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A B S T R A C T

In this paper, we study the fully developed gravity-driven flow of granular materials between two inclined
plates. We assume that the granular materials can be represented by a modified form of the second grade fluid
where the viscosity depends on the shear rate and volume fraction and the normal stress coefficients depend on
the volume fraction. We also propose a new isotropic (spherical) part of the stress tensor which can be related to
the compactness of the (rigid) particles. This new term ensures that the rigid solid particles cannot be compacted
beyond a point, namely when the volume fraction has reached the critical/maximum packing value. The
numerical results indicate that the newly proposed stress tensor has obvious and physically meaningful effects on
both the velocity and the volume fraction fields.

1. Introduction

Granular materials are discrete solid (macroscopic) particles of
different shapes and sizes with interstices filled with a fluid. Granular
materials occur in many natural processes, such as the flow of sand,
snow and ice. In industrial applications, water and granular materials
(grains, powders, coals, etc. [1]) are the first and the second mostly
used materials. A granular medium does not behave as a classical solid
continuum since it deforms or takes the shape of the vessel containing
it; it is not exactly a liquid, even though it can flow, for it can be piled
into heaps; and it is not a gas since it will not expand to fill the
container. In many ways the bulk solids resemble non-Newtonian
(non-linear) fluids [2]. The behavior of granular materials, in general,
is determined by interparticle cohesion, friction, collisions, etc [3]. A
granular medium includes granular powders and granular solids with
components ranging in size from about 10 µm up to 3 mm. According
to many researchers, a powder is composed of particles up to 100 µm
(diameter) with further subdivision into ultrafine (0.1–1.0 µm), super-
fine (1–10 µm), or granular (10–100 µm) particles, whereas a granular
solid consists of particles ranging from about 100 to 3000 µm [Brown
and Richards [4]].

Granular materials present a multi-disciplinary field; they can be
studied from different perspectives. For example, in order to character-
ize their rheological behavior, one can study the mechanics (or physics)
of these complex materials by performing experiments, which are

oftentimes very complicated. Recent review articles by Savage [5],
Hutter and Rajagopal [6], and de Gennes [7], and books by Mehta [8],
Duran [9], and Antony et al. [10] point to many of the important issues
in modeling granular materials. From a theoretical perspective, there
are two distinct, yet related methods that can be used: the statistical
theories and the continuum theories. There are many recent review
articles discussing the statistical theories [Herrmann [11], Herrmann
and Luding [12]], and the kinetic theories as applied to granular
materials [Goldhirsch [13] and Boyle and Massoudi [14]].

In this paper, we model the granular materials as a single phase
continuum, ignoring the effects of the interstitial fluid. However, it
should be pointed out that in many applications, the effect of the
interstitial fluid is important and the problem should be studied using a
multi-component method [see Rajagopal and Tao [15], Massoudi [16]].
In Section 2, we will present the governing equations. In Section 3, we
will discuss the constitutive equations. In Section 4, we introduce the
geometry and kinematics of the problem. In Section 5, we present
numerical results through a parametric study of the non-linear ordinary
differential equations for the gravity driven flow of the granular
materials between two inclined plates.

2. Governing equations

We model the granular materials as a single component non-linear
fluid. That is, we ignore the presence of the interstitial fluid and assume
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that the assembly of the densely-packed particles form a continuum. Let
X denote the position of this continous body. The motion can be
represented as

x χ X t= ( , ) (1)

while the kinematical quantities associated with the motion are

v xd
dt

=
(2)
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where v is the velocity field, D is the symmetric part of velocity
gradient, and d

dt
denotes differentiation with respect to time holding X

fixed and superscript ‘T ’ designates the transpose of a tensor. The bulk
density field, ρ, is

ρ ρ ϕ= 0 (4)

where ρ0 is the pure density of granular materials, in the reference
configuration; ϕ is the volume fraction, where ϕ ϕ0≤ < <1max . The
function ϕ is represented as a continuous function of position and
time; in reality, ϕ is either one or zero at any position and at any given
time. That is, in a sense, we have performed a homogenization process
(see Collins [17]) whereby the shape and size of the particles in this
idealized body have disappeared except through the presence of the
volume fraction. For details see Massoudi [18] and Massoudi and
Mehrabadi [19]. In reality, ϕ is never equal to one; its maximum value,
generally designated as the maximum packing fraction, depends on the
shape, size, method of packing, etc.

Having defined the basic kinematical parameters, we now look at
the conservation equations. In the absence of any thermo-chemical and
electro-magnetic effects, the governing equations for the flow of a
single-component material are the conservation equations for mass,
linear momentum, and angular momentum [20]. As we are only
considering a purely mechanical system, the energy equation and the
entropy inequality are not considered.

2.1. Conservation of mass

The conservation of mass is:

vρ
t

div ρ∂
∂

+ ( )=0 (5)

where ∂/∂t is the derivative with respect to time, div is the divergence
operator.

2.2. Conservation of linear momentum

Let T represent the Cauchy stress tensor for the granular materials.
Then the balance of the linear momentum is:

v T bρ d
dt

div ρ= +
(6)

where v vgrad= + ( )v vd
dt t

∂
∂ and b stands for the body force.

2.3. Conservation of angular momentum

T T= T (7)

The above equation implies that in absence of couple stresses the
Cauchy stress tensor is symmetric. The constitutive relation for the
stress tensor need to be specified before any problem can be solved. In
the next section, we will discuss this issue.

3. Constitutive equation: the stress tensor

Most granular materials exhibit two unusual and peculiar charac-
teristics: (i) normal stress differences, and (ii) yield criterion.1 Reynolds
[21] observed that in a bed of closely packed particles, the bed must
expand if a shearing motion is to occur; this occurs in order to increase
the volume of the voids. Reynolds [22] called this phenomenon
‘dilatancy’ and he was able to describe the capillary action in wet sand.
The concept of dilatancy, which in a larger context, is related to the
normal stress differences in non-linear materials, is related the expan-
sion of the void volumes in a packed arrangement when subjected to a
deformation. This can be explained for an idealized case: in a bed of
closely packed spheres, for a shearing motion to occur, for example,
between two flat plates, the bed must expand by increasing its void
volume. Reiner [23,24] used a non-Newtonian model to predict
dilatancy in wet sand [see Massoudi [25,26]]. Perhaps the simplest
constitutive equation which can describe the normal stress effects in
non-linear fluids (related to phenomena such as ‘die-swell’ and ‘rod-
climbing’, which are manifestations of the stresses that develop
orthogonal to planes of shear) is the second grade fluid, or the Rivlin-
Ericksen fluid of grade two [Rivlin and Ericksen [27], Truesdell and
Noll [28]]. This model is a special case of fluids of differential type
[Dunn and Rajagopal [29]]. For a second grade fluid, the Cauchy stress
tensor is given by [30]:

T I A A Ap μ α α=− + + +1 1 2 2 1
2 (8)

where p is the indeterminate part of the stress due to the constraint of
incompressibility, μ is the coefficient of viscosity which may depends
on shear rate, volume fraction, pressure, temperature, etc. [31–33], and
α1 and α2 are material moduli which are commonly referred to as the
normal stress coefficients [34]. The kinematical tensors A1 and A2 are
defined through
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where L is the velocity gradient. The thermodynamics and stability of
fluids of second grade have been studied in detail by Dunn and Fosdick
[35]. They concluded that if the fluid is to be thermodynamically
consistent in the sense that all motions of the fluid meet the Clausius-
Duhem inequality and that the specific Helmholtz free energy be a
minimum in equilibrium, then

μ ≥ 0 (10)a

α ≥01 (10)b

α α+ =01 2 (10)c

It is known that for many non-linear fluids which are assumed to
follow Eq. (8), the experimental values reported for α1 and α2 do not
satisfy the restriction2 of Eqs. (10)b and (10)c. For further details on
this and other relevant issues in fluids of differential type, we refer the
reader to the review article by Dunn and Rajagopal [29]. For some
applications, such as flow of ice or coal slurries, where the fluid is
known to be shear-thinning (or shear-thickening), modified (or general-
ized) forms of the second grade fluid have been proposed [see Man
[36], Massoudi and Vaidya [37], Man and Massoudi [38]].

In this paper, we assume that the (flowing) granular materials can
be modeled as a non-linear fluid (of second grade type) capable of
exhibiting normal stress effects, where the shear viscosity depends on
the volume fraction and the shear rate and the normal stress coefficients

1 In this paper, we do not discuss the yield stress.
2 In an important paper, Fosdick and Rajagopal [47] show that irrespective of whether

α α+1 2 is positive, the fluid is unsuitable if α1 is negative.
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depend on the volume fraction:

T I A A Aβ μ ϕ γ α ϕ α ϕ= + ( , )̇ + ( ) + ( )0 1 1 2 2 1
2

(11)

Here, β0 is the spherical (isotropic part of the) stress tensor (which

includes the pressure), μ is shear the viscosity and Aγ ̇ = 1/2tr( )1
2 is the

shear rate, α1 and α2 are material moduli. For these coefficients we
assume:
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These expressions can be viewed as the Taylor series approximation
for the material parameters [Rajagopal, et al. [39]]. The above
representations ensure that the stress vanishes as ϕ → 0.

In general, β0 is treated as the spherical (the isotropic) part of the
stress tensor which includes terms related to the pressure. In this paper,
we propose that once the volume fraction has reached a critical value,
further compacting, which can be measured as the increase in the local
particles concentration, would lead to an additional term related to the
isotropic spherical stress preventing further increase in the local volume
fraction.3 Therefore, we suggest that β0 can be decomposed into two
parts: one term to account for the mechanism related to the pressure,
while the second term is to account for the compacting of the particles,

⎛
⎝⎜

⎞
⎠⎟β β β ϕ ϕ= + ( )p r0 (13)

Based on our previous studies (Rajagopal and Massoudi [40]), we
assume

β β= <0p 00 (14)

as compression should lead to densification of the materials, see
[40,41].

We further propose that β ϕ( )r can be given by:

β h ϕ C g ϕ= ( ) ( )r r (15)

⎪

⎪
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ϕ ϕ
ϕ ϕ

( ) =
0, <
1, ≥

c
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where ϕc is the critical value of the volume fraction; when ϕ ϕ≥ c the
term βr appears in the equation. The value of ϕc may depend on various
factors, such as the shape and the size distributions of the particles. In
this paper, we assume g ϕ ϕ( )= .Cr is a material parameter related to how
much the particles can be compacted. For very rigid particles, Cr is
large, ensuring that the volume fraction of the granular materials
cannot be larger than ϕc. Furthermore, for ease of numerical calcula-
tions, we replace h ϕ( ) in Eq. (16) with a smooth step function, such that

h ϕ
S ϕ ϕ

( ) = 1
1 + exp ( − 2 ( − ))c (17)

where S is a parameter related to the slope of the step function. For
example, if S is chosen as 3000, then h ϕ h ϕ( −0.001)/ ( )<0.01c c and
h ϕ o( −0.005)~ (10 )c

−13 , therefore βr is negligible when ϕ is close to ϕc.
The viscosity is assumed to be modeled as a Carreau-type fluid

viscosity, where the viscosity depends on the shear rate. When the shear
rate is close to zero, the viscosity approaches a lower limit, μ0; when the
shear rate is close to infinity, the viscosity approaches an upper limit,
μ∞. Following Yeleswarapu [42], we assume μr is given by:

μ μ μ μ kγ
kγ

= + ( − ) 1 + ln(1 + )̇
1 + ̇r ∞ 0 ∞ (18)

where μ0 and μ∞ are the viscosities when the shear rate approaches zero
and infinity, respectively, and k is the shear thinning parameter.
Different types of solid particles can have different functions/expres-
sions for μ0, μ∞ and k.

4. Geometry and the kinematics of the flow

The geometry and the kinematics of the flow are shown in Fig. 1. We
consider a gravity driven flow between two inclined flat plates. This
flow configuration has been studied extensively in the context of non-
linear fluids and granular materials [25,43–45].

The vectorial (expanded) form of the governing equation for the
conservation of linear momentum is:
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As a results of the non-dimensionalization, we obtain the following
non-dimensional parameters:
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where H is a reference length, for example, the distance between the
two plates, and u0 is a reference velocity. It should be noticed that in Eq.
(19) the asterisks have been dropped for simplicity. Among the above
dimensionless numbers, Bp, M1 and M2 are related to the normal stress
coefficients, Br is related to the compactness effect. Bp and Br are always
less than zero, implying that compression should lead to densification
of the granular materials. Fr is the Froude number, k is a parameter
related to the shear-thinning effects, B31 and B32 are related to the
viscous effects (similar to the Reynolds number).

Furthermore, we assume that the flow is steady and fully developed,

v eU Y ϕ ϕ y ρ y ρ= ( ) ; = ( ) = ( )/x 0 (21)

where ex is the unit vector along the x-direction. Using Eq. (21) we
have,

⎡
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2
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(22)

With above equations, the equations for the conservation of mass is
automatically satisfied. In other words, the granular materials are
incompressible in the sense that,

D vtr = div = 0 (23)

Substituting (21) and (23) into (19), the governing equations are
simplified and we obtain the two coupled ordinary differential equa-

3 When the particles are large and heavy, there is a tendency for them to settle under
the action of gravity [48,49]. During the sedimentation process, the volume fraction of
the particles reaches a critical value beyond which the particles cannot be compacted any
further (due to the rigidity of the particles).
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tions.
The momentum equation in the x-direction is:

⎛
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The momentum equation in the y-direction is:
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whereU is the velocity and here we assume b g= , thus b*=1. It is worth
pointing out that the normal stress difference for this problem are,
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Eqs. (24) and (25) need to be solved numerically. We can see that
we need two boundary conditions forU and one boundary condition for
ϕ. In this paper, we use the no-slip velocity condition:

U Y U Y( =1) = ( = − 1)=0 (27)

For volume fraction, ϕ, the appropriate boundary condition may be
given as an average volume fraction given in an integral form:

∫ ϕdY N=
−1

1

(28)

Alternatively, the value of ϕ could be given at Y = − 1:

ϕ Θ Y→ as → − 1 (29)

where Θ is the value of the volume fraction at the boundary. In the next
section, we perform a parametric study for a selected range of the
dimensionless numbers.

5. Results and discussions

In this paper, the system of the non-linear ordinary differential Eqs.
(24) and (25) with the boundary conditions (27) and (28) are solved
numerically using the MATLAB solver bvp4c, which is a collocation
boundary value problem solver [46]. The step size is automatically
adjusted by the solver. The default relative tolerance for the maximum
residue is 0.001. The boundary conditions for the average/bulk volume
fraction is numerically satisfied by using the shooting method.

5.1. The effect of the particle compactness

First, we consider the effect of the newly proposed isotropic
(spherical) part of the stress tensor.

Fig. 2 shows the effect of Br on the velocity and volume fraction
profiles. The granular materials with ‘harder’ solid particles have larger
Br . From the figures, we can see that overall, due to gravity, more
particles accumulate near the bottom plate and the particles concentra-
tion decreases from the bottom plate to the top plate; as a result, the
location of the maximum velocity is closer to the top plate. The shift in
the location of the maximum velocity can be attributed to the dense
particle region causing more resistance to the flow. From the volume
fraction profiles, we can see that as Br increases, the volume fraction
near the bottom plate decreases; when Br is large, for example B =10r ,
the maximum volume fraction near the bottom plate is 0.68 which is
the value of ϕc. We may infer that for granular materials with very rigid
particles, the value of Br should be large, ensuring that the volume
fraction is always below the value of the critical volume fraction ϕc. As
Br increases, the value of the maximum velocity increases. [Recall that
in this paper, the flow is driven by the gravity. Thus, a change in the
velocity is related to the non-uniform distribution of the particles. For a
pressure driven flow, the situation may change].

Fig. 3 shows the effect of another important parameter, namely ϕc,
which represents the critical volume fraction related to the maximum
particle packing, close or above which the granular materials show the
spherical isotropic stress, βr, preventing further compacting. As ϕc
changes, the variation in the flow field becomes significant, especially
for the volume fraction profiles. When ϕc decreases, the volume fraction
near the bottom plate changes dramatically. Furthermore, since the
bulk volume fraction is constant (assumed to be 0.4 in this paper), for
larger values of ϕc, the thickness of the sedimentation region near the
bottom plate becomes smaller. As ϕc increases, the velocity decreases.

Fig. 1. Schematic of the inclined plates.

Fig. 2. The effect of Br on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, M M(2 + ) = 31 2 , B = − 1p , ϕ =0.68c , S = 100, α = 20°,G = 2.5, N = 0.4.
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Fig. 3. The effect of ϕc on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, M M(2 + )=31 2 , B = − 1p , B = − 10r , S = 100, α = 20°,G = 2.5, N = 0.4.

Fig. 4. The effect of M M(2 + )1 2 on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, B = − 1p , B = − 10r , ϕ =0.68c , S = 100, α = 20°, G = 2.5,

N = 0.4.

Fig. 5. The effect of M M(2 + )1 2 on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, B = − 1p , B = − 10r , ϕ =0.68c , S = 100, α = 80°, G = 2.5,

N = 0.4.
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Fig. 6. The effect of B31 and B32 on the velocity profile (left) and the volume fraction profile (right). With k = 10, Re = 1, M M(2 + ) = 31 2 , B = − 1p , B = − 10r , ϕ =0.68c , S = 100, α = 80°,

G = 2.5, N = 0.4.

Fig. 7. The effect ofk on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , M M(2 + ) = 31 2 , B = − 1p , B = − 10r , ϕ =0.68c , S = 100, α = 80°, G = 2.5,

N = 0.4.

Fig. 8. The effect of α on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, M M(2 + ) = 31 2 , B = − 1p , B = − 10r , ϕ =0.68c , S = 100, G = 2.5,

N = 0.4.
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5.2. Normal stress differences and the shear-thinning effects of the viscosity

In our model, the normal stress differences are related to the
parameters M1 and M2. As Fig. 4 indicates, for the range of the
parameters chosen, when α=20° the effect of M M(2 + )1 2 is not very
significant. As M M(2 + )1 2 increases, namely as the effect of the normal
stresses become stronger, the volume fraction near the bottom plate
does not change much. From Eq. (25), we can see that the volume
fraction distribution (along the y-direction) is determined by the
competition among the normal stresses ( M M2 + )1 2 and Bp, the gravity
term (G) and Br . The small variation of the volume fraction profile near
the bottom plate may imply that gravity dominates for the range of the
dimensionless parameters considered in this case. We also see that near
the top plate, when M M(2 + )1 2 increases, more particles seem to move
towards the top plate and therefore the volume fraction increases.
Furthermore, as M M(2 + )1 2 increases the velocity seems to decrease.
Fig. 5 shows the effect of the normal stress differences, when α = 80° (In
Fig. 4, α = 20°). As Fig. 5 shows, the velocity profiles appear to be more
symmetric near the centerline where the effect of M M(2 + )1 2 is more
obvious on both the velocity and the volume fraction profiles. As

M M(2 + )1 2 increases, more particles move towards the plates, and
especially when M M(2 + )=1001 2 , the volume fraction near the plate is
approaching ϕ .c Increasing M M(2 + )1 2 causes a decrease in the velocity,
possibly due to the accumulation of particles near the plates.

Fig. 6(left) indicates that when B31 and B32 are small, namely when
the viscosity is small, the values of the velocity are larger than the case
with higher viscosities (see the cases when B = 131 , B = 132 , and
B = 1. 531 , B = 2032 ). As Fig. 6(right) shows, when B31 and B32 increase,
the volume fraction near the bottom plate decreases. If we look at the
volume fraction profiles when B = 1.531 and B = 2032 , we see that the
maximum volume fraction is smaller than ϕc, which implies fewer
particles have settled down. Near the top plate, when B31 and B32 are
small, the particle concentration is higher the closer we get to the top
plate.

Fig. 7 shows the effect of k, the parameter related to the shear-
thinning property. When k=0, the viscosity reduces to μ0; when k → ∞,
the viscosity reduces to μ∞. As Fig. 7 shows, the velocity decreases as k
decreases, since a decrease in k implies an increase in the viscosity.
Accordingly, we can see that as k increases, the volume fraction profiles
become more non-uniform.

5.3. Gravity and bulk volume fraction

Next we consider the effect of the parameters related to the
inclination angle (α), gravity (G), and the bulk volume fraction (N ).
Fig. 8(left) shows that as α increases, the velocity increases and the
location of the maximum velocity moves towards the lower plate. From
Fig. 8(right), we can see that as α decreases, more and more particles

Fig. 9. The effect of G on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, M M(2 + ) = 31 2 , B = − 1p , B = − 10r , ϕ =0.68c , S = 100, α = 20°,
N = 0.4.

Fig. 10. The effect of N on the velocity profile (left) and the volume fraction profile (right). With B =131 , B =532 , k = 10, M M(2 + =3)1 2 , B = − 1p , B = − 10r , ϕ =0.68c , S = 100, α = 20°,

G = 2.5.
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accumulate near the lower plate, and a sedimentation region with a
high concentration of particles is formed; here the volume fraction is
close to ϕc. Fig. 9(left) shows that when G increases (i.e. particles with
larger density, ρ), the velocity increases and the position of the
maximum velocity shifts towards the upper plate. From Fig. 9(right),
we can see that the thickness of the sedimentation region becomes
larger as G increases. Fig. 10 shows the effect of the bulk volume
fraction (N ) on the velocity and volume fraction. As N increases, more
particles accumulate near the bottom plate, and the velocity becomes
larger.

6. Conclusions

In this paper, we study the gravity driven fully developed flow of
granular materials between two flat plates. The granular materials are
modeled as a non-linear fluid, which includes the effects of shear and
volume fraction dependent viscosity and normal stress difference
effects. We also propose a new term in the spherical part of the stress
tensor, related to the compactness of the particles. This term is related
to the critical volume fraction of the particles (ϕc). This new term
includes a smooth step function, and ensures this term becomes
effective when the local volume fraction is approaching ϕc. A parametric
study is performed for a selected range of dimensionless numbers.
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