
′(Θ)|∇H|2

H
ρ− 2

A

(f ′(Θ)
H2

(
∂1Θ∂1H + ε∂2Θ∂2H

))
− C√

A

> −f
′(Θ)|∇H|2

H
ρ− 2

A

∣∣∣f ′(Θ)|∇H|2

H2

∣∣∣− C√
A

=
∣∣∣f ′(Θ)|∇H|2

H

∣∣∣(ρ− 2
AH

)
− C√

A

> λ1 inf
R1
|f ′| − C√

A
> 1 .

Thus, we have just shown that there exists a function f that satisfies (4.23) so
that in R1,

−∂2
1φ− ε∂2

2φ+Av · ∇φ > 1 .
Step 4: In R2, there exist constants C1, C2 so that

0 < C2 6 C1|∇H|2 6 (∂1H)2 .

We then look at
− ∂2

1φ− ε∂2
2φ+Av · ∇φ

>
S

d1
∂2

1H(lnH + 1) + S

d1

(∂1H)2

H
− f ′(Θ)|∇H|2

H
ρ− C

>
S

d1
∂2

1H(lnH + 1) + S

d1

C1|∇H|2

H
− λ2‖f ′‖L∞(R2)

|∇H|2

H
− C

>
C2

C1d1

(SC1

d1
− λ2‖f ′‖L∞(R2)

)
− C .

Pick d1 smaller if needed to get
−∂2φ− ε∂2

2φ+Av · ∇φ > 1 in R2 .

Step 5: Combining Steps 3 and 4, we have shown that there exists a function f such
that

−∂2φ− ε∂2
2φ+Av · ∇φ > 1 in Λ .

By construction, φ > Uε on {H = d1} ∪ {H = 1√
A
}. The comparison principle then

tells us that
φ > Uε in Λ

as desired. �
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5. Proof of Lemma 3.4
In this section, we give the proof of Lemma 3.4. We only treat the case for the

standard Hamiltonian H0 as the case for cut-off Hamiltonian HN could be treated
similarly by a slight modification. This fact has been obtained in more generality
by PDE method by Ishii and Souganidis [IS12]. Our method proof, still PDE-based,
is different than that in [IS12]. Although the argument is new for our particular
situation, it is an adaptation of the method in [Kum18], where the author studies
the Freidlin problem for first order Hamilton-Jacobi equations.

It is convenient to work in the so-called curvilinear coordinates (h, θ), in one cell.
Let Q∗0 = (0, 1)2 − Γ0, where Γ0 is the closure of one trajectory of the gradient flow
of H starting on the boundary of the unit square. On Q∗0 we define the curvilinear
coordinates by setting h = H(x), θ = Θ(x), where Θ solves

∇Θ · ∇H = 0 ,

in Q∗0, normalized so that the range of Θ is (0, 2π). In this coordinate system, h(x)
determines the level set of the Hamiltonian to which x belongs and θ describes the
position of x on this level set. Since ∇Θ and ∇⊥H are parallel, there must exist a
non-zero function ρ such that

∇Θ = ρ∇⊥H .

By reversing the orientation of Θ if needed, we may assume, without loss of
generality, that ρ > 0. Let J = ∂1H∂2Θ − ∂2H∂1Θ be the Jacobian of the
coordinate transformation, and note

J = ρ|∇H|2 , |∇Θ| = ρ|∇H| .

Let γ be the solution to (4.7) with γ0 = x, and T be the time period of γ. Note
T only depends on h = H(x), and is given by

(5.1) T (h) def= inf{t > 0 : γ(t, x) = x} =
∮
{H=h}

1
|∇H|

|d`| ,

where |d`| denotes the arc-length integral along the curve {H = h}.
Let S(x) def= inf{t : γ(t, x) ∈ Γ0} be the amount of time γ takes to to reach Γ0

starting from x. This time is not a continuous function of x. Therefore, in order to
make it continuous, we modify it to the following continuous function

(5.2) S̃(x) :=
{
S(x) if S(x) > Γ(H(x))/2,
−S(x) + Γ(H(x)) if S(x) < Γ(H(x))/2.

As we have restricted our attention to one cell, we can assume H ∈ [0, 1]. Define
the coefficients D1 and D2 on [0, 1] as follows

D1(h) = 1
T (h)

∮
{H=h}

|∂1H|2

|∇H|
|d`| ,(5.3a)

D2(h) = 1
T (h)

∮
{H=h}

∂2
1H

|∇H|
|d`| .(5.3b)

Note that by Gauss–Green theorem, we have

T (h)D1(h) = −
∫
{H>h}

∂2
1H(x) dx =

∫ h

1

∮
{H=h}

∂2
1H

|∇H|
|d`| dh .
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Therefore,

(5.4) d

dh
(T (h)D1(h)) = T (h)D2(h) .

We are now ready to show the proof of Lemma 3.4.

Proof of Lemma 3.4. Step 1: Let Uε(x) def= Exτε0 and Ωε
def= Bcα. Then, Uε is the

solution to the equation

−1
2∂

2
1Uε −

ε2

2 ∂
2
2Uε +Av · ∇Uε = 1 on Ωε ,

with boundary condition
Uε = 0 on ∂Ωε .

Lemma 3.4 will follow immediately from the uniform bound
sup
ε
‖Uε‖L∞(Ωε1) 6 C.

To see why this bound is true, let us consider the solution Ū to the ODE{
−D1(h)∂2

hŪ −D2(h)∂hŪ = 4 ,
U(0) = 4 .

Note that Ū is bounded. To see this, we use (5.4) to rewrite the equation

− 1
T (h)∂h

(
T (h)D1(h)∂hŪ

)
= 4 .

Observe that T (h)D1(h) ≈ O(1− h) and T (h)→ T0 > 0 as h→ 1; T (h) ≈ O(|ln h|)
and D1(h) ≈ O(1/|ln h|) as h → 0 (see Chapter 8.2 in [FW12]). Using these
asymptotics, we deduce

∂hŪ(h) = 4
T (h)D1(h)

∫ 1

h

T (s) ds , Ū(h) =
∫ h

0

4
T (s)D1(s)

∫ 1

s

T (r) drds ,

and
‖Ū‖W 1,∞ 6 C .

Step 2: Note that Ū ◦H is a function on Ω. Let
g = ∂2

1(Ū ◦H) ,
and we see that

ḡ(x) def= 1
T (H(x))

∫ T (H(x))

0
g(γ(t, x)) dt = −4 ,

where T is defined in (5.1). Define

ϕ(x) =
∫ S̃(x)

0
(ḡ(x)− g(γt(x))) dt ,

where S̃ is defined in (5.2). Note that
(5.5) v(x) · ∇ϕ(x) = g(x)− ḡ(x) = g(x) + 4 .
To see this, consider

ϕ(γ(s, x)) = −
∫ S̃(γ(s,x))

0

(
g(γ(t, γ(s, x)))− ḡ(γ(s, x))

)
dt
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= −
∫ S̃(x)

s

(
g(γ(t, x))− ḡ(x)

)
dt .

Differentiate in s and evaluate at s = 0, we get (5.5).
Step 3: Let

Gε
def= Ū ◦H + 1

A
ϕ , Lε = −1

2∂
2
1 −

ε2

2 ∂
2
2 +Av · ∇ ,

and note

LεGε = −1
2∂

2
1(Ū ◦H)− 1

2A∂
2
1ϕ−

ε2

2 ∂
2
2(Ū ◦H)− ε2

2A∂
2
2ϕ+ g(x) + 4

= − 1
2A∂

2
1ϕ−

ε2

2 ∂
2
2(Ū ◦H)− ε2

2A∂
2
2ϕ+ 4 = eε + 4 ,

where eε
def= − 1

2A∂
2
1ϕ− ε2

2 ∂
2
2(Ū ◦H)− ε2

2A∂
2
2ϕ. Since U is smooth and eε converge

uniformly to 0 as ε→ 0, there exists an ε0 such that for all ε 6 ε0, LεGε > 1 and
Gε > Uε on ∂Ωε. By the maximum principle, Gε > Uε on Ωε. Finally, observe that
supε‖Gε‖∞ <∞, which implies what we want. �

6. Other Scalings
In this section we study the behavior of ‖T v‖L∞ when the velocity field v has

convection rolls with varying width and height. Through scaling we can reduce the
study of these to the case we have already considered.

Let α > 0, and define

Hε(x1, x2) = H
(x1

ε
,
x2

εα

)
, and vε = A

ε1−α∇
⊥Hε = A

ε1−α

(
∂2H

ε

−∂1H
ε

)
.

Let T ε = T v
ε solve (1.3) on S with 1-periodic boundary conditions in the horizontal

direction and homogeneous Dirichlet boundary conditions on ∂S. In this case note
that

(6.1) Pe = ‖vε‖L2 =


O
( A

ε2−α

)
α < 1 ,

O
(A
ε

)
α > 1 .

Proposition 6.1. If A = 1/ε2, then

(6.2) ‖T ε‖L∞(S) 6
Cε1−2α|ln ε|13

√
A

.

Rewriting this in terms of the Péclet number, we see

(6.3) ‖T ε‖L∞(S) 6

C Pe−
1
2 + 3α

8−2α |ln Pe|13 α < 1 ,

C Pe−
1
2 + 4α−1

6 |ln Pe|13 α > 1 .

From the above we see that the large α is, the worse the bound (6.3) becomes,
and so choosing α = 0 is optimal. This corresponds to having cells of constant
height.

Since the case when α > 0 gives a sub-optimal bound, we only sketch the proof
of Proposition 6.1 and show how it can be deduced quickly from Proposition 3.1.
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Proof sketch of Proposition 6.1. Let Xε be the diffusion defined by

dXε
t = A

ε1−α v
ε(Xε) dt+ dWt ,

and observe that T ε is simply the expected exit time of X from the strip S. Define

Y εt =
( 1

εX
ε,1(ε2t)

1
εαX

ε,2(ε2t)

)
,

and observe
dY εt = Av(Y εt ) +

(
1 0
0 ε

)
dW̃t ,

where v = ∇⊥H and W̃ is a Brownian motion. Now we know (from Proposition 3.1)
that the expected exit time of Y from either the top or bottom of one cell (the
unit square) is bounded above by C|ln ε|13/(εA1/2). Since our original domain S is
composed of ε−α such cells, and since the time for the process X is ε2 times the
time for the process Y we obtain (6.2) as claimed. Using (6.1) in (6.2) immediately
yields (6.3), finishing the proof of Proposition 6.1. �

Appendix A. Tube Lemmas
In this appendix, we are interested in estimating probabilities of short-time events

of the stochastic process satisfying the following equation
(A.1) dZt = Av(Zt) dt+ σdBt ,

where
(A.2) ‖v‖∞ 6 1 , ‖Dv‖∞ 6 1 ,

(A.3) σ =
(

1 0
0 ε

)
.

By abusing of notation, we denote σi = σii. Thus, σ1 = 1 and σ2 = ε.
The following lemma is useful when we are at the top boundary layer.

Lemma A.1. Fix λ, β > 0, and define T = Tβ,A and R = RA,λ by

T
def= β

A
, R

def= λ√
A

(−1, 1)× (−ε, ε) .

Let z0 ∈ R, u ∈ C1(R2) and let γ be the solution to the ODE
∂tγ̃t = Au(γ̃t) dt , with γ̃0 = z0 ,

and Γ = {γ̃(t) | t ∈ [0, T ]} be the image of γ. Denote

LT = −A
2

2

∫ T

0

∑
i=1,2

( |ui(γ(t))− vi(γ(t))|
σi

+
2∑
j=1

σj‖∂jvi‖L∞(R+Γ)

σi
√
A

)2
dt .

Then for some α > 0 we have

P z0
(

sup
06t6T

|σ−1(Zt − γ̃t)|∞ 6
λ√
A

)
> P

(
sup
t6T
|Bt|∞ 6

λ√
A

)
exp
(
−α
√
LT −

1
2LT

)
for all sufficiently large A. Here the notation |z|∞ denotes maxi|zi|.

Remark A.2. A similar upper bound also holds, but is not needed for purposes of
this paper.
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Proof. Define the process Z̃ by
dZ̃t = Au(γ̃t) dt+ σ dBt , with Z̃0 = z0 .

Define
h(t) def= A(u(γ̃t)− v(Z̃t)) ,

ĥ(t) def= σ−1h(t) ,

Mt
def= exp

(
−
∫ t

0
ĥ(s) dBs −

1
2

∫ t

0
ĥ(s)2 ds

)
(A.4)

and a measure P̂ so that
dP̂ = MT dP .

By the Girsanov theorem (see, for example, Theorem 8.6.6 in [Øks03]), the process

B̂t
def=
∫ t

0
ĥ(s) ds+Bt

is a Brownian motion with respect to the measure P̂ up to time T . Since
dZ̃ = Av(Z̃) dt+ σ dB̂t ,

by weak uniqueness we have
Ez0f(Zt) = Êz0f(Z̃t) = Êz0f(γ̃t + σεBt) = Ez0f(γ̃t + σεBt)Mt ,

for any test function f . Thus

P z0
(

sup
t6T
|σ−1(Zt − γ̃t)|∞ 6

λ√
A

)
= Ez0

P

(
1KMT

)
.

where
K

def=
{

sup
t6T
|Bt|∞ 6

λ√
A

}
.

Now let α = (2/P (K))1/2, and K̂ be the event

K̂
def=
{(∫ T

0
ĥ(t) dBt

)2
< α2

∫ T

0
ĥ(t)2 dt

}
.

By Chebychev’s inequality and the Itô isometry, we see

P z0(K̂c) 6 1
α2 = P z0(K)

2 .

Thus

Ez0(1KMT ) > Ez0
(

1K∩K̂ exp
(
−α
(∫ T

0
ĥ(t)2 dt

)1/2
− 1

2

∫ T

0
ĥ(t)2 dt

))
>

P z0(K)
2 exp

(
−α
(∫ T

0
ĥ(t)2 dt

)1/2
− 1

2

∫ T

0
ĥ(t)2 dt

)
.(A.5)

To estimate the exponential, note that under the event K we have

|ĥi(t)| =
|hi(t)|
σi

= A

σi

∣∣∣vi(γ̃t + σBt)− vi(γ̃t) + vi(γ̃t)− ui(γ̃t)
∣∣∣

6
λ
√
A

σi

∑
j

σj‖∂jvi‖L∞(Γ+R) + A|ui(γ̃t)− vi(γ̃t)|
σi

,(A.6)
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for every i = 1, 2. Combining (A.6) with (A.5), the proof is finished. �

Lemma A.3. Using the same notation as Lemma A.1, we now additionally assume

max
i∈{1,2}

∑
j=1,2

σj‖∂jvi‖L∞(R+Γ)

σi
6 C0(A.7)

∑
i=1,2

∫ T

0

A2|ui(γt)− vi(γt)|2

σ2
i

dt 6 C2
0 .(A.8)

Then there exists C1 = C1(C0, λ, β) > 0 such that

P z0
(

sup
06t6T

|σ−1(Zt − γt)|∞ 6
λ√
A

)
> C1

Proof. Following the proof of Lemma A.1, and using (A.7)–(A.8) in (A.6) gives∫ T

0
|ĥ(t)|2 dt 6 2C2

0 (1 + λβd) .

Combined with (A.5) the lemma follows. �

Next, we show the following estimate for the side boundary layer.

Lemma A.4. Let z0 ∈ B̃n
def= Bn−[−1+c0,−c0]×[−1, 0] and n ∈ N; Zt be a stochas-

tic process satisfying (A.1)–(A.3) and γ̃z0t be a deterministic process satisfying (4.7)
and starting at z0,i.e.,

∂tγt = Av(γt) and γ0 = z0 .

For M > 1, let also R̃ε ⊆ [−M/
√
A,M/

√
A] be a Borel set, {dε | 0 < dε 6 1} be a

sequence, and T = m/A for some m ∈ N. Then, there exists a constant C = Cm,M
and ε0 > 0 such that for all ε < ε0,

P z0
(

sup
06t6T

|Z1
t − γ1

t | 6
2M√
A
, sup
06t6T

|Z2
t − γ2

t | 6
ε√
A
,Z1

T − γ1
T ∈ R̃

)
> Cm,nP

(
|Bt| 6

2M√
A
,B1

T ∈ R̃
)

(A.9)

Proof. We follow the proof of Lemma A.1, and explicitly substitute σ1 = 1 and
σ2 = ε. Our conclusion (A.9) will follow provided we can show

(A.10)
∫ T

0
ĥ(t)2 dt 6 C ,

for some finite constant C, independent of ε. To bound this, we use the upper
bound (A.6), and observe that the second term on the right hand side is identically
0. For the first term, the only term that may grow faster than

√
A is when i = 2

and j = 1. In this case, assumption 5 guarantees that this term is identically 0.
Now squaring and integrating from 0 to T = m/A proves (A.10) as desired. �

Remark A.5. If the velocity field v does not satisfy Assumption 5, then Lemma A.4
still holds provided A is chosen so that A > 1/ε2. To see this we note that (A.6)
implies

∫ T
0 ĥ(t)2 dt 6 Cm/(Aε2). If A > 1/ε2 the right hand side of this is bounded

independent of ε, and so the remainder of the proof of Lemma A.4 remains un-
changed.
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Proof of Lemma 4.4. We only consider the case where z0 ∈ Q0/2. The other cases
are similar. First, recall that, by a direct calculation, we can check T 6 |ln δ|/A.
Therefore, for small enough ε, under the event {|Zit − γit | 6 σi(|ln δ|A)−1/2 , ∀t 6
T , i = 1, 2}, we must have Zt ∈ Q0 for t 6 T . Thus,
(A.11) v1(Zt) = Z1

t and v2(Zt) = −Z2
t .

Now define

dZ̃t = A

(
v1(γt)
v2(γt)

)
dt+ σ dBt

and write

(A.12) h(t) def= A

(
v1(γt)− v1(Z̃t)
v2(γt)− v2(Z̃t)

)
= A

(
γ1
t − Z̃1

t

−γ2
t + Z̃2

t

)
= A

(
−B1

t

εB2
t

)
.

As before, we define ĥ and a new measure P̂ by

ĥ(t) def= σ−1h(t) =
(

1 0
0 1/ε

)
h(t) = A

(
−B1

t

B2
t

)
,

dP̂ = MT dP ,

where
Mt

def= exp
(
−
∫ t

0
ĥ(s) dBs −

1
2

∫ t

0
ĥ(s)2 ds

)
,

for 0 6 t 6 T . By the Girsanov theorem, the process

B̂t
def=
∫ t

0
ĥ(s) ds+Bt

is a Brownian motion with respect to the measure P̂ . Therefore, by uniqueness of
weak solutions of SDEs, we have

E(f(Zt)) = Ê(f(Z̃t)) = Ê(f(γ1
t +B1

t , γ
2
t + εB2

t ))
= E(f(γ1

t +B1
t , γ

2
t + εB2

t )Mt) .
Hence

P x
(
|Zit − γit | 6

σi√
|ln δ|A

, ∀t 6 T , i = 1, 2
)

= Ex
(

1{
|Bt|∞6(|ln δ|A)−1/2 , ∀t6T

}MT

)
.

Now, we have that, by Itô formula,∫ t

0
ĥ(s) dBs = −A

∫ t

0
B1
s dB

1
s +A

∫ t

0
B2
s dB

2
s

= A

2 (−(B1
t )2 + (B2

t )2) .

Therefore,

Mt > exp
(
−A2 ((B1

t )2 + (B2
t )2)−A2

∫ t

0
((B1

s )2 + (B2
s )2) ds

)
.

Therefore, as T 6 |ln δ|/A, under the event

K
def=
{
|Bt|∞ 6

1√
|ln δ|A

, ∀t 6 T
}
,
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we must have
MT > exp

(
− 1

2|ln δ| − 2
)
> C .

Since P (K) ≈ 1/|ln δ|2, this finishes the proof. �
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