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Abstract

The Cahn-Hilliard reaction model, a nonlinear, evolutionary system of PDEs, was in-
troduced to model phase separation in lithium-ion batteries. Using Butler-Volmer kinetics
for electrochemical consistency, this model incorporates a nonlinear Neumann boundary
condition ∂νµ = R(c, µ) for the chemical potential µ, with c, the lithium-ion density. Im-
portantly, R depends exponentially on µ. In arbitrary dimension, existence of a weak
solution for the Cahn-Hilliard reaction model with elasticity is proven using a generalized
gradient structure. This approach is, at present, restricted to polynomial growth in R.
Working to remove this limitation, fixed point methods are applied to obtain existence
of strong solutions of the Cahn-Hilliard reaction model without elasticity in dimensions 2
and 3. This method is then extended to prove existence of higher regularity solutions in
dimension 2, allowing for recovery of exponential boundary conditions as in the physical
application to lithium-ion batteries.
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1 Introduction

Modern technology relies heavily on lithium-ion batteries, from mobile phones to hybrid cars.
More broadly, for the use of inconsistent renewable energies such as solar, it is imperative to
develop effective means of energy storage, and lithium-ion batteries are premiere candidates for
such storage [1]. The centrality of the need for a better understanding of batteries was under-
scored by the 2019 Nobel Prize in Chemistry, which was awarded to Goodenough, Whittingham,
and Yoshino for their pioneering works in the development of lithium-ion batteries [1].

A prominent phenomenological behavior of lithium-ion batteries is phase separation, wherein
lithium-ions intercalate into the host structure of the cathode inhomogeneously. In contrast to
classical fluid-fluid transitions, such as oil and water, the separation of lithium-ions takes place
within a solid host. Consequently, phase transitions induce a strain, damaging the cathode’s
host material, and this leads to a decrease in battery performance and limited life-cycle (see [9],
[23], and references therein).

Understanding the onset of phase transitions is, therefore, imperative to improving battery
performance, and much work has been done in this direction. Contemporary paradigms for
modeling lithium-ion batteries are moving towards the incorporation of phase field models, also
known as diffuse interface models (see, e.g., [6], [8], [21], [52], [58]). These phase field models
are governed by global energy functionals, which have regular inputs (e.g., Sobolev functions).
As noted in [9], the phase field field model is robust, allowing for electrochemically consistent
models for the time evolution of lithium-ion batteries. Competing models include the shrinking
core model and the sharp interface model. As noted in Burch et al. [15], the shrinking core
model fails to capture fundamental qualitative behavior. Furthermore, in [40] it is proposed
that the phase field model may provide a more accurate numerical analysis of the problem than
the sharp interface model, which seeks to model the evolution of the phase boundary as a free
boundary problem (see [16]; see also [3], and references therein, for benefits of the phase field
model).

In this paper we study a variational model introduced by Singh et al. in [58], and incorpo-
rating elasticity as proposed by Cogswell and Bazant in [21] (see also [9], [14], [60]), to study
the evolution of a crystal of the battery’s cathode material, such as LiFePO4. For a fixed do-
main Ω ⊂ RN , the free energy functional associated with the phase field model is given by the
Cahn-Hilliard energy coupled with linearized elasticity, as introduced by Cahn and Larché [43],

Iel[u, c] :=

∫
Ω

(
f(c) +

ρ

2
‖∇c‖2 +

1

2
C(e(u)− ce0) : (e(u)− ce0)

)
dx. (1.1)

Here c : Ω → [0, 1] stands for the normalized density of lithium-ions, u : Ω → RN represents

the material displacement with symmetrized gradient e(u) := ∇u+∇uT
2

, e0 ∈ RN×N is the lattice
misfit, ρ > 0 is a constant associated with interfacial energy scaling with interface width (see
[7], [11], [41], [51], and references therein), and C is a symmetric, positive definite, fourth order
tensor that captures the material constants (stiffness) and satisfies

C : RN×N → RN×N
sym , C(ξ) : ξ > 0 for all ξ ∈ RN×N

sym with ξ 6= 0. (1.2)

In the cases studied by Bazant et al. (see, e.g., [21], [58]), f is the physically relevant regular
solution free energy with

f(s) := ωs(1− s) +KTabs(s log(s) + (1− s) log(1− s)), s ∈ [0, 1], (1.3)

where ω ∈ R is a regular solution parameter (enthalpy of mixing), K > 0 is the Boltzman
constant, Tabs > 0 is the absolute temperature. As is standard, the chemical potential µ is given
by the first variation with respect to c of the energy potential,

µ := δcIel = −ρ∆c+ f ′(c) + C(ce0 − e(u)) : e0. (1.4)
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Assuming a quasi-static equilibrium, Singh et al., in [58], and Cogswell and Bazant, in [21], use
Butler-Volmer kinetics to derive the electrochemically consistent model for the evolution of a
crystal of the cathode material given by

∂tc = div(M(c)∇µ) in Ω,

div(C(e(u)− ce0)) = 0 in Ω,

∂νc = 0 on Γ,

(M(c)∇µ) · ν = R(c, µ) on Γ,

C(e(u)− ce0)ν = 0 on Γ,

(1.5)

where Γ := ∂Ω, M is the mobility tensor (degenerate at 0), and

R(s, w) := Rins−Rext = kins exp(β(µe−w))−kexts exp(β(w−µe)), s ∈ (0, 1), w ∈ R, (1.6)

with constant µe and positive constants kext, kins, β. The first equality of (1.6) emphasizes
that R is a reaction rate determined by the insertion rate Rins minus the extraction rate Rext of
lithium-ions. The system of PDEs (1.5) is referred to as the Cahn-Hilliard reaction model or the
CHR model. Furthermore, looking to the classical free energy proposed by Cahn and Hilliard
[17],

I[c] :=

∫
Ω

(
f(c) +

ρ

2
‖∇c‖2

)
dx, (1.7)

where ρ and f are as in (1.1), we may define µ as the first variation of (1.7) to consider (1.5)
without elasticity as was first done by Singh et al. [58]. The primary purpose of this paper is
to examine existence of solutions of the system of PDEs (1.5) with and without elasticity. The
methods developed in this paper are inspired by the vast literature on the subject.

In 1958, Cahn and Hilliard proposed the free energy (1.7) to model isotropic systems of
varying density [17]. Considering the mass balance equation of the free energy (1.7) in context
of a constitutive equation similar to Fick’s law, one obtains the equation

∂tc = −div(h), h = −M∇µ, (1.8)

where M is a mobility function and µ is as before the first variation of (1.7) [49]. In many
applications, M is dependent on c and degenerate at the wells of f . Thermodynamic consistency
and conservation of mass require equation (1.8) be equipped with Neumann boundary conditions
∂νc = 0 and (M(c)∇µ) · ν = 0, respectively. Altogether, we have the Cahn-Hilliard equation

∂tc = div(M(c)∇µ) in Ω,

∂νc = 0 on Γ,

(M(c)∇µ) · ν = 0 on Γ.

(1.9)

Many works on the Cahn-Hilliard equation (1.9) make simplifying assumptions dependent on the
motivation. In 1986, Elliott and Somgmu [28] used Galerkin methods and a priori estimates to
prove global existence of strong solutions of (1.9) in dimensions up to 3, with a classical solution
in 1-dimension. This analysis assumes constant scalar mobility and places restrictions on the
type of well function f used, but includes the prototypical double-well function f(c) := (c2−1)2.
Addressing problems of integrability, Elliott and Luckhaus [27] proved existence of solutions to
(1.9) with the thermodynamically relevant regular solution free energy (1.3). For the analysis of
solutions to the Cahn-Hilliard equation in the case of degenerate mobility, we direct the reader
to [22] and [26].

In the results of a workshop in 1990 not published till much later, Fife [31] showed that the
Cahn-Hilliard equation (1.9) is, in fact, the gradient flow of the energy functional I in the dual
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topology of H1(Ω)∩ {ξ :
∫

Ω
ξ dx = 0}, thereby providing a fundamental variational perspective.

Making use of such gradient flow structures, Garcke proved existence of a unique, weak solution
to the Cahn-Hilliard equation with elasticity [35]. However, this result was limited in that the
potential f could not be logarithmic. This restriction was lifted in [36], where Garcke treated
weak existence and uniqueness with the inclusion of elasticity and f given by (1.3).

A topic of recent interest has been that of the Cahn-Hilliard equation equipped with dynamic
boundary conditions, for example

∂νc = −∂tc+ κ∆Γc− g′(c) on Γ× (0, T )

where ∆Γ is the Laplace-Beltrami operator and g is a surface potential (see [37] and references
therein). We also note that there is a variety of work on sharp interface models for both the
static and evolutionary problems associated with Cahn-Hilliard type energies (see, e.g., [2], [5],
[19], [50], [59]).

Recently, in [42], Kraus and Roggensack proved existence for a variant of the CHR model
(1.5). They assumed constant scalar mobility M , and allow for anisotropy in the interfacial
energy via a positive definite diagonal tensor K, i.e., in (1.1) ρ

2
‖∇c‖2 is replaced by K(∇c) ·

∇c. They proposed a generalized gradient structure (see [47]) which allows for the inclusion of
higher order nonlinear boundary conditions in a gradient flow type framework, and proved weak
existence of a solution for finite time intervals. Their variant of the CHR model also includes
damage effects, but is limited by the inclusion of a viscosity term in the chemical potential,
which helps to simplify the mathematical analysis. Explicitly, they define µ in (1.11) by

µ := −ρ∆c+ f ′(c) + C(ce0 − e(u)) : e0 + ε∂tc, (1.10)

for some ε > 0. Though not used by Bazant et al. (see, e.g., [9], [58]), Kraus and Roggensack
note that the viscosity term ε∂tc can be viewed as a microforce. Lastly, as proposed by Bazant
et al. (see, e.g., [21], [58]) the reaction rate R in (1.6) is exponential in µ. The work of Kraus
and Roggensack is limited to a truncation of the function R which has polynomial growth, and
f is also restricted to having polynomial growth.

This paper is directed by a motivation to understand the CHR model in dimension N = 3.
We begin by extending the work of Kraus and Roggensack and remove the assumption of a
viscosity term ε∂tc in µ; these results hold in arbitrary dimension. Departing from the variational
perspective, we apply fixed point methods to recover strong solutions of the CHR model in
dimensions N = 2 and 3 for f and R of polynomial growth. Our arguments culminate by
showing, in dimension N = 2, one can recover strong solutions of the CHR model for short time
with f and R defined by (1.3) and (1.6), respectively. The respective question for existence with
N = 3 is a work in progress.

In order to state our results, we write down the complete CHR models for which we prove
existence. For T > 0, define ΩT := Ω × (0, T ) and ΣT := Γ × (0, T ), where as before Γ := ∂Ω.
Assuming constant scalar mobility and, without loss of generality, that ρ = 1, the CHR model
with elasticity is given by

CHR model
with elasticity



∂tc = ∆µ in ΩT ,

µ = −∆c+ f ′(c) + C(ce0 − e(u)) : e0 in ΩT ,

div(C(e(u)− ce0)) = 0 in ΩT ,

∂νc = 0 on ΣT ,

∂νµ = R(c, µ) on ΣT ,

C(e(u)− ce0)ν = 0 on ΣT ,

c(0) = c0 in Ω.

(1.11)
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Likewise, the CHR model without elasticity is given by

CHR model



∂tc = ∆µ in ΩT ,

µ = −∆c+ f ′(c) in ΩT ,

∂νc = 0 on ΣT ,

∂νµ = R(c, µ) on ΣT ,

c(0) = c0 in Ω.

(1.12)

We obtain existence of weak, strong, and regular solutions using the following notion of weak
solution (for notation we refer the reader to the preliminaries in Section 2).

Definition 1.1. We say that (c, u) is a weak solution of the CHR model with elasticity (1.11)
in ΩT , if for some δ > 0

c ∈ L(2#−δ)′(0, T ;H3(Ω)) ∩ C([0, T );L2(Ω)),

∂tc ∈ L(2#−δ)′(0, T ;H1(Ω)∗),

u ∈ L(2#−δ)′(0, T ; Ḣ2(Ω;RN)),

c(0) = c0 ∈ H1(Ω),

and for t-a.e. in (0, T ) the following equations are satisfied for all ξ ∈ H1(Ω) and ψ ∈ H1(Ω;RN):

−〈∂tc(t), ξ〉H1(Ω)∗,H1(Ω) =

∫
Ω

∇µ(t) · ∇ξ dx−
∫

Γ

R(c(t), µ(t))ξ dHN−1,∫
Ω

C(e(u(t))− c(t)e0) : e(ψ) dx = 0,

(1.13)

where for t-a.e., µ(t) ∈ H1(Ω) ⊂ L2(Ω) is defined by duality as

(µ(t), ξ)L2(Ω) :=

∫
Ω

(∇c(t) · ∇ξ + f ′(c(t))ξ + C(c(t)e0 − e(u(t))) : e0ξ) dx, (1.14)

which holds for all ξ ∈ H1(Ω).

Remark 1.2. In the above definition of a weak solution, µ is defined by its action on ξ ∈ H1(Ω)
versus directly setting µ := −∆c + f ′(c) + C(ce0 − e(u)) : e0. This is to guarantee that the
boundary condition ∂νc = 0 is satisfied.

Remark 1.3. One could alternatively define the weak solution as the triple (c, u, µ), where
µ ∈ L(2#−δ)′(0, T ;H1(Ω)), such that (1.14) is satisfied, i.e., (1.14) is no longer a definition
but instead a relation between c, u, and µ. In Kraus and Roggensack [42], the introduction of
viscosity renders this approach necessary.

We now state the existence of weak and strong solution under hypotheses that may be found
in Subsection 2.2

Theorem 1.4. Let Ω ⊂ RN be a bounded, open domain with C3 boundary and T > 0. Suppose
that f and R satisfy assumptions (2.1), (2.3), (2.4), and (2.5). Then for any c0 ∈ H1(Ω), a
weak solution of the CHR model with elasticity (1.11) exists in ΩT .

The following results are stated for domains with C∞ or smooth boundary. This assumption
simplifies liftings of boundary conditions, and we speculate that the next two results hold for
domains with C4 boundaries.
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Theorem 1.5. Let Ω ⊂ RN , where N = 2 or 3, be a bounded, open domain with smooth
boundary and T > 0. Suppose f and R satisfy assumptions (2.8), (2.9), (2.10), and (2.11).
Then for any c0 ∈ H2(Ω) such that ∂νc0 = 0 on Γ, there is a strong solution, given by c ∈
L2(0, T ;H4(Ω)) ∩H1(0, T ;L2(Ω)), of the CHR model (1.12) (or (4.1)) in ΩT .

Given the Sobolev embedding theorem in dimensions N = 2 or 3, we directly have the
following corollary. This allows us to remove a plethora of restrictive hypotheses on f for short
time strong existence.

Corollary 1.6. Let Ω ⊂ RN , where N = 2 or 3, be a bounded, open domain with smooth
boundary. Suppose f ∈ C3(R) and R satisfies assumptions (2.10) and (2.11). For any c0 ∈
H2(Ω) such that ∂νc0 = 0 on Γ, there exists T > 0 such that a strong solution of the CHR model
(1.12) (or (4.1)) exists in ΩT .

Remark 1.7. We note that for existence of strong solutions, it is a necessity that the initial
data c0 satisfy ∂νc0 = 0 on Γ. This is because a strong solution c ∈ H4,1(ΩT ) (see Subsection
2.5) belongs to the space of bounded uniformly continuous functions on the interval [0, T ] with
values in H2(Ω) (see [45]). By definition of a solution of the CHR model (1.11), ∂νc = 0 on ΣT ,
and by continuity, we have 0 = ∂νc(·, 0) = ∂νc0 on Γ.

Lastly, we address the regularity of solutions. In the case of a constant scalar mobility tensor,
we prove that there is a solution to the CHR model (1.5) as proposed by Singh, et. al. [58] with
R as in (1.6). This result makes sharp use of the growth provided by the Gagliardo-Nirenberg
inequality (see Theorem 2.5), and therefore critically relies on smallness estimates developed in
the analysis of strong solutions (see Theorem 4.1). Furthermore, reasoning similar to Remark
1.7 requires that the initial data c0 satisfies an additional compatibility condition.

Theorem 1.8. Suppose Ω ⊂ R2 is an open bounded set with smooth boundary. Let f and
R be defined as in (1.3) and (1.6), respectively. There exists λ = λ(Ω, f, R) > 0 such that if
c0 ∈ H4(Ω) such that ∂νc0 = 0, ∂ν(∆c0) = −R(c0,−∆c0 +f ′(c)), ε ≤ c0(Ω) ≤ 1−ε in Ω for some
ε > 0, and ‖∇2c0‖L2(Ω) ≤ λ, then there are T > 0 and c ∈ L2(0, T ;H6(Ω))∩H1+1/2(0, T ;L2(Ω))
for which c is strong solution of the CHR model (1.12) in ΩT .

This paper is organized as follows: In the preliminary Section 2, we recall some elliptic
estimates to be used throughout the paper. We introduce fractional Sobolev spaces and a class
of anisotropic Sobolev spaces, which will be employed in Sections 4 and 5. In Section 3, we
prove weak existence of a solution to the CHR model with (1.11) and without elasticity (1.12),
using the generalized gradient structure proposed by Kraus and Roggensack [42]. Our analysis
shows how to remove the assumption of a viscosity term introduced in (1.10). This result holds
in arbitrary dimensions (see Theorem 1.4). In Section 4, restricted to N = 2 and 3, we argue via
fixed point and interpolation methods to prove existence of a strong solution to the CHR model
(1.12) (see Theorem 1.5 and Corollary 1.6). Finally, in Section 5, and making a priori estimates
derived in the previous section, we show that in dimension N = 2, for sufficiently small intervals
of time and initial data close to a small energy state, we have a strong solution of the CHR
model (1.12) for R with exponential growth in µ (see Theorem 1.8).

We note that Section 3 and Sections 4 and 5 may be read independently. We also note that
the appendix, in Section 6, analyzes the regularity of a fourth order PDE via a gradient flow in
the dual of H1. Hence, for those unfamiliar with gradient flows or differential inclusions, it may
be of use to read Theorem 6.2 before Section 3.

2 Preliminaries

In the first subsection, we list notation used throughout the paper. In Subsection 2.2, we state
assumptions used in Theorems 1.4 and 1.5. In Subsection 2.3, we highlight some elliptic and
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embedding estimates we will use in the following sections. We further introduce function spaces
in Subsections 2.4 and 2.5, which will be critical in Sections 4 and 5; these results will not be
needed in Section 3. Here, we remind the reader of fractional Sobolev spaces in the 1-dimensional
setting. We derive an extension result for such spaces in Corollary 2.8. We then recall a class
of anisotropic Sobolev spaces used ubiquitously by Lions and Magenes [46]. Integrating our
knowledge of the two spaces, we propose a new semi-norm for the anisotropic Sobolev spaces to
be used in the later sections.

2.1 Notation

We enumerate the variety of notation used throughout the paper.

1. Given a Banach space B, we let B∗ denotes the dual space of B. We denote duality between
these spaces by 〈·, ·〉B∗,B.

2. Given Banach spaces (B0, ‖ · ‖0) and (B1, ‖ · ‖1), we denote the continuous embedding of
B0 into B1 by B0 ↪→ B1, and the compact embedding of B0 into B1 by B0 ↪→↪→ B1

3. In a Hilbert space H, we denote the inner product by (·, ·)H .

4. HN is the Hausdorff measure of dimension N. See Evans and Gariepy [30] for more infor-
mation.

5. Given a domain Ω ⊂ RN specified by context, we define Γ := ∂Ω. We let ν denote the
outward normal of Γ.

6. For Ω ⊂ RN specified by context and T > 0, we define ΩT := Ω× (0, T ). Furthermore, we
set ΣT := Γ× (0, T ).

7. We interchangably use ∇c as a row vector and a column vector, to be understood from
context (though most often a row vector).

8. Pos(N) denotes the set of positive definite matrices acting on RN .

9. Given a Banach space B and a < b ∈ R, with J := (a, b), let Lp(a, b;B) = Lp(J ;B) denote
the space of Bocher p−integrable functions on J with values in B. For a good resource on
such spaces, we refer the reader to [44].

10. Given a Banach space B and T > 0, let BUC(0, T ;B) denote the space of bounded
uniformly continuous functions with values in B on the closed interval [0, T ].

11. The space of k−differentiable continuous functions on Ω ⊂ RN with values in a Banach
space B will be denoted by Ck(Ω;B). If B = R, we abbreviate it as Ck(Ω). If we additionally
restrict ourselves to functions such that derivatives up to (and including) the kth order are
bounded and the kth order derivatives are Hölder continuous with parameter α, the space
is denoted by Ck,α(Ω;B), and we set

‖g‖Ck,α :=
∑
i≤k

‖∇ig‖∞ + |∇kg|C0,α .

12. We say that a set Ω ⊂ RN has Ck boundary if, for every x ∈ Γ there is some r > 0, such
that up to rotation, B(x, r) ∩ Ω coincides with the epigraph of a Ck(RN−1) function. In
the case that k =∞, we say that Ω has smooth boundary.

13. We let Tr : Hk(Ω)→ Hk−1/2(Γ) denote the trace operator. See [44] for more information.
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14. As is standard, we let p∗ := Np
N−p be the critical exponent for the Sobolev embedding in

dimension N > p. We further let p# be the critical value of q for which the trace operator,
Tr, continuously maps W 1,p(Ω) into Lq(Γ). Note for q < p#, the embedding is compact.
We specifically note

2# :=


2N−2
N−2

if N ≥ 3,

any q > 2 if N = 2,

∞ if N = 1.

We refer the reader to [44].

15. We use C to denote a generic constant, which can change from line to line. If dependence
of C on parameter a is emphasized, we will denote this by either Ca or C(a).

16. Ḣk(Ω;RN) is the Sobolev space quotiented by skew affine functions.

2.2 Assumptions

We will make use of a collection of assumptions to prove weak existence.

• We assume that the chemical energy density is governed by a function f ∈ C2(R) such
that, for some C > 0,

f ≥ −C and |f ′′(s)| ≤ C(|s|2∗/2−1 + 1) (2.1)

for all s ∈ R, where 2∗ is the dimension dependent Sobolev exponent, 2∗ = 2N
N−2

if N ≥ 3
and is any fixed constant greater than 2 if N ≤ 2.

• For the reaction rate R, we assume that there is G ∈ C1(R2) such that

∂wG(s, w) = R(s, w) (2.2)

for all s ∈ R and w ∈ R. We suppose that the reaction rate is strictly decreasing in the
second variable, i.e., there is C > 0 such that

(R(s, w2)−R(s, w1)) (w2 − w1) ≤ −C|w2 − w1|2 (2.3)

for all s ∈ R and w1, w2 ∈ R. Further, for some C, δ > 0, the growth condition

|R(s, w)| ≤ C(|s|2#−δ−1 + |w|2#−δ−1 + 1) (2.4)

holds for all s ∈ R and w ∈ R, where 2# := 2(N−1)
N−2

if N ≥ 3 and 2# is any fixed constant
greater than 2 if N ≤ 2. We assume there is a constant C > 0 such that the pointwise
bound

|R(s,±1)| ≤ C (2.5)

is satisfied for any choice of s ∈ R.
Testing (2.3) with w2 = 1 or −1 and w1 = 0, and using (2.5) ,we find that |R(s, 0)| ≤ C
for some constant C > 0. From this bound and (2.3) it follows there is C > 0 such that,
for all s ∈ R and w ∈ R,

− wR(s, w) ≥ 1

C
|w|2 − C. (2.6)

To derive growth conditions of the function G, we may, without loss of generality, suppose
that ∂sG(s, 0) = R(s, 0). Consequently, the fundamental theorem of calculus, (2.4), and
Young’s inequality imply

|G(s, w)| ≤ C(|s|2#−δ + |w|2#−δ + 1) (2.7)

for all s ∈ R and w ∈ R.
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Remark 2.1. If we assume that R ∈ C1(R2), then (2.2) is immediately satisfied with

G(s, w) :=

∫ w

0

R(s, ρ) dρ.

We note these assumptions are in accordance with those of Kraus and Roggensack (see [42]).
To prove strong existence, we will make use of more powerful assumptions:

• We assume that the chemical energy density is governed by a function f ∈ C3(R), such
that for some C > 0,

‖f ′′‖∞ + ‖f ′′′‖∞ ≤ C. (2.8)

We also make use of the coercivity assumption

f(s) ≥ δ|s| − 1/δ, (2.9)

which holds for all s ∈ R and some δ > 0.

• For the reaction rate, we assume that R is Lipschitz, i.e., there is C > 0 such that

‖∇R‖∞ ≤ C. (2.10)

Furthermore, we introduce the growth condition

− wR(s, w) ≥ −C (2.11)

for all s ∈ R and w ∈ R.

Remark 2.2. In comparison with those used to obtain weak existence, it is clear that (2.8)
imposes much greater restrictions on the growth of f ′. This condition arises because we will need
to obtain sufficient regularity of the boundary term R(c, µ) = R(c,−∆c + f ′(c)). Furthermore,
the regularity assumptions on R are more stringent, but we are relatively lenient on the structure
of R (i.e., we do not need monotonicity). Note that (2.11) is a relaxation of the condition (2.6).

Remark 2.3. In view of (2.10),

|R(s, w)| ≤ |R(0, 0)|+ C(|s|+ |w|).

In particular, by (2.8),

|R(s,−w + f ′(s))| ≤|R(0, 0)|+ C(|s|+ |w|+ |f ′(s)|)
≤|R(0, 0)|+ C(|s|+ |w|+ |f ′(0)|).

Furthermore, by the chain rule, (2.8), and (2.10), the map (s, w) 7→ R(s,−w+f ′(s)) is Lipschitz.

2.3 Estimates

The following result on elliptic regularity may be found in [39] (see also [45], [48]).

Theorem 2.4. Let Ω ⊂ RN be an open, bounded set with Ck+2 boundary for k ∈ N0. Let
g ∈ Hk(Ω) with

∫
Ω
g dx = 0. Let v ∈ H1(Ω) be a weak solution of{

−∆v = g in Ω,

∂νv = 0 on Γ,
(2.12)

with
∫

Ω
v dx = 0. Then there is a constant C > 0, depending only on Ω and N , such that

‖v‖Hk+2(Ω) ≤ C‖g‖Hk(Ω). (2.13)
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We will also make use of the Gagliardo-Nirenberg inequality [53] (sometimes referred to as just
the Nirenberg inequality), which improves upon more the standard Sobolev-Gagliardo-Nirenberg
embedding theorem (see, e.g., [44]).

Theorem 2.5 (Gagliardo-Nirenberg inequality). Suppose that Ω ⊂ RN is an open, bounded set
with Lipschitz boundary. Then the following inequality is satisfied for measurable functions v :

‖∇jv‖Lp(Ω) ≤C1‖∇mv‖aLr(Ω)‖v‖1−a
Lq(Ω) + C2‖v‖Lq(Ω),

with a ≥ 0 satisfying

j

m
≤ a ≤ 1,

1

p
=
j

n
+ a

(
1

r
− m

n

)
+ (1− a)

1

q
.

Emulating an argument used in Fonseca et al. [32], we use the previous two results to
obtain an interpolation result in the dual of H1(Ω). An inequality of this type also follows from
interpolation theory, but rather than invoking it, we prove this inequality directly in an effort
to stay self-contained where possible.

Corollary 2.6. Let Ω ⊂ RN be an open, bounded set with C3 boundary. Then g ∈ H1(Ω)
satisfies the bound

‖g‖L2(Ω) ≤ C
(
‖g‖1/2

H1(Ω)‖g‖
1/2

H1(Ω)∗ + ‖g‖H1(Ω)∗

)
. (2.14)

Proof. First, suppose
∫

Ω
g dx = 0. Let v ∈ H1(Ω) be the weak solution of (2.12). Consequently

for all ξ ∈ H1(Ω) we have ∫
Ω

∇v · ∇ξ dx =

∫
Ω

gξ dx.

Taking ξ = v gives

‖∇v‖2
L2(Ω) =

∫
Ω

gv dx ≤ ‖g‖H1(Ω)∗‖v‖H1(Ω) ≤ C‖g‖H1(Ω)∗‖∇v‖L2(Ω),

where the last inequality follows from the Poincaré inequality since
∫

Ω
v dx = 0. It follows that

‖∇v‖L2(Ω) ≤ C‖g‖H1(Ω)∗ . (2.15)

We apply the Gagliardo-Nirenberg inequality (Theorem 2.5), (2.13), and (2.15) to bound

‖∇2v‖L2(Ω) ≤ C
(
‖∇3v‖1/2

H3(Ω)‖∇v‖
1/2

H1(Ω) + ‖∇v‖H1(Ω)

)
≤ C

(
‖g‖1/2

H1(Ω)‖g‖
1/2

H1(Ω)∗ + ‖g‖H1(Ω)∗

)
.

As −∆v = g by (2.12), the bound (2.14) follows.
If
∫

Ω
g dx 6= 0, we consider inequality (2.14) for g −

∫
Ω
g dx. Noting that∣∣∣∣∫

Ω

g dx

∣∣∣∣ ≤ ‖g‖H1(Ω)∗‖1‖H1(Ω) = C(Ω)‖g‖H1(Ω)∗ ,

the bound (2.14) follows for g by applications of the triangle inequality and subadditivity of the
square-root.
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2.4 Fractional Sobolev Spaces

In this subsection, we develop a sufficient knowledge of fractional Sobolev spaces to introduce a
non-standard norm for anisotropic Sobolev spaces in Subsection 2.5 (see (2.24)). As such, our
consideration is restricted to one-dimensional fractional Sobolev spaces Hs(0, T ) for s ∈ (0, 1).
We note, in this paper, for encounters with higher order fractional derivatives, it will suffice to
use the interpolation methods introduced in Subsection 2.5.

On the interval (a, b) ⊂ R, we define a semi-norm via the difference quotient introduced by
Gagliardo (see, e.g., [25], [34], [44]) for s ∈ (0, 1),

|u|Hs(a,b) :=

(∫ b

a

∫ b

a

|u(x)− u(y)|2

|x− y|1+2s
dy dx

)1/2

. (2.16)

We then define the norm
‖u‖Hs(a,b) := ‖u‖L2(a,b) + |u|Hs(a,b). (2.17)

The space generated by the closure in this norm of H1(a, b) in L2(a, b) is the fractional Sobolev
space of order s denoted by Hs(a, b). We prove a result for one-dimensional fractional Sobolev
spaces.

Proposition 2.7. Suppose u ∈ Hs(0, T ) and ψ ∈ C∞[0, T ]. Then ψu ∈ Hs(0, T ), and for any
ε ∈ (0, T ), it satisfies the bound

‖ψu‖Hs(0,T ) ≤ C((1 + ε−s)‖ψ‖∞ + ε1−s‖∇ψ‖∞)‖u‖L2(0,T ) + ‖ψ‖∞|u|Hs(0,T ).

Proof. As the control of the L2 norm of ψu is straightforward, we estimate the seminorm
|ψu|Hs(0,T ) as follows.∫ T

0

∫ T

0

|ψ(x)u(x)− ψ(t)u(t)|2

|x− t|1+2s
dx dt ≤2

∫ T

0

∫ T

0

|ψ(x)|2 |u(x)− u(t)|2

|x− t|1+2s
dx dt

+ 2

∫∫
{|x−t|≤ε}

|u(t)|2 |ψ(x)− ψ(t)|2

|x− t|1+2s
dx dt

+ 2

∫∫
{|x−t|>ε}

|u(t)|2 |ψ(x)− ψ(t)|2

|x− t|1+2s
dx dt.

To bound the terms of the right-hand side, we immediately have∫ T

0

∫ T

0

|ψ(x)|2 |u(x)− u(t)|2

|x− t|1+2s
dx dt ≤ ‖ψ‖2

∞|u|2Hs(0,T ).

For the second term, we use the mean value theorem and Fubini’s theorem to find∫∫
{|x−t|≤ε}

|u(t)|2 |ψ(x)− ψ(t)|2

|x− t|1+2s
dx dt ≤‖∇ψ‖2

∞

∫ T

0

|u(t)|2
(∫
{x∈(0,T ):|x−t|≤ε}

|x− t|1−2s dx

)
dt

≤‖∇ψ‖2
∞

∫ T

0

|u(t)|2 dt
∫ ε

−ε
|ζ|1−2s dζ

=C‖∇ψ‖2
∞‖u‖2

L2(0,T )ε
2−2s.

The third term is directly estimated as∫∫
{|x−t|>ε}

|u(t)|2 |ψ(x)− ψ(t)|2

|x− t|1+2s
dx dt ≤C‖ψ‖2

∞ε
−2s‖u‖2

L2(0,T ).

Combining the above inequalities, we conclude the lemma.
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As a result of the above lemma and a reflection argument, we obtain the following extension
result.

Corollary 2.8. Let 0 < T ≤ T0. Suppose that u ∈ Hs(0, T ). There exists an extension of u,
ũ ∈ Hs(0, T0), such that the following bound is satisfied:

‖ũ‖Hs(0,T0) ≤ CT0

(
(1 + T−s)‖u‖L2(0,T ) + |u|Hs(0,T )

)
, (2.18)

with constant CT0 independent of T .

We prove an estimate that is helpful for comparing the semi-norm of a fractional Sobolev
space to that of the standard Sobolev space.

Proposition 2.9. Given u ∈ H1(0, T ) and s ∈ (0, 1), we have the following estimate

|u|Hs(0,T ) ≤
1

s
√

2(1− s)
T 1−s‖∂tu‖L2(0,T ).

Proof. By definition of the semi-norm and the fundamental theorem of calculus,

|u|2Hs(0,T ) =

∫ T

0

∫ T

0

|u(x)− u(y)|2

|x− y|1+2s
dy dx

=

∫ T

0

((∫ x

0

+

∫ T

x

) | ∫ y
x
∂tu dσ|2

|x− y|1+2s
dy

)
dx.

(2.19)

Fixing x ∈ (0, T ), we bound the x variable’s integrand using the change of variables ȳ = y − x
and σ̄ = σ − x, and we use Hardy’s inequality (see [44]). To be precise,∫ T

x

|
∫ y
x
∂tu dσ|2

|x− y|1+2s
dy =

∫ T−x

0

|
∫ x+ȳ

x
∂tu dσ|2

|ȳ|1+2s
dȳ

=

∫ T−x

0

|
∫ ȳ

0
∂tu(x+ σ̄) dσ̄|2

|ȳ|1+2s
dȳ

≤ (1/s)2

∫ T−x

0

ȳ1−2s|∂tu(x+ ȳ)|2 dȳ

= (1/s)2

∫ T

x

|x− y|1−2s|∂tu(y)|2 dy.

By the same argument for the other integral, we obtain

|u|2Hs(0,T ) ≤(1/s)2

∫ T

0

∫ T

0

|x− y|1−2s|∂tu(y)|2 dy dx

=(1/s)2

∫ T

0

(∫ T

0

|x− y|1−2s dx

)
|∂tu(y)|2 dy

≤

(
1

s
√

2(1− s)

)2

T 2−2s‖∂tu‖2
L2(0,T ),

concluding the result.

We lastly make note of a simple lemma, which shows how the semi-norm changes for a
rescaled domain.
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Lemma 2.10. Let 0 < T , s ∈ (0, 1), and u ∈ Hs(0, T ). Define uT (x) := u(Tx) for x ∈ (0, 1).
Then it holds that

|u|Hs(0,T ) = T
1−2s

2 |uT |Hs(0,1).

Proof. We compute

|u|2Hs(0,T ) =

∫ T

0

∫ T

0

|u(x)− u(y)|2

|x− y|1+2s
dx dy

=

∫ 1

0

∫ 1

0

|u(Tx)− u(Ty)|2

|Tx− Ty|1+2s
Tdx Tdy = T 1−2s|uT |2Hs(0,1).

2.5 Anisotropic Sobolev spaces

Anisotropic Sobolev spaces naturally arise in the study of PDEs. Let Ω ⊂ RN be a smooth
domain. We recall the notation ΩT := Ω× (0, T ), ΣT = ∂Ω× (0, T ), and for r, s ≥ 0, we define

Hr,s(ΩT ) := L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)), (2.20)

where Hr(Ω) and Hs(0, T ;L2(Ω)) are defined via interpolation of Sobolev spaces of integer order
(see [46]). Note that H0(Ω) = L2(Ω). Likewise, we may define the anisotropic Sobolev space
with domain ΣT . It is standard to endow Hr,s(ΩT ) with the norm arising from interpolation
(denoted by “, I”) given by

‖u‖Hr,s(ΩT ),I :=

(∫ T

0

‖u(·, t)‖2
Hr(Ω),I dt+ ‖u‖2

Hs(0,T ;L2(Ω)),I

)1/2

. (2.21)

As an aside, we recall how interpolation and the interpolation norm are defined.

Remark 2.11. Generically, suppose that X and Y are separable Hilbert spaces, with X densely
embedded into Y. There is a positive, self adjoint, and unbounded operator Λ on Y such that
X = dom(Λ), and the norm on X is equivalent to the graph norm of Λ :

1

C
‖x‖X ≤ (‖x‖2

Y + ‖Λx‖2
Y )1/2 ≤ C‖x‖X .

For the construction of such an operator, we refer the reader to [24], [45], [55]. Using spectral
theory for unbounded operators (see [24] and references therein), we may consider fractional
powers of the operator Λ. Then the interpolation space [X, Y ]θ for θ ∈ [0, 1] is defined by

[X, Y ]θ := dom(Λ1−θ), (2.22)

with norm
‖ · ‖[X,Y ]θ = (‖ · ‖2

Y + ‖Λ1−θ · ‖2
Y )1/2. (2.23)

In the context of Sobolev spaces (see Proposition 2.13), for example, we have

‖ · ‖H1/2(Ω),I := ‖ · ‖[H1(Ω),H0(Ω)]1/2 .

We note that the interpolation space defined by (2.22) is norm equivalent to that defined by
the K-method (see, e.g., [44], [45]); however, the norm (2.23) is more directly related to norms
arising from the Fourier transform.
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We may also define the anisotropic Sobolev space (2.20) on the larger cylindrical domain
Ω× R. For u within such a space, we may consider the Fourier transform of u in the variable t
given by the Bochner integral

û(ξ) :=
1

(2π)1/2

∫
R
e−iξtu(t) dt,

and define the Fourier norm (denoted by “,F”) on the space Hs(R;L2(Ω)) (see also [45]) by

‖u‖Hs(R;L2(Ω)),F :=

(∫
R
(1 + |ξ|2)s‖û(ξ)‖2

L2(Ω) dξ

)1/2

.

We will need precise results about the extension properties of the function spaces in (2.20).
Consequently, norms akin to (2.19) will prove to be more useful. Let ‖ · ‖Hr(Ω) denote any
standard norm choice for Hr(Ω).

Lemma 2.12. Let Ω ⊂ RN be an open, bounded set with smooth boundary and r ≥ 0. For
s ∈ (0, 1), we recall (2.17) to define the norm

‖u‖Hr,s(ΩT ) :=

(∫ T

0

‖u(·, t)‖2
Hr(Ω) dt+

∫
Ω

‖u(x, ·)‖2
Hs(0,T ) dx

)1/2

. (2.24)

The norm (2.24) is equivalent to the norm defined by (2.21). The same is true on domains ΣT .

Proof. By classical results, we have that ‖ · ‖Hr(Ω),I is equivalent to ‖ · ‖Hr(Ω) (see [44] for a proof
in the case Ω = RN ; the following argument proves the result for extension domains Ω). Thus,
it suffices to take r = 0 and prove that the norm ‖ · ‖H0,s(ΩT ) is equivalent to ‖ · ‖H0,s(ΩT ),I

By Corollary 2.8, there is an extension operator T , defined via reflection and truncation
in the variable t (for each fixed point x ∈ Ω), such that T : H0,0(ΩT ) → H0,0(Ω × R) and
T : H0,1(ΩT ) → H0,1(Ω × R) are linear and bounded. By interpolation (see Theorem 5.1 of
Chapter 1 in [45]), it follows that T : H0,s(ΩT ) → H0,s(Ω × R) is linear and bounded in the
topology of the interpolation norm (2.21). By a direct computation in the spirit of Corollary 2.8,
we have that T is also continuous in the topology defined by the norm (2.24). Consequently,
using the equivalence of the Gagliardo norm and Fourier norm on R (see [44]) and Fubini’s
theorem, we have

‖u‖H0,s(ΩT ) ≤C‖T u‖H0,s(Ω×R)

≤C‖T u‖Hs(R;L2(Ω)),F ≤ C‖T u‖Hs(R;L2(Ω)),I ≤ C‖u‖Hs(0,T ;L2(Ω)),I

(2.25)

(see subsection 7.1 of Chapter 1 in [45] for equivalence of Fourier and interpolation norm).
To obtain the reverse inequality to prove equivalence of the norms, we may essentially reverse

the sequence of inequalities in (2.25). In the same way that T was shown to be continuous, we
may show that the restriction operator π : u 7→ u|ΩT mapping from H0,s(Ω× R) to H0,s(ΩT ) is
continuous in the interpolation norm. Consequently,

‖u‖Hs(0,T ;L2(Ω)),I =‖π(T u)‖Hs(0,T ;L2(Ω)),I

≤C‖T u‖Hs(R;L2(Ω)),I ≤ C‖T u‖Hs(R;L2(Ω)),F ≤ C‖T u‖H0,s(Ω×R) ≤ C‖u‖H0,s(ΩT ),

where we have once again used the equivalence of the Gagliardo and Fourier norms.

We will make use of some interpolation theorems, which provide regularity of certain quan-
tities. The following result is Proposition 2.1 of Chapter 4 in [46].
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Proposition 2.13. Let Ω be an open, bounded set with smooth boundary. For r, s ≥ 0 and
θ ∈ (0, 1), we have

[Hr,s(ΩT ), H0,0(ΩT )]θ = H(1−θ)r,(1−θ)s(ΩT ).

The same is true on domains ΣT .

Theorem 2.14. Let Ω be an open, bounded set with smooth boundary. Let u ∈ Hr,s(ΩT ) with
r > 1/2, s ≥ 0. If j is an integer such that 0 ≤ j < r − 1/2, we may define the jth normal
derivative ∂jνu ∈ Hµj ,λj(ΣT ), where

µj
r

=
λj
s

=
r − j − 1/2

r
. (2.26)

Furthermore, the map u 7→ (∂jνu){0≤j<r−1/2} is surjective, continuous, with continuous right
inverse.

Proof. This is primarily a restatement of Theorem 2.1 in Chapter 4 of [46]. Existence of the
continuous right inverse follows from Theorem 3.2 of Chapter 1 in [45].

Proposition 2.15. Let Ω ⊂ RN be a bounded smooth domain. Suppose that u ∈ Hk,k/4(ΩT ),
k ∈ N. Then, ∇2u ∈ Hk−2,(k−2)/4(ΩT ), with the map u 7→ ∇2u continuous in the respective
topologies.

Proof. Let T : Hk(Ω) → Hk(RN) be a linear extension operator (defined via reflection and a
partition of unity as in Theorem 13.4 and Remark 13.5 of [44]), such that there is r > 0 with
supp T (ξ) ⊂ B(0, r) for all ξ ∈ Hk(Ω). We extend u as ũ(x, t) := T (u(·, x))(x). Since T (u(·, t))
is defined by reflecting u(·, t) near ∂Ω and using a partition of unity (see, e.g., Theorem 13.17 in
[44] or Theorem 5.4.1 [29]), the regularity of ũ in time is preserved, and so ũ ∈ Hk,k/4(RN×(0, T ))
with

‖ũ‖Hk,k/4(RN×(0,T )) ≤ C‖u‖Hk,k/4(ΩT ). (2.27)

Write x = (x′, xN) ∈ RN−1 × R. By identifying ξ ∈ Hk,k/4(RN × (0, T )) with the function
xN 7→ ξ((·, xN), ·), as noted in [46], we may decompose the anisotropic Sobolev space as

Hk,k/4(RN × (0, T )) =

Hk
(
R;L2(RN−1 × (0, T ))

)
∩ L2

(
R;Hk,k/4(RN−1 × (0, T ))

)
.

Consequently, we apply an intermediate derivative theorem (Theorem 2.3 of Chapter 1 in [45])
and Proposition 2.13 to conclude that ũ maps continuously to

∇2ũ ∈ Hk−2(R;L2(RN−1 × (0, T ))) ∩ L2(R;Hk−2,(k−2)/4(RN−1 × (0, T ))).

Using continuity of the restriction operator, bound (2.27) concludes the lemma.

3 Weak existence

In this section, we prove existence of weak solutions to the CHR model with and without elastic-
ity. In an effort to illuminate the essential techniques, we first focus on the CHR model without
elasticity. We use a generalized gradient structure first introduced by Kraus and Roggensack to
prove existence of solutions to the viscous CHR model in [42]. The gradient structure provides
a generalization of the H1 dual gradient flow proposed by Fife [31]. Following De Giorgi’s min-
imizing movements method, we define an implicit scheme to construct approximate solutions of
the CHR model. As will be seen, letting R = 0, we can recover the standard implicit scheme
used to prove existence of solutions for the Cahn-Hilliard equation (1.9). From here, we derive
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a variety of energy estimates allowing us to pass the approximate solutions to the limit, thereby
recovering a weak solution of the CHR model. In Subsection 3.5, elasticity is incorporated by
making use of regularity theorems for elliptic systems, thereby proving Theorem 1.4.

We define our notion of weak solution for the CHR model (1.12) without elasticity.

Definition. We say that c is a weak solution of the CHR model (1.12) on ΩT if for some δ > 0

c ∈ L(2#−δ)′(0, T ;H3(Ω)) ∩ C([0, T );L2(Ω)),

∂tc ∈ L(2#−δ)′(0, T ;H1(Ω)∗),

c(0) = c0 ∈ H1(Ω),

and for t-a.e. in (0, T ) the following equation is satisfied for all ξ ∈ H1(Ω):

−〈∂tc(t), ξ〉H1(Ω)∗,H1(Ω) =

∫
Ω

∇µ(t) · ∇ξ dx−
∫

Γ

R(c(t), µ(t))ξ dHN−1, (3.1)

where for t-a.e. µ(t) ∈ H1(Ω) ⊂ L2(Ω) is defined via duality for all ξ ∈ H1(Ω) by∫
Ω

µ(t)ξ dx :=

∫
Ω

(∇c(t) · ∇ξ + f ′(c(t))ξ) dx.

Subsections 3.1 to 3.4 are devoted to the proof of the following theorem.

Theorem 3.1. Let Ω ⊂ RN be a bounded, open domain with C3 boundary and T > 0. Suppose
f and R satisfy assumptions (2.1), (2.3), (2.4), and (2.5). Then a weak solution of the CHR
model (1.12) exists in ΩT .

3.1 Generalized gradient structure

Much of the exposition in this subsection follows the work of Kraus and Roggensack. For more
details we refer the reader to [42]. We do however highlight a new H1 dual bound in Lemma
3.3, which will be essential to apply a compactness argument in the spirit of Aubin-Lions-Simon
[57] in Subsection 3.4.

We introduce functionals to define the gradient structure. Let

A : L2#−δ(Γ)× L2(Ω)→ R ∪ {∞},

A(c, v) :=

{
1
2
‖∇v‖2

L2(Ω) −
∫

Γ
G(c, v) dHN−1 if v ∈ H1(Ω),

∞ otherwise.

(3.2)

This functional is proper, lower semi-continuous, and convex in the second input by assumptions
(2.3), (2.2), and (2.7). Furthermore, define

B : L2#−δ(Γ)×H1(Ω)→ H1(Ω)∗,

〈B(c, v), ξ〉H1(Ω)∗,H1(Ω) :=

∫
Ω

∇v · ∇ξ dx−
∫

Γ

R(c, v)ξ dHN−1.
(3.3)

Under the monotonicity assumption (2.3) on R, we can show for fixed c ∈ L2#−δ(Γ) that
Bc(·) := B(c, ·) is strictly monotone, bounded, and coercive. Consequently, we may define (see
Lemma 1 in [42]) the bounded and continuous operator

B : L2#−δ(Γ)×H1(Ω)∗ → H1(Ω),

B(c, v∗) := B−1
c (v∗).

(3.4)
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Setting Ac(·) := A(c, ·), using (2.2) and (2.4), one can show that

v∗ ∈ ∂Ac(v) ⇐⇒ (v∗, ξ)L2(Ω) = 〈B(c, v), ξ〉H1(Ω)∗,H1(Ω) for all ξ ∈ H1(Ω).

Hence, the gradient structure is given by the inclusion

− ∂tc ∈ ∂Ac(µ),

which encapsulates equations ∂tc = ∆µ and ∂νµ = R(c, µ) of (1.12). As this is a differential
inclusion, there is a natural dual formulation. Let A∗ be the Legendre-Fenchel transform of A
with respect to the second input, that is,

A∗ : L2#−δ(Γ)× L2(Ω)→ R ∪ {∞}
A∗(c, v∗) := (Ac)∗(v∗) = sup

v∈L2(Ω)

{(v∗, v)L2(Ω) −Ac(v)} (3.5)

As Kraus and Roggensack detail,

∂A∗c(v∗) = {B(c, v∗)}, (3.6)

which provides a way to express µ in terms of c and ∂tc via convex duality. Explicitly,

µ = B(c,−∂tc). (3.7)

We note a technical result, which will be helpful in obtaining energetic bounds.

Lemma 3.2 ([42], Lemma 2). Under the hypotheses of Theorem 3.1, for any c ∈ L2#−δ(Γ) and
v∗ ∈ L2(Ω), we have the following bound:

1

N

∣∣∣ ∫
Ω

v∗ dx
∣∣∣ ≤ A∗c(v∗) +Ac(B(c, 0)) + C

for some constant C > 0 depending only on G, R, and Ω.

Finally, we conclude this section with the H1 dual bound.

Lemma 3.3. Let Ω ⊂ RN be a bounded, open set with Lipschitz boundary. Assume hypotheses
(2.1) to (2.5) hold with A∗ defined as in (3.5). Suppose that ‖c‖

L2#−δ(Γ)
≤ α. Then there exists

Cα > 0 such that

A∗c(v∗) ≥
1

Cα
‖v∗‖(2#−δ)′

H1(Ω)∗ − Cα. (3.8)

Proof. Under the growth assumption (2.7) on G and the definition A in (3.2), for ξ ∈ H1(Ω),
we have

Ac(ξ) ≤C(‖ξ‖2
H1(Ω) + ‖ξ‖2#−δ

L2#−δ(Γ)
+ ‖c‖2#−δ

L2#−δ(Γ)
+ 1)

≤Cα(‖ξ‖2#−δ
H1(Ω) + 1)

where in the second inequality we have used the trace inequality ‖ξ‖
L2#−δ(Γ)

≤ C‖ξ‖H1(Ω). As

Ac =∞ on L2(Ω) \H1(Ω), we compute by definition of the conjugate

A∗c(v∗) = sup
ξ∈H1(Ω)

{
(v∗, ξ)L2(Ω) −Ac(ξ)

}
≥ sup

ξ∈H1(Ω)

{
(v∗, ξ)L2(Ω) − Cα‖ξ‖2#−δ

H1(Ω)

}
− Cα.

(3.9)
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Since 2# − δ > 1, there is a unique maximizer ξ0 to the latter supremum, and computing the
Gateaux derivative, it must satisfy the following relation for all ξ ∈ H1(Ω) :

(v∗, ξ)L2(Ω) = (2# − δ)Cα‖ξ0‖2#−δ−2
H1(Ω) (ξ0, ξ)H1(Ω).

Furthermore as the right hand side is maximized over the unit ball at ξ̄ = ξ0/‖ξ0‖H1(Ω), this
implies

1

‖ξ0‖H1(Ω)

(v∗, ξ0)L2(Ω) = ‖v∗‖H1(Ω)∗ = (2# − δ)Cα‖ξ0‖2#−δ−1
H1(Ω) .

Consequently, evaluating the supremum in (3.9) at its maximizer, we find

A∗c(v∗) ≥(v∗, ξ0)L2(Ω) − Cα‖ξ0‖2#−δ
H1(Ω) − Cα

≥(2# − δ − 1)Cα‖ξ0‖2#−δ
H1(Ω) − Cα

≥ (2# − δ − 1)Cα
((2# − δ)Cα)(2#−δ)′ ‖v

∗‖(2#−δ)′
H1(Ω)∗ − Cα.

Up to redefinition of Cα, this completes the lemma.

3.2 Minimizing movements and Euler-Lagrange equations

We fix T > 0. For τ = τn := T/n > 0, with n ∈ N, we define the following iterative scheme. Let
c0
τ = c0. Define

ciτ = argminc∈L2(Ω)

{
I[c] + τA∗

ci−1
τ

(
−c− c

i−1
τ

τ

)}
, (3.10)

where I and A∗ are defined in (1.7) and (3.5), respectively. Motivated by (3.7), we define the
discretized chemical potential by

µiτ := B
(
ci−1
τ ,−c

i
τ − ci−1

τ

τ

)
. (3.11)

To gain an intuition for the minimization scheme, we heuristically consider the case of R = 0
(note however this choice ofR does not satisfy the strict monotonicity assumption (2.3)). A direct
computation (see the proof of Lemma 3.3) verifies that A∗(v∗) = 1

2
‖v∗‖2

H1(Ω)∗ . Consequently, the
above minimization scheme reduces to

ciτ = argminc∈L2(Ω)

{
I[c] +

1

2τ
‖c− ci−1

τ ‖2
H1(Ω)∗

}
.

Furthermore, by definition B(−∂tc) = (∆)−1(−∂tc), the inverse Laplacian associated with homo-
geneous Neumann boundary conditions. Consequently, we obtain the standard implicit scheme
for the Cahn-Hilliard equation (1.9) minus fixing the total mass of c.

Lemma 3.4. Assume Ω ⊂ RN is a bounded, open set with Lipschitz boundary and hypotheses
(2.1) to (2.5) hold. A minimizer, ciτ ∈ H1(Ω), of the iterative scheme (3.10) exists.

Proof. The functional minimized is lower semi-continuous under weak convergence of c in H1(Ω);
thus it remains to prove coercivity. This follows directly from the bound f ≥ −C (see (2.1))
and applying Lemma 3.2:

1

2
‖∇c‖2 +

∣∣∣∣∫
Ω

c dx

∣∣∣∣ ≤I[c] + C + τ

∣∣∣∣∫
Ω

c− ci−1
τ

τ
dx

∣∣∣∣+

∣∣∣∣∫
Ω

ci−1
τ dx

∣∣∣∣
≤I[c] + C + τ

(
A∗
ci−1
τ

(
−c− c

i−1
τ

τ

)
+Aci−1

τ
(B(ci−1

τ , 0))

)
+

∣∣∣∣∫
Ω

ci−1
τ dx

∣∣∣∣
=I[c] + τA∗

ci−1
τ

(
−c− c

i−1
τ

τ

)
+ C(ci−1

τ ).
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Poincaré’s inequality followed by the Direct Method completes the argument.

We now use the constructed sequence {ciτ}i to define interpolated and piecewise continuous
functions as follows. We define cτ and c−τ to be the left and right continuous step functions,
respectively:

cτ (t) :=

{
c0
τ if t = 0,

ci+1
τ if t ∈ (iτ, (i+ 1)τ ], i = 0, . . . , n− 1,

(3.12)

c−τ (t) := ciτ if t ∈ [iτ, (i+ 1)τ), i = 0, . . . , n− 1. (3.13)

Likewise we define µτ to be the left continuous step function. Define ĉτ to be the piecewise linear
interpolation of the sequence:

ĉτ (t) :=
(i+ 1)τ − t

τ
ciτ +

t− iτ
τ

ci+1
τ if t ∈ [iτ, (i+ 1)τ), i = 0, . . . , n− 1. (3.14)

Lemma 3.5. Assume Ω ⊂ RN is a bounded, open set with Lipschitz boundary and hypotheses
(2.1) to (2.5) hold. The functions cτ , c

−
τ , and ĉτ satisfy the “discrete” Euler-Lagrange equations

−(∂tĉτ (t), ξ)L2(Ω) =

∫
Ω

∇µτ (t) · ∇ξ dx−
∫

Γ

R(c−τ (t), µτ (t))ξdHN−1, (3.15)

(µτ (t), ξ)L2(Ω) =

∫
Ω

(∇cτ (t) · ∇ξ + f ′(cτ (t))ξ) dx (3.16)

for all ξ ∈ H1(Ω) and t a.e. in [0, T ), and the energy estimate

I[cτ (t)] +

∫ tτ (t)

0

(
A∗
c−τ

(−∂tĉτ ) +Ac−τ (B(c−τ , 0))
)
ds ≤I[c0], (3.17)

where tτ (t) := min{kτ : t ≤ kτ}.

Proof. Note

I[ciτ ] + τA∗
ci−1
τ

(
−c

i
τ − ci−1

τ

τ

)
+τAci−1

τ
(B(ci−1

τ , 0))

≤I[ci−1
τ ] + τA∗

ci−1
τ

(
−c

i−1
τ − ci−1

τ

τ

)
+ τAci−1

τ
(B(ci−1

τ , 0))

=I[ci−1
τ ] + τ

(
A∗
ci−1
τ

(0) +Aci−1
τ

(B(ci−1
τ , 0))

)
=I[ci−1

τ ] + τ(0,B(ci−1
τ , 0))L2 = I[ci−1

τ ],

where we have used the fact ciτ is a minimizer (see (3.10)) and Fenchel’s (in)equality [56]. Moving
I[ci−1

τ ] to the lefthand side, summing up over the inequalities for i = 1, . . . , n, and using tele-
scoping sums, we conclude the energetic bound (3.17). To obtain the Euler-Lagrange equations
(3.15) and (3.16), we compute the subdifferential of the minimized equation in H1(Ω)∗ via (3.6):

0 ∈∂|ciτ

(
I[c] + τA∗

ci−1
τ

(
−c− c

i−1
τ

τ

))
⇐⇒

0 ∈∂I[ciτ ]− ∂A∗ci−1
τ

(
−c

i
τ − ci−1

τ

τ

)
⇐⇒

0 ∈∂I[ciτ ]−
{
B
(
ci−1
τ ,−c

i
τ − ci−1

τ

τ

)}
⇐⇒

0 ∈∂I[ciτ ]− {µiτ}

Computing ∂I[ciτ ] via differentiation, we obtain (3.16). Equation (3.15) follows by definition of
µτ in (3.11).
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3.3 Energy estimates

We now obtain some energy estimates, which will be useful in passing to the limit in the “dis-
crete” Euler-Lagrange equations.

Lemma 3.6. Assume Ω ⊂ RN is a bounded, open set with C3 boundary and hypotheses (2.1) to
(2.5) hold. The functions cτ , c

−
τ , and ĉτ defined in (3.12), (3.13), and (3.14) satisfy the following

estimates uniformly in τ :

‖cτ‖L∞(0,T ;H1(Ω)) ≤ C, (3.18)

‖∂tĉτ‖L(2#−δ)′ (0,T ;H1(Ω)∗)
≤ C, (3.19)

‖µτ‖L(2#−δ)′ (0,T ;H1(Ω))
≤ C, (3.20)

‖cτ‖L(2#−δ)′ (0,T ;H3(Ω))
≤ C. (3.21)

Proof. To see that (3.18) holds, note that ∇cτ ∈ L∞(0, T ;L2(Ω)) by (3.17), and thus by the
Poincaré inequality, we simply need to bound

∫
Ω
cτ dx to conclude. Making use of Lemma 3.2

and (3.17) once again, we find∣∣∣ ∫
Ω

ciτ dx
∣∣∣ ≤τ i∑

j=1

∣∣∣ ∫
Ω

cjτ − cj−1
τ

τ
dx
∣∣∣+

∫
Ω

|c0| dx

≤Nτ
i∑

j=1

(
A∗
cj−1
τ

(−c
j
τ − cj−1

τ

τ
) +Acj−1

τ
(B(cj−1

τ , 0))
)

+ TC +

∫
Ω

|c0| dx

≤N
∫ T

0

(
A∗
c−τ

(−∂tĉτ ) +Ac−τ (B(c−τ , 0))
)
ds+ C ≤ C(c0)

Furthermore, (3.18) implies that cτ is in L∞(0, T ;L2#−δ(Γ)) by continuity of the trace. The
coercivity of A∗c given by Lemma 3.3 along with the energy estimate (3.17) then conclude (3.19).
Making use of the bound

‖B(c, v∗)‖H1(Ω) ≤ C(‖v∗‖H1(Ω)∗ + 1),

which holds for C > 0 independent of c (see pg. 6 in [42]), in conjunction with (3.19), and the
definition (3.11) of µτ provides (3.20).

Note for a.e. t ∈ (0, T ), cτ (t) satisfies the Neumann problem{
µτ = −∆cτ + f ′(cτ ) in Ω,

∂νcτ = 0 on Γ.
(3.22)

We use the growth condition

|f ′(s)| ≤ C(|s|2∗/2 + 1) for all s ∈ R

obtained by integrating (2.1), the Sobolev-Gagliardo-Nirenberg embedding theorem, (3.18), and
Theorem 2.4 applied to (3.22) to conclude that

‖cτ‖2
H2(Ω) ≤C

(
‖µτ − f ′(cτ )‖2

L2(Ω) + ‖cτ‖2
H1(Ω)

)
≤C

(
‖µτ‖2

L2(Ω) + ‖cτ‖2∗

L2∗ (Ω)

)
+ C

≤C
(
‖µτ‖2

L2(Ω) + ‖cτ‖2∗

H1(Ω)

)
+ C

≤C‖µτ‖2
L2(Ω) + C.
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Consequently, bound (3.20) implies

‖cτ‖L(2#−δ)′ (0,T ;H2(Ω))
≤ C. (3.23)

We show that f ′(cτ ) ∈ L(2#−δ)′(0, T ;H1(Ω)) by the assumptions on f given in (2.1). Assume
N ≥ 3; N = 2 follows similarly. By the chain rule in Sobolev spaces [44] and Hölder’s inequality,
we compute

‖∇(f ′ ◦ cτ )‖2
L2(Ω) =

∫
Ω

|f ′′(cτ )|2‖∇cτ‖2 dx

≤C
∫

Ω

|cτ |2
∗−2‖∇cτ‖2 dx+ C

∫
Ω

‖∇cτ‖2 dx

≤C‖|cτ |2
∗−2‖L(N/(N−2))′ (Ω)‖(‖∇cτ‖

2)‖LN/(N−2)(Ω) + C

≤C‖cτ‖2
H2(Ω) + C, (3.24)

where in the last inequality, we have used the following two bounds:

‖|∇cτ |2‖N/(N−2)

LN/(N−2)(Ω)
=

∫
Ω

‖∇cτ‖2∗ dx ≤ ‖cτ‖2∗

H2(Ω),

by the Sobolev-Gagliardo-Nirenberg embedding; likewise, (N/(N − 2))′ = N/2, leading to

‖|cτ |2
∗−2‖N/2

LN/2(Ω)
=

∫
Ω

|cτ |2
∗
dx ≤ ‖cτ‖2∗

H1(Ω) ≤ C.

As desired, (3.23) and (3.24) then imply

‖f ′(cτ )‖L(2#−δ)′ (0,T ;H1(Ω))
≤ C.

We once again make use of Theorem 2.4 for the problem (3.22) along with the previous bound
and (3.20) to conclude (3.21).

3.4 Passing to the limit

We wish to pass to the limit with respect to τ in the “discrete” Euler-Lagrange equations (3.15)
and (3.16). To do this, we will look directly at the underlying compactness result used to obtain
the Aubin-Lions-Simon compactness theorem [57]. For h ∈ R, we introduce the translation
operator Th defined by action on a function g with domain (0, T ) :

Th(g)(x) := g(x+ h), x ∈ (−h, T − h). (3.25)

We further defined the auxillary set Oh := (0, T )∩(−h, T −h), the interval of common definition
for the functions Th(g) and g. We recall a result.

Theorem ([57], Theorem 5). Suppose (Bi, ‖ · ‖Bi), i ∈ {0, 1, 2}, are Banach spaces such that
B0 ↪→↪→ B1 ↪→ B2. Let p ∈ [1,∞) and U ⊂ Lp(0, T ;B0) be a bounded set such that

‖Th(g)− g‖Lp(Oh;B2) → 0 as h→ 0 uniformly for g ∈ U .

Then U is relatively compact in Lp(0, T ;B1).

We will not make direct use of this result, but the proof of the above result may be applied
to prove the following lemma.
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Lemma 3.7. Let Ω ⊂ RN be a bounded, open set with Lipschitz boundary. Consider the triple

c ∈ H3(Ω) 7→ Ψ(c) := (c,Tr(∇2c)) ∈ H2(Ω)× [L2#−δ(Γ)]N×N

7→ π(c,Tr(∇2c)) := c ∈ L2(Ω) ⊂ H1(Ω)∗.

Let p ∈ [1,∞) and U ⊂ Lp(0, T ;H3(Ω)) be a bounded set such that

‖Th(c)− c‖Lp(Oh;H1(Ω)∗) → 0 as h→ 0 uniformly for c ∈ U .

Then Ψ(U) is relatively compact in Lp(0, T ;H2(Ω)× [L2#−δ(Γ)]N×N).

Proof. The proof of this lemma primarily follows as in the proof of Theorem 5 in [57]. We do
not repeat the entire proof, but show why it still holds, despite the mappings no longer being
embeddings. We claim that for every ε > 0 there is Cε > 0 such that given any c ∈ H3(Ω) the
bound

‖Ψ(c)‖
H2(Ω)×[L2#−δ(Γ)]N×N

≤ ε‖c‖H3(Ω) + Cε‖c‖H1(Ω)∗

holds (see also Lemma 8 of [57]). We prove this by contradiction. Suppose not; thus for each
n ∈ N there is ξn ∈ H3(Ω) such that

‖Ψ(ξn)‖
H2(Ω)×[L2#−δ(Γ)]N×N

> ε‖ξn‖H3(Ω) + n‖ξn‖H1(Ω)∗ . (3.26)

Normalizing in H3(Ω), we may assume that ‖ξn‖H3(Ω) = 1. Thus by compactness of the map
Ψ, there is ξ0 ∈ H3(Ω) such that, up to a subsequence (not relabeled), Ψ(ξn) → Ψ(ξ0) in
H2(Ω) × [L2#−δ(Γ)]N×N . Additionally, as Ψ(ξn) is bounded in H2(Ω) × [L2#−δ(Γ)]N×N , (3.26)
implies ξn → 0 in H1(Ω)∗. As ξn → π ◦Ψ(ξ0) in H1(Ω)∗, we have that ξ0 = 0 necessarily (this is
a key feature we needed satisfied by the mappings). However, (3.26) shows

0 = ‖Ψ(ξ0)‖
H2(Ω)×[L2#−δ(Γ)]N×N

= lim
n→∞

‖Ψ(ξn)‖
H2(Ω)×[L2#−δ(Γ)]N×N

≥ ε,

a contradiction. The rest of the proof follows as in [57].

We now prove the desired convergences. In this proof, we make use of the composition symbol
◦ to differentiate the behavior of a map like Ψ(c) from the composition f ′(c).

Lemma 3.8. Assume Ω ⊂ RN is a bounded, open set with C3 boundary and hypotheses (2.1) to
(2.5) hold. There is c ∈ L(2#−δ)′(0, T ;H3(Ω)) ∩W 1,(2#−δ)′(0, T ;H1(Ω)∗) such that the functions
cτ , c

−
τ , and ĉτ defined in (3.12), (3.13), and (3.14) satisfy the following (up to a subsequence of

τ approaching 0 not relabeled):

ĉτ ⇀ c in L(2#−δ)′(0, T ;H3(Ω)) ∩W 1,(2#−δ)′(0, T ;H1(Ω)∗), (3.27)

Ψ(cτ ), Ψ(c−τ ), Ψ(ĉτ )→ Ψ(c) in L(2#−δ)′(0, T ;H2(Ω)× [L2#−δ(Γ)]N×N), (3.28)

f ′ ◦ cτ → f ′ ◦ c in L(2#−δ)′(0, T ;H1(Ω)), (3.29)

µτ ⇀ µ in L(2#−δ)′(0, T ;H1(Ω)), (3.30)

where Ψ(c) := (c,Tr(∇2c)) ∈ H2(Ω)× [L2#−δ(Γ)]N×N for c ∈ H3(Ω).

Proof. We first show that

‖Th(cτ )− cτ‖L(2#−δ)′ (Oh;H1(Ω)∗)
→ 0 as h→ 0 uniformly in τ (3.31)

where Th is defined in (3.25) and Oh := (0, T ) ∩ (−h, T − h). We estimate the L(2#−δ)′ norm
directly in the case that |h| < τ and |h| ≥ τ . Without loss of generality, we perform the
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computation for h > 0 so that Oh = (0, T − h). Partition (0, T ) into n intervals J1, . . . , Jn of
length τ = T/n.
Case h < τ : In this case Oh = (0, T − h). Making use of (3.12), the fundamental theorem of
calculus, properties of the Bochner integral (see Chapter 8 of [44]), and Hölder’s inequality, we
have

‖Th(cτ )− cτ‖(2#−δ)′

L(2#−δ)′ (Oh,H1(Ω)∗)
=

n−1∑
i=1

∫ iτ

iτ−h
‖ci+1
τ − ciτ‖

(2#−δ)′
H1(Ω)∗ dt

=h
n−1∑
i=1

∥∥∥∥∫
Ji+1

∂tĉτ ds

∥∥∥∥(2#−δ)′

H1(Ω)∗

≤h
n−1∑
i=1

|Ji+1|(2
#−δ)′−1

∫
Ji+1

‖∂tĉτ‖(2#−δ)′
H1(Ω)∗ ds

≤hτ (2#−δ)′−1

∫ T

0

‖∂tĉτ‖(2#−δ)′
H1(Ω)∗ dt.

(3.32)

Case h ≥ τ : We define some auxillary variables to help with the computation. Let [h]τ be h
modulo τ , and let k ∈ N satisfy kτ = h − [h]τ . Again by (3.12), the fundamental theorem of
calculus, properties of the Bochner integral [44], and Hölder’s inequality, we find

‖Th(cτ )− cτ‖(2#−δ)′

L(2#−δ)′ (Oh,H1(Ω)∗)

=
n−k∑
i=1

(∫ iτ−[h]τ

(i−1)τ

‖ci+kτ − ciτ‖
(2#−δ)′
H1(Ω)∗ dt

)
+

n−k−1∑
i=1

(∫ iτ

iτ−[h]τ

‖ci+k+1
τ − ciτ‖

(2#−δ)′
H1(Ω)∗ dt

)

≤
n−k∑
i=1

(
(τ − [h]τ )| ∪i+kj=i+1 Jj+1|(2

#−δ)′−1

∫
∪i+kj=i+1Jj+1

‖∂tĉτ‖(2#−δ)′
H1(Ω)∗ ds

)

+
n−k−1∑
i=1

(
[h]τ | ∪i+kj=i Jj+1|(2

#−δ)′−1

∫
∪i+kj=iJj+1

‖∂tĉτ‖(2#−δ)′
H1(Ω)∗ ds

)

≤(2h)(2#−δ)′−1

(∫ T

0

‖∂tĉτ‖(2#−δ)′
H1(Ω)∗ dt

)
(n− k)τ.

(3.33)

Making use of (3.19), (3.32), and (3.33), we conclude the proof of (3.31). Similarly (3.31) holds
for c−τ and ĉτ too.

Consequently making use of (3.21), we apply Lemma 3.7 to cτ , c
−
τ , and ĉτ . Thus up to a

subsequence of τ (not relabeled), there is c ∈ L(2#−δ)′(0, T ;H3(Ω)) ∩ W 1,(2#−δ)′(0, T ;H1(Ω)∗)
such that Ψ(cτ ), Ψ(c−τ ), Ψ(ĉτ )→ Ψ(c) in L(2#−δ)′(0, T ;H2(Ω)× [L2#−δ(Γ)]N×N).

We remark a priori, it is not clear that cτ , c
−
τ and ĉτ converge to the same c. Let us show that

cτ and ĉτ converge to the same limit. Suppose cτ → c1 in L(2#−δ)′(0, T ;L2(Ω)) and ĉτ → c2 in
L(2#−δ)′(0, T ;L2(Ω)). Letting Φ : L2(Ω)→ H1(Ω)∗ be the natural, continuous inclusion given by
Φ(ξ)(φ) :=

∫
Ω
ξφ dx for all φ ∈ H1(Ω). On the interval Ji defined above, we have cτ |Ji = ĉτ (iτ).

By the fundamental theorem of calculus, (3.19), and Hölder’s inequality, we compute for any
t ∈ Ji,

‖Φ(cτ )(t)− Φ(ĉτ )(t)‖H1(Ω)∗

= ‖Φ(ĉτ )(iτ)− Φ(ĉτ )(t)‖H1(Ω)∗ ≤
∫ iτ

t

‖∂tĉτ (t)‖H1(Ω)∗ dt ≤ C(iτ − t)
1

2#−δ ≤ Cτ
1

2#−δ .

The above estimate holds for any t ∈ (0, T ), and we conclude

Φ(cτ )− Φ(ĉτ )→ 0 in L∞(0, T ;H1(Ω)∗) as τ → 0.
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But we also have that

Φ(cτ )− Φ(ĉτ )→ Φ(c1)− Φ(c2) = Φ(c1 − c2) in L(2#−δ)′(0, T ;H1(Ω)∗) as τ → 0.

Consequently, Φ(c1 − c2) = 0, which by the injectivity of Φ, implies c1 = c2 as desired.
Furthermore, cτ ’s strong convergence allows us to show (3.29). We show convergence of the

gradient ∇(f ′ ◦ cτ ), with convergence of f ′ ◦ cτ in L(2#−δ)′(0, T ;L2(Ω)) being easier to conclude.
To see this, we apply Lebesgue dominated convergence theorem in an iterative fashion. Consider
a subsequence of τ such that both cτ → c and ∇cτ → ∇c pointwise a.e. in Ω × (0, T ) and for
t-a.e., cτ (t)→ c(t) in H2(Ω). By (2.1) and Young’s inequality

|∇(f ′ ◦ cτ )|2 = |f ′′(cτ )|2|∇cτ |2 ≤ C(|cτ |2
∗

+ |∇cτ |2
∗

+ |∇cτ |2),

and so ∇(f ′ ◦ cτ )(t) → ∇(f ′ ◦ c)(t) in L2(Ω) for t-a.e. in (0, T ) by the generalized Lebesgue
dominated convergence theorem and the Sobolev-Gagliardo-Nirenberg embedding theorem. We
look at the previously derived bound (3.24), which shows us that for t-a.e., we have

‖∇(f ′ ◦ cτ − f ′ ◦ c)‖L2(Ω) ≤ C(‖cτ‖H2(Ω) + ‖c‖H2(Ω) + 1).

As the right-hand side of the above bound converges in L(2#−δ)′(0, T ;R) and the left-hand side
converges to 0 for t-a.e., another application of the generalized Lebesgue dominated convergence
theorem concludes.

Convergence given in (3.30) follows from µτ = −∆cτ +f ′ ◦cτ (see (3.16)) in conjunction with
the convergences (3.27) and (3.29)

We consider a definition, which will prove useful in the next proof.

Definition 3.9. For Ω ⊂ RN , an open, bounded with Lipschitz boundary, we define the inclusion
operator I : L(2#−δ)′(Γ)→ H1/2(Γ)∗ by

〈I(g), ξ〉H1/2(Γ)∗,H1/2(Γ) :=

∫
Γ

gξ dHN−1.

To see that the inclusion makes sense, for any ξ ∈ H1/2(Γ) there exists ξ ∈ H1(Ω) such that
Tr(ξ) = ξ and 1

C
‖ξ‖H1(Ω) ≤ ‖ξ‖H1/2(Γ) ≤ C‖ξ‖H1(Ω), for constant C > 0 independent of ξ (see

Theorem 18.40 in [44]). Thus for g ∈ L(2#−δ)′(Γ), we have∣∣〈I(g), ξ〉H1/2(Γ)∗,H1/2(Γ)

∣∣ ≤ ‖g‖
L(2#−δ)′ (Γ)

‖ξ‖
L2#−δ(Γ)

≤C‖g‖
L(2#−δ)′ (Γ)

‖ξ‖H1(Ω)

≤C‖g‖
L(2#−δ)′ (Γ)

‖ξ‖H1/2(Γ).

We now have enough machinery in place to prove that there is a weak solution of the CHR
model (1.12).

Proof of Theorem 3.1. We prove that the function c from Lemma 3.8 is a weak solution of the
CHR model in two steps. First, we prove that the Euler-Lagrange equation (3.1) is satisfied.
Second, we prove the initial condition is satisfied.
Step 1: Integrating equation (3.15) in time for ξ ∈ L2#−δ(0, T ;H1(Ω)), we have

−
∫ T

0

(∂tĉτ (t), ξ)L2 dt =

∫ T

0

∫
Ω

∇µτ (t) · ∇ξ dx dt−
∫ T

0

∫
Γ

R(c−τ (t), µτ (t))ξ dHN−1 dt, (3.34)
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which makes sense by Lemma 3.6 and (2.4). We wish to pass τ → 0. Making use of Lemma
3.8, the only term for which this is difficult is the boundary term. Denote Rτ := R(c−τ , µτ ) for
notational simplicity. Reconfiguring equation (3.34) and applying Hölder’s inequality, we obtain∣∣∣∣∫ T

0

∫
Γ

Rτξ dHN−1 dt

∣∣∣∣
≤ ‖∇µτ‖L(2#−δ)′ (0,T ;L2(Ω))

‖∇ξ‖
L2#−δ(0,T ;L2(Ω))

+ ‖∂tcτ‖L(2#−δ)′ (0,T ;H1(Ω)∗)
‖ξ‖

L2#−δ((0,T ),H1(Ω))
.

Making use of Lemma 3.6, we conclude

sup
ξ∈L2#−δ(0,T ;H1(Ω))
‖ξ‖

L2#−δ(0,T ;H1(Ω))
≤1

∣∣∣∣∫ T

0

∫
Γ

Rτξ dHN−1 dt

∣∣∣∣ ≤ C. (3.35)

We now consider the naturally defined inclusion operator I : L(2#−δ)′(Γ)→ H1/2(Γ)∗ (see Def-
inition 3.9). By the supremum (3.35), we have that I(Rτ ) is bounded in L2#−δ(0, T ;H1/2(Γ))∗ =
L(2#−δ)′(0, T ;H1/2(Γ)∗) uniformly with respect to τ. Furthermore, as H1/2(Γ) is reflexive, so is
L(2#−δ)′(0, T ;H1/2(Γ)∗) [33], and by weak compactness, up to a subsequence, I(Rτ ) ⇀ ζ for
some ζ ∈ L(2#−δ)′(0, T ;H1/2(Γ)∗).

We claim that for t-a.e. I(Rτ )→ I(R(c, µ)) in H1/2(Γ)∗. Looking to the convergence given
by (3.28), we see that ∆cτ → ∆c in the space of real-valued functions L(2#−δ)′(Γ× (0, T )), and
up to a subsequence of τ (not relabeled), we may apply classical results for Lp spaces to conclude
that ∆cτ → ∆c pointwise HN -a.e. in Γ×(0, T ). Furthermore, by definition of the convergence in
L(2#−δ)′(0, T ;L2#−δ(Γ)), we have ‖∆cτ−∆c‖

L2#−δ(Γ)
→ 0 in L(2#−δ)′(0, T ). It follows by classical

results for Lp spaces that up to a subsequence of τ (not relabeled) ∆cτ (t)→ ∆c(t) in L2#−δ(Γ)
for t-a.e. in (0, T ). Repeating this argument using (3.28), (3.29), and continuity of the trace, we
may assume, up to another subsequence of τ , for t-a.e. c−τ (t) → c(t) and f ′(cτ )(t) → f ′(c)(t)
in L2#−δ(Γ) and pointwise a.e. in the domain Γ. Recalling the growth estimate on R given by
(2.4) and (3.22), we have

|Rτ (t)|(2
#−δ)′ ≤C(|c−τ (t)|2#−δ−1 + |µτ (t)|2

#−δ−1 + 1)(2#−δ)′

≤C(|c−τ (t)|2#−δ + |∆cτ (t)|2
#−δ + |f ′(cτ )(t)|2

#−δ + 1).

As R is a continuous function, we utilize the generalized Lebesgue Dominated Convergence
theorem to conclude Rτ (t)→ R(c, µ)(t) in L(2#−δ)′(Γ) for t-a.e. Continuity of I implies for t-a.e.
I(Rτ (t)) → I(R(c, µ)(t)) in H1/2(Γ)∗, proving the claim. Applying Mazur’s Lemma [13], this
further implies ζ = I(R(c, µ)).

Passing τ to the limit in (3.34) and using the variety of convergences derived herein and in
Lemma 3.8, we obtain

−
∫ T

0

〈∂tc, ξ〉H1(Ω)∗,H1(Ω) dt =

∫ T

0

∫
Ω

∇µ · ∇ξ dx dt−
∫ T

0

〈I(R(c, µ)), ξ〉H1/2(Γ)∗,H1/2(Γ) dt.

By definition of I, this is rewritten as

−
∫ T

0

〈∂tc, ξ〉H1(Ω)∗,H1(Ω) dt =

∫ T

0

∫
Ω

∇µ · ∇ξ dx dt−
∫ T

0

∫
Γ

R(c, µ)ξ dHN−1 dt.

Considering a dense collection of {ξk}k∈N ⊂ H1(Ω), we let ξ = ξk (constant in time) in the above
equation. By a standard analysis using Lebesgue points (see also Theorem 6.2), we find the
Euler-Lagrange equation (3.1) is satisfied by c for t-a.e.
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Step 2: The initial condition and continuity of c follows directly from bound (3.18), (3.19), and
the Aubin-Simon-Lions Compactness theorem with p = ∞ [57]. Or we may avoid the use of
high-level compactness theorems as follows.

Note that

‖ĉτ (t2)− ĉτ (t1)‖H1(Ω)∗ ≤
∫ t2

t1

‖∂tĉτ (t)‖H1(Ω)∗ dt ≤ C(t2 − t1)1/(2#−δ)

by an application of Hölder’s inequality and (3.19). Applying Corollary 2.6, we find

‖ĉτ (t2)− ĉτ (t1)‖L2(Ω) ≤ ‖ĉτ (t2)− ĉτ (t1)‖1/2

H1(Ω)‖ĉτ (t2)− ĉτ (t1)‖1/2

H1(Ω)∗ + ‖ĉτ (t2)− ĉτ (t1)‖H1(Ω)∗

By (3.18),
‖ĉτ (t2)− ĉτ (t1)‖H1(Ω) ≤ C.

Synthesizing these three inequalities, we have

‖ĉτ (t2)− ĉτ (t1)‖L2(Ω) ≤ C max{(t2 − t1)1/(2(2#−δ)), (t2 − t1)1/(2#−δ)}. (3.36)

Passing τ → 0, we see that c satisfies the relation (3.36) for t-a.e. Furthermore, letting t1 = 0 in
(3.36), we have

‖ĉτ (t2)− c0‖L2(Ω) ≤ C max{(t2)1/(3(2#−δ)), (t2)1/(2#−δ)}.

Letting τ → 0, we find that c(0) = c0 as desired.

3.5 Including elasticity

We complete the proof of Theorem 1.4. We highlight where the argument differs from the proof
of Theorem 3.1.

Proof of Theorem 1.4. We construct an iterative scheme via the minimization

(ciτ , u
i
τ ) = argmin

(c,u)∈L2(Ω)2

{
Iel[c, u] + τA∗

ci−1
τ

(
−c− c

i−1
τ

τ

)}
. (3.37)

As before we are able to obtain the “discrete” Euler-Lagrange equations for all ξ ∈ H1(Ω) and
ψ ∈ H1(Ω;RN):

−(∂tĉτ (t), ξ)L2(Ω) =

∫
Ω

∇µτ (t) · ∇ξ dx−
∫

Γ

R(c−τ (t), µτ (t))ξ dHN−1

(µτ (t), ξ)L2(Ω) =

∫
Ω

(∇cτ (t) · ∇ξ + f ′(cτ (t))ξ + C(cτ (t)e0 − e(uτ (t))) : e0ξ) dx,

0 =

∫
Ω

C(e(uτ (t))− cτ (t)e0) : e(ψ) dx.

(3.38)

The estimate (3.17) continues to hold, with I replaced by Iel. In turn, one has the bounds
(3.18), (3.19), and (3.20) of Lemma 3.6. To conclude (3.21), we claim that uτ is bounded in
L∞(0, T ; Ḣ2(Ω;RN)) uniformly with respect to τ , where Ḣ2(Ω) is H2(Ω) quotiented by skew
affine functions. Note by (3.17), which holds with Iel, and Korn’s inequality [54], we have uτ
bounded in L∞(0, T ; Ḣ1(Ω;RN)). By the last equation of (3.38), we have∫

Ω

C(e(uτ )) : e(ξ) dx =

∫
Ω

C(cτe0) : e(ξ) dx =

∫
Ω

cτL1(∇ξ) dx,

25



where L1 : RN×N → R is a linear function. Applying integration by parts, we find∫
Ω

C(e(uτ )) : e(ξ) dx =

∫
Ω

L2(∇cτ ) · ξ dx+

∫
Γ

L3(cτν) · ξ dHN−1,

where L2 : RN → RN and L3 : RN → RN are linear functions. It follows that uτ is a weak
solution of the PDE {

div[C(e(uτ ))] =L2(∇cτ ) in Ω,

C(e(uτ )) · ν =L3(cτν) on Γ.

By regularity results for linearized elastostatic problems on C2 domains [4] (see also [20]), we
have

‖uτ‖Ḣ2(Ω;RN ) ≤ C
(
‖L2(∇cτ )‖L2(Ω;RN ) + ‖L3(cτν)‖H1/2(Γ;RN )

)
≤ C‖cτ‖H1(Ω), (3.39)

which proves the claim by (3.18). With this, we may proceed as in Lemma 3.6 to conclude
(3.21). With these estimates, we once again obtain the convergences provided by Lemma 3.8.
Estimating uτk−uτm , for k,m ∈ N, by a bound analogous to (3.39) and using (3.28), we see that

uτ is Cauchy in L(2#−δ)′(0, T ; Ḣ2(Ω)), and hence converges strongly in L(2#−δ)′(0, T ; Ḣ2(Ω)) to
u ∈ L∞(0, T ; Ḣ2(Ω)). Thus Tr(e(uτ ))→ Tr(e(u)) in L(2#−δ)′(0, T ;L2#−δ(Γ)).

From this, we may proceed as in Theorem 3.1 to pass to the limit in the “discrete” Euler-
Lagrange Equations (3.38).

4 Strong solution

In this section, we prove strong existence of solutions to the CHR model (1.12) in dimensions
N = 2 and 3. In this section we will depart from the variational perspective developed in Section
3 to prove existence of a weak solution. Although it it possible that a bootstrapping argument
applied to the weak solution already recovered could lead to a strong solution, restrictions on
the possible choices of f and R would still be governed by properties of composition; hence it is
not clear we would obtain existence of strong solutions under more general hypotheses than in
Theorem 1.5. Furthermore, we will see that the limitations highlighted by Remark 5.3 require
us to apply more sophisticated methods than directly bootstrapping to obtain higher regularity.
Consequently, we find it instrumental to develop these methods in the simpler context of strong
solutions. Lastly, our proof of regularity in Section 5 will require smallness estimates which we
will derive with the aid of function spaces developed in Section 2 (e.g. in Theorem 4.1).

We will make extensive use of Schaefer’s fixed point theorem and interpolation theory. As
such it will be useful to look at the CHR model (1.12) in the equivalent formulation:

∂tc+ ∆2c = ∆f ′(c) in ΩT ,

∂νc = 0 on ΣT ,

∂ν(∆c) = R(c,∆c) on ΣT ,

c(0) = c0 in Ω,

(4.1)

where we define
R(s, w) := −R(s,−w + f ′(s)),

µ := −∆c+ f ′(c).
(4.2)

In the language of anisotropic Sobolev spaces, we seek a solution of (4.1) belonging to H4,1(ΩT ),
so we need ∆f ′(c) ∈ H0,0(ΩT ). As is well known, for Lipschitz f the composition map defined
by u 7→ f(u) is linearly bounded from H1(Ω) to H1(Ω), i.e.

‖f(u)‖H1(Ω) ≤ Cf (‖u‖H1(Ω) + 1).
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It is then natural to hope that the same would hold of composition operators from H2(Ω) to
H2(Ω), but this is too much to ask. To illuminate this problem, consider

∆f ′(c) = f ′′′(c)‖∇c‖2 + f ′′(c)∆c.

Clearly the second term is linearly bounded by the H2(Ω) norm of c, but the first term is
quadratic, and it will be impossible to avoid this nonlinearity without modification. Hence for
α > 0, we can introduce a truncation function ψα ∈ C∞(R) such that ψα(x) = x for all x ∈
(−α, α), ‖ψ′α‖∞ ≤ 2, and ψ′α = 0 on (−α−1, α+ 1)C . We define Ψα(x) := (ψα(x1), . . . , ψα(xN)).
We then consider the truncated Laplacian:

(∆f ′)α(c) := f ′′′(c)‖Ψα(∇c)‖2 + f ′′(c)ψα(∆c). (4.3)

Although the preceeding discussion shows we don’t need to truncate the second term, we do so
as it will be useful in Section 5. In addition to analysis of (4.1), we will consider strong solutions
of the truncated CHR model : 

∂tc+ ∆2c = (∆f ′)α(c) in ΩT ,

∂νc = 0 on ΣT ,

∂ν(∆c) = R(c,∆c) on ΣT ,

c(0) = c0 in Ω,

(4.4)

where R is still defined as in (4.2), i.e., the “chemical potential” is unmodified on the boundary.
The truncated CHR model (4.4) is relevant for two primary reasons.

• It allows us to circumnavigate analytical complications arising from composition, which
will be especially helpful in proving higher regularity.

• If ∇c and ∇2c are continuous, for T sufficiently small and α well chosen, we will recover a
solution to (4.1).

After proving the claims of existence given in the introduction (e.g. Theorem 1.5), we intro-
duce an a priori estimate, which holds for any solution of the the aforementioned PDEs. These
estimates will be essential to prove existence of a regular solution in Section 5. These esti-
mates show that given initial data sufficiently small (in a specific sense), the solution maintains
quantifiably small energy for short times.

Theorem 4.1. Suppose Ω ⊂ RN , where N = 2 or 3, is a bounded, open set with smooth
boundary. Further suppose f and R, defined by (4.2), satisfy assumptions (2.8) and (2.10). Let
c0 ∈ H2(Ω) with ∂νc0 = 0 on Γ. Then any strong solution c of the truncated CHR model (4.4)
satisfies the estimate

‖c‖H4,1(ΩT ) + ‖∇2c‖L∞(0,T ;L2(Ω)) ≤ C‖∆c0‖L2(Ω) + η(c0, T ), (4.5)

for some C > 0 with η(c0, T ) tending to 0 as T → 0. If additionally f and R satisfy (2.9) and
(2.11), then any strong solution c of the CHR model (4.1) satisfies estimate (4.5).

4.1 Proofs of Theorem 1.5 and Corollary 1.6

We prove existence with the use of Schaefer’s fixed point theorem. To control the bulk data as
necessary we look to the analysis of Elliott and Songmu [28], wherein the Gagliardo-Nirenberg
inequality (see Theorem 2.5) makes an appearance. The Gagliardo-Nirenberg inequality will
provide us with the means to decompose nonlinear terms that arise from repeated differentiation
into two pieces, typically one controlled in L∞ and the other in L2. Many of the methods applied
herein will be applied once again in the slightly more technical proof of Theorem 5.2.
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Proof of Theorem 1.5. We give the full proof in the more delicate case that N = 3 and indicate
the changes in the case N = 2.
Step 1: Assume N = 3. We define the Banach space

B := H3,3/4(ΩT ).

Define the operator
A :B → B,

v 7→ c

by the PDE 
∂tc+ ∆2c = ∆f ′(v) in ΩT ,

∂νc = 0 on ΣT ,

∂ν(∆c) = R(v,∆v) on ΣT ,

c(0) = c0 in Ω.

(4.6)

To prove existence of a strong solution to CHR model (4.1), we claim that A : B → B satisfies
the hypotheses of Schaefer’s fixed point theorem [29]. These hypotheses are characterized as

• Compactness: The functional A : B → B is compact.

• Continuity: The functional A : B → B is continuous.

• Bounded: The set {c ∈ B : λA[c] = c, λ ∈ (0, 1])} is bounded in the norm of B.

Supposing the claim, by Schaefer’s fixed point theorem, we conclude there is c ∈ B such that
A[c] = c, and by the argument for compactness, c ∈ H4,1(ΩT ). Therefore c is a strong solution
of the CHR model 4.1. Thus, it only remains to verify the claim.
Compactness: Given Theorem 2.14 and Remark 2.3, it follows

‖R(v,∆v)‖H1/2,1/8(ΣT ) ≤C(Ω, T )‖R(v,∆v)‖H1,1/4(ΩT )

≤C(R,Ω, T )(‖v‖H1,1/4(ΩT ) + ‖∇2v‖H1,1/4(ΩT ) + 1)

≤C(R,Ω, T )(‖v‖H3,3/4(ΩT ) + 1),

(4.7)

where in the third inequality we have made use of Proposition 2.15 with k = 3. We have

∆f ′(v) = f ′′′(v)‖∇v‖2 + f ′′(v)∆v. (4.8)

Using the Gagliardo-Nirenberg inequality (see Theorem 2.5) to control the quadratic term of
(4.8), we have

‖∇v‖L4(Ω) ≤C1‖∇3v‖aL2(Ω)‖∇v‖1−a
L2(Ω) + C2‖∇v‖L2(Ω),

1

4
=a

(
1

2
− 2

3

)
+ (1− a)

1

2
=⇒ a = 3/8.

(4.9)

As a < 1/2, it follows from (2.8) and (4.8) that

‖∆f ′(v)‖L2(Ω) ≤C(f)
(
‖∇3v‖2a

Lr(Ω)‖∇v‖
2(1−a)

L2(Ω) + ‖∇v‖2
L2(Ω) + ‖∇2v‖L2(Ω)

)
≤C

(
‖∇3v‖Lr(Ω)‖v‖2(1−a)

L∞(0,T ;H1(Ω)) + ‖v‖2(1−a)+1

L∞(0,T ;H1(Ω)) + ‖∇2v‖L2(Ω) + 1
)
.

We integrate in time and use that B = H3,3/4(ΩT ) ↪→ L∞(0, T ;H1(Ω)) (see Theorem 3.1 of
Chapter 1 in [45]) to find

‖∆f ′(v)‖H0,0(ΩT )

≤ C(T, f)
(
‖v‖2(1−a)

L∞(0,T ;H1(Ω))‖∇
3v‖L2(0,T ;L2(Ω)) + ‖v‖2(1−a)+1

L∞(0,T ;H1(Ω)) + ‖∇2v‖H0,0(ΩT ) + 1
)

≤ C
(
‖v‖2(1−a)+1

B + 1
)
,

(4.10)
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where in the last inequality we used the fact that 2(1− a) + 1 = 11/4 > 2.
By (4.6), (4.7), (4.10), and Theorem 6.7 (with k = 0), we have

‖c‖H4,1(ΩT ) ≤ C(c0)
(
‖v‖2(1−a)+1

B + 1
)
. (4.11)

As H4,1(ΩT ) ↪→↪→ B by standard interpolation results (see [44]), bound (4.11) proves compact-
ness of the operator A.
Continuity: This follows from the generalized Lebesgue dominated convergence theorem and
the estimates derived in showing compactness (see the proof of Theorem 5.2 for details in an
analogous case).
Boundedness: Suppose that c ∈ B satisfies λA[c] = c; without loss of generality, we assume
that λ = 1. As c is a fixed point of A, c ∈ H4,1(ΩT ) by (4.11) and satisfies (4.1). Arguing via
mollification, it is straightforward to show that ‖∇c‖2

L2(Ω) is absolutely continuous in time (for

a related perspective see also pg. 330 of [12]). Consequently, the integral I[c(t)] (see (1.7)) is
absolutely continuous as a function of time and may therefore be differentiated. Making use
of integration by parts and the embedding H4,1(ΩT ) ↪→ BUC(0, T ;H2(Ω)) [45], for t-a.e. we
differentiate the gradient term of the integrand as follows:

∂t

(
1

2

∫
Ω

‖∇c‖2 dx

)
= lim

δ→0

∫
Ω

‖∇c(t+ δ)‖2 − ‖∇c(t)‖2

2δ
dx

= lim
δ→0

∫
Ω

(∇c(t+ δ),∇c(t+ δ))− (∇c(t),∇c(t))
2δ

dx

= lim
δ→0

∫
Ω

(∇c(t+ δ)−∇c(t),∇c(t+ δ)) + (∇c(t),∇c(t+ δ)−∇c(t))
2δ

dx

=− lim
δ→0

∫
Ω

(
∆c(t+ δ) + ∆c(t)

2

)(
c(t+ δ)− c(t)

δ

)
dx

=−
∫

Ω

∆c ∂tc dx

Then, we compute the derivative

∂tI[c](t) =

∫
Ω

(
f ′(c)∂tc−∆c ∂tc

)
dx

=

∫
Ω

(
f ′(c)(−∆2c+ ∆f ′(c))−∆c(−∆2c+ ∆f ′(c))

)
dx

=−
∫

Ω

(
‖∇f ′(c)‖2 − 2∇f ′(c) · ∇(∆c) + ‖∇(∆c)‖2

)
dx−

∫
∂Ω

∂ν(∆c)µ dH2

≤−
∫

Ω

‖∇µ‖2 dx+ C(R)H2(∂Ω),

where we have used (2.11) and (4.6). It follows that

I[c(t)] ≤ I[c0] + TC(R)H2(∂Ω) (4.12)

for all t ∈ (0, T ). By the coercivity of f in (2.9), the Poincaré inequality implies

‖c‖L∞(0,T ;H1(Ω)) ≤ C(T,R, δ)(I[c0] + 1) = C(T,R, δ, c0).

We use the above estimate and the first inequality of (4.10) to conclude

‖∆f ′(c)‖H0,0(ΩT ) ≤ C(T, f,R, δ, c0)‖c‖H3,0(ΩT ) + C(T, f,R, δ, c0). (4.13)

29



Applying Theorem 6.7 (with k = 0) to (4.6) as before, we control c in terms of its data:

‖c‖H4,1(ΩT ) ≤ C(‖R(c,∆c)‖H1/2,1/8(ΣT ) + ‖∆f ′(c)‖H0,0(ΩT )).

Using (4.7) and (4.13), we have

‖c‖H4,1(ΩT ) ≤ C(R, f)(‖c‖H3,3/4(ΩT ) + 1) + C(T, f,R, δ, c0).

The interpolation inequality ‖c‖H3,3/4(ΩT ) ≤ C‖c‖1/4

H0,0(ΩT )‖c‖
3/4

H4,1(ΩT ) (see [45]) and the particular

Young’s inequality a1/4b3/4 ≤ εb+ C(ε)a for ε > 0 then show that for ε sufficiently small

‖c‖H4,1(ΩT ) ≤ C(T, f,R, δ, c0, ε,Ω).

Step 2: Assume N = 2. The only dimension dependent inequality arising in the above argu-
ment was the Gagliardo-Nirenberg inequality. In inequality (4.9), a is now a = 1/4. This is of
course sufficient to repeat the above proof.

Proof of Corollary 1.6. Given c0 ∈ H2(Ω), we have c0 ∈ C0,α(Ω) by the Morrey embedding
theorem [44]. Choose f̃ which satisfies hypotheses (2.8) and (2.9) and f̃ |O = f , where O =
(−‖c0‖C0,α−1, ‖c0‖C0,α + 1). Applying Theorem 1.5, there is c ∈ H4,1(Ω1) a solution of the CHR
model 4.1 with f̃ . As H4,1(Ω1) ↪→ BUC(0, 1;H2(Ω)) ↪→ BUC(0, 1;C0,α(Ω)) [45], for sufficiently
small T > 0, c|ΩT is a solution of the CHR model (1.12) with f.

4.2 Proof of Theorem 4.1

We emulate the above proof of boundedness keeping estimates of smallness to show that a solution
with small data and short time stays small in energy. Two challenges occur which make the
proof of the following more involved:

• We know that ‖v‖L∞(0,T ;H2(Ω)) ≤ C(?)‖v‖H4,1(ΩT ) from the trace theory detailed by Lions
and Magenes (see [45], [46]). Necessarily though, C(?) depends on T , blowing up as T → 0
(consider a function constant in time).

• Returning to the notation of subsection 2.5, there is insufficient literature detailing the
constants by which ‖ ·‖Hs(0,T ),I is equivalent to ‖ ·‖Hs(0,T ), where the later norm is given by
the integral of the derivative or difference quotients. Existing results of which the authors
are aware address this relation with the use of extensions (see, e.g., [18]).

As we will send T → 0, i.e., shrink the size of our domain, these constants are critical. To
navigate this problem, we use a variety of estimates developed in Subsection 2.4, which work
directly with the Gagliardo semi-norm for fractional Sobolev spaces.

Proof of Theorem 4.1. Assuming f and R (see (4.2)) satisfy hypotheses (2.9) and (2.11), we
prove the theorem for a solution of the CHR model in dimension N = 3. The proof in dimension
N = 2 follows as in Theorem 1.5. The result for the truncated CHR model follows from a
simplified version of the following argument.

Let c be a strong solution of the CHR model (4.1) on ΩT for 0 < T ≤ 1. For convenience, we
will define Rc := R(c,∆c). Note that Rc ∈ H1/2,1/8(ΣT ) (see Theorem 2.14) and by Corollary
2.8 may be extended to R̃c ∈ H1/2,1/8(Σ1) satisfying the bound

‖R̃c‖H1/2,1/8(Σ1) ≤ C
(

(1 + T−1/8)‖Rc‖H0,0(ΣT ) + ‖Rc‖H1/2,1/8(ΣT )

)
.

Let F be the extension by 0 of ∆f ′(c) ∈ H0,0(ΩT ) to H0,0(Ω1).
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We consider the PDE for c̄ on the extended domain Ω1 :
∂tc̄+ ∆2c̄ = F in Ω1,

∂ν c̄ = 0 on Σ1,

∂ν(∆c̄) = R̃c on Σ1,

c̄(0) = c0 in Ω.

(4.14)

If problem (4.14) admits a solution c̄ ∈ H4,1(Ω), then as (4.14) coincides with the CHR model
(4.1) on ΩT , by uniqueness (see Theorem 6.7), c̄|ΩT = c. We may apply Theorem 6.7 (with k = 0)
to conclude that (4.14) admits a unique solution c̄ satisfying the slightly modified bound:

‖c̄‖H4,1(Ω1) + ‖∇2c̄‖L∞(0,1;L2(Ω))

≤C
(
‖∆c0‖L2(Ω) + ‖F‖H0,0(Ω1) + ‖R̃c‖H1/2,1/8(Σ1)

)
≤C
(
‖∆c0‖L2(Ω) + ‖∆f ′(c)‖H0,0(ΩT ) + (1 + T−1/8)‖Rc‖H0,0(ΣT ) + ‖Rc‖H1/2,1/8(ΣT )

)
=:C(‖∆c0‖L2(Ω) + A1 + A2 + A3).

(4.15)
We note that C in the above estimate is independent of T , and the extension ΩT to Ω1 was
specifically done to control dependence of constants on T in the above expression. We now
estimate each term in the above expression.
Term A1: Recalling the proof of Theorem 1.5 (see (4.12)), we have

I[c(t)] ≤ I[c0] + TCH2(∂Ω) =: η̄2(c0, T )

for all t ∈ (0, T ), implying
‖∇c‖L∞(0,T ;L2(Ω)) ≤ η̄(c0, T ). (4.16)

We have
∆f ′(c) = f ′′′(c)‖∇c‖2 + f ′′(c)∆c. (4.17)

Making use of the Gagliardo-Nirenberg inequality (Theorem 2.5), we control the quadratic term
of the previous function:

‖∇c‖L4(Ω) ≤C(Ω)‖∇c‖1/4

H3(Ω)‖∇c‖
3/4

L2(Ω).

Consequently for ε > 0, (4.17) is bounded in L2 as

‖∆f ′(c)‖L2(Ω) ≤C(f)(‖∇c‖2
L4(Ω) + ‖∆c‖L2(Ω))

≤C(f,Ω)(η̄3/2‖∇c‖1/2

H3(Ω) + ‖∆c‖L2(Ω))

≤C(f,Ω)

(
ε‖∇c‖H3(Ω) +

1

ε
η̄3 + ‖∆c‖L2(Ω)

)
,

where we used (2.8), (4.16), and the previous inequality. Taking the L2 norm over (0, T ), we
find

‖∆f ′(c)‖H0,0(ΩT ) ≤C(f,Ω)

(
ε‖∇c‖H3,0(ΩT ) +

1

ε

√
T η̄3 +

√
T‖∆c‖L∞(0,T ;L2(Ω))

)
. (4.18)

Term A2: We note that H3(Ω) = [H2(Ω), H4(Ω)]1/2, so ‖ · ‖H3(Ω) ≤ C(Ω)‖ · ‖1/2

H2(Ω)‖ · ‖
1/2

H4(Ω) for

some constant C(Ω) > 0 (see [45]). It follows by Hölder’s inequality that

‖c‖2
H3,0(ΩT ) ≤C(Ω)

∫ T

0

‖c(t)‖H2(Ω)‖c(t)‖H4(Ω) dt

≤C(Ω)‖c‖H2,0(ΩT )‖c‖H4,0(ΩT )

≤C(Ω)
√
T‖c‖L∞(0,T ;H2(Ω))‖c‖H4,0(ΩT )

≤C(Ω)
√
T
(
‖c‖2

L∞(0,T ;H2(Ω)) + ‖c‖2
H4,0(ΩT )

)
.

(4.19)
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Using this computation, Remark 2.3, and the continuity of the trace in H1(Ω), we estimate Term
A2 as

(1 + T−1/8)‖Rc‖H0,0(ΣT ) ≤C(Ω)(1 + T−1/8)‖Rc‖H1,0(ΩT )

≤C(R,Ω)(1 + T−1/8)
(
‖c‖H3,0(ΩT ) + |R(0, 0)|

√
T
)

≤C(R,Ω)T 1/8
(
‖c‖L∞(0,T ;H2(Ω)) + ‖c‖H4,0(ΩT ) + T 1/4

)
.

(4.20)

Term A3: Since ‖ ·‖H1/2(Γ) ≤ C‖ ·‖H1(Ω), it follows ‖Rc‖H1/2,0(ΣT ) can be estimated by the same
method as term A2, so we restrict our attention to the semi-norm |Rc|H0,1/8(ΣT ).

Setting (Rc)T (x, t) := Rc(x, T t) and cT (x, t) := c(x, T t), using Lemma 2.10, Remark 2.3,
Theorem 2.14, and Proposition 2.15, it follows that

|Rc|H0,1/8(ΣT ) =T 3/8|(Rc)T |H0,1/8(Σ1)

=T 3/8|R(cT )|H0,1/8(Σ1)

≤C(R)T 3/8
(
|cT |H0,1/8(Σ1) + |∆cT |H0,1/8(Σ1)

)
≤CT 3/8‖cT‖H3,3/4(Ω1)

≤CT 3/8(‖cT‖H3,0(Ω1) + |cT |H0,3/4(Ω1)).

Using a direct change of variables, we have that ‖cT‖H3,0(Ω1) = T−1/2‖c‖H3,0(ΩT ). By Proposition
2.9 and a change of variables, we have

|cT |H0,3/4(Ω1) ≤C‖∂t(cT )‖H0,0(Ω1) = CT‖(∂tc)T‖H0,0(Ω1) = CT 1/2‖∂tc‖H0,0(ΩT ).

Consolidating these estimates along with (4.19), we find

|Rc|H0,1/8(ΣT ) ≤ C(R,Ω)T 1/8
(
‖c‖H4,1(ΩT ) + ‖c‖L∞(0,T ;H2(Ω))

)
. (4.21)

Returning to (4.15) and combining the bounds (4.18), (4.20), and (4.21), we find

‖c‖H4,1(ΩT ) + ‖∇2c‖L∞(0,T ;L2(Ω))

≤‖c̄‖H4,1(Ω1) + ‖∇2c̄‖L∞(0,1;L2(Ω))

≤C‖∆c0‖L2(Ω) + C(f,Ω)

(
ε‖∇c‖H3,0(ΩT ) +

1

ε

√
T η̄3 +

√
T‖∆c‖L∞(0,T ;L2(Ω))

)
+ C(R,Ω)T 1/8

(
‖c‖H4,1(ΩT ) + ‖c‖L∞(0,T ;H2(Ω)) + T 1/4

)
.

By the coercivity of f (2.9), the definition of η̄ (see above (4.16)), and the Poincaré inequality,
we have

‖c‖H2(Ω) ≤ C(Ω)

(
η̄(c0, T ) +

1

δ

)
+ ‖∇2c‖L2(Ω),

and returning to the above estimate, we have

‖c‖H4,1(ΩT ) + ‖∇2c‖L∞(0,T ;L2(Ω))

≤C‖∆c0‖L2(Ω) + C(f,Ω)

(
ε‖∇c‖H3,0(ΩT ) +

1

ε

√
T η̄3 +

√
T‖∆c‖L∞(0,T ;L2(Ω))

)
+ C(R,Ω)T 1/8

(
η̄ +

1

δ
+ ‖∇2c‖L∞(0,T ;L2(Ω)) + ‖c‖H4,1(ΩT ) + T 1/4

)
≤C‖∇2c0‖L2(Ω) + C(f,R,Ω)

(
ε+ T 1/8

) (
‖c‖H4,1(ΩT ) + ‖∇2c‖L∞(0,T ;L2(Ω))

)
+ C(R,Ω)T 1/8

(
η̄ +

1

δ
+ T 1/4

)
+
C(f,Ω)

ε

√
T η̄3.
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Choosing 0 < ε < 1/(4C(f,R,Ω)), we have for all 0 < T < (1/(4C(f,R,Ω)))8, that

‖c‖H4,1(ΩT ) + ‖∇2c‖L∞(0,T ;L2(Ω))

≤C‖∆c0‖L2(Ω) + C(R,Ω)T 1/8

(
η̄ +

1

δ
+ T 1/4

)
+
C(f,Ω)

ε

√
T η̄3

=:C‖∆c0‖L2(Ω) + η(c0, T ).

5 Regularity for N = 2

This section is devoted to proving sufficient regularity of a solution to the truncated CHR model
(4.4) such that we recover a solution of the CHR model (1.12) (see also (4.1)) with R given by
(1.6) and f given by (1.3). We will prove inclusion of a solution of the truncated CHR model in a
higher order anisotropic Sobolev space, at which point we will make use of embedding theorems
to recover continuity of the second derivatives in space and time.

We refine the assumptions previously used to prove strong existence:

• We assume that the chemical energy density is governed by

f ∈ C4,1(R). (5.1)

• For the reaction rate, we assume
R ∈ C2,1(R2). (5.2)

Remark 5.1. For R and f satisfying (5.2) and (5.1), respectively, and recalling (4.2), the chain
rule provides the bound

‖∇R‖C1,1(R2;R2) ≤ C.

The proof of the existence as claimed in Theorem 1.8 proceeds in two primary steps. First,
a fixed point argument analogous to Theorem 1.5 is applied to obtain existence of a solution to
the truncated CHR model (4.4) belonging to H5,1+1/4(ΩT ) for sufficiently small T > 0. Looking
to Remark 5.3, we see that the use of another fixed point argument is driven by necessity–versus
being able to directly bootstrap from a strong solution to higher regularity. The argument will
make sharp use of the growth given by the exponents of the Gagliardo-Nirenberg inequality
(Theorem 2.5), and hence critically relies on the a priori “smallness” estimate provided by
Theorem 4.1. Second, we directly bootstrap to show that given appropriate initial conditions,
a solution of the truncated CHR model (4.4) belongs to H6,1+1/2(ΩT ), at which point we may
directly apply embedding theorems to conclude existence of the desired solution to the CHR
model (4.1). Given that our argument places restrictions on the class of admissible initial
conditions, we last show that this class of functions is non-empty.

Theorem 5.2. Suppose Ω ⊂ R2 is an open bounded set with smooth boundary, and f and R
(see (4.2)) satisfy assumptions (5.1) and (5.2). There is λ(R,Ω) > 0 such that if c0 ∈ H4(Ω)
such that ∂νc0 = 0 and ‖∇2c0‖L2(Ω) ≤ λ, then there is T > 0 such that a solution of the truncated
CHR model (4.4) exists on the interval ΩT satisfying the estimate

‖c‖H5,1+1/4(Ω) ≤ C(f, c0,R,Ω, T ).

33



Proof. We apply Schaefer’s fixed point theorem [29] to obtain existence. Define the operator
A : v 7→ c by the PDE 

∂tc+ ∆2c = (∆f ′)α(v) in ΩT ,

∂νc = 0 on ΣT ,

∂ν(∆c) = R(v,∆v) on ΣT ,

c(0) = c0 in Ω.

(5.3)

We choose the domain of A such that A is both compact and range(A) ⊂ H5,1+1/4(ΩT). Define
the Banach space

B := H4,1(ΩT ) ∩ L2(0, T ;W 4,r(Ω)) ∩ L∞(0, T ;W 2,r(Ω))

equipped with the sum of norms, for r yet to be determined. We claim H5,1+1/4(ΩT ) ↪→↪→ B.
As

H5,1+1/4(ΩT ) ↪→↪→ [H0,0(ΩT ), H5,1+1/4(ΩT )]θ

for θ ∈ (0, 1) (see, e.g., Exercise 16.26 of [44] and [46]), it suffices to show that

[H0,0(ΩT ), H5,1+1/4(ΩT )]θ = Hθ5,θ(5/4)(ΩT ) ↪→ B (5.4)

for some θ ∈ (0, 1). Note, Hθ5,θ(5/4)(ΩT ) ↪→ H4,1(ΩT ) for θ sufficiently close to 1. Using
a Besov embedding theorem (see Theorem 17.51 of [44]), we have Hθ5(Ω) ↪→ W 4,r(Ω) for
all r < 2

(1−θ)5 . It immediately follows that Hθ5,θ(5/4)(ΩT ) ↪→ L2(0, T ;W 4,r(Ω)). To conclude

the last embedding necessary to prove (5.4) we make use of a trace theorem (see Theorem
3.1 of [45]), which shows that c ∈ Hθ5,θ(5/4)(ΩT ) is continuously embedded in the space of
BUC(0, T ; [Hθ5(Ω), L2(Ω)]2/(θ5)). As [Hθ5(Ω), L2(Ω)]2/(θ5) = Hθ5−2(Ω) by Proposition 2.13, we
may once again make use of a Besov embedding theorem [44] to conclude for any r ≥ 2, there is
θ sufficiently close to 1 such that Hθ5,θ(5/4)(ΩT ) ↪→ L∞(0, T ;W 2,r(Ω)). This concludes the claim.

We now prove that the hypotheses of Schaefer’s fixed point theorem are satisfied by the oper-
ator A : B → B for appropriate initial data c0; these are summarily referred to as Compactness,
Continuity, and Boundedness (see the proof of Theorem 1.5). This will complete the proof.
Compactness: We estimate R(v,∆v) and (∆f ′)α(v) in the norms for H3/2,3/8(ΩT ) and
H1,1/4(ΩT ) respectively. Hence we define βv := R(v,∆v). By continuity of the trace map (see
Theorem 2.14) and Remarks 2.3 and 5.1, we have

‖βv‖H3/2,3/8(ΣT ) ≤ C(Ω, T )‖βv‖H2,1/2(ΩT )

≤ C(R,Ω, T )(‖∇2βv‖H0,0(ΩT ) + ‖v‖H4,1(ΩT ) + 1),
(5.5)

For simplicity, we show how to control the higher order spatial derivatives of βv by looking at
two derivatives in the same direction (mixed derivatives are similar):

∂2
i βv =(∂2

sR(v,∆v)(∂iv)2 + 2(∂s∂wR)(v,∆v)∂iv∂i∆v + (∂sR)(v,∆v)∂2
i v

+ (∂2
wR)(v,∆v)(∂i∆v)2 + (∂wR)(v,∆v)∂2

i ∆v.
(5.6)

Given Remark 5.1, the terms in (5.6) are controlled in H0,0(ΩT ) by the norm of v in H4,1(ΩT )
plus C(R)‖(∂i∆v)2‖H0,0(ΩT ). To control this term, we make use of the Gagliardo-Nirenberg
inequality (Theorem 2.5):

‖∂i∆v‖L4(Ω) ≤ C(‖∇2∆v‖aLr(Ω)‖∆v‖1−a
Lr(Ω) + ‖∆v‖Lr(Ω)), (5.7)
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where a = 1/4 + 1/r. Consequently, choosing r ≥ 4, we have

‖(∂i∆v)2‖H0,0(ΩT ) =

(∫ T

0

‖∂i∆v‖4
L4(Ω) dt

)1/2

≤C‖∆v‖2(1−a)
L∞(0,T ;Lr(Ω))

(∫ T

0

‖∇2∆v‖4a
Lr(Ω) dt

)1/2

+ C‖∆v‖2
L∞(0,T ;Lr(Ω))

≤C‖∆v‖2(1−a)
L∞(0,T ;Lr(Ω))

(∫ T

0

‖∇2∆v‖2
Lr(Ω) dt

)1/2

+ C‖∆v‖2(1−a)+1
L∞(0,T ;Lr(Ω)) + C

≤C‖v‖2(1−a)+1
B + C,

(5.8)
where we used the inequality s2 ≤ C(s2(1−a)+1 + 1) since a ≤ 1/2. Thus, using the definition of
the space B, (5.5), and (5.8), we have

‖βv‖H3/2,3/8(ΣT ) ≤ C‖v‖2(1−a)+1
B + C.

Due to the truncated Laplacian (4.3), estimation of the bulk term (∆f ′)α(v) in H0,0(ΩT ) is
straightforward. By Theorem 6.7 (with k = 1), we conclude

‖c‖H5,1+1/4(ΩT ) ≤ C‖v‖2(1−a)+1
B + C,

which implies A : B → B is compact by the claim regarding (5.4).
Continuity: Suppose vn → v in B. To show that A[vn] → A[v], by Theorem 6.7 (with k = 1)
and the claim preceding (5.4), it is sufficient to show that the data converges as follows:

(∆f ′)α(vn)→ (∆f ′)α(v) in H1,1/4(ΩT ),

βvn := R(vn,∆vn)→ R(v,∆v) = βv in H2,1/2(ΩT ),

where we have used Theorem 2.14 to reduce our consideration to convergence on ΩT versus ΣT .
We focus our attention on the second convergence, the first being similar.

Up to a subsequence, we may assume ∇kvn → ∇kv a.e. in ΩT for k ∈ {0, . . . , 4}. To see that
βvn → βv in H0,0(ΩT ), recall Remark 2.3 to find

‖βvn − βv‖2
H0,0(ΩT ) =

∫ T

0

∫
Ω

|R(vn,∆vn)−R(v,∆v)|2 dx dt

≤C(R)

∫ T

0

∫
Ω

(
|vn − v|2 + |∆vn −∆v|2

)
dx dt.

Thus by the convergence of vn in B, we directly have convergence in H0,0(ΩT ). To prove conver-
gence in H0,1/2(ΩT ) we argue using Remark 2.3 and the Galiardo type semi-norm (see (2.24)):

|βvn − βv|2H0,1/2(ΩT )

=

∫
Ω

∫ T

0

∫ T

0

|R(vn,∆vn)(t)−R(v,∆v)(s)|2

|t− s|2
dt ds dx

≤C(R)

∫
Ω

∫ T

0

∫ T

0

|vn(t)− v(s)|2

|t− s|2
+
|∆vn(t)−∆v(s)|2

|t− s|2
dt ds dx

=C(R)
(
|vn − v|2H0,1/2(ΩT ) + |∆vn −∆v|2H0,1/2(ΩT )

)
.

As (vn,∆vi)→ (v,∆v) in [H2,1/2(ΩT )]2 (see Proposition 2.15), we are done. Convergence of first
order derivatives in space is done similarly.
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To show that the second order derivatives converge is more involved. We show convergence
for repeated derivatives as in (5.6), with mixed derivatives being similar. We explicitly show
convergence of the term (∂2

wR)(vn,∆vn)(∂i∆vn)2 with the remaining terms being simpler. De-
composing the difference of products, for t−a.e. we compute

‖(∂2
wR)(vn,∆vn)(∂i∆vn)2 − (∂2

wR)(v,∆v)(∂i∆v)2‖L2(Ω)

≤‖(∂2
wR)(vn,∆vn)

[
(∂i∆vn)2 − (∂i∆v)2

]
‖L2(Ω)

+ ‖
[
(∂2
wR)(vn,∆vn)− (∂2

wR)(v,∆v)
]

(∂i∆v)2‖L2(Ω)

≤C(R)‖(∂i∆vn)2 − (∂i∆v)2‖L2(Ω)

+ ‖
[
(∂2
wR)(vn,∆vn)− (∂2

wR)(v,∆v)
]

(∂i∆v)2‖L2(Ω),

(5.9)

where we used Remark 5.1. Up to another subsequence of n, for t-a.e., the second term goes to
0 by the Lebesgue dominated convergence theorem. Taking another subsequence if necessary,
we apply Hölder’s inequality and the Sobolev-Gagliardo-Nirenberg embedding theorem to show
that the first term also goes to 0 for t-a.e.:

‖(∂i∆vn)2 − (∂i∆v)2‖L2(Ω) ≤‖∂i∆vn − ∂i∆v‖L4(Ω)‖∂i∆vn + ∂i∆v‖L4(Ω)

≤CΩ‖∇∆(vn − v)‖H1(Ω)‖∇∆(vn + v)‖H1(Ω)

→ 0 · 2‖∇∆v‖H1(Ω) = 0.

We now apply the generalized Lebesgue dominated convergence theorem to prove (∂i∆vn)2 →
(∂i∆v)2 in H0,0(ΩT ):

‖(∂i∆vn)2 − (∂i∆v)2‖2
H0,0(ΩT ) =

∫ T

0

‖(∂i∆vn)2 − (∂i∆v)2‖2
L2(Ω) dt. (5.10)

We bound the integrand pointwise for t-a.e. using estimate (5.7) and that ‖vn‖B → ‖v‖B in B:

‖(∂i∆vn)2 − (∂i∆v)2‖2
L2(Ω)

≤C
(
‖∂i∆vn‖4

L4(Ω) + ‖∂i∆v‖4
L4(Ω)

)
≤C

(
‖∆vn‖4a

W 2,r(Ω)‖∆vn‖
4(1−a)
Lr(Ω) + ‖∆v‖4a

W 2,r(Ω)‖∆v‖
4(1−a)
Lr(Ω)

)
≤C sup

n

{
‖∆vn‖4(1−a)

L∞(0,T ;Lr(Ω))

}(
‖∆vn‖2

W 2,r(Ω) + ‖∆v‖2
W 2,r(Ω) + 1

)
≤C sup

n

{
‖vn‖4(1−a)

B

}(
‖∆vn‖2

W 2,r(Ω) + ‖∆v‖2
W 2,r(Ω) + 1

)
∈ L1(0, T ).

Thus we apply the generalized Lebesgue dominated convergence theorem to conclude (5.10)
converges to 0. Likewise, we conclude that the left-hand side of (5.9) goes to 0 in L2(0, T ), from
which we conclude the desired convergence of second order terms, and finally continuity of the
operator A.
Boundedness: We show that the set

{c ∈ B : c = λA[c] for λ ∈ (0, 1]}

is bounded in B for λ ∈ (0, 1]. We assume λ = 1; the argument is the same for other λ.
Thus, suppose c = A[c] ∈ H5,1+1/4(ΩT ). Making use of the bound (4.5) and assumptions on f ,
it straightforward to show that (∆f ′)α(c) is bounded in H1,1/4(ΩT ) in terms of ‖c‖H4,1(ΩT ) ≤
C(c0,Ω, T ). Now, we control βc := R(c,∆c) in H3/2,3/8(ΣT ). Given Proposition 2.15, the norm
of βc in H0,3/8(ΣT ) is controlled by ‖c‖H4,1(ΩT ) ≤ C(c0,Ω, T ). We summarize these initial bounds
as

‖βc‖H0,3/8(ΣT ) + ‖(∆f ′)α(c)‖H1,1/4(ΩT ) ≤ C(c0, f,R,Ω, T ). (5.11)
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To bound βc in H3/2,0(ΣT ), we first look at ∇2βc in H0,0(ΩT ). We control the repeated derivative
∂2
i βc, as in (5.6); control of the mixed derivatives is analogous.

First, we impose a restriction on the initial condition such that

‖∆c0‖L2(Ω) ≤
1

k
,

where k ∈ N is yet to be chosen. By (4.5), for all T > 0 sufficiently small, we have

‖c‖H4,1(ΩT ) + ‖∇2c‖L∞(0,T ;L2(Ω)) ≤
C

k
+ η, (5.12)

where the constant C > 0 is independent of T. Looking to terms arising in (5.6), we square the
Gagliardo-Nirenberg inequality (Theorem 2.5) in dimension N = 2 and use (5.12) to find for
t-a.e.

‖∂i(∆c)‖2
L4(Ω) ≤C(Ω)‖∆c‖H3(Ω)‖∆c‖L2(Ω) ≤ C(Ω)

(
C

k
+ η

)
‖∆c‖H3(Ω). (5.13)

Using Hölder’s inequality, Young’s inequality, the Sobolev-Gagliardo-Nirenberg embedding the-
orem, and a trace theorem (Theorem 3.1 of [45]), we have for t-a.e.

‖∂ic ∂i(∆c)‖L2(Ω) ≤
1

2

(
C(Ω)‖c‖2

L∞(0,T ;H2(Ω)) + ‖∂i(∆c)‖2
L4(Ω)

)
≤1

2

(
C(Ω, T )‖c‖2

H4,1(ΩT ) + ‖∂i(∆c)‖2
L4(Ω)

)
.

(5.14)

Recalling (5.2) and noting the terms in (5.6), we see that the bounds (5.13), (5.14), and
‖c‖H4,1(ΩT ) ≤ C (from (4.5)) imply

‖∂2
i βc‖H0,0(ΩT ) ≤C(c0, f,R,Ω)

(
C(T ) +

(
C

k
+ η

)
‖∆c‖H3,0(ΩT )

)
. (5.15)

As noted previously, an argument analogous to the above succeeds in controlling the full deriva-
tive ∇2βc. Furthermore, as R is Lipschitz (see Remark 5.1), it is direct to conclude βc is
controlled in H1,0(ΩT ) by ‖c‖H4,1(ΩT ). Thus by (5.15) and the trace inequality ‖ · ‖H3/2(Γ) ≤
C(Ω)‖ · ‖H2(Ω) [44], we have

‖βc‖H3/2,0(ΣT ) ≤ C(c0, f,R,Ω)

(
C(T ) +

(
C

k
+ η

)
‖∆c‖H3,0(ΩT )

)
. (5.16)

Lastly, we will use the method established in the proof of Theorem 4.1 to extend the bulk
and boundary data to Ω1 and Σ1, and then apply Theorem 6.7 (with k = 1) to bound c ∈
H5,1+1/4(ΩT ) by

‖c‖H5,1+1/4(ΩT ) ≤ C(c0, f,R,Ω, T ) + C(c0, f,R,Ω)

(
C

k
+ η

)
‖∆c‖H3,0(ΩT ). (5.17)

Supposing we have estimate (5.17), choosing T > 0 sufficiently small and k ∈ N large enough
such that

C(c0, f,R,Ω)

(
C

k
+ η

)
< 1,

we may directly conclude the proof of boundedness. So it only remains to prove (5.17).
We use Corollary 2.8 to find an extension β̃c ∈ H3/2,3/8(Ω1) of βc such that

‖β̃c‖H3/2,3/8(Σ1) ≤ C
(
(1 + T−3/8)‖βc‖H0,0(ΣT ) + ‖βc‖H3/2,3/8(ΣT )

)
.
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Likewise, we find an extension f̃ ∈ H1,1/4 of (∆f ′)α(c) such that

‖f̃‖H1,1/4(Ω1) ≤ C
(
(1 + T−1/4)‖(∆f ′)α(c)‖H0,0(ΩT ) + ‖(∆f ′)α(c)‖H1,1/4(ΩT )

)
.

With this in hand, we consider the PDE for c̃
∂tc̃+ ∆2c̃ = f̃ in Ω1,

∂ν c̃ = 0 on Σ1,

∂ν(∆c̃) = β̃c on Σ1,

c̃(0) = c0 in Ω.

Note, by uniqueness (see Theorem 6.7), c̃|ΩT = c. Theorem 6.7 (with k = 1), bound (5.11), and
(5.16) then show

‖c‖H5,1+1/4(ΩT ) ≤ ‖c̃‖H5,1+1/4(Ω1) ≤C(Ω, 1)(‖f̃‖H1,1/4(Ω1) + ‖β̃c‖H3/2,3/8(Σ1))

≤C(c0, f,R,Ω, T ) + C(c0, f,R,Ω)

(
C

k
+ η

)
‖∆c‖H3,0(ΩT ).

Note the first constant may blow up as T → 0, and the extensions in time have been used to
guarantee this does not happen to the coefficient of 1

k
.

Remark 5.3. In the previous theorem, we were unable to directly bootstrap to higher regularity
and had to re-do the fixed point argument first used to gain a strong solution. This is because
c ∈ H4,1(ΩT ) is not sufficient to guarantee R(c,∆c) ∈ H3/2,3/8(ΣT ). However, we will see that
c ∈ H5,1+1/4(ΩT ) is sufficient to guarantee R(c,∆c) ∈ H5/2,5/8(ΣT ).

We now prove the next step in regularity, inclusion of the solution in H6,1+1/2(ΩT ).

Theorem 5.4. Suppose Ω ⊂ R2 is an open bounded smooth domain. Further suppose f and
R satisfy (5.1) and (5.2). There is λ(R,Ω) > 0 such that if c0 ∈ H4(Ω) such that ∂νc0 = 0,
∂ν(∆c0) = R(c0,∆c0) and ‖∇2c0‖L2(Ω) ≤ λ, then there is T > 0 such that a solution of the
truncated CHR model (4.4) exists on the domain ΩT satisfying the estimate

‖c‖H6,1+1/2(Ω) ≤ C(f, c0, R,Ω, T ).

Proof. Let λ > 0 be as in Theorem 5.2. By the previous theorem, we have a solution of the
truncated CHR model (4.4) given by c ∈ H5,1+1/4(ΩT ). We show that R(c,∆c) ∈ H3,3/4(ΩT ),
which will imply that R(c,∆c) ∈ H5/2,5/8(ΣT ) (see Theorem 2.14). As R is Lipschitz, making
use of Proposition 2.15 and Theorem 5.2, it is straightforward to show that

‖R(c,∆c)‖H0,3/4(ΩT ) ≤ C(R,Ω)
(
‖c‖H0,3/4(ΩT ) + ‖∆c‖H0,3/4(ΩT ) + 1

)
≤ C(f, c0,R,Ω, T ).

Thus it remains to bound the third derivative of R(c,∆c). Looking to (5.6), we see that the
difficult terms which will need bounded in H0,0(ΩT ) are ∂2

i (∆c)∂i(∆c) and (∂i∆c)
3; using Young’s

inequality, we reduce this to consideration of the terms (∂2
i (∆c))

3/2 and (∂i∆c)
3. The Gagliardo-

Nirenberg inequality (Theorem 2.5) provides the estimates for t-a.e. in (0, T )

‖∂2
i (∆c)‖L3(Ω) ≤C(Ω)‖∂i(∆c)‖2/3

H2(Ω)‖∂i(∆c)‖
1/3

L2(Ω),

‖∂i∆c‖L6(Ω) ≤C(Ω)‖∂i(∆c)‖1/3

H2(Ω)‖∂i(∆c)‖
2/3

L2(Ω),

which in turn by Theorem 5.2 and H5,1+1/4(ΩT ) ↪→ BUC(0, T ;H3(Ω)) [45] shows

‖(∂2
i (∆c))

3/2‖H0,0(ΩT ) + ‖(∂i(∆c))3‖H0,0(ΩT ) ≤C(Ω)(‖∇3c‖2
L∞(0,T ;L2(Ω)) + 1)‖c‖H5,0(ΩT )

≤C(f, c0,R,Ω, T ).
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Combining the above calculation with the analogous calculation for the bulk data, we have

‖R(c,∆c)‖H5/2,5/8(ΣT ) + ‖(∆f ′)α(c)‖H2,1/2(ΩT ) ≤ C(f, c0,R,Ω, T ).

To apply the regularity Theorem 6.7 (with k = 2), we must make sure that the compatibility
condition is satisfied (i.e., β(0) = ∂ν(∆c0)). To see that this is the case, we again note that c ∈
H5,1+1/4(ΩT ) implies c ∈ BUC(0, T ;H3(Ω)) ↪→ (c,∆c) ∈ BUC(0, T ; [H1/2(Γ)]2). Consequently,

R(c,∆c)(·, 0) = R(c(·, 0),∆c(·, 0)) = R(c0,∆c0) = ∂ν(∆c0), (5.18)

verifying the compatibility condition.

To understand the utility of a solution in H6,1+1/2(ΩT ), we have the following lemma.

Lemma 5.5. H6,1+1/2(ΩT ) continuously embeds into BUC(0, T ;H4(Ω)).

Proof. This is a consequence of Theorem 3.1 in [45], which holds for noninteger derivatives.

We now have sufficient power to prove existence of a solution to the CHR model with expo-
nential boundary conditions for sufficiently small intervals of time.

Proof of Theorem 1.8. This is proof is mainly a matter of choosing truncations. As c0 ∈ H4(Ω),
‖c0‖C2(Ω) =: α <∞. We can construct functions R̃ and f̃ such that R̃ = R on B(0, α + 1) and

f̃ = f on [ε/2, 1− ε/2] and the hypotheses of Theorem 5.4 are satisfied. Consider the PDE
∂tc+ ∆2c = (∆f̃)α+1(c) in ΩT ,

∂νc = 0 on ΣT ,

∂ν(∆c) = R̃(c,∆c) on ΣT ,

c(0) = c0 in Ω,

for which there is a solution c ∈ H6,1+1/2(ΩT0) for some T0 > 0 by Theorem 5.4. By Lemma
5.5 and the Sobolev-Gagliardo-Nirenberg and Morrey embedding theorems in dimension 2,
c ∈ C0([0, T ];C2,a(Ω)) for some a > 0. By continuity, there is some interval [0, T ] for which
R̃(c,∆c) = R(c,∆c) and (∆f̃)α+1(c) = ∆f(c), proving the theorem.

Remark 5.6. Lastly, we would like to make sure we have proven something which is not trivially
true. Explicitly, we claim there are initial conditions which satisfy the hypothesis of Theorem
1.8. Recall, as in Singh et. al. [58], by (1.6) and (4.2), we have that

R(c,∆c) = −(Rins −Rext) = kextc exp(β(µ− µe))− kins exp(β(µe − µ)),

where all constants kext, kins, β, µe are positive. Consider the case of a constant c0 ∈ (0, 1),
then we have

R(c0,∆c0) = −R(c0, f
′(c0)) = kextc0 exp(β(f ′(c0)− µe))− kins exp(β(µe − f ′(c0))).

Since lim
z→0

f ′(z) = −∞ and lim
z→1

f ′(z) =∞, it follows that

lim
c0→0
R(c0,∆c0) = −∞, lim

c0→1
R(c0,∆c0) =∞.

By the intermediate value theorem, there is c0 ∈ (0, 1) such that R(c0, µ0) = 0. It then follows
that c0 is an admissible condition for Theorem 1.8 as ‖∇2c0‖L2(Ω) = 0 ≤ λ and ∂ν(∆c0) = 0 =
R(c0, µ0). Considering sufficiently small perturbations of c0, we may find other admissible initial
conditions.

Remark 5.7. In Theorem 1.8, the method of proof can also account for the case in which the
initial chemical potential is small, i.e. ‖ −∆c0 + f ′(c0)‖L2(Ω) ≤ λ. However, we do not know if
this class of admissible functions is non-empty.
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6 Appendix

The purpose of this appendix is to develop a relatively self contained presentation for regularity of
the PDE (6.1) below. The first two results show how gradient flows provide regularity in the case
of weak data, and then in the case of L2 data. It was originally our desire to use interpolation
theorems to obtain regularity for the case of intermediate data in the space H4+k,1+k/4(ΩT ).
However, this approach demands a little too much of an appendix (see Remark 6.8), and we
refer to a classical result of Lions and Magenes [46].

We analyze the PDE 

∂tc− div(Λ∇µ) = g in ΩT ,

− div(Λ∇c) = µ in ΩT ,

(Λ∇c) · ν = 0 on ΣT ,

(Λ∇µ) · ν = 0 on ΣT ,

c(0) = c0 in Ω,

(6.1)

for Λ ∈ C∞(Ω̄,Pos(N)) with data g and c0. Note that

λ1(x)‖y‖2 ≤ (Λ(x)y) · y ≤ λN(x)‖y‖2, x ∈ Ω̄, y ∈ RN ,

where λ1(x) and λN(x) are the smallest and largest eigenvalues of Λ(x), respectively. We further
remark that we only use Λ = I in the previous sections, but including this generality here does
not create additional complications.

Let us now make clear by what we mean by a solution. First, define the Hilbert space
V := {w ∈ H1(Ω) : −

∫
Ω
w = 0}, with inner product

(w, v)V :=

∫
Ω

(∇w,∇v)Λ dx, (6.2)

where for vectors x, y ∈ RN

(x, y)Λ := (Λx) · y.
Note that ‖w‖V is equivalent to the standard H1 norm by (6.2) the Poincaré inequality. For any
element L ∈ V ∗, by the Riesz representation theorem, we have that 〈L,w〉V ∗,V =

∫
Ω

(∇zL,∇w)Λ

for some zL ∈ V ; i.e., zL is a weak solution of the Neumann problem{
− div(Λ∇w) = L in Ω,

Λ∇w · ν = 0 on Γ.
(6.3)

Furthermore,
‖zL‖V = ‖L‖V ∗ . (6.4)

We also have the following result on regularity of zL. This is a more general case of the estimate
in Theorem 2.4.

Lemma 6.1. [39] Let Ω be an open, bounded set with Ck+2 boundary. Suppose L ∈ Hk(Ω) with∫
Ω
Ldx = 0, Λ ∈ C∞(Ω̄,Pos(N)), and zL is a weak solution of the Neumann problem (6.3).

Then
‖zL‖Hk+2(Ω) ≤ C‖L‖Hk(Ω).

Assuming g ∈ L2(0, T ;V ∗), we may define zg ∈ L2(0, T ;V ) pointwise in t by the aforemen-
tioned isomorphism. Consequently, we may rewrite (6.1) as

∂tc− div(Λ∇µ) = 0 in ΩT ,

− div(Λ∇c)− zg = µ in ΩT ,

(Λ∇c) · ν = 0 on ΣT ,

(Λ∇µ) · ν = 0 on ΣT ,

c(0) = c0 on Ω.
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This motivates our definition.

Definition. We say that c is a weak solution of (6.1) in ΩT if

c ∈ L2(0, T ;H3(Ω) ∩ V ) ∩ C([0, T ), L2(Ω)),

∂tc ∈ L2(0, T ;V ∗),

c(0) = c0 ∈ V,
(6.5)

and for t-a.e. and ξ ∈ V ,

〈∂tc(t), ξ〉V ∗,V +

∫
Ω

(∇µ(t),∇ξ)Λ dx = 0,

where for t-a.e. µ(t) ∈ H1(Ω) ⊂ L2(Ω) is defined by duality as

(µ(t), ξ)L2(Ω) :=

∫
Ω

((∇c(t),∇ξ)Λ − zg(t)ξ) dx, (6.6)

which holds for all ξ ∈ H1(Ω).

We proceed in stages of increasing regularity of the data.

Theorem 6.2. Let Ω ⊂ RN be an open, bounded set with boundary of class C3. Let T > 0,
Λ ∈ C∞(Ω̄,Pos(N)), g ∈ L2(0, T ;V ∗), and c0 ∈ V. Then there exists a unique weak solution c
to (6.1) satisfying the following bound

‖c‖L2(0,T ;H3(Ω)) + ‖∂tc‖L2(0,T ;V ∗) ≤ C
(
‖c0‖V + ‖g‖L2(0,T ;V ∗)

)
for some constant C = C(Λ,Ω) > 0.

Proof. Step 1: Minimizing movements scheme. We construct a solution via the method of
minimizing movements. For n ∈ N, we partition our time interval (0, T ) into n equal size steps
of length τ = T/n and recursively define the finite sequence {ciτ}ni=0 in V as follows:

ciτ = argmin
c∈V

{
1

2τ
‖c− ci−1

τ ‖2
V ∗ +

∫
Ω

(
1

2
〈∇c,∇c〉Λ − zgiτ c

)
dx

}
, (6.7)

where c0
τ := c0,

giτ := −
∫ iτ

(i−1)τ

g(t) dt, (6.8)

and we have implicitly used the embedding of V in L2(Ω) ⊂ V ∗. Note that a minimizer exists as
the functional being minimized is coercive and lower semicontinuous with respect to the weak
topology of V . To see the lower semicontinuity, note that ‖ · ‖V ∗ is lower semi-continuous with
respect to the weak topology of V as the inclusion i : V → L2(Ω) is compact and ‖ · ‖V ∗ is
continuous with respect to the strong topology on L2(Ω).
Step 2: “Discrete” Euler-Lagrange equations. We now compute the “discrete” Euler-
Lagrange Equations associated with the minimzation problem (6.7). Since ξ 7→ zξ is linear,
using (6.2), (6.3), and (6.4), we can compute the Frechet derivative of the norm in V ∗ :

lim
t→0

‖v + tw‖2
V ∗ − ‖v‖2

V ∗

2t
= lim

t→0

1

2t

∫
Ω

(
(∇zv+tw,∇zv+tw)Λ − (∇zv,∇zv)Λ

)
dx

= lim
t→0

∫
Ω

(
(∇zw,∇zv)Λ +

t

2
(∇zw,∇zw)Λ

)
dx

=

∫
Ω

(∇zw,∇zv)Λ dx = 〈v, zw〉V ∗,V .
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Consequently, the “discrete” Euler-Lagrange equation for a minimizer is

1

τ
〈ciτ − ci−1

τ , zw〉V ∗,V +

∫
Ω

(
(∇ciτ ,∇w)Λ − zgiτw

)
dx = 0, (6.9)

which holds for all w ∈ V .
Step 3: Energy estimates and convergence. Letting w = ciτ − ci−1

τ be the test function in
(6.9), we find that

1

τ
‖ciτ − ci−1

τ ‖2
V ∗ +

∫
Ω

(
(∇ciτ ,∇(ciτ − ci−1

τ ))Λ − zgiτ (c
i
τ − ci−1

τ )
)
dx = 0.

But using the representation of ciτ − ci−1
τ in V ∗, we rewrite this as

1

τ
‖ciτ − ci−1

τ ‖2
V ∗ +

∫
Ω

(
(∇ciτ ,∇(ciτ − ci−1

τ ))Λ − (∇zgiτ ,∇zciτ−ci−1
τ

)Λ

)
dx = 0.

Applying the Cauchy-Schwarz inequality, we compute∫
Ω

(∇zgiτ ,∇zciτ−ci−1
τ

)Λ dx ≤ ‖zgiτ‖V ‖zciτ−ci−1
τ
‖V

= ‖giτ‖V ∗‖ciτ − ci−1
τ ‖V ∗

≤ τ

2
‖giτ‖2

V ∗ +
1

2τ
‖ciτ − ci−1

τ ‖2
V ∗ .

Similarly, ∫
Ω

(∇ciτ ,∇ci−1
τ )Λ dx ≤

1

2

∫
Ω

(∇ciτ ,∇ciτ )Λ dx+
1

2

∫
Ω

(∇ci−1
τ ,∇ci−1

τ )Λ dx.

With this, we obtain the following energy estimate:

1

2τ
‖ciτ − ci−1

τ ‖2
V ∗ +

1

2

∫
Ω

(∇ciτ ,∇ciτ )Λ dx ≤ τ

2
‖giτ‖2

V ∗ +
1

2

∫
Ω

(∇ci−1
τ ,∇ci−1

τ )Λ dx. (6.10)

Let ĉτ is the linear interpolant and cτ is the left continuous step function associated with the
sequence {ciτ}ni=0 as in (3.14) and (3.12), respectively. Likewise we define gτ to be the left
continuous step function,

gτ (t) := giτ t ∈ ((i− 1)τ, iτ ], i = 0, . . . , n− 1. (6.11)

Let k be a positive integer less than or equal to n. From (6.8) and Jensen’s inequality, we have

‖gτ‖2
L2(0,kτ ;V ∗) =

k∑
i=1

τ

∥∥∥∥−∫ iτ

(i−1)τ

g(t) dt

∥∥∥∥2

V ∗

≤
k∑
i=1

∫ iτ

(i−1)τ

‖g(t)‖2
V ∗ dt = ‖g‖2

L2(0,kτ ;V ∗). (6.12)

Using the above bound, recalling (6.2), and that ∂tĉτ (t) = ciτ−c
i−1
τ

τ
for t ∈ ((i− 1)τ, iτ), we sum

inequality (6.10) over i = 1, . . . , k to find

‖∂tĉτ‖2
L2(0,kτ ;V ∗) + ‖ckτ‖2

V ≤ ‖g‖2
L2(0,kτ ;V ∗) + ‖c0‖2

V .

This bound implies the control

‖∂tĉτ‖2
L2(0,T ;V ∗) + ‖cτ‖2

L∞(0,T ;V ) ≤ ‖g‖2
L2(0,T ;V ∗) + ‖c0‖2

V . (6.13)
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We apply the Aubin-Lions-Simon compactness theorem [57], with the evolution triple (V, L2, V ∗),
to find that ĉτ converges in L2(0, T ;L2(Ω)) as τ → 0 to some c ∈ L2(0, T ;V ). We would also like
to consider convergence of the left continuous step functions cτ and hence compute the difference

‖ĉτ (t2)− ĉτ (t1)‖V ∗ ≤
∫ t2

t1

‖∂tĉτ‖V ∗ dt ≤ C(t2 − t1)1/2.

By Corollary 2.6 (which holds with H1(Ω)∗ replaced by V ∗) and (6.13),

‖ĉτ (t2)− ĉτ (t1)‖L2(Ω) ≤C
(
‖∇(ĉτ (t2)− ĉτ (t1))‖1/2

L2(Ω)‖ĉτ (t2)− ĉτ (t1)‖1/2
V ∗

+ ‖ĉτ (t2)− ĉτ (t1)‖V ∗
)

≤C max{(t2 − t1)1/4, (t2 − t1)1/2},

(6.14)

which implies convergence of cτ to c in L2(0, T ;L2(Ω)) by a direct application of the triangle
inequality, and consequently cτ ⇀ c in L2(0, T ;V ). Lastly, we note it is clear that ∂tĉτ ⇀ ∂tc
and (6.13) holds with ĉτ and cτ replaced by c.
Step 4: c is the desired solution. Now, let {wk}k∈N be dense in V. We then integrate the
“discrete” Euler-Lagrange equation (6.9) in time to find∫ t2

t1

〈∂tcτ , zwk〉V ∗,V dt+

∫ t2

t1

(∫
Ω

(
(∇c−τ ,∇wk)Λ − zgτwk

)
dx

)
dt = 0. (6.15)

We would like to show that zgτ → zg in L2(0, T ;L2(Ω)). By the Lebesgue differentiation
theorem [33], gτ → g in V ∗ for t-a.e. in (0, T ). Using (6.12), Fatou’s lemma, and the uniform
convexity of a Hilbert space [13], we conclude gτ → g in L2(0, T ;V ∗). Consequently,

‖zgτ − zg‖L2(0,T ;H1(Ω)) ≤C‖gτ − g‖L2(0,T ;V ∗) → 0,

where we have used (6.4) and linearity of z.
Passing τ → 0 in (6.15) and using the various modes of convergence, we have∫ t2

t1

〈∂tc, zwk〉V ∗,V dt+

∫ t2

t1

(∫
Ω

((∇c,∇wk)Λ − zgwk) dx
)
dt = 0

for all t1, t2 ∈ [0, T ]. Using Lebesgue points, we find for all k ∈ N and t-a.e.

− 〈∂tc, zwk〉V ∗,V =

∫
Ω

((∇c,∇wk)Λ − zgwk) dx. (6.16)

By density the above equation holds for all w ∈ V. Using duality, this implies

−
∫

Ω

wz∂tc dx =− 〈w, z∂tc〉V ∗,V = −〈∂tc, zw〉V ∗,V =

∫
Ω

((∇c,∇w)Λ − zgw) dx. (6.17)

Since ∂tc ∈ L2(0, T ;V ∗) by (6.13), the function z∂tc belongs to L2(0, T ;H1(Ω)) by (6.3) and
(6.4). Similarly zg ∈ L2(0, T ;H1(Ω)); hence Lemma 6.1 and (6.17) imply c ∈ L2(0, T ;H3(Ω)).

Furthermore, if we define µ := −z∂tc, by (6.17) we have that∫
Ω

((∇c,∇w)Λ − zgw) dx =

∫
Ω

µw dx, (6.18)

and by (6.3), ∫
Ω

(∇µ,∇w)Λ dx = −
∫

Ω

(∇z∂tc,∇w)Λ dx = 〈∂tc, w〉V ∗,V . (6.19)
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Noting that the initial condition c(0) = c0 and continuity are consequences of (6.14), we have c
is a weak solution of (6.1).
Step 5: Uniqueness. This follows from an energy argument as in the proof of uniqueness for
a solution of the heat equation. Suppose c1 and c2 solve (6.1). Then c := c1 − c2 solves (6.1)
with 0 data. Testing the weak formulation of c with w = c, for t-a.e. we have

〈∂tc, c〉V ∗,V =

∫
Ω

(∇(div(Λc)),∇c)Λ dx,

which Theorem II.5.12 of [12] (which shows 2〈∂tc, c〉V ∗,V = ∂t‖c‖2
L2(Ω)) and integrating by parts

imply

∂t

(
1

2
‖c‖2

L2(Ω)

)
+

∫
Ω

(div(Λc))2 dx = 0,

for t-a.e. Thus ‖c‖2
L2(Ω) satisfies the differential inequality ∂t(‖c‖2

L2(Ω)) ≤ 0 with ‖c(0)‖2
L2(Ω) = 0,

which implies c = 0 as desired.

We would now like to extend the above analysis to more regular data, and do so in the
following theorem.

Theorem 6.3. Let Ω be an open, bounded set with C4 boundary. Let T > 0, Λ ∈ C∞(Ω̄,Pos(N)),
g ∈ L2(0, T ;L2(Ω)), and c0 ∈ H2(Ω) with (Λ∇c0) · ν = 0 on Γ. Then there exists a unique solu-
tion to (6.1) given by c ∈ H4,1(ΩT ) satisfying the following bound

‖c‖H4,1(ΩT ) + ‖c‖L∞(0,T ;H2(Ω)) ≤ C
(
‖c0‖H2(Ω) + ‖g‖L2(0,T ;L2(Ω))

)
(6.20)

for some constant C = C(Λ,Ω) > 0.

Proof. Note that up to a shift by a constant function, we can assume that c0 ∈ V. We highlight
the parts of the analysis differing from the argument in the proof of Theorem 6.2. Making
use of the Neumann boundary conditions, we integrate by parts the “discrete” Euler-Lagrange
equations (see also (6.18) and (6.19)) derived in the previous proof and use a density argument
to conclude for all w ∈ V and t-a.e.

〈∂tĉτ , w〉V ∗,V =

∫
Ω

(
∇(div(Λ∇c−τ ) + zgτ ),∇w

)
Λ
dx.

We compute for t ∈ ((i− 1)τ, iτ). Letting w = ∂tĉτ (t) = ciτ−c
i−1
τ

τ
and recalling properties of the

isomorphism zL for L ∈ L2(Ω) provided by (6.3), we have

‖∂tĉτ‖2
L2(Ω) =

∫
Ω

(
∇(div(Λ∇ciτ ) + zgτ ),∇

(ciτ − ci−1
τ

τ

))
Λ

dx

=

∫
Ω

(
−div(Λ∇ciτ )div

(
Λ
(ciτ − ci−1

τ

τ

))
− div(Λ∇zgτ )(∂tĉτ )

)
dx

≤
∫

Ω

−div(Λ∇ciτ )div
(

Λ
(ciτ − ci−1

τ

τ

))
dx+

1

2
‖div(Λ∇zgτ )‖2

L2(Ω) +
1

2
‖∂tĉτ‖2

L2(Ω)

≤
∫

Ω

−div(Λ∇ciτ )div
(

Λ
(ciτ − ci−1

τ

τ

))
dx+

1

2
‖gτ‖2

L2(Ω) +
1

2
‖∂tĉτ‖2

L2(Ω).

Note it was in the second equality, when i = 1, that we used the hypothesis (Λ∇c0) · ν = 0.
Multiplying the previous equation by τ (equivalently integrating in time over ((i − 1)τ, iτ)),
utilizing Cauchy’s inequality, and rearranging we find

1

2
‖∂tĉτ‖2

L2((i−1)τ,iτ ;L2(Ω)) +
1

2

∫
Ω

(div(Λ∇ciτ ))2 ≤1

2

∫
Ω

(div(Λ∇ci−1
τ ))2 +

1

2
‖gτ‖2

L2((i−1)τ,iτ ;L2(Ω))

44



Summing the above inequality over i,

‖∂tĉτ‖2
L2(0,T ;L2(Ω)) + ‖div(Λ∇cτ )‖2

L∞(0,T ;L2(Ω)) ≤‖div(Λ∇c0)‖2
L2(Ω) + ‖gτ‖2

L2(0,T ;L2(Ω))

≤‖div(Λ∇c0)‖2
L2(Ω) + ‖g‖2

L2(0,T ;L2(Ω)).

Thus ∂tĉτ converges weakly in L2(0, T ;L2(Ω)), which allows us to conclude that ∂tc ∈
L2(0, T ;L2(Ω)) by uniqueness of limits. Consequently by Lemma 6.1, z∂tc ∈ L2(0, T ;H2(Ω))
for t-a.e., and we use elliptic regularity once again conclude the bound (6.20).

Remark 6.4. Following the above analysis, ∂tĉτ ∈ L2(0, T ;L2(Ω)) for the approximate solutions.
Looking at (6.17), we have ĉτ ∈ L2(0, T ;H4(Ω)). The norms associated with the aforementioned
inclusions are uniformly bounded. Consequently, we may apply the compactness theorem of
Aubin-Lions-Simon [57], with H4(Ω) ↪→↪→ H3(Ω) ↪→ L2(Ω), to conclude (up to a subsequence)
ĉτ → c ∈ L2(0, T ;H3(Ω)).

The above results are nearly sufficient to tackle the problems of strong solutions in Section
4. It remains to extend to the case of inhomogeneous boundary conditions, but this is achieved
with the aid of liftings from Theorem 2.14. For consideration of regular solutions in Section 5,
we will also need results for higher regularity data. We specifically consider (6.1) with Λ = I
and inhomogeneous boundary conditions:

∂tc+ ∆2c = g in ΩT ,

∂νc = α on ΣT ,

∂ν(∆c) = β on ΣT ,

c(0) = c0 in Ω.

(6.21)

For regularity and existence, we have the subsequent theorem. However, let us first make an
two important remarks.

Remark 6.5. The following theorem holds for any choice of norms on the anisotropic Sobolev
spaces, so long as you are willing to change the constant C(Ω, T ). In applications within this
paper, it will be important to control exactly how this constant depends on T, so we will often
extend our considerations to a domain with T = 1, and control the dependence on T by other
means.

Remark 6.6. We remark that the compatibility conditions for the initial data necessarily arise
due to the embedding H4+k,1+k/4(ΩT ) ↪→ BUC(0, T ;H2+k(Ω)).

Theorem 6.7. Let Ω ⊂ RN be an open, bounded set with smooth boundary and k ∈ {0, 1, 2}.
Suppose g ∈ Hk,k/4(ΩT ), c0 ∈ Hk+2(Ω), α ∈ Hµ1,λ1(ΣT ), and β ∈ Hµ3,λ3(ΣT ), where µj and
λj are defined in (2.26) with r = 4 + k and s = 1 + k/4. We further assume the compatibility
condition ∂νc0 = α(·, 0) on Γ. If k = 2, we additionally suppose ∂ν(∆c0) = β(·, 0) on Γ. Then
there is a unique solution of the PDE (6.21) given by c ∈ H4+k,1+k/4(ΩT ) satisfying the bound

‖c‖H4+k,1+k/4(ΩT ) ≤ C(Ω, T )
(
‖c0‖Hk+2(Ω) + ‖g‖Hk,k/4(ΩT ) + ‖α‖Hµ1,λ1 (ΣT ) + ‖β‖Hµ3,λ3 (ΣT )

)
.

(6.22)

Proof. This theorem is a case of Theorem 5.3 of Chapter 4 in [46]. We only prove the special
case k = 0 and α = 0, which is the extent of this theorem’s use in Section 4.

We reduce to the case of homogeneous boundary conditions by lifting the boundary condition.
Looking to Theorem 2.14, this is a matter of writing ∂ν(∆w) in terms of ∂3

νw. Consider smooth
γ ∈ C∞(Ω̄) such that γ = 0 on Γ. Let Pr(x) := x − d(x)∇d(x) be the (locally well-defined)
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projection of x onto Γ, where d is the signed distance from Γ (negative on the interior of Ω) [10].
We have that

γ(Pr(x)) = 0.

We then compute the ith derivative by the chain rule:

0 = ∂i(γ(Pr(x))) = 〈∇γ(Pr(x)), ei − ∂id(x)∇d(x)− d(x)∇(∂id(x))〉.
Consequently,

∂iγ(Pr(x)) = 〈∇γ(Pr(x)), ∂id(x)∇d(x) + d(x)∇(∂id(x))〉.
We compute the derivative again with respect to the ith direction:

〈∇∂iγ(Pr(x)), ei − ∂id(x)∇d(x)− d(x)∇(∂id(x))〉
=〈∇2γ(Pr(x))(ei − ∂id(x)∇d(x)− d(x)∇(∂id(x))), ∂id(x)∇d(x) + d(x)∇(∂id(x))〉

+ 〈∇γ(Pr(x)), ∂i(∂id(x)∇d(x) + d(x)∇(∂id(x)))〉
Choosing x ∈ Γ and recalling ∇d(x) = ν [10] and d(x) = 0, we have

∂2
i γ(x) = 2〈∇∂iγ(x), ∂id(x)∇d(x)〉 − (∂id(x))2〈∇2γ(x)∇d(x),∇d(x)〉

+ 〈∇γ(x), ∂2
i d(x)∇d(x) + 2∂id(x)∇(∂id(x))〉

= 2 ∂id(x)〈∇∂iγ(x),∇d(x)〉 − (∂id(x))2∂2
νγ(x)

+ 〈∇γ(x), ∂2
i d(x)∇d(x) + 2∂id(x)∇(∂id(x))〉.

Summing over i, we have

∆γ(x) = ∂2
νγ(x) + ∂νγ(x) + 2〈∇γ(x), ν∇ν〉 = ∂2

νγ(x) + ∂νγ(x),

where we have used that ∇d(x) ∈ ker(∇2d(x)) [10]. Consequently, for w satisfying the boundary
condition ∂νw = 0, for x ∈ Γ we have that

∆(∂νw) = ∂2
ν(∂νw(x)) + ∂ν(∂νw(x)) = ∂3

νw(x) + ∂2
νw(x).

Note we have to be careful as to why ∂ν∂ν = ∂2
ν . Then using product rule, we have

∆(∂νw) = ∂ν∆w(x) +∇2w(x) : ∇2d(x) +∇(∆d)(x) · ∇w(x).

Consequently,

∂ν∆w(x) = ∂3
νw(x) + ∂2

νw(x)−∇2w(x) : ∇2d(x)−∇(∆d)(x) · ∇w(x). (6.23)

We note this formula holds in the trace sense for any w ∈ H4(Ω) as w can be approximated
by smooth functions wi satisfying ∂νwi = 0. Such wi can be found by considering the elliptic
PDE ∆wi = fi, ∂νwi = 0 where fi belongs to C∞(Ω̄) and fi → ∆w in H2(Ω). Furthermore, for
smooth w satisfying w = ∂νw = ∂2

νw = 0, it follows that ∇w = 0 and ∇2w = 0 on Γ, so these
equalities also hold in the trace sense for any w ∈ H3(Ω) (to approximate such w by smooth
function with smooth wi satisfying wi = ∂νwi = ∂2

νwi = 0, see the space H3
0 (Ω) [45]).

We then apply Theorem 2.14 to find w ∈ H4,1(ΩT ) satisfying the bound

‖w‖H4,1(ΩT ) ≤ C(Ω, T )‖β‖Hµ3,λ3 (ΣT ) (6.24)

such that w = ∂νw = ∂2
νw = 0 and ∂3

νw = β on Γ. By (6.23) and the comment following, we
have ∂ν∆w = β. Considering the trace of w in time, it follows w(0) ∈ H2(Ω) with ∂νw(0) = 0
(see Theorem 3.1 of [45]). Let c̄ be a strong solution of

∂tc̄+ ∆2c̄ = g − (∂t + ∆2)w in ΩT ,

∂ν c̄ = 0 on ΣT ,

∂ν(∆c̄) = 0 on ΣT ,

c̄(0) = c0 − w(0) in Ω,

(6.25)

as guaranteed by Theorem 6.3. Then c := c̄+w solves (6.21), and satisfies the bound (6.22) by
(6.24) and (6.20).
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Remark 6.8. If g ∈ H4,1(ΩT ) and c0 ∈ H6(Ω), and we wish to conclude c ∈ H8,2(ΩT ), we
must impose the compatibility condition ∂ν(∆

2c0) = ∂νg(·, 0) on Γ, which is well defined by a
trace theorem of [45]. To approach intermediate regularity via interpolation, we can conveniently
decouple the initial condition from the bulk data. When g = 0, interpolation of the map c0 7→ c
can be done with the aid of Grisvard’s interpolation results for Sobolev spaces with boundary
conditions defined by normal operators [38]. However, for the map g 7→ c, we must have a keen
understanding of how H0,0(ΩT ) and {g ∈ H4,1(ΩT ) : ∂νg(·, 0) = 0} interpolate. Though we may
intuitively speculate as to what will be the result of this interpolation, such an undertaking is
outside of the scope of an appendix.
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