LOCAL WELL-POSEDNESS OF THE CONTACT LINE PROBLEM IN 2-D STOKES
FLOW

YUNRUI ZHENG AND IAN TICE

ABSTRACT. We consider the evolution of contact lines for viscous fluids in a two-dimensional open-top vessel.
The domain is bounded above by a free moving boundary and otherwise by the solid wall of the vessel. The
dynamics of the fluid are governed by the incompressible Stokes equations under the influence of gravity,
and the interface between fluid and air is under the effect of capillary forces. Here we develop a local well-
posedness theory of the problem in the framework of nonlinear energy methods. We utilize several techniques,
including: energy estimates of a geometric formulation of the Stokes equations, a Galerkin method with a
time-dependent basis for an e-perturbed linear Stokes problem in moving domains, the contraction mapping
principle for the e—perturbed nonlinear full contact line problem, and a continuity argument for uniform
energy estimates.

1. INTRODUCTION

1.1. Formulation of the problem in Eulerian coordinates. We consider a 2-D open top vessel as a
bounded, connected open set ¥V C R? which consists of two “almost” disjoint sections, i.e., V = Viop U Vot -
The word “almost” means Vi, N Vyor is a set of measure 0 in R2. We assume that the “top” part Viop
consists of a rectangular channel defined by

Vip=VNRL ={yeR?*: L <y <0<y <L}

for some ¢, L > 0, where Ri is the half plane R2 = {y € R? : y» > 0}. Similarly, we write the “bottom”
part as

Veor = VNRE =V N {y e R?:y, <0}.
In addition, we also assume that the boundary 9V of V is C? away from the points (£/, L).

Now we consider a viscous incompressible fluid filling the Vy,; entirely and Vy,, partially. More precisely,
we assume that the fluid occupies the domain €(¢) with an upper free surface,

where the free surface ((y1,t) is assumed to be a graph of the function ¢ : [—¢,¢] x Ry — R satisfying
0 < ¢(£f£,t) < L for all ¢ € Ry, which means the fluid does not spill out of the top domain. For
simplicity, we write the free surface as 3(t) = {y2 = ((y1,t)} and the interface between fluid and solid as
Ys(t) = 09(t) \ X(¢).

For each t > 0, the fluid is described by its velocity and pressure (u, P) : Q(t) — R? x R, the dynamics
of which are governed by the incompressible Stokes equations for ¢ > 0 :

(divS(P,u) = VP — uAu =0 in Q(t),
divu =0 in Q(t),
S(P,u)v = gCv — oH({)v on X(t)
(S(P,u)y — pu)-7=0 on M(t

)
| (1.1)

u-v=>0 on X
O =u-v=muy —u 01 C on X(t),

a0 =7 (D15 oot ).

with the initial data ¢(y1,t = 0) = ¢(0), 8¢ (y1,t = 0) = 9;¢(0) and ¢ (y1,t = 0) = 9Z¢(0).
1
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In the above system (1.1), S(p, u) is the viscous stress tensor determined by
S(P,u) = PI — puDu,

where I is the 2 x 2 identity matrix, p > 0 is the coefficient of viscosity, Du = Vu + V " is the symmetric
gradient of u for V' u the transpose of the matrix Vu, P is the difference between the full pressure and
the hydrostatic pressure. v is the outward unit normal. 7 is the unit tangent. ¢ > 0 is the coefficient of

surface tension, and
218
H0 = ()
is the twice of mean curvature of the free surface. g > 0 is the Navier slip friction coefficient on the vessel
walls. The function ¥ : R — R is the contact point velocity response function which is a C? increasing
diffeomorphism satisfying #/(0) = 0. [v] := Yeo — 7sf for vsv, Vs € R, where 74, vs¢ are a measure of
the free-energy per unit length with respect to the solid-vapor and solid-fluid intersection. In addition, we
assume that the Young relation [21] holds
1l

- <1, (1.2)
which is necessary for the existence of equilibrium state. For convenience, we introduce the inverse function
# =¥~ and rewrite the final equation in (1.1) as

¢

PO = DIF 0 v

(£, 1). (1.3)

1.2. A steady equilibrium state. A steady-state equilibrium solution to (1.1) corresponds to u = 0,
P(y,t) = Po(y), and ((y1,t) = Co(y). These satisfy

VPy=0 in (0),
PO ZQCO_UH<CO), on (_€7€)7 (14)
1o

(£0) = £,

o150
V141016
It is well-known (see for instance the discussion in the introduction of [10]) that there exists a smooth

solution (p : [—¢,¢] — (0, L).

1.3. Geometric reformulation. Let (y € C*°[—/, (] be the equilibrium surface given by (1.4). We then
define the equilibrium domain Q C R? by

Q:=VU{zeR?| -l <z <0<z < (o(21)}.
The boundary 052 of the equilibrium 2 is defined by
0 =X 1Y,
where
Yo={reR? -l <z <lixy=Co(x1)), XNe=00\X.

Here ¥ is the equilibrium free surface. The corner angle w € (0, 7) of €2 is the contact angle formed by the
fluid and solid. We will view the function ((yi,t) of the free surface as the perturbation of (y(y1):

C(y1,t) = Coyr) + n(y1, 1) (1.5)
Let ¢ € C*(R) be such that ¢(z) = 0 for 2 < $min¢y and ¢(z) = z for z > Fmin(y. Now we define
the mapping ® : Q — (), by

(I)(l‘l, Jig,t) = (IL‘1,IL‘2 + Mﬁ(l’1,l’2,t>) = (yl,yg) S Q(t), (1.6)
Co(71)
with 7 is defined by

n(x1,72,t) := PEn(x1, 22 — (o(21),1), (1.7)
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where E : H%(—{,¢) — H?*(R) is a bounded extension operator for all 0 < s < 3 and P is the lower Poisson
extension given by

Pf(l'l,xg) = Af(§)62ﬂ|§xze2ﬂixlgd€.

If i is sufficiently small (in appropriate Sobolev spaces), the mapping ® is a C' diffeomorphism of 2 onto
Q(t) that maps the components of 92 to the corresponding components of 9€Q(t).
We have the Jacobian matrix V® and the transform matrix A of ®

1 0 _ 1 —AK
vq>_<A J), A_(V<I>)T_<O X ) (1.8)
o o, & 8 I
A= 10n— = n = —n —0on = —. .
Coé?m Cg(%Con, J=1+ <077+ Coaw’ K= (1.9)

We define the transformed differential operators as follows.
(Vaf)i=A;50;f, divaX = A;;0;X;, Aaf:=divaVaf,
for appropriate f and X. We write the stress tensor
Sa(Pyu) =PI — D gu

where I the 2 x 2 identity matrix and (D qu);; = AixOru; + AjipOpu; the symmetric A-gradient. Note that
if we extend div4 to act on symmetric tensors in the natural way, then divq Sa(P,u) = —puAqu + V4P
for vectors fields satisfying div4 u = 0.

We assume that @ is a diffecomorphism. Then we can transform the problem (1.1) to the equilibrium
domain  for ¢ > 0. In the new coordinates, (1.1) becomes the A-Stokes problem

((divg SA(Pu) = —pAqu+ V4P =0, in Q,
divygu =0, in Q,
SA(P,u)N = g¢N — o H(ON, on 3,
(Sa(Pu)y — pu) -7 =0, on X,
w-v=0, on X, (1.10)
HC=u-N, on X,
18
W (0 C(£L,1) =] F am(i&t),
((21,0) = Go(m1) + mo(x1),  9i¢(x1,0) = Ayn(21,0),  I7¢(x1,0) = JFn(x1,0).

Here we have still written N := —91(e;1 + e2 for the normal to 3(¢).
Since all terms in (1.10) are in terms of 1, (1.10) is connected to the geometry of the free surface. This
geometric structure is essential to control higher-order derivatives.

1.4. Perturbation. We will construct the solution to (1.10) as a perturbation around the equilibrium
state (0, Py, (p). To this end we define new perturbed unknowns (u,p,n) so that u =0+ u, P = Py + p,
and ¢ = {9 + 1. Then we will reformulate (1.10) in terms of the new unknowns.
First, we rewrite the terms of mean curvature on the equilibrium free surface. By the Taylor expansion
in z,
Y+ 2z . Y " z
Vitly+zP Vit G+lyP)
Combining with the assumption (1.5), we then know that
01C 01(o o

VIR VT4 (1 + 0GP

where the remainder term R € C*(RR?) is given by

373 + R(y, z). (1.11)

+ R(81¢o, B11). (1.12)

_ [Fa (s=2)(s+y)
R(y, 2) —/0 3(14_@4_5)2)5/2 ds. (1.13)
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Thus
_ on
0= HE) = (oo = THI) + 1= 001 (s ) = 704 (R(@x o D) -
; |
=po+gn—od <(1_’_|811720|)3/2> — 001(R(91 €0, 01n)),
and
O (hpty=hlFoB0 (ar) g0 O

[] T —oTE oo

F R(01C0, 01n) (L, t) = Fo

VI+1016P L+ [GP) (1.15)

0
(1+!8112>!2)3/2(ﬂ’ t) F R(01C0, 01m) (£, 1).

Next we rewrite the terms related to stress tensor in (1.10). Clearly,
divg S4(P,u) = divg Sa(p,u), in £,
SA(P,u)N = Sa(p,u)N + PobN, on %, (1.16)
Sa(P,u)v -7 = Su(p,u)v-T, on Xs.

Finally, we rewrite the inverse # € C%(R) of contact point response function. Since #(0) = 0, we expand

W as

W(z)=W"0)z4#(2). (1.17)
Then we write k = #7(0) > 0, since # is increasing. For convenience, we write
- 1 - 1
W (z) = EW(Z’) = ;7/(2) —z. (1.18)
Thus, combining (1.4), (1.14)—(1.16), we arrive at the following perturbative form of Stokes equations
divg Sa(p,u) = —puAgu+ Vap =0, in €,
divyqu =0, in Q,
oin
Salp,u) N =gnN — 001 | ———=75 | N — 001(R(01¢0, 01n))N, Y,
Alp, WN = gnN — o0 <(1+|8lco|)3/2> a1 (R(0160, 01n)) on
(Salp,w)y — Bu) -7 =0, on X, (1.19)
u-v=0_0, on X,
om=u-N, on X,
5 oin >
kOM(E£L,t) + KW (O (£L,t)) = a<+R8 ,0 +4,t).
i (£L,t) (On(£L,t) = F ERIADEE (010, On) | (£L,1)

with the initial data n(x1,0) = no(x1), dn(z1,0) and 82n(x1,0). Here A and N are still determined in
terms of ¢ = (g + 7. In the following, we write Ny be the non-unit normal for the equilibrium surface %,
and N = Ny — O1ne;.

1.5. Main theorem. In order to state our result, we need to explain our notation for Sobolev spaces and
norms. We take H*(Q) and H*(X) for k > 0 to be the usual Sobolev spaces, and take WF(Q) and WEF(X)

for k> 0 and ¢ € (0,1) to be the weighted Sobolev spaces defined in (2.24). We write norms [0/ ul|; and
10/ || in the space H*(Q), and ||8/n||; in space H* ().
Now, we define the energy and dissipation used in this paper. The energy is

2
E(t) = llullyyz + 10li + lIpll: + 10l + HnHng/z +110enll3) + ZO 16771171 (1.20)
]:
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and the dissipation is

1

2
D) =3 (naiuuévg + 197w, + ||azn|r;;/2) +
j=0 Jj=0

2
£ (1081 + 107n135) + 0PI o
7=0

(107ull3 + 19fulhoqs, ) + [OFu - NTF)
(1.21)

where [f]? is defined by (2.11) and Remark (2.2), H3((—¢,£)) is defined in (2.3) and W¥(Q) is defined in
(2.31).
With the notation established we may now state our main result.

Theorem 1.1. Assume the initial datany € W;m((—ﬁ,ﬁ)), dm(0) € H32((—¢,0)) and 82n(0) € H'((—¢,0))
satisfy the compatibility condition in Section 3. Then there exists 0 < ag, Ty < 1, such that if

2
€0 = [Imoll5, 52 + 19m(O)II5 )2 + >_ 19{n(O) 1} < a0
j=0

and 0 < T < Ty, then there exists a unique solution (u,p,n) to (1.19) on the interval [0,T) that achieves
the initial data and satisfies

T
sup E(t) + / D(t)dt < C¢ (1.22)
0<t<T 0

for a universal constant C > 0. Moreover, ® defined by (1.6) is a C* diffeomorphism for each t € [0,T].

Remark 1.2. Since ® is a C' diffeomorphism, we can change coordinates from Q to QU(t) to gain solutions

of (1.1).

FIXME: REWRITE THIS

The techniques used for the proof of Theorem (1.1) are developed throughout the rest of this paper. We
will sketch the main ideas of the proof here.

e-perturbed linear A-Stokes. Our fixed point procedure is based on a geometric formulation of linear
Stokes equations. We suppose that 7 (and hence A, N, etc.) is given and then solve the linear A-Stokes
equations for (u,p,):

diva Sa(p,u) = F', in Q,
divq4u =0, in Q,
1S

S.A(pau)./\/ = <g§ — 0’81 (W) — 081F3> N+ F4, on Z,
(Salp,u)v — Bu) - 7 = F?, on ¥, (1.23)
u-v = 0, on 287
HE=u-N, on (—4,0),

0 N
! “leww&@ = r(u- N)(E0) £ oF (&) — ¥ (O (D),

where F3 = R(01{p, 01n). However, if we solve straightforward to (1.23), we might confront one difficulty
in the energy estimates. To be more specific , we couldn’t estimate

l
/ 0. RO 021D, D3¢, (1.24)
l

which means we couldn’t use Theorem 4.8 to derive Theorem 4.13. That’s because in our fixed point
procedure, we want to prove that an appropriate map A acting on a complete metric space such that

An = € has a fixed point. This means that 97¢ is only in I/V51 /% que to the prori estimate for 97n. We
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refer to Section 6 in [10] for more details. In order to conquer this difficulty, we consider the following
e-perturbed linear A-Stokes instead of (1.23):

div4 Sa(p,u) = F*, in Q,
divqu =0, in Q,
01€ + €0

Salp,u)N = <Q(§+€§t>_081 (W) —081F3>N+F47 on X,

(Salp, )y = pu) - 7= F°, on 3, (1.25)
u-v =0, on g,

WE=u-N, on (—£,0),

815 + 681&5

(£0) = k(u - N)(£E) £ o F3(+0) — ¥ (Oin(£L)),

T+ 101G P)
From the mean curvature term, 93¢ has the same regularity with 92¢ that is in H'. Then we could estimate
the (1.24). Since #(-) is a nonlinear function, we suppose that its variable d;7 is given at the corner point
x1 = ££. This assumption could not cause any confusion because of the correspondence with u - A in the
fixed point procedure.

Galerkin method with a time-dependent basis. We construct solutions to (1.25) by Galerkin
method. This requires a countable basis of our space satisfying div 4 free condition. Since div4u = 0 is
time-dependent, any basis of our space must also be time-dependent. Fortunately, following the path of
Theorem 4.3 in [9], we could conquer this technical difficulty.

Contraction mapping. Since the linear Stokes has been perturbed, we want to use the contraction
mapping principle to the nonlinear e-perturbed Stokes equation for a small T, > 0. Here we will construct
a complete metric space which preserves bounds in higher norm but with some weaker norms as metric.
This enables us to prove the strict contraction in a weak topology for this metric space.

Continuity method for uniform energy estimate. In order to obtain the solution to the original
equations (1.19), we need to pass the limit € — 0. Due to the Section 8 in [10], we could easily use the
continuity method to get the uniform bounds with respect to e.

1.6. Notation and terminology. Now, we mention some definitions, notation and conventions that we

will use throughout this paper.

1. Constants. The symbol C' > 0 will denote a universal constant that only depends on the parameters
of the problem and 2, but does not depend on the data, etc. They are allowed to change from line to
line. We will write C'= C(z) to indicate that the constant C' depends on z. And we will write a < b to
mean that a < Cb for a universal constant C' > 0.

2. Norms. We will write H* for H*(Q) for k > 0, and H*(X) with s € R for usual Sobolev spaces. W
will typically write H = L?, though we will also use L2([0, T]; H*) (or L2([0,T]; H*(X))) to denote the
space of temporal square-integrable functions with values in H*¥ (or H*(X)). Sometimes we will write
| - [lx instead of || - [[gx(q) or || - [[g#(x)- When we do this it will be clear on which set the norm is
evaluated from the context and the argument of the norm.

1.7. Plan of the paper. In Section 2, we review the machinery of time-dependent function spaces,
div 4—free vector fields, and weighted Sobolev spaces. In Section 3, we construct the initial data and derive
estimates. In Section 4 we study the local well-posedness of the e-linear problem. In Section 5 we construct
solutions to (1.19) using a contraction mapping argument and a continuity method, and then we complete
the proof of the main result.

2. FUNCTIONAL SETTING AND BASIC ESTIMATES

2.1. Function spaces. First, we define some time-independent spaces:

1) = {p e 1) [ p=0, (2.1)
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Y4
HO((~£,0) = {n € H'(~£,0)) / =10}, (2.2)

H*(Q) = HFQ)n HY(Q), H(—¢,0) = H¥((—¢,0)) N H((—1,0)), (2.3)
oHY(Q) = {uec HY(Q)|u-v =0 on X},

endowed with the usual H! norm. We also set

W= {u e oH (Q)|u Ny € H' (=, 0) N H°(=£,0)}, (2.5)
endowed with norm [lul|w := |lull1 + [Ju - Noll g1 ((—e,e)), and we write
V= {ueW|divu = 0}. (2.6)

Throughout the paper we will often utilize the following Korn-type inequality.
Lemma 2.1. For any u € ¢H(Q), it holds that
lullf < [IDulf3. (2.7)
Proof. The inequality (2.7) follows easily from the inequality
lullf S IDul[§ + [[u]l§ for all uw € HY(R), (2.8)

and a standard compactness argument. The inequality (2.8) is may be proved in different ways. See [16]
for a direct proof. It can also be derived from the Necas inequality: see for example Lemma IV.7.6 in

[3]. O
Suppose that i is given and that A, J and N, etc are determined in terms of 7. Let us define
((u,v)) = / %DAU Dot + [ Blu-)(v-T)J. (2.9)
Q s
We also define ,
010017

, = +o—— 2.10
(6, 0)15 ‘/fmw "0 (2.10)

and

[a,b]e := k(a(€)b(£) + a(—£)b(—1)). (2.11)
Remark 2.2. Throughout this paper, we write ||€]|1 5 as

l 8 52
\Iﬁllf,z=/£g|€!2+0 gty

(1+[016o[?)3/2
and write [ply as
[¢17 = 5(6(0)* + ¢(—0)%).
For convenience, let us define the spaces
HO(Q) == {u: Q= R*VJu e H(Q)}, (2.12)

with norm ||ulyoq) == (Jq |u[2.J)1/? and

oHY(Q) = {u: Q = R?((u,u)) < oo,u-v=0on X}, (2.13)
endowed with norm ||u(| 1) = ((u, u))2.
Let us define some time-dependent spaces. We define the space

W(t) := {v(t) € H}(Q)|v - N € HY(—£,0)n ﬁo(—f,f)}, (2.14)
which we endow with the inner-product
(w,v)w = ((w,v)) + (u-N,v-N) 5. (2.15)

We also define the subspace V(t) of W(t) by
V(t) == {u(t) € W(t)|div.au = 0}. (2.16)
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Finally, we define the inner products on L2([0, T]; H*(Q)) for k = 0,1 as

T
) /0 (u(t), v(t))3 (2.17)

and write ’H%’ as the corresponding spaces with the corresponding norms Hu||7_[1T . We define the subspaces

of ’H% as follows:

oHE = {u e Hiju-v=0o0n %}, (2.18)
which we endow with the norm H%p,
= {v e oHr|lv-N e H'(—£,0)n H(—¢,0)}, (2.19)
. . T 2 /2
which we endow with the norm [[v[wy. := [Jv]l32, + (fo llv 'NHHl(,g e)) , and
Vr :={u € Wr|div4u = 0}. (2.20)

The following lemma implies that ¢H!(Q2) is equivalent to o H*(2).

Lemma 2.3. There exists a universal ag > 0 such that if

sup |[n(t)lly52 < o, (2.21)
0<t<T 5
then
1
“—ullr < lullue < V2w 2.22
ﬂll 1k < MJullgre < V2[ullk (2.22)

for k=0,1 and for allt € [0,T]. As a consequence, for k =0,1,
ull g2 (o) < llullye ) < lullp2me@)- (2.23)

Proof. The case k = 0 is proved in Lemma 2.1 in [9]. A result similar to that stated above for k = 1 is
also prove in [9] for a norm not involving the boundary terms. However, the argument used there may be
readily coupled to a trace estimate to handle the boundary term. O

For our problem, we need weighted Sobolev spaces. Suppose that w € (0,7) is the angle formed by ¢y at
the corner M of Q, for M = {(—¢,{o(—¢)), (¢,{o(£))} the corner points of 2. We now introduce the critical
weight ¢, := max{0,2 — 7/w} € [0,1). For § € (0,0,), we define

WEQ)() = {u®)lllu(®)lwrq) < oo}, (2.24)
with the norm
1/2
ol = (X [ #loruteas) (2.25)
la| <k

where d = dist(-, M). A consequence of Hardy’s inequality (for example Lemma 7.1.1 in [12]) reveals that
we have the continuous embeddings

Wi (Q) = H(Q), W3(Q) = H'(Q), H'(Q) = W(Q), (2.26)
when 4 € (0,1).
The trace spaces Wf -t 2(89) can be defined in the usual way: see for example Section 7.1.3 in [12]. It

can be shown that the following useful lemma holds.
FIXME: is this used explicitly anywhere?

Lemma 2.4. Suppose that 0 < § < 1 and 7 be the unit tangential of 0. Then

e

for all f € W;/Q(aﬂ) and v € HY(Q).

<1172 0110 (2.27)
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Proof. We choose p, ¢ such that 1 < p < 1%_6 and ]% + % = 1. Employing the Holder inequality, we may
derive that

|10 < llsgony oo (229)
The Sobolev embedding implies that

17 Lzego) S 171y 72 (2.20)

And The Sobolev embedding together with usual trace theory imply that
[0l zeon) S 10l 1200y S l0lla1(0)- (2.30)
O

Also, we define the spaces
WE©Q) = {u e WE(Q)] / u= o} : (2.31)
Q

for k > 1. The spaces L2([0,T]; WF(Q)) is defined by

T
Il o yansmy = [ 1OIp0) < (2.32)

Now, we want to show that the time-independent spaces are related to the time-dependent spaces. We
consider the matrix

M :=M(t)=KVd=(JA")™ !, (2.33)
which induces a linear operator M : u — M (t)u.
Proposition 2.5. Assume that n € H"((—(,£)) forr > 3.

(1) For each t € [0,T), My is a bounded isomorphism from H*(Q) to H*(Q) for k =0,1,2.
(2) For eacht € [0,T], M; is a bounded isomorphism from oH' () to oH' (). Moreover,

[Mull gz < (1 [I9lfr) el (2.34)
(3) Let w € HY (). Then divu = p if and only if div4(Mu) = Kp.
Proof. See [9] and [10]. O
The following proposition is also useful.
Proposition 2.6. Ifu-v =0 on X, then Ru-v =0 on X, where R := O; MM,

Proof. According to Proposition 4.4 in [10], we have known that Mu-v =0 < u-v = 0 on Xy, which
implies that M~ -v =0« u-v =0 on X,. Then by definition of R,

Ru-v=0MM 'u-v=—-M3(M 'u)-v=0, (2.35)
since Oy(M~tu) - v = 0y(M~tu-v) =0. O

3. INITIAL DATA

3.1. Construction of initial data. Before we study the well-posedness of (1.19), we first consider the
initial data and the initial energy £(0). Suppose that g € Wf/Q(Z), om(0) € H32(X), 02n(0) € HY(X)
and that
2
€o(n) := ||770||12/V§5/2(2) + 10m(O) 3025y + ZO 107 ()71 () <
J:
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where o > 0 is small enough to satisfy the conditions in Lemma 2.3 and Theorem 5.8 in [10]. We now
construct the initial data u(t = 0) = ug and p(t = 0) = pg. When ¢t = 0, we consider the elliptic equation

diVA(O) S.A(O) (po, UO) = 0, in Q,
div_4(0) uo = 0, in Q,
ug - N(0) = 9y (0), on X, (3.1)
,u]D)A(O)uoN'(O) -T(0) =0, on X, '
ug - v =0, on X,
/,L]D)A(O)UQI/ -7 — Pug -7 =0, on Xg.
We employ the Theorem 5.9 in [10] to deduce that there exists a unique (ug,po) € W§ x VoV(;l, and
o]y + ”p0||12/i/51 S ||3t77(0)||3V§/2 < 10m(0)113 5- (3:2)

Clearly, from the embedding W2(£2) — H'(Q) and the boundary condition, ug € V(0).

Then we construct d:u(0) and 0¢p(0). In order to preserve the divergence free condition, we construct
Dyu(0) instead of d;u(0), where Diu is defined in (4.11). Now we temporally differentiate the equation
(1.19), then take t = 0,

div 4(0) S4(0)(0ep(0), Dyu(0)) = F(0), in Q,
diVA(O) Dtu(O) = 0, in Q,
S.400)(@up(0), Dyu(0))N'(0) = gam(O)IN (0) — o0y (M"“’)) N(0)
7 (1+101¢0])3/?

+ 8 F3(0)N(0) + F*(0), on X, 53)
(S40)(9ep(0), Dyu(0))v — BDyu(0)) - 7 = F®, on Y, '
Diu(0) -v =0, on X,
Dyu(0) - N'(0) = 07n(0), on X,
KOZ(£L,0) + kOH (Opm(£0))(0) = Fo (818“7(0) + 6tF3(O)> (%0)

! ’ (14 ¢o]?)3/2 ’

where
F1(0) = — diva, 4(0) Sa(0)(Po, u0) + 12 div_a(0) Do, a0)to + 1 div a0y Do) (R(0)uo),
O F2(0) = 9,R(010, D1m0)010:m(0),
F(0) = D 4(0)(R(0)uo) N (0) + pDg, 4(0)uoN (0)
3 o
+ [9770 oh <(+|31C0|2)3/2 +R(31Co,31770)>} 9N (0),
F5 (O) = /LD_A(O)(R(O)UQ)I/ T + MD&A(O)UOV ST+ /BR(O)U() - T.
Then we have the pressureless weak formulation
((Deu(0),w)) + [Deu(0) - N'(0), w - N'(0)] + [0:# (9ym)(0), w - N(0)],
l
= —@m(0).w N1z = [ 0RO, 0rm0)010m(0)0r (- M (0)
(3.4)

¢ o
~ [ om = oo (s + RG@Gom) )| ax ) 0= [ BRO)m -7 w-7)0)

- /Q (diVatA(O) S a0y (Po, uo) - w + gID)atA(O)UO D yoyw + gDA(O)(R(O)UO) : H3%4(0)w> J(0),



CONTACT LINE 11

for each w € V(0). Then utilizing the last equation of (3.3), we may rewrite the weak formulation as

B(Dyu(0),w) := ((Dyu(0),w)) + (Dyu(0) - N(0),w - N(0))1,5

¢
= (97(0),w - N(0))1,5 — (9m(0), w - N'(0))15 — /_g 0-R(01¢0, 0110)010¢n(0)01 (w - N(0))

l o n
[ om =t (s + R@Gom) )| ax ) w = [ 8RO 7)) 0) 65)

- /Q (diVatA(O) S a0y (Po, uo) - w + gDE)tA(O)UO :Dyoyw + gDA(O)(R(O)uO) : ID%4(0)w> J(0)
= [07n(0),w - N(0)]¢ = [0:# (9m) (0), w - N'(0)]¢ := L(w).
Since B(-,-) : V(0) x V(0) — R is a bilinear mapping satisfying
B(v,w) < [vlwlwlw, B(v,v) = |lv[i,

and L : V(0) — R is a bounded linear functional on V(0), the Lax-Milgram Theorem guarantees that there
exists a unique D;u(0) € V(0) such that (3.4) holds for each w € V(0). Moreover,

IDeu(0)[1F < ||no||€V§/z +118m(0)1132 + 1970 (0)]3- (3.6)

Now from Theorem 4.6 in [10], we may recover d;p(0) € H(€) such that
10:0(0)IIF < ||770||f4/§/z + 19m(0)1I3 2 + 1970 (0)]3. (3.7)

3.2. Compatibility. In the construction of initial data above, 19, 3;7(0) and 9?1(0) need to satisfy some
compatibility conditions. At the corner points x1 = £/,

k0m(0) + # (0 (0)) = To ((1—i-|gl122|2)3/2 + R (910, 81770)) ) (3.8)
d
" 2 y 2 210m(0)
k0;n(0) + ¥ (0m(0))0;n(0) = Fo <(1+Wlﬁ)\2)3/2 + 0:R (0140, 31770)8131577(0)) : (3.9)

4. LINEAR PROBLEM

Suppose that 7 is given and that A, J, N, etc. are determined in terms of 7. Before turning to an
analysis of the linear problem, we define various quantities in terms of 7:

1 2 3
D(n) == ZO 1081702 + Z% 100 Z2 g2+ 10N/ + Z; 1107 mell 72079y
J= j= i=
2 2 - ) (4.1)
&) := HWHLOOW§>/2 + 1017 00 grarz + 'Zo 10E 0| oo 1
]:
R(n) = D) + &),
and
2 .
€ = €(n) = IInolla,g/z + 1181017 s gz + D 10/ 0(0) |70 1 (4.2)

j=0
Throughout this section, we always assume that K(n) < a and « > 0 is sufficiently small.
In the rest sections, we write d = dist(-, M), where M = {(—¢,(o(—¥)), (¢,(o(£))} is the set of corner
points of 9€2. In the subsequent estimates, the following lemma is useful. The proof is trivial, so we omit
it.

Lemma 4.1. Suppose that d = dist(-, M) and that 0 < § < 1. Then d=° € L"(Q) for2 <r < 2.
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For the purpose of constructing solutions to the nonlinear system, we need to consider the following
modified linear problem

div4 Sa(p,u) = F*, in Q,
divqu =0, in Q,
01€ + €0h&

Sa(p, )N = <g(§ +€&) — oo <(1 _‘1_ ’81<0’;)3/2> — 081F3> N+ F4, on X,
(SA(p,U)V—ﬂU)'T:FB, on g, (43)
u-v =0, on X,

HE=u-N, on (—4,4),

01€ + €&

Tt BBy 0 = sl MO £ o PP () — s 7 (@m(0),

where F® = R(01(o,01n) is defined in (1.13). Here we consider the e— perturbation in order to close the
energy estimates for twice temporal differentiation of equations. FIXME: refer to discussion in the intro

4.1. Weak solution. To analyze (4.3), we need to consider two notations of solution: weak and strong.
Now using the following lemma, we define the weak solutions of (4.3).

Lemma 4.2. Suppose that (u,p,§) are smooth enough and satisfy (4.3) and that v € W(t). Then
(4, v)) = (p,divav)po + (+ €&, v - Nz + [u-N,v- N

¢
:/ﬂFl-vJ—/80F381(U-N)+F4‘v—/5F5(v ) —[v- N, #(0m))e,

Proof. This can be shown in the usual way by taking the inner product of the first equation in (4.3) with
u, and integrating by parts over 2, then employing all of the other equations in (4.3). We omit the details
here. g

Definition 4.3. Suppose that F € (HY)*. A weak solution to (1.19) is a triple (u,p, &), where
u € L*([0,T];0HY(Q))  with u(-,t) € V(t) for a.e. t,
p € LX([0.T], L*(Q)), &€ L*([0,T]; H'(~£,0)),

(4.4)

(4.5)

that satisfies

/T((u v)) — /T(p,divAv)Ho+/T(f+€§t,v N)lg—l—/T[u-N,v-N]g

//Fl v — //UF?’al +F4-v—/ /SF5(v-T)J—/OT[U-N,W(atn)]e,

for a.e. t and each v € W(t). If we take the test function v € V(t), we have the pressureless weak solution

(u,€) satisfies
/T<<u 0) + /<f+est,v N)12+/ - N0 N,

/ /Fl vJ — / / o F30 (v +F4-v—/OT/SF5(U-T)J—/OT[U-N,%(atn)]@.

Remark 4.4. For convenience, we write

0
(F,0) a1y :/QFl-vJ—/éF“-v— g FP(v-1)J, (4.8)

<f,v>(H1T)*—/OT/QFl-vJ—/OT/iF‘*.v—/OT/SF%.T)J, (4.9)

(4.6)

(4.7)

and

for each v € V.
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In the following, we will see that weak solutions to (4.7) will arise as a byproduct of the construction of
strong solutions to (4.7). Hence, we now ignore the existence of weak solutions and record a uniqueness
result based on some integral equalities and bounds satisfied by weak solutions.

Proposition 4.5. Weak solutions to (4.7) are unique.

Proof. If (u!, &) and (u?,€2) are both weak solutions to (4.7), then (w = u' —u?,0 = ¢! — £2) is a weak
solution with F'! = 3 = [* = F5 = 0 and the initial data w(0) = #(0) = 0. Using the test function
wXJo,g € Vr, where x[o, is a temporal indicator function, we have that

1 t t t
SI0ORs+e [ o-Mis+ [ (@.we) s+ [ w-Njas=o, (410)
which implies that w = 0, § = 0. Hence, weak solutions to (4.7) are unique. O

4.2. Strong solution. Before we define strong solutions, we need to define an operator D; via
Dyu =9 — Ru for R:=09;MM !, (4.11)

with M = KV®, where K and ® are defined as in (1.9) and (1.6), respectively. It is easy to see that D,
preserves the div 4—free condition since

J div 4(Dyw) = J divg (M8 (M~ 'v)) = div(d,(M 1)) = 8y div(M ) = 8;(J div 4 v), (4.12)

where in the second and last equality, we used the equality Jdiv4v = div(M~'v), which is proved,
according to Lemma (A.1) and the definition (2.33) of M, as

Jdivgv = JA;j0jv; = 0;(J Aijui) = div(JATv) = div(M o). (4.13)
We now give our definition of strong solutions.
Definition 4.6. Suppose that the forcing functions satisfy
Fle 1210, T} W(Q)), F* € L3([0,T); W;/*(%))
Fhe L2(0,7); Wy *(%)), F e L2(0,T); W, *(S,))
F e C%[0,T]; (H")"), 0F € L*([0,T]; (H")").

We also assume that the initial data are the same as Section 3. If there exists a pair (u,p, &) achieving the
initial data and satisfying the (4.3) in the strong sense of

we L2([0,T); WE(2)) N Vr, p e LA([0,T); WE(Q)), € € LX([0,T; W (%)), (4.15)

)

(4.14)

i

and

ofu € L2(0, T} HY(Q), dfu € L2(0, T); HO(S,)), [0fu- Mo € L2(0, T)),
oOfp € L*([0,T]; HO(), 9]¢ € L2(0,T); H**(%),
for 5 =0,1, we call it a strong solution.

Lemma 4.7. Suppose that the right-hand side of the following is finite. Then u € C°([0,T); HY(Q2)), and

(4.16)

el Zoe i < Nuollys + llullZogpr + 1eullZ -

Proof. We first estimate
d
—|lull?: = / 2u - Opu + 2Vu : Vou
dt 0
< Jlullfp + [10ull-
This may be integrated over [0, 7] to see that
ullZoe g < lluollpn + llullZo g + 100l Zog
S Mluollfyz + luli 2 + 100l oo,

where the last inequality is obtained by the embedding W2(Q2) — H!(Q). O
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Now we state our main theorem for the strong solutions.

Theorem 4.8. Suppose that the forcing terms F', F*, and F° satisfy the condition (4.14), that the initial
data are the same as Section 3. Suppose that K(n) < a is smaller than «g in Lemma 2.8 and Theorem 5.9
in [10]. Then there exists a unique strong solution (u,p,§) solving (4.3) such that (u,p,§) satisfies (4.15)

and (4.16). The solution obeys the estimates
el Zo g + 1l 2 progs,) + - MellZa o,y + el F2pz + 100l T2 gn + 100l 22 progs,

+ 10w - Mell Tz oy + P72 m0 + 1PN 2gi0 + 100l o + I€N T prr + €172 /2

1612, o0+ 100€ e s + 101 2
S CTE0) + €0+ IO By + 800 + EnUF 2oy + 112y + 1FI200)
F O @) OE — F = F)P ..
Moreover, (Dyu, 0yp, i) satisfies
(— pA D+ V 40p = D F + G, in  Q,
div4(Dyu) = 0, in Q,
SA(0¢p, Dsu)N = L(OE + €D?E)N — 0010 F3N + O F* + G4, on X,
(S.4(0p, Dyu)v — BDyu) - T = 0, F° + G5, on X,
Dyu-v =0, on X,
026 = Dyu- N, on X,
010:€ + 681(91525 3 -
——— 2 (f) = k(Dsu - +0) £ 00 F° (L) — kO H ((04m)(£L)).
0—(1+ ’81<0’2)3/2( ) K’( tu N)( ) 00 ( ) KOy (( tn)( ))

in the weak sense of (4.7), where G is defined by
G = RTV 4p + divg (DA(Ru) + Dy, 4u — RD 4u)
and G* by
Gt = uD 4 (Ru)N — (pI — D 4u)ON + D, auN + L(€ + €0€)ON — 0O F3ON,
G® by
G° = (uDA(Ru)v + pDy, gquv + fRu) - 7

More precisely, (4.18) holds in the weak sense of

((8tu,'l))) + (atf + Eat2§7 v - N)I,Z + [atu 'N,U : Mf + [WAlathvv 'MZ

= (§—|— Gatg,RU 'N)LZ - (p,diVA(R’U))fHO +/ [&Fl U+ 8tJKF1 . ’U] J
Q

0
— / [0, F301(v-N) + F301(v- ON) + 0, F* - v] — / [0, F°v + 0, JKFv| - 7J
.y s

/ %(DatAu:DAqu]DAu:]DatAv+8tJK]D)Au:]D)Av)J7 B(u-7)(v-T)0J.
Q s

Proof. Our proof is inspired by a result in [9]. We divide the proof into several steps.
Step 1 — The Galerkin setup.

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

In order to utilize the Galerkin method, we must first construct a countable basis of H2(2) N V(t) for
each t € [0,T]. Since the requirement div4 v = 0 is time-dependent, any basis of this space must also be
time-dependent. For each t € [0,T], the space H?(Q2) N V() is separable, so the existence of a countable
basis is not an issue. The technical difficulty is that, in order for the basis to be useful in Galerkin method,
we must be able to express these time derivatives in terms of finitely many basis elements. Fortunately, it

is possible to overcome this difficulty by employing the matrix M (t), defined by (2.33).
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Since H%(Q) NV is separable, it possess a countable basis {w’ }‘;‘;1 Note that this basis is not time—
dependent. Define v/ = v/(t) := M(t)w’. According to Proposition 2.5, v/(t) € H*(Q) N V(t), and
{v?(t)}32, is a basis of H2(Q)NV(t) for each t € RT. Moreover, we can express d;v/ (t) in terms of v7(t) as

O (t) = O M (t)w! = oM ()M~ ()M (t)w’ = R(t)v! (t), (4.23)
where R(t) is defined by
R(t) := M (t)M 1 (t). (4.24)
For any integer m > 1, we define the finite dimensional space
Vi (t) == span{v!(t), - , 0™ ()} € H*(Q) N V(t),
and we write
P H?(Q) = V(1) (4.25)

for the H?(Q2) orthogonal projection onto V,,(t). Clearly, for each v € H2(Q)NV(t), we have that P/"v — v
as m — 00.

Step 2 — Solving the approximate problem.

For our Galerkin problem, we construct a solution to the pressureless problem as follows. For each
m > 1, we define an approximate solution

W™ (t) = d ()’ (t), with df:[0,T] > R for j=1,...,m, (4.26)

where as usual we use the Einstein convention of summation of the repeated index j. We similarly define

€M () = 10 + /0 W™ (s) - N(s) ds, (4.27)

where we understand here that u™(-) denotes the trace onto 3.
We want to choose the coefficients d}'(t) € C1([0,T7]) so that

(W™ ) + (" + €™, v- N1z + [u™ - N, v N

) ¢ , . (4.28)
= / F ‘vJ—/ F3oi(v- N)+F*v— | FPlu-1)J—[v-N,#(0m)s,
Q —£ s
for each v € V,,,(t). We supplement this with the initial data
u™(0) = Pytuo € Vi (0). (4.29)
We may compute
t
(€0 + 0™ 0 N (O = (o + [ 4(6) - s)ds () N (o) 00
0 ) LY (4.30)
= (o,v - N(1)1x +ed™ () (v - N(1),v-N(t))1x + / d(s)(v" - N(s),v - N(t))1.5 ds.
0
Then we see that (4.28) is equivalent to the equation of d}' given by
t
d"((v',v7)) + ed™(v' - N(t),v7 - N(t))1.5 +/ d(s)(v" - N(s),07 - N'(t))1 2 ds
0
+d"w' - N, v - N,
(4.31)

Y
:/Fl-ij—/ F331(vj'./\/')+F4-vj— F5(Uj‘T)J—(ﬁoavj‘N(t))l,E
Q —1 3s

— [ N A (D),

fori,j=1,...,m.
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Since {07 ()}52, is a basis of H*(Q2)NV(t), the m x m matrix A = (Aj;)with j, k entry Aj, = ((v7, vF)) +
e(vl - NyoP - N)is + [v7 - Mok - Ny is positive definite. For any vector A = (A1,...,A\n)| # 0, a
straightforward computation shows that

)\TA)\:g/ AiDAviyJ+ﬁ/ A" TPT + e A’ N s + v’ - N >0

where we have used the Einstein convention and the last inequality due to the facts that {v’ }ILy is a basis
of Vp, and A # 0. Thus A is invertible. Then we view (4.31) as an integral system of the form

dm™(t) + /Ot C(t,s)d™(s)ds = F(¢t), (4.32)

where the m x m matrix € belongs to C1(D) with D = {(¢,5)|0 < s <t,0 <t < T}, and the forcing term
§ € C'([0,T)) since dyn(£L,-) € H*((0,T)) — CH1/2([0,T7)).

From the usual theory of integral equations (for instance, see [20]), there exists a unique d™ € C*([0,7T7)
satisfying d™ = Ad™ = fo (t,s)d™(s)ds.

Step 3 — Estimates for 1n1t1al data

For w™(0), since Py" is the orthogonal projection, we may use Lemma 2.3, Sobolev embedding theory
and initial data in Section 3 to obtain the bounds

[a™ (0)llgzr < [le™(O)ll1 S [lu™(0)llwz S lluollwz < 10:m (0|52, (4.33)
and
10:£™(0) [l = [[u™(0) - N(0)[I1 < lluo - N(0)][1 < [|0sm(0) |1 (4.34)
Step 4 — Energy estimates for .

By construction, u(t) € V,,(¢), so we may choose v = u™ as a test function (4.28). Since 9™ = u™ N,
we have that

dl‘
dt 2

:/Fl-umJ—/ F36t61§m+F4-um—/ Fo(™ - 7)J — [# (9m),u™ - Ny,
Q —L s

using the Holder inequality for 1 < ¢ < 1~2H5 with 0 < § < 1 and 5+ l =1, Lemma 4.1 with 2 < r < % and

M)+ W™ N
(4.35)

r= = 2, the Cauchy inequality, Sobolev inequality and the usual trace theory, we have that

d 1 m m m
dt2”€ 115+ €lo™ s + Ju H0H1(9)+ N

—0
S Mz ) IF o lld ™ e la™ | por 4+ NE [z lla™ | oy + 171 Lo () 1P | 2o ™| Lo,
C@lmlilinli,s = + # (@) (4.36)
S+ HnIIW;/z)(IIFIIIWg + ||F4||W51/z + ||F5||W;/2)|Ium||1 + C(G)Hn!lfllnllivg/z + 10|12 [Bem)?
2 12 4012 5012 201,112 2 2
S (L Il )V g + 12 0rs + 1FI2, ) + OOl 512 + | 9en] 01
Then we employ the Gronwall’s inequality to derive that
T
S0P, €™ + ellde™ T2 + ™| z2ar ) + 0™ | 225005, +/0 [u™ - N}
2
S U+l

+ 10|70 g 1 [OmlellZ + HnoHiV;/w

o/ IF [ Lawwg + I e + 1PN 1s2) + COT M e 0 e (45T)

Step 5 — Energy estimate for o™,
Suppose that v = b7v? for b € COL([0,T]). Tt is easily verified that dpv(t) — R(t)v(t) € Vin(t) as well.
We now use this v in (4.28), temporally differentiate the resulting equation, and then subtract this from
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the equation (4.28) with test function J;v — Rv. This eliminates the terms of 0;v and leaves us with the
equality

(O™, v)) + (u™ - N,v-N)1x+ e(@(u™ - N),v-N)ix+ (" + e, Rv-N)1»
+ (™ + e v ON) s + (O™ N, Ng+ [u™ - ON,v- N+ [u™ - N, Rv - N,
clmNv-oNe [ s - na w9
= F™(v) — F"(0w) + F"(Rv) — ((u™, Rv))
—/ g(DatAum :Dgv + Dgu™ : Dy, gv + O, KD gu™ : D gv)J,
Q

where for brevity we have written
l
Fr(v) = / Floog —/ Foo(o-N)+ F ov— [ Fo(o-1)d —[v- N, 7 @0m)]s,
Q - s
According to the Lemma (A.1), then

(E+e",Ru-N)1s+ (E+e"v-0N)ix+[u-N,Rv- N+ u™ - N,v- Ny

4.39
—(E+eg"v- 0N s+ (E+e v ON )1y —[u-N,v-ON]+ [u™ - N,v-N];, = 0. (4.39)
We choose the test function v = d;u™ — Ru™. Then we have that
[Du™ - N, (pu™ — Ru™) - N = [Ou™ - N7, (4.40)
because of the fact that N' = Ny — 01ne; and Ru™ - N = u™ - (N = u™ - 010yme; = 0. Similarly,
at(um N) == (9tum . N —u"- atN = 8tum N —u" RTN == (atum — Rum) . N, (441)
hence
(U™ N, (O™ — Ru™) - N )15 + €(0e(u™ - N), (O™ — Ru™) - N)1 »
= (um ‘N,@t(um N)) 1,2 +6(at( m N) 6,5( m '/\/’))172 (4.42)
= &l N s+ ™ - N R s
Plugging the test function v = d,u™ — Ru into (4.38), (4.38) becomes that
dwll u™ - N s + el (w™ - N s + 10ew™ (12500 + O™ - N1 = T + IT + 111, (4.43)
where
I'=—((W", R(Ou™ — Ru™))) + ((Opu™, Ru™)), (4.44)
1= _/ X (Do : DA@™ — Ru™))J
Q
- / g(DAum : Dy, 4 (O™ — Ru™) + Oy JKD g4u™ : D 4(Opu™ — Ru™))J (4.45)
Q
— Bu™ - 7)((Ou™ — Ru™) - 7)04J,
s
and
I1T = 0, F" (O™ — Ru™) — F™ (0 (O™ — Ru™)) + F™(R(Owu™ — Ru'™))
= / [0, F" - (™ — Ru™) + 0, JKF' - (9u™ — Ru™) + F' - R(Ou™ — Ru™)] J
Q
74
— [ [0:F301((8;u™ — Ru™) - N) + 8; F* - (9™ — Ru™) + F* - R(d;u™ — Ru™)] (4.46)
¢

[
[0,F°(0pu™ — Ru™) + O, J K F° (8™ — Ru™) + F°R(Opu™ — Ru™)| - 7.J
s
— [/ (0m)0fn, (O™ — Ru™) - N1,

/
)
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where we have used the fact N = —R'A on .

We now estimate each term of I, I1, IT]1. For any fixed small number § > 0 and 1 < s < min{Z, 2},

we choose p and ¢ with 1% + % = % and 2 < p < %, such that, according to the Sobolev inequality, Cauchy

inequality and the trace theory of the weighted Sobolev spaces,

] < IRl zeelle™ g2 ) |106u™ o341 () + [0 lg2er () | Al oo IV Bl Lo [| 0™ | o
| RII oo 1™ 201 ) + 0™ g o Il oo 1Rl 2o [V R o [[u™ | o
+ Rl oo [l g2 (@ 105u™ [l g3 (@) + [10eu™ 201 () | All oo [V Bl L[| 0™ | o
< IRflsllu™ Loz @ 19ru™ llgzer (@) + ™ oz ) 1Al IV Bl | O™ 11
I RIE ™ 310 + 1™ g @ MBIV Rl ™ 11
R sl o2 @) 106u™ o341 () + 196u™ ([0 (@) ANV Ry [[a™ 11

1
SO0 ooy + (14 5 ) I By

(4.47)

where

Ca(n) = IRIZ + IAIZIVRIG, + ARV Rllws < (0l 5 + 18117 52) 1+ [In0ll7 52)-  (4.48)
§ é é

Similarly,

11| S N10eAl oo [T | oo [[u™ 11 ([10eu™ lyzer () + 1Rl oo [[u™ ly341 0
+ Al L= IVRI| e [u™ (| La) + 10pAll Loo || oo [|Osu™ 11 1™ [l )32 (02)
+ Al L [V R e [[u™ | a [w™ [l g31 ) + 106 K[ oo |00 200 () le™ g1 ()
+ |10e T K || oo [[u"™[[ g3 () (|1 Bl oo [0 [ g341 ) + ([T Al Loo [V R Lo [|u™ || £a) (4.49)
+ 10T || oo sy lu™ [[1 (O™ 11 + ([ Rl oo (2 [ [11)

m 1 m
SO0 ooy + (145 ) I

where

Cs(n) = [[10eAl Lo |7 [| 2 (100 Al oo 1| oe + || ]| £oe)
+ Al VR r (1 + 18: | oo ) + (|0 T K[| Lo ([|0p K[| oo + [| B| L) (4.50)

+ |0 J | .00 0| 705y + || R 700 < (IInll% 5,5 + |0 2.
10: || oo (52,) (10T || oo (5,) + 1Rl oo ()] N(Hnng)m | mHW(g/z)HnHWgz

For 111, we need more refined estimates. We will separate the estimates for 1] into several estimates.
First, by Cauchy-Schwarz inequality, we have that

l l
| o a@u — Ry A = [ o.RODmGEE < C@loml + I0EENE (45
—/ —/

here we have used the boundedness for d,R, which can be easily proved by the definition of R.
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Then we use Lemma (4.1), Weighted Sobolev embedding theory in Appendix C and D developed by

Guo and Tice in [10], usual Sobolev embedding Theorem and Holder inequality to derive that

/ [0,F" - (™ — Ru™) + 9, JKF" - (9pu™ — Ru™) + F' - R(Ou™ — Ru™)] J
Q

4
_ / OF - (™ — Ru™) + F* - R(Ou™ — Ru™)]
¢

— / [0, F° (0™ — Ru™) + 9, JKF?(9pu™ — Ru™) + FPR(Qu™ — Ru™)] - 7.J

— [/ (0m)O¢n, (O™ — Ru™) - N,
S 010" 230 + O™ - NTF) + [u™ 530 + L+ IRIDNO(F! = F = FO) [0,
+ (1917 + IRIF) @ + [RIDAFFyo + ||F4||‘24,;/2 + ||F5||‘24,;/2) + |0l T[0F ).
Thus, combining (4.47)—(4.52), we have the energy structure

d 1 m m m m
@iﬂaﬂf H%,E + ]| 07¢ Hiz + [|Opu ||§H1 + [0u™ - N7

S (1+ Ca(n) + Ca(m) [ 1250 + C()|0emllF + 1017107 n)7
+ Cs()|0(F' = F* = F2) |50y« + Co(m) (1 F 130 + ||F4||?4,1/2 + HFBH?WQ),
s 5 )
where

Cs(n) = (1 + | RIT) < (1 + 19ll5 2 + H””ivgﬂ)’

and
Co(n) = (1017 + IRID) (L + [ RIT) < (19enll3 /2 + ||77|!3V§/2)(1 + 1035 + H””iv;’ﬂ)'

We then employ the Gronwall’s inequality to derive that
T
JSup 18:E™ 12 5 + €llOFE™ 1721 + 10eu™ T2 g0 + HatumH%QHO(ES) +/0 [Deu™ - N}

S COTNON oo g1 + €0 + D) U™ [Fooppr + 0™ T2 + E()R(n)

+ (L4 CONUF oo + IE o172 + 111y 002)
+ 1+ em)o(F! = F* = F)[[G ..

Then applying the smallness of (1) < a < 1 and Lemma 4.7, we have that

T
sup (107 % + €l 07€™ 72 1 + 100 72 + 100 T2 0, + / (O™ - NT?
0<t<T 0
S COTE®) + €0+ RO + EMIF [ Fawg + 17170117 + 1F°17,0,1/2)
+ (L Emo(F" = F* = F?)l[Gp )

Step 6 — Passing to the limit.

(4.52)

(4.53)

(4.54)

(4.55)

We now utilize the energy estimates (4.37) and (4.55) to pass to the limit m — oo. According to
Proposition 2.5 and energy estimates, we have that the sequence {u™} and {9,u™} are uniformly bounded
both in L2H! and L2HO(%,), {€™} and {9,6™} are uniformly bounded in L®H®, {[u™ - N],} and {[d,u™ -
N} are uniformly bounded in L?([0,T]). Up to the extraction of a subsequence, we then know that

u™ — u weakly- in L2ZH' N L?H°(X,), 0™ — dyu weakly in L2H' N L2H°(%,),

€™ A ¢ weakly- + in L®H", O™ 2 9,€ weakly- * in L¥H,
and
[u™ - Ny — [u- N]; weakly- in L2, [0yu™ - Ny — [0yu - N, weakly in L2,
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By lower semicontinuity, the energy estimates imply that
g+l o, + 100 Bas + 100 Eaaocs,y + - NellZa + 0e - Ml

is bounded.
Step 7 — Improved bounds for & and 9;¢.

Form the above step, we know that £™(t) € H((—0,0)), 8,£™(t) € H*((—¢, 0)) and 92¢™(t) € H((—¢, 0)).

In (4.28), for the test function v € V(t), according to Theorem 4.11 in [10], we know that

€™ + €™ /e S Ilu™ I + [u™ - NTF + ||77||§V;/z + 1 F Wy« + 101007
S ™I + ™ - NI+ il e + 1 o + HEHIS, 12 + IF2I, 172 + 1011} 10em]7-
& & &

Then we may employ (4.33), (4.34) and Sobolev theory to obtain the bound for initial data

(€™ + €™ ) (0)[5a/2 S lu™ (O[T + [u™(0) - N(0)]F + HUOHZ;,?/Q
+IFO) G0y + 18m(0) 1[0 (0)]7
< & +IFOI.
If we let 9™ = ™ 4 €0,£™, we can solve this ODE as

s

1/t
£m:noei+€/ e e 9" (s) ds.
0

Now we estimate £ from (4.58). Applying Cauchy inequality,

tq ot m tq ot 9 1/2 tq t-s 1/2
/0 = (5)lla/2 ds < </0 = ()25 ds) (/0 et ds> .
t 1/2
(/ 1e_tzs ds> =(1- 6_5)1/2 <1,
o €

then taking L2([0,7]) for (4.59) and employing Fubini Theorem imply that
[ L= oelies [ [ e
- [t ( / 90— 9B qat) as

< [M Xt [hoons,

Since

(5)[3 dsat

< 19122 e
Thus, (4.37) reveals that
€7 o2 < CllnolPysa + | / L2210 () o2
S W+ IR ) uFluszo T HF‘*HLZWW HIFI2, 02) + COT e 01

0052 102 ey 2172+ 100 Bl

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
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Similarly, according to (4.38), we know that
[0:£™ + 68t gmHLzHa/z
T
S 100" g + [ 1007 - N + €0+ € R0 + (1 4+ €I g + 1P 2y + 1)
(L4 Em)I(F — F* — F9)4,
S C(OTEm) + €+ EmA) + (1 + Em)(IF Loy + 1713

+ (L4 Em)aF = F* = )5,

+|F?)2

L2W1/2 L2W1/2)

B - - (4.63)
If we denote 9,9™ = 9,6™+€02¢™, and the extension ;0™ = 9™ +€d?E™, then by a standard computation
for energy formulation, we may get

6%\\3t€m\\112 + 10 |2 < 1009 |12, (4.64)
Then by the trace theory and (4.57), we may derive that
1™ 17 2 a2 S € 10E™ O)I1Z 2 + 1009™ 1172 12
< IEm ()25 + IE™(0) + DE™O2 5 + 100 4 10
< C(OTE(1) + € + | F(0) [0 + €(m)&(n)
+ 1+ €M) 2y + 1 F17 2t 172

(4.65)

Then, up to an extraction of subsequence, we know that
€M — ¢ weakly in L2H?/?, 9,6™ — 0,¢ weakly in L2H®/?. (4.66)
By lower semicontinuity, we have
€1l L2 zr3/2 + 106 2 /2
is bounded.

Step 8 — The strong solution
Due to the convergence, we may pass to the limit in (4.28) for almost every ¢ € [0, 7.

((u,v))+(§+e@t§,v'N)17g+[u-/\/,v-./\/']g
:/Fl-v,]—/g F3al(v-N)+F4-v—/ F(v- ) — +[#0m),v- Ns.
Q 4 s

We now introduce the pressure. Define the functional Ay € (W(t))* so that A;(v) equals the difference
between the left and right sides of (4.67) with v € W(¢t). Then A¢(v) = 0 for all v € V(t). So, by the
Theorem 4.6 in [10], there exists a unique p(t) € HO(¢) such that (p(t),div4v)zo = Ay(v) for all v € W(t).
This is equivalent to

((U,U)) + (f + Eatfvv 'N)l,E - (p, diVAU)HO + [U 'N,’U '/\/]g
l
—/Fl-vJ—/ F301(v-N)+F*v— | Fv-7)J—[#(m),v-N.
Q —/

s

(4.67)

(4.68)

Moreover,
IPIIE < Null¥ + 11 [0 + \IFS\@V;/Q- (4.69)

On the other hand, we pass the limit in (4.38) For a.e. ¢t € [0,T], (u(t),p(t),&(t)) is the unique weak

solution to the elliptic problem (??) with 3 replaced by F3(t). Since 9, F3(t) € W(Sl / ?, and also according
to the elliptic theory of [10], this elliptic problem admits a unique strong solution with

@)1z + IO, + 1€E) + A OI, 32 S SIE a0 + ||F4||L2W1/2 + 5||L2W

+1ox& (¢ )||3V;/z + oSt )H2 12+ [ut) N+ 7 (0m)]i + [0 F*(2)]7.

1/2

(4.70)
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Then using the extension and restriction of weighted Sobolev spaces theory, similar to (4.64), we may
derive that

€127 01772+ HEE) - DL 5 (@.71)

Integrating temporally from 0 to 7" for (4.70), we employ (4.71) to derive that

2 2 2
Il ez + 112y + €12, 0

T
S ”770”31,5/2 + Hatingwgm + HalF?’HigWam +/0 ([’W NG+ [ (O} + [0F3]3)

I g + 1EH e + 1212, e

L2w, 2w,
S CATE(m) + €+ 7Oy + EDK) + (1 + EMINF g + 1P, 000 + 1,00
+ (1 + G(n))Hat(Fl - F4 - F5)H?y.{%ﬂ)*
(4.72)

Step 9 — The weak solution for D;u and d;p. Now we seek to use (4.38) to determine the PDE satisfied
by Dyu and d;p. We may pass to the limit m — oo, and use (4.68) with the test function v replaced by
Rv to derive that

((Opu,v)) + (s + €02€,v - N 15 + [Opu - Ny v - Ny
= (£ + €0, Ru- N1 — (p, div 4(Rv)) 50 +/ [0, F" v+ 0 JKF" 0] J

Q
0
- / [0 F301 (v - N) + F30,(v- ON) + 0, F* - v] — / [0,F°v + 0, JKFv] - 7J (4.73)
-/ s
— / %(D@Au Dav +Dgu: Dy, av + O JKD pqu : D gv)J — B(u-7)(v-7)0J
Q Ys

— 7 (0m)din,v- N
According to the Lemma A.1, we know that —R" AN = 9;NV on ¥. Then integrating by parts, we have that
_(p7 diV.A(RU))HO = (RTVAP7U>HO + <patN7,U>71/27 (474)

where we have used the Proposition 2.6 to cancel the term on boundary of solid wall. Then the definition
of R and integration by parts yields that

_/ %(D&AU :DAv 4+ Dgu : Dy, 4v + O J KD gu : D gv)J
Q

= —/ Dy, au — RD qu) = V 40J] (4.75)
Q

= (div4(Dy,au — RD gu), v) g0 — (D, auN + Dgud N, v>71/2 .

Similarly, we have that

= ﬂ(u-T)(v-T)atJ:/ D quv - vOLJ
3s s
= / pD quv - v8, JK J 4+ nRD quv - vJ — uRD quv - vJ
s (4.76)
= / wDg, auv - vJ — pRD quv - vJ

s

= / uDy, quv - vJ + SRu - vJ.

K
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Combining the above equalities (4.73)—(4.76),
((Opu, v)) + (O + €026,v - N) 15 + [Opu - Nyv - Ny

- / [div A(Do,at — RDqu) + RV Ap} v + / (O F* + O JKFY) -]
Q Q

+/ (NDatAUV+,8RU)'T(T-U)J+/ (8tF5+8tJKF5)(U'T)J
s s

p (4.77)
—/ 8tF381(v-./\/') +F381(v-6t/\f) +F4 -U+ (DatAUN—FDAuatN) -
—¢

Y4
+/ (—p+g(§+68t§)+81 (F?’—i-ﬁe&tf))@t/\/-v
—

(1+101¢0[2)?/2
— (7 (0m)dn, v - N,
where we have used the integration by parts for the term (£ + €d:&, Rv-N)1 x and the fact that v- 9N =0
at £1 = +¢. Then there exists a unique 0, € H, such that

((Byu, v)) = (Opp, divav)o + (i€ + €07E, v - N1z

- / [div A(Dy,au — RD4u) + RTV Ap} oJ + / (O F" + O, JKFY) - vJ
Q Q

- / (uDp, auv + BRu) - T(T - v)J + / (OLF° + O, JKF?) (v -7)J
s

s

‘ (4.78)
—/ OE301(v-N) 4+ F301(v - ON) + F*- v + (Dg auN + D 4udN) - v
—¢
¢
é‘i‘ 68t§ >>
— 0 nh(FP4+———"2 ) )oN-
+/_g< p+ g€+ €dé) + 1( +(1+‘61CO‘2)3/2 ¢ v
- [W/(atn) t1, v M@a
and 2 2 2 2
192115 S 19wl + B - NTZ + lInll3 2 10mlls o (lullive + Pl + 1€ + edrelly, o
+ ||77||€V§/2 +mll3 2 + 1+ 11 [0 + HF4H?,V§1/2 + HF51|3V;/2 (4.79)
+0(F" = F* = FO)|G)-) + 7 (0m) O]
Thus integrating temporally from 0 to 7" reveals that
10672570 < COTEm) + o + [ F(O)|[Gp0)- + E)R0) + (1 + €M) EF T2y + ||F4||L2W1/2
5 1 4 5412 (4.80)
FIFP I 1) + (L € [0 (F = P = F)y .
O

4.3. Higher regularity. In order to state our higher regularity results for the problem (4.3), we must be
able to define the forcing terms and initial data the problem that results from temporally differentiating
(4.3) one time. First, we define some mappings. Given F3, v, g, ¢, we define the vector fields &' in Q, &3
on ¥ and &% on X, by

@1(1), q) = RTVA(] =+ diVA (DA(RU) =+ ]D)at_AU — R]D)AU) s
& (v, q,€) = uD A(RV)N — (qI — pD40)ON + pDy, 40)N + L(E)OWN — 0O FPN, (4.81)
6°(v) = (uDA(Rv)v + pg, avv + BR) - 7,

These mappings allow us to define the forcing terms as follows. We write F10 = F1 F40 = F4 and
F50% = F5_ Then we write

FYl=pDF' 4+ G, FY =9 Ft 4+ Gt F5 = 0 F° 4 GO, (4.82)
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When F3, u, p and ¢ are sufficiently regular for the following to make sense, we define the vectors
FY2 .= Y (Dyu, 8ip) + DiG, FY2 .= & (Dyu, 0yp, 9:€) + 0:G*, F>? .= &5(Dyu) + 9,G°. (4.83)

In order to deduce the higher regularity, we need to control the forcing terms F»J. But for the purpose
of solving the nonlinear problem (5.1), it’s necessary to assume that F“? = 0, j = 1,4,5. Before that, we
need the following useful lemma.

Lemma 4.9. Suppose that the right-hand side of the following estimates are finite. Thenu € C°([0,T]; WZ()),
p € CO([0, T); W} (), € € €0, T} Wy *((—=,0))), and

g S 190V + gy + 052y, (4.8)
||p|\LooW1 S 10m(0)[13 5 + ||p||i2W51 + HatpHizWélv (4.85)
||§||ioow5/2 N HUOH2 5/ + H5||L2W5/2 + Hat§||L2W5/2 (4.86)

€ + €3t5HiooW5/2 S H770H2 512 + (1€ + 65t5”22w5/2 + [|0:€ + 6825”L2w5/2 (4.87)

Proof. First, (4.84) and (4.85) are obtained by the similar computation of Lemma 4.7 and then utilizing the
initial data for ug, pg in Section 3. By Theorem 4.6 in [10] and Stokes equation, we have that (4.86) could
easily obtained by the similar computation as (4.84) after employing the extension theory on weighted
Sobolev spaces, and then using the restriction theory on Sobolev spaces. From the third equation of (4.3),
we know that

1(& + € ) (012, 52 S < limoll?, sz (14 o2 s/z)HUOHWz ||7Io||3V;/z +110n(0)13 2
which together with (4.86) imply (4.87). O

Now, we need to estimate the forcing terms of FJ.
Lemma 4.10. The following estimates hold whenever the right hand side are finite.

o SR lelfepn + 100l T2 + [llZows + 10l Loy + P20 + 100l g0, (4.88)

LE 12 garn 800 (14 0l 52 (1 lfwollFe) + Py + 1l + 116 + €02, 0
(4.89)

100l G2y + 190l a1z + 1966 + P2, ).
1E5H 2 12 S R0) (Il Faywz + 190l + el ) (4.90)

Proof. The estimates follow from simple but lengthy computations, invoking the arguments of Appendix
C and Appendix D in [10]. For this reason, we only give a sketch of proving these estimates.

According to the definition of F1!, F4! and F>! in (4.82), we use Leibniz rule to rewrite F*! as a sum
of products for two terms. One term is a product of various derivatives of 7, and the other is linear for
derivatives of u, p and £. Then for a.e. t € [0,T], we estimate these resulting products using the weighted
Sobolev theory in Appendix C and Appendix D in [10], the usual Sobolev embedding theorems and Lemma
4.7. Then the resulting inequalities after integrating over [0, T] reveals

HFl 1HL2WO S P(@(U))@(U)(HquLzHl + Hatu|’%2Hl + Huuizwg + Hatu”%zwg (4.91)
+ ||p\|izv°v61 + Hatpniﬂj/al)’ '

where P(-) is a polynomial. Since R(n) < 1, we know that P(€(n))®(n) < K(n). Thus we have the bounds
for (4.88). Similarly, we have the bounds for (4.89) and (4.90), and (4.89) also needs (4.87). O
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Lemma 4.11. It holds that

[F5E = Y = PPy S €D(IPI oy + [ullzaws + 1€+ eatﬁlligwésxz), (4.92)

and

lon(F1Y = F2 = PP S KON+ ([ullZogn + 100l Fa g + [ull7eyz + 100l Fayy

2 2 2 2,112 (4.93)
DIy 1+ 16+ DN+ 106+ ORI, )
Then FLt — F41 — 51 € O([0,T]; (HY)*). Moreover,
I(F5Y = F5 = F1)(0)][3). S €o. (4.94)

Proof. Since the proof of the first two inequalities are similar, we only give the proof second inequality.
From the notation in Remark 4.4, we have that

T T ot T
<at(F1,1 o F4’1 o F5’1),U>(H%)* — / / atFl,l o — / / 8tF4’1 T / 8tF5’1(v . T)J, (495)
0o Jo 0o Je 0 Jus
for each v € V. Since we assume that F* = 0, (4.95) reduces to

T T b T
(Oy(F" — F4 — FPY) 0y oy, = G- wJ — oG v — XGP(v-T1)J,  (4.96)
(Hr) 0o Ja 0o J—¢ 0 Jxs

for each v € V. Then we use an integration by parts
1 14
/ div A (D 4(Ru))v = —2/ D4 (Ru) DAvJ+/ DA(RWA - v +/ Du(Ruv-r(v-7)J  (4.97)
Q Q —¢ s
to reduce (4.96) to the following equality
1 T
(Oy(FH — P4 — PPN 0) L0 = = Or(D4(Ru)) : DyvJ
(Hz) 2Jo Ja
T
+ / / [8t(G1 — pdivg(D4(Ruw))) + MdiVatA(DA(Ru))] cvd (4.98)
0 Q

T 4 T
_ / / (G — uDA(Ru)N) - v — / OG5 — uDa(Ruw - 7)(v - 7).
0 —¢ 0 s

Then we use Holder inequality and the same computation in Lemma 4.10 to derive the resulting bounds. [

Now, we give some estimates for the difference between 0;u and D;u. The proof is similar as that of
Lemma 4.10, so we omit it here.

Lemma 4.12.

90— D> S D)l + Nl + 10l Zayy): (4.99)
90 — Dol + 100 — DpulBgogssy S Em)(ullZages + [uly2): (4.100)

and
1071 — B;Dyul| 72 + 11070 — Dyl 72 oy S ﬁ(n)(HUHim; + HatUH%zW;)- (4.101)

Now we turn to construct the initial data DJu(0), &p(0) for j = 0,1 and &/£(0) for j = 0,1,2. For
j =0, we write Du(0) = ug € WZ(Q), 8?p(0) = p(0) € W;(Q) and 9PE(0) =g € W(?/Q(Z). For j =1,
we define that 9,£(0) = ug - N(0) = 9n(0) € H3?(X) and Dyu(0), d;p(0) are the same as Section 3.
07£(0) = Dyu(0) - N'(0) = 97n(0) € H'(%).
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Now, we define the quantities we need to estimate as follows.

2 . . T . 2
(0.9 = 3 (100l + 100l + [ o ]))

14
j=0

<.

2
+ 3 (107015200 + 107€0 2 10/2) + 126N 01 (4.102)
]:
1

+ 3 (10f by + 10D iy + 10061 )

=0
E(u,p, &) : = ||ull} + 100ul oo g1+ IPII7 wyr + 110l
u, p, . U LOOW62 tU|| 1,00 1 b Loowél tP|| 1,00 go
2 (4.103)
+ Hf”iwws/z + 110113 oo gz + Z 107113 00 1
7=0

and

R(u, p,§) = €(u,p, &) +D(u,p,§). (4.104)

Now for convenience, we introduce two new spaces
X = {(uvpm)lu € C°([0, T); W5 (), 0pu € C°((0, T); H' (), p € C°([0, T]; W3 (),
€ CO([0,T); HO(2)),n € CO[0, T); W% (~¢,0)),0m € C°(0,T); HY*(~£,0),  (4.105)
am € CO0, 1 H'(~,0)). 9 € CO0, T H'(~,0)) },

endowed with norm |[|(u,p,n)||x = /€(u,p,n), and

Y = {(w,p.mlu € L2(0, T} WE(Q)) 0 L2([0, T]: H () N LA([0, T); H(S,)),
dpu € L2([0,T); W () 0 L*([0,T]; H' () N L2([0, T); H(%)),§ = 0, 1,2,
0Fu € L*([0,T]; H'()) N L*([0, T]; HO(,)), [8{u - N, € L*([0, 1),
p € L2([0,T); W3 (@) N L2([0, T); HO(9)), dp € L2([0,T); W3 (Q)) 0 L2([0,T); H()),  (4.106)
O2p € LA([0,T]; HO(92)),n € L2([0, T); Wy *((—¢,£))) 0 L2((0, T); H¥2((—£,0))),
om € L2([0,T); W3 ((—€.0))) 0 L2([0, T); H*/?((—0,0))), 0 € L*((0,T); H*/((~L.0))),
opn € L2([0, T1: Wy *((~¢,0)}

endowed with the norm ||(u,p,n)|ly = /D (u,p,n).
In the following theorem, we set the forcing terms F = 0, i = 1,4,5 for the brevity. But it also holds
by adding the forcing terms and assuming the regularity of them respectively.

Theorem 4.13. Suppose that ny € Wg’/Q(—E,ﬁ), Am(0) € H32((=£,0)) and 02n(0) € H ((—L,0)) satisfy
the compatibility in Section 3, that K(n) < a is sufficiently small satisfying the assumption in Lemma 2.3
and Theorem 5.9 in [10], and that F* = 0, i = 1,4,5. Let ug € Wg(Q), Dyu(0) € HY(Q), po € W(;l(Q),
dp(0) € HO(Q), 8,£(0) € H3/2((—£,0)) and 92£(0) € H((—¢,¢)), all be determined in terms of ny, dn(0)
and 0?1(0) as above. Suppose that the initial data satisfy the compatibility conditions in Section 3. Then
for each 0 < € <1 there exists T, > 0 such that for 0 <T < T, then there exists a unique strong solution
(u,p,&) to (4.3) on [0,T] such that

(u,p,§) € XNY. (4.107)
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The pair (D{u,@fp, 855) satisfies

( — uAA(D]u) + V.ad]p = F'9, in Q,

div 4(DJu) = 0, in Q,

SA(afp, Diu)/\f = ﬁ(@tjf + G@thrlﬁ)/\/' - aﬁlagF3/\/'+ F4i on X,

J J _ J s — FJ

(Sa(ﬁtp, Diju)v — B(D{u)) -7 = F*, on X, (4.108)

Diu v =0, on X,

e = Dlu- N, on X,

nOlE + e 0T ¢ : - o
o 1+ 1010P) (£0) = k(Dju - N) () £ 00! F*(£l) — k0! H (Om),

in the strong sense with initial data (D{U(O), a‘gp(O), agg(o)) for 7 =0,1 and in the weak sense for j = 2.
Moreover, the solution satisfies the estimate

R(u, p, &) < C(e)T(R(n) + &) + Co(€o + E(n)K(n)), (4.109)
where Cy is a positive constant independent of .

Proof. Step 1 — FIXME

Following Theorem 4.8. When j = 0, since the compatibility condition in Section 3 is satisfied and K(n) is
small enough, Theorem 4.8 guarantees the existence of (u, p, £) satisfying (4.15) and (4.16). (D{u, d!p,d/¢)
is a unique solution of (4.108) in the strong sense when j = 0 and in the weak sense when j = 1. For j = 1,
the assumption of Theorem 4.8 are satisfied by Lemma 4.10, Lemma 4.11 and compatibility condition in
section 3. Then according to Theorem 4.8 and the elliptic estimate for £ +€d;¢, we have that (Dyu, O;p, 0.€)
is a unique strong solution of (4.108), and (D?u, 82p, 9?€) is a unique weak solution of (4.108). Moreover,

IDsull72 g1 + 1 Deull T2 gros,y + IDew - NellZ2qpo 77y + HDtuHizwg + 1 0: Dyl 7 211
10D g0,y + 106Det- Nelaomy + 1000 + 1901y + 107003210
+ 1017 o0 g1 + ||8752§H%2H3/2 + 10 + €D7€1% . ss2 + 102E N7 oo g1 + Hatfui2H3/2

1,1 4,1 5,1 [1221/1/5 (4110)
< C(OTE(n) + € + | (F1 = FY = F5)(0) B + E0)R()
+ (L € UF ey + 1F 12,y 0+ 1P, 00)

1+ Em)a(FHt - U P2,

Since £(n) is sufficiently small, then Lemma 4.12 and the fact that Dyu - N (+f) = Opu - N'(££) can reduce
the above estimate to

vl + 19l 2 g0 s,y + N0 N30y + 100l 2y + 1070l
+ 107l 22 o,y + 1107w - NellZ2 0.2y + 10601172570 + H({)tPHing + 107 plI72 510
+ 1070 i + 107€N T2 g2 + 1066 + eafé\ligwg/g + 107€ N L oe i + 108172 g2 (4.111)
S C(OTEm) + € + EmAM) + K (lullfem + lullzows + P72y + 1€+ eatflligwg/z)
S C(OT (€ + R(n)) + €o + €(n)R(n).
Then from the extension and restriction theory of weighted Sobolev spaces, we may derive that

10:€11% < €l12:£(0)]1? + (10 + edFel]

L2W55/2 ~ L2W65/2 L2W65/2
NGO ez + 1600) + DEO)2, o+ 19E + OE2, e (4112)

S €+ [|0:€ + 68?5”;‘4/5/2-
5
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We can directly estimate 93¢ by
3012 2
||at€||W51/2 = ||0:Dyu - N+ Dyu - atNHWél/z

(4.113)
SN0 Deul 0l 52 + || Deul F|0em]? 52
S N0 Deullilinly sz + 1DeulTl| Ol s 2
Then from (4.12), we might derive that
Haf’fllizwél/z S Sl + 1l oz + 10ull72y2) (4.114)

Thus(4.111) — (4.113) imply
D(u,p,§) < C()T(R(n) + €o) + Co(€o + E(n)R(n))- (4.115)

Step 2 — Other terms in €.
Similar to Lemma 4.7,

186t 7 oo g1 S N00u(O) |71 + 1Osull 72 + 107wl T2 41
10017 e pro S 00 (0) 132 + 102wl 2 2 + 107Dl 211,
1OENT o prss2 S 10O T2 + 110N T2 grar2 + 107EN T2 55/
which together with Lemma 4.7, Lemma 4.9 and initial data imply that
E(u, p,§) < C(e)T(R(n) + €o) + Co(€o + E(n)R(n))- (4.116)
Then (4.115) and (4.116) imply the conclusion (4.109). O

5. LOCAL WELL-POSEDNESS FOR THE FULL NONLINEAR EQUATION

We now consider the local well-posedness of the full problem (1.19). We first construct an approximate
solution (uf, p¢,n¢) for (1.19) and for each € > 0. Then our plan is to let € — 0 to obatin the solution of
(1.19).

5.1. Existence of approximate solutions. We now construct a sequence of approximate solution (u€, p¢, n°)
for each 0 < € < 1. For simplicity, we still denote the unknown as (u,p,n) instead of (u€,p,n°). But it
should be understood as (u€, p, 7).

Now we consider the e—perturbation problem of the original system (1.19) as

((diva Sa(p,u) = —pAqgu+ Vap =0, in Q,
divqu =0, in €,
SA(p, U)N = g(n + EHt)N — 0'81 (M’_Ealm> /\f — 081 (R(81C0, 817]))J\/, on E,
(1 +]01Go])3/2
(Salp,u)v — Bu) -7 =0, on X, (5.1)
u-v =0, on X,
om=u-N, on X,
B 01m + €Ot N
kOm(£L,t) = :Faw(i&t) F R(91C0, 01n) (£, 1) — KW (9n(+L, 1))

where A, N are in terms of n¢ and the initial data are n(x1,0) = no(x1), dn(z1,0) and 82n(x1,0).

Our strategy is to work in a metric space that requires high regularity estimates to hold but that is
endowed with a low-regularity metric. First we will find a complete metric space, endowed with a weak
choice of a metric, compatible with the linear estimates in Theorem 4.13. Then we will prove that the
fixed point on this metric space gives a solution to (5.1).

Now, we give the definition of a metric space.
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Definition 5.1. Suppose that T' > 0, the initial data are the same as Section 3. For o € (0,00), we define

S(T,0) = {(u,p, n) € LPH' x L*H® x (L°W? 0 HY([0,T; +0), |(u, p,n)) € X N Y, with

(5.2)
R(u, p, 77)1/2 < o and (u,p,n) achieve the initial data as Section 3}
We endow this space with the metric
d((u,p,n), (v,4,€)) = lu = vz + 1P = all 2o + 1 = &ll pocyyor2 + 1021 = Beklell 22 (10,7, (5.3)

where the the temporal norm is through [0,T].

In order to use the contraction mapping principle, we need to show that this metric space is complete.
Theorem 5.2. S(T,0) is a complete metric space.
Proof. Suppose that {(u™,p™,n™)}>_, C S(T, o) is a Cauchy sequence. Since L2 H"' x L2HO x (LOOI/V;/2 N

H(]0,T]; +0)) is a Banach space, there exists (u,p,n) € L2H' x L2H® x (LOOI/V;)/2 N HY([0,T]; +¢)) such
that

w™ = win L2HY, p™ — pin L2H®, n™ — nin LOOW;/Q, o™ — 0y in L*([0, T]; ££)
as m — 0o.
For each m, we have that £(u™, p™,n™) < ¢2. Then up to an extraction of a subsequence we have that

(™, p™ n™) — (u,p,n) weakly—* in X, (u™,p™,n™) — (u,p,n) weakly in ), (5.4)

which imply that (u,p,n) € X N Y. Then according to lower semicontinuity,
f(u,p,n)'/? < inf K™, p™, ™) < 0. (5.5)
This completes the proof. ]

Theorem 5.3. There exists a constant C such that for each 0 < ¢ < min{1,1/(8C)}, then there exists a
unique solution (u€,p,n) in the metric space S(Te,0) with T, > 0 and o > 0 sufficiently small, and so
in particular (uf,pS,n°) € X N'Y solving the equation (5.1), where X and Y are defined in (4.105) and
(4.106).

Proof. Throughout the proof, P(-) is a polynomial, which is allowed to be changed from line to line and
P(0) =0.

Step 1 — The metric space.

Suppose that &(n) < « is sufficiently small. Then Cy&(n)R(n) < «/4. Now, we take T, > 0 small
enough such that C(€)Tca < a/4. Then we take the initial data small enough such that C(e)T. €y < /4
and Cp€; < a/4. Here C(e) and Cy are the same as in (4.109). Then we take ¢ < a'/2. For every
(u,p,m) € S(Te,0), let (u,p,n) be the unique solution of the linear problem of

((divg SA(p,u) = —pApu+ Vap =0, in
divaa =0, in Q,
SA(]; ﬁ)N = g(ﬁ + 68{17)./\/ - 081 <81ﬁ+6818tﬁ> N - (781 (R(81C0 8177))/\/ on X
, (1+ [01C0])?/? ’ ’ ’
(Sa(p, @)y — pa) -7 =0, on s, (5.6)
u-v =0, on g,
on=1u-N, on X,
- 011 + €01047) A
\ kO (£l t) = ¥UW&& t) F R(01G0, Orn) (L, 1) — £# (9pm(£L, 1)),

where A and A are in terms of 7, and the initial data 77(0) = g, 9;:77(0) = 9;n(0) and 927(0) = 9?1n(0). By
the Theorem 4.13 of linear case, we have the estimate

R(a, p,7) < 0%, (5.7)
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which imply
(a,p,n) € S(Te,0). (5.8)
Step 2 — Contraction.
Define A : (u,p,n) = (a,p,n). Now we prove that

A:S(Te,0)— S(T¢,0)
is a strict contraction mapping with the metric in the definition 5.1. Choose (u’,p’,n") € S(It,0), and
define A(u’,p’,n") = (4',p',7') as above, i = 1,2. For simplicity, we may abuse the notation, and denote
u=u'—u? p=p'—p% n=n'-n?and the same as 1, p, 7. From the difference of equation for (@, *, 7*),
i = 1,2, we know that
(div g1 S (p, 1) = pdiv g (D g1 g2%%) + R, in Q,

div g1 @ = R?, in Q

o R B ~ 011 + €010
1_ 2471 1_ Il B B bt 2 1
S0 N = DN o+ N o (TG )

— 001 F3N' + R?, on 3,
(Sq1(p, )y — Bi) -7 = puD 1@y - T, on X, (5.9)
u-v =0, on g,
oy =1u- N1+ R, on X,

011 + €010
(14 ¢o]?)3/2
\?TL(.%,O) :07 ﬁ(xl,O) 207

where R, R?, R3, R*, R®, RS are defined by

kO(£L,t) = Fo (£0,t) F F3(£L,t)) — RS,

Rl = ,udiV(Al__Az)(]D)AQQZ) — V(Al—AQ)ﬁ27
R2 = — diV(Al_Az) ’L~L2,
R3 = —pA(NY = N?) 4+ D 2@® (N = N2 + g(7% + €010:77) (N — N?)
<<91772 + €010
N+ [GR)R
R5 :’ELQ-(Nl _N2),
R® = k(¥ (0" (£4,1)) — # (0 (£L,1))),

and A, N, F3% = R(01(o, 011") are in terms of ', i = 1,2. Here F? = F31 — 32,
We now have the pressureless weak formulation of (5.9) as

> NP = N?) — g FPANT — N2,

g/ Dy :Dpwst+8 [ JHa- ) (w-7)+ (7 + edei,w - NDs + [a- N w - N,
Q s
¢ (5.10)

:,u,/ID)A1_A2112:ID)A1wJ1+/R1-wJ1—/ oF30(w-NY + R w— [w- N, R® + RY,,
Q Q —L

for each w € V(t). Then according to Theorem 4.6 in [10], there exists a unique p € H°(2) such that

g/ﬂDAul D w4+ 8 . JHa-m)(w - 1) — (B, div g w)o + (7 + €dyif,w - N1 5
+[a-NYw- N, s

:M/QDAlAza%DAleW/

Q
—[a-NYR® +RY), |

. (5.11)
Rl-le/ oF30(w- N + R? - w
-
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for each w € W(t). Moreover,

1Pl S llally + llnlls/2 ((H??lllg/z + {172l /2) 182l wz + Hﬁ2||v°v51) : (5.12)
Multiplying the first equation of (5.9) by %.J!, then integrating by parts,
l ~12 ¢ ~12
=2 . 9 0117 ) / =192 01047
0 SNt s | € on*+o—m———
t (/ 2‘77‘ <1+ ’81&)’ )3/2 7@.9’ tn‘ (1 + |81C0|2)3/2
+ 4 [ i+ A
(5.13)

:/DAl_Agu D + /R1~71J1+15R2J1—/ JYa-T)R*
Q s

_ /Z 5 81(77 + Gatﬁ)ale

oF30, (- NV + R® - it — g(ii + D) R® — o
1( ) 9(77 t77) (1 + ’61<O|2)3/2

— [fL 'Nl,R5 + RG]Z,

Then we estimate the terms in right-hand side of (5.13).
/ RY-aJ' + pR2J?
Q
:/ (diV(Al,Az)(DANNLZ) = Viar—a2)p ) aJ! +pdivig_ g2yt w?Jt

Q

5/ IVl (V27| Va?| + [Vi?|[V2a?| + [VE?)) lal + |5l Vil Va?|

< (Il oz + 15l0) s elin’ 2132wz
Now we consider the integration on (—¢,¢). First, we know that N'* — A2 = (=017, 0) and
HFP? = R (Do, Orn”) = OyRO o + ORI’

where |9, R| < |01m?[%, 10.R| < |01m?|. Then we take %4—% =1, %4—% =1, withl<p< 1% and use
Hoélder inequality, Sobolev inequality and trace theory to derive that

l 1
-]
), —t

nn? + D10 1 2 3,2/ n71 N~

Sl ol allal zaes) + 1010* [ Lae) IVE | o) 010l Lacsy @l pacss)

Ni? + €004
~2 ~2 1n 10¢M
+ 010 -0 | ————~—
Hg(n + €01 t77) o 1< (1+KO|2)3/2 )

= PPN = N?) + D@ (N = N?) + (7 + 10 )N = N?)

1| Lr s 18] £ (52
Lr(3)

+ 10y Rl 2 101l ey 1]l sy + 10 R Lall v | o sy 10101 Lacsy @l o

S (H lollovnlls o + 110071 2| V2| w2y 101mlhy2 + 7% + eyl w2101/
+ (100113 2101l 2 + 10197 (|1 2]l 5/2”3177”1/2>HUH1/2
N <||152H0||77||3/2 122l @z lnlls2 + 177 + 6@772||W§/2H77H3/2

+ 1115 2l /2 + ||772|3/2||?72||W;/2||77||3/2> [t
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Similarly,

F30y (i N) — g(iy + i) R® —
0 V(@ N7) — g(7 + €deip) T [0iGo 2P

S nllasz (Inlls/2 + 1921572) N0l + @l @ (|1lnlls /20132
+ |17 + 681%"72”%’)/2HﬂHlHTle/Q + 19?13 /2lInll3/2 + H772||§/2HTIH?>/2

/é a1 (77 + e@tﬁ)81R5

1+ c0rils (Inlls/2132ws + 11l )

[@- N R + Ry < [ Ne([0m e + [0m°]0) [0,

here we have used the fact that R% = 0 at the end points z1 = 4/ since u’l vanishes there, for i = 1,2 and
we denote that v’ = (u},u}). Then, the Cauchy-Schwarz inequality, weighted Sobolev embedding theorem

and Gronwall’s inequality imply that
T T
~112 ~112 ~112 ~ 112
sup Hnul+e/ Hamul+/ a2 + [ N2
0<t<T 0 0
T
2 1112 2112 ~2112 1112 2112 ~2112
< / Il 7 ((Hn 12,502+ W20 s + 1313 + 1P B+ 1 ro)

T T
[+ D el + a2 + [ 10"+ 0P Do,
From the weak formulation (5.10) and the Theorem 4.11 in [10],
17+ eBuitlEye S 1l + - A + Il ol 12,5212y + 120+ 172 + OO 1)
HIF? |1, + [R* + R

S lallf + [@- N7 + “77“3/2(”771”124,;/2”ﬁQHIz/Vé? + 15, + 1 + eatﬁz”?/vfm)

HInl 2 nll3 /2 + 1[152) + (10 1T + 00?1 ) [Bem]7.

Since

N Y LS .
772/6 < (7 + €omn),
0

€
thus
1 5 1 [t s, -
Oy = —(i1+ €)= = | e (7 +edeip),
0
then we have
2

T t
o s < i Duilugs+ [ (2 [ &+ couilya)
S C@ln+ EatﬁH%2H3/2 S C(e)(HnHimW;/z + H[87577]6”%2([01]))]3(‘7)-
From the Theorem 5.9 in [10], we have that
Il + 11
S - pdiva a0 o) + By + IRy + 1007 — B, 0

+ H[JDAI_ATZTL%/\[I + R3H12/Vl/2 + HM]D)AI_AQ'EL21/ . T”‘Z/Vl/g
s 8

< il o2 ((1 + 12 + “772”3@/2) 17272 + ||152||3=V51> + 19011532

é

i (1 + D0 352 4+ 1y + 712 ).

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)
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then the Theorem 5.10 in [10] implies
177+ il 5
S lalliye + 115, + ||31F3Hf,[,;/2 + D a2 @ N + R?’Ha,;/z + [P} + [R°)

R R ~ (5.19)
S, (1 1P 0PI, 2 + 1212, ) + 10071,

S5
2 ) 2112 12 202
+ ||77||W§/2 (HU + €0y1) ||W§/2 +Im ||W55/2 +In ’|W§/2)-

Combining (5.14)—(5.17), then Cauchy-Schwarz inequality, weighted Sobolev embedding theorem and linear
estimates in Theorem 4.8 and 4.13 imply that,

2

~12 ~ ~
12 g2 < CCOTI + B2,

S COTPUM Iy 11y 18 Bz 12

5.20
xomﬁm@m+u@mm;@ﬂo (20

< C(e)TP(0) (HUHiwwgﬂ + H[am]e\liz([o,n)) ;

where the first inequality is obtained by (5.16) and the second inequality used the fact that ||| +
e@tﬁ2||iQW5 2 < 02 which is included in the proof of Theorem 4.8.
[

Then (5.12) and (5.14) imply that

lilZe s + 18124 g0 + Nl - Nel 220

) , (5.21)
< P(o) (12 .50 + NOlel 22027 ) -

)

Since at the corner points, [9;7]¢ = [@ - N1]s, (5.20) and (5.21) reveals that

2

Loow/?

21 + 18124 0 + MO 220y + 17
, , (5.22)
< (COT +C)P(©) (Il yyor2 + IOl E2o 7y )

where C' is a universal constant independent of e.
We may restrict o such that CP (o) < 1/8. For each 0 < € < 1/(8CP(0)), we choose T” > 0 such that
C(e)T'P(o2) < 1/8. This implies

d(A(ut,p'nY), A(w?, p?* n?) = d((@', ', 7"), (@, 5, 7%) < =d((u",p", "), (u?, p*,1?)). (5.23)

N =

If 0 < T < T, we can repeat the above argument on intervals [0,7"], [T”,2T"],etc. Finally we see that A
is a strict contraction on S(7¢, o). Since the metric space S(7¢, o) is complete, the contraction mapping
principle reveals the existence of a unique (u,p,n) € S(T¢, o) such that A(u,p,n) = (4,p,7) = (u,p,n). O

5.2. Energy estimates. We want to send ¢ — 0 to get a uniform T > 0 independent of ¢, so we need
some uniform estimates. For simplicity, we may abuse the same symbol of energy and dissipation in section
2.1 of [10] and still denote the unknown (u€, p¢,n) as (u,p,n).

Theorem 5.4. There exists a universal constant C' and a universal T' > 0 independent of € such that for
each € > 0 sufficiently small,

T
sup &(t) +/ D(t)dt < C. (5.24)
0<t<T 0
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Proof. We shall use the continuity argument to prove the uniform bounds. First, we define some variants
of energy, dissipation and forcing terms.

2 Y 12
9.2 , 9 |818Z77\
& = = BJ + = ) 5.25
2. Lao S 29

7= i( /)DAaﬂu J+B/ ‘8]u T‘ J+[8J N}j) (5.26)

and

> ¢ 01077
F = 0Q(01¢0, 01m) + 00, R(01o, 6‘177)T

+ 002R (D10, 5171)(5151577)2313?7)] . (5.27)
—

Suppose that
t
sup &(s) +/ D <« foreach t € [0,T),
0<s<t 0

where a > 0 is sufficiently small and 0 < T" < 1 is to be determined later. Similar to the energy estimate
and section 8 of [10], we can derive that

d
2

Then in order to follow the proof of Theorem 8.2 in [10], we need to prove the uniform bounds of |n]|3 ot

E+F)+ 2 +e(|0mli s+ 1070l s + 10701 5) S VED. (5.28)

10emll3 ot 107n]/3 /o independent of € . First, by following the proof of Theorem 8.2 in [10], we have known
that

I + €demll3 )5 + 196 + €d7nll3 )5 + 050 + €dfnll3 5 < D+ VED (5.29)

and

_ot 1 ¢ _t—s = 2
19113 /2 + 11832 < (moll3 /0 + [19en(0)[135)e ™ + ( /0 e < (D + \@9)1/2> ; (5.30)

Then we denote ¥ = 921+ €037 and the extension J = 927 + €937, then the standard calculation and trace
theory reveals that,

d B B _
e 1077ll2 + 11077ll> < 1192 S 191372 (5.31)

This implies that

t
21022 yase <t / 1912, + 2 102n(O)125

(5.32)
< t/ ||19||3/2 + ([0 (0 )H3/2 + [|0in(0) + 5815277 H3/2 / ”19“3/2 + &,
which also implies
t t t
/O 16771132 S/O 19132 + 21070 oo prave < (1 +t3)/0 191132 + *€o. (5.33)

Then following the proof of Theorem 8.2 in [10] together wiht (5.30) and (5.33), for t < T < 1, we may
derive that

/Ot N/ (2 + VED) + &, (5.34)

which reveals

/tpg/t(@er/?D)Jr@o (5.35)
0 0
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after similar estimate for H(‘)mHQ 5/2 derived from ||9;n + €0? My 5/2: Then similar to the proof of Theorem

8.4 in [10], combining (5.28) and (5.35), we have

sup &(s / D < CE(0) < C'¢y, (5.36)

0<s<t

for each t € [0,T], and the second inequality follows from the initial data in section 3. Restricting the
initial data implies that

t
sup &(s) —I—/ D< %, (5.37)
0

0<s<t

for each t € [0,T. O

5.3. Existence of solutions. In this section, we consider the solution of original problem (1.19).
Theorem 5.5. There exists a solution (u,p,n) € X NY solving the equation (1.19).
Proof. According to the energy estimate in Theorem 5.4, there exists a sequence €, tends to zero and a

pair (u,p,n) such that (u,p,n) € X N'Y with

{(uﬁk,pek,ne’“) = (u.p,m)  weakly-x in X, (5:38)

(uk, p*, n) (u,p,n) weakly in V.

Choose a function w € W, then from the weak formulation, we deduce that

T 4 € € €
0o (w - Nk) / / 010¢m;,01 (w - N )
F(w-N*) +a + € on*(w - N*) + o
/0 /—e g ) (1+ 01232 F 90u’* ) (1+ [01¢o[?)%/?

T T
_|_/ / E]D)Agkuﬁk . ID)AekaGk +/ ,B(uek .T)(w . T)Jék _ / / ek div gex wJ* (5'39)
0o Ja?2 0 JEs 0 JQ

T pf
—|—[u6k N 4 WA(uek _/\/’ek),w Nﬁk] — _0—/ / R(81C0,317712)81(w Nﬁk)
0 —L

Passing the limit €, — 0, the convergence (5.38) reveals that

T l
) 617761 w - N / / /
/0 /_e*‘”’(“’ M) o R gPav:Daws+ o [ Slu-m)lw-T)J

T (5.40)
—/ /pdivAwH[u-/v+%(u-/\/),w-/\/]4:—a/ / R(BrCo, Oym)dr(w - ).
0 Q 0 —/

Thus the limit (u,p,n) is a weak solution of (1.19). Then integrating by parts,

/ / gn(w-N) —od ((1+|§112)| 2372 R(alCo,aln))w'N—/OT/QM(AAU)TUJ
—i—/ / ,u]DAuN‘w%—/ /S,uDAuy-w—l—ﬂ(u-T)(w-T)J+/OT/QV,4p‘wJ (5.41)
s [ s o (s R ]

Hu- N+ # (- N),w- N =0,

we know that (u,p,n) satisfy the boundary condition of (1.19). Thus (u, p,n) is a strong solution of (1.19)
because of its regularity. O
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5.4. Uniqueness. We refer to velocities as u/, pressures as p’, surface functions as n?, for j = 1,2.

Theorem 5.6. Let u!, u?, p', p? and n', 772 satisfy

sup {E(ul,pn'), E(u?,p?, %)} <e,  and /T{D(ulvpl,nl),D(UQ,pa772)} <, (5.42)
0<t<T 0
with T > 0. Suppose that for j = 1,2,
— uA ! + V7 =0, in Q,
div 45 uw =0, in £,
S (0, u YN = g NV — 00y (8177] +F3’j> N7 on X,
1+ |016o[?

(SAJ (P, ud ) — Buj) =0, on X, (5.43)
W= , on g,
amj — ) .N’J" on X,
KO (20, 1) + KW (O (2L, 1)) = To (&ZTZ))W + F3’j> (0,1).

\
where A7, N7, F3J are determined by 1’ as usual. Suppose that u'(0) = u%(0), p*(0) = p*(0) and
9fn'(0) = 9fn*(0) for k =0, 1.

Then there exist €1 > 0, T1 > 0 such that if 0 <e <e1 and 0 < T <717, then

ut =u?, pl=p% nl =9t (5.44)

Proof. First, we define v = u' — u?, ¢ = p' — p?, § = n' —n? and derive the PDEs satisfied by v, ¢, §. We
still use F3 to denote F3 = F31 — F32,

Step 1 — PDEs and energy for differences.

Subtracting equations in (5.43) with j = 2 from the same equations with j = 1, we can write the
resulting equations in terms of v, ¢, 0 as

div 41 S41(gq,v) = pdiv g1 (ID)(ALAQ)UQ) + H', in Q,
diVA1U:H2, in €,
S a1(g, )Nt = M]D)(ALAz)u?Nl + gON' — 00, <810> N
(14 01¢0/?)3/2

— 0O F3N' + H3, on X,
(Sq(q,v)v —po) - 7= ,LL]D)(_Al_A2)U2V T, on X, (5.45)
v-v =20, on X,
20 =v-N'+H°, on Y,

010

KOWO(+L,t) = Fo (+0,t) F F* — HS,

(1+1¢of2)3/2
v(t=0)=0, 0(t=0)=0.

where H', H?, H3, H*, H°, HS are defined by

Hl = /LdiV(Al_A2)(]D)A2’U,2) — V(Al_Ag)p2’
H2 = —diV(Al_AQ) uz,
H? = —p* (W' = N?) + D (N = N?) = D aeyu® N + g (N = N?)
GUN 1 2 3.2/ 271 2
_ ot B P -
o0 (o) V! -4 rE N A%
HO = o2 (W1 = N2),
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H = w(# (9" (££,8)) — W (9P (£L,1))).

The solutions are sufficiently regular for us to differentiate (5.45) in time, which results in the equations

( diVAl SAI (8tq, Btv) = ,U,diV_Al (D(atAl_atA2)u2) + I:[l, in Q,
diVAl 615?} = E’z, in Q,
S 41(0pq, OINT = D, 415, 42PN + gOON' — 00y <(W> Nt
A ? ( Al —0p A ) (1 + ‘814{)‘2)3/2
— 000, (F> — F3ONT + H3, on ¥,
(S 41(0cq, Opv)v — BOw) - T = M]D)(atALatAz)ﬁu T+ HY, on g, (5.46)
ow-v =0, on X,
920 = o - Nt + HP, on X,
818t0 776
kO20(+0,t) = Fo—————(+0,t) F H,
t ( ) + <1+’C0’2)3/2( )q:
8t1)(t = O) = O, 8t6?(t = 0) = 0,
where
ﬁl = (9tH1 + diVatAl (D(Al_A2)u2) + diV_Al (D(A1_Az)8tu2) + diVBtAl (ID)Aw)
+ div 41 (]D)atAl’U) - VatAl q,
I:IZ = 8,5H2 - diVat_Al v,
IjI3 = 8tH3 + ]D(AlfAz)atu%/\/’l + D(ALAz)uth./\/'l - S_Al (q, v)@t/\/l + DatAlle
010
+ gION' — 50 () N,
guoy 1 (1 + [01Go[2)°2 t
H* = ,u}D)(A1_A2)8tu2V T+ Dy, prov - T,
ﬂ{) = 8tH5 +v- atNl,
HS = 0,H°.
Now we multiply (5.46) by J'9;u', integrate over Q and integrate by parts to deduce that
¢ 2
g 2 9 01040 > M/ 2 71 / 1 2 112
0 /89 +t o as | T o D p10w|*J" + JHow - T  + [0 - N
([ 5108+ 5 e ) + 5 [ Dwd 5 [ oo+ o A
= / ,LLdiV_Al (D(atAlfat.AQ)UQ) . 8th1 + ﬁl . (‘9th1 + 8tqf~[2J1 — / Jl(é?tv . T)ﬁ4
Y s 010,00, H® (547
— 3 N 2N 3. — T et
/e 00 F°01 (0w - N7) + (Do, a1 —g, a2yw"N* + H*) - O — g0, 0 H 0(1 0o
— / JH (0w - T)MD(atAl,atAz)uzy ST — [atv N H? + ﬁﬂg )
Here we notice that
> k(@ - N (al)H (al) =0, (5.48)
a==1
since v} = v? = 0 at the endpoints 21 = £/, where we denote that u! = (v],vd) and u? = (v}, v3).
Another integration by parts reveals that
. 2 1_ M 1 2.
/ MleAl (]D)(at_Al_atA2)u ) . 8th = —2/ J ]D)(atAl_at_Az)u : ]D>A18tv
“ “ (5.49)

0
+/ D(g,.a1—,.a2) "N + Oy +/ Do, a1-5,42)u°V - Opv .
¢

£
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We combine (5.47) and (5.49), and then integrate in time from 0 to ¢ < T' to derive that

¢ 2 t
g 2 O |O1GB 7 010,0| / / 1 / / 2, / CAr1p2
/_€2|8t0| + 2( —I—’81C0| 3/2 \DA13tv| J +,8 J |8tU ’7'| [81511 ./\/—]g

= —g/ JlD(GtAl—ath)uz : D_Alaﬂj —|—/ / 1::[1 . 8th1 + 8tqlf12J1 — / / Jl(é?tv . T)ﬁ4 (550)
Q 0 JQ 0 s

0,0,00, H®

1 776
U—(l OGP [Opv - N*, HPp.

t pl _ 5
— / / 00 F30, (0w - NV + H? - 0w — g0 H —
0 J—¢

Step 2 — Estimate of pressure.
In order to handle the term related to d;q, we multiply (5.46) by J'w, integrate over ) and integrate
by parts to deduce that

g/DAlatv:DA1le+/B/ (O - T)(w-7) + (30, w - N1 5 + [0 - N w - N,
Q s

= /Q(/L div 41 (D(atAl—atAQ)UQ) + ﬁl) cwJt — / J! (U) ’ T)(MD(@AI—&AZ)UZV T+ ﬁ4) (551)

s

¢
—/ g0 (F> = F*)01 (w - N) + (uDg, a1 —g,.42)0° N + H?) - w — [w - N H)y,
0

for each w € V(t) and a.e. ¢ € [0,T]. Then d,q € H°(Q) might be recovered from Theorem 4.6 in [10]such
that

';/Q]D)Aw :DpwJ + 8 g (v-7)(w-T) = (9hgq, div g1 w)o + (00, w - N)1 5
+ [0 - Nt w - N1, S
= /Q(NdiVAl (Do, ar—ga2yu’) + H') - wJ' — o THw - 7) (Do, 41—, 42y 0°v - T + HY) (5:52)
— /_Z o0 (F* — F*?)01(w - N) + (1D, 41— g, 42y 0° N + H?) - w — [w - N, H,,
for each w € W(t) and a.e. t € [0,T]. Moreover,
10eall 72 0 S N0 11721 + P(VE)N1O:OI17 2 a0 + H9HL2W5/2 + gl 72y + 10l Z2w2); (5.53)

where the temporal L? norm is computed on [0,7], and P(-) is a polynomial which would be allowed to
change from line to line.

Step 3 — Estimates of the forcing terms.

To handle the term 9;(F3! — F32) we rewrite it as

4 L B
/ GO F30, (O - N') = / [0, R1 0,00 + 0.(R} — R2)D10un’)on (926 — H)
7 —L

d (" 010:0/> ¢ 9100/
— . R! — 9,(R' — R?)9,0 2869)—/ O*R'010m"
dt(/_g B ( )010im° 010, L 10t7] 9 (5.54)

¥4
— / |010:0|20>R 0,10im? + 0?(R' — R?)(910:m°)%01046
—¢

+0,(RY — R?)010%1°0,0:0 — 0.(R' — R*)H?,
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Then we rewrite (5.47) as

l 0 2
% (Hateuiz +/ agzl'al(;t o —722)818t772818t9> +’2‘/ D 41.9po[2 "
iy Q

+83 J1|8tv-7'|2-|- [C{%U-N’l]%
s

:—g/ JlD(atA1_@tAz)u2:}D)Au?tv—i-/ﬁl-atvjl—i-atqfﬂf—/ Jl(atU‘T)fN[4
Q Q

e ~
— | |010:0]202R 0002 + 2R — R2)(010:m°)%010:0 + 0,(R* — R2)(8102120,6,0 — H®
p z z t
l 2 l 75
01040 . . 010001 H
— PR'9,0 1‘—/ H? . 9w — go0H®? —0—————
/_z 2 AT — S 0(1 + |010]2)3/?
—[8,51; . Nl, sz6]g.

We now estimate the terms on the right hand side of (5.50).

/21/QJIID(5)W41am?)u2 D 10w S P(Ve)||0p||110:0]]3/2.

/fol Ot S P(VE) 0wl (100132 + 1161572 + llalliry + llollwz)-

/ JHO - T)H' S P(Ve) 0w )1 (16115272 + 10:8113/2)-

S

/Qatqﬁ2=]1 S PVE)Beallo(10:813/2 + 161072 + 0llw2)-

39

(5.55)

(5.56)
(5.57)
(5.58)

(5.59)

By the direct computation for derivatives of (1.13), we may employ the Sobolev embedding theory to

derive that

K ~
— / \81&9\28?72161@772 + 85(7—\),1 - 722)(816tn2)2818t9 + OZ(Rl - 'RQ)(6183172616159 — H5)
—L

¢ 2
01040
- [ R0 U < PRNIOOIR , + 1012, + 16130+ el

and

¢ 010,0|?
| oROXL o mt — R2)000020:00 < POEIO0IR o + 10],)
—¢

¢
/ZUH3 0w S P(VEOwlli 161l 52 + 110811372 + Nlallypry + 1ollwz)-
Due to the fact that v1 = v? = 0 at the endpoints 1 = 4/, after integrating by parts,

¢ 75
~ 010,00 H

5 10tV U1 2
/e —g00H”> — U—(l EXQDEE S P(Ve) [Hat@Hl(H@HWgﬂ 110611 + [[vllwz) + \\31&9”3/2]

+||<9t771||W;/2||3t9H3/2||v|!1-

[Bro - N, HO)p = (876, HC)e S P(VE)|10:87.
Then combining all the above estimates (5.56)—(5.64), we can derive that

d 2 ¢ 1|818750|2 1 2 2 2 112
% (H&ﬁ”l,z +/ azR 72 - 6Z(R - R )8181577 alat0> + Hat'l)Hl + [at'l) N ]
—L

l 2
<crva) (Joolts + [ om0
¢

+ CP(\/E)HGI@V;/Q + 100135 + llallys + VIl

—0.(RY — R2)818m2818t9)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)



40 YUNRUI ZHENG AND IAN TICE

Since

¢ 0100/
s [ 0RO o, (RY — R2)0,0020100 S PWRNOOIE gy + 1012 )
<t< —L

< P(VE)(1007 s g1 + 11060117 2 a2 + IIQHizwg/z%

Gronwall’s lemma together with the smallness of € implies that

T
”8t9||ioo}°]1 + ”@UH%zHl —I—/O [at'U 'N1]2 ,S €CP(\/E)TICP(\/E)(HQHiQW;/? + ||5t9\|izg3/2

H10uall72 o + allZ2yis + 1011Z2002) (5.66)
5 e (Ve) 1CP(\/E)(”9HL2W§/2 + "8139”L2ﬁ3/2 + HqHLQW(Sl + H’UHLQW(?)’

where the temporal L and L? norms are computed over [0,7] and 0 < t < T < T;. We assume that &;
and 77 are sufficiently small for CP(Ve Ty < eCF (venTh < 2. Then we deduce the bound

T
100117 s g1 + 10e0]172 +/0 [Oro- N2 S P(\@)(!\HlliQW§/z 100172 s 2 + a2y + I0llz2w2)- (5:67)

Since 8,0 € H'((—¢,¢)) and (5.51), with e sufficient small, Theorem 4.11 in [10] reveals that

100117 2 a2 S P(ﬁ)(H@HiQW;/z + HQHizﬁ/él + 0l 22)- (5.68)

Step 4 — Elliptic estimates for v, ¢ and 6.
In order to close our estimates, we must be able to estimate v, ¢ and 6. The elliptic estimates imply
that
IollFy2 + IIQH%V; + Hellivf/z S I div g (Dar—g2?) + H' [fyo + 1 H2 [l
5012 3012 2 2

08 = HP\Gpae + [H N2 + D gz 7l e (5.69)

HOL(FH = FP2)|2 12 + (00 = HO.

é

Then after integrating temporally from 0 to T', we have that

o0z + 12y + 100y S POEIOI 0+ 10 -
< CPOAIO s+ a2y + 101,
where P(0) = 0. Since ¢ is sufficiently small, we might restrict £; such that CP(y/¢) < 1. Thus
2 2 2
[0l 2wz + H(JHLQW; + H9HL2W§/2 =0. (5.71)
O

5.5. Diffeomorphism of ®. From the definition of J and restrict theory in Sobolev spaces, we can derive
that

17l[zee 21 = C(l[7]lLoe + 10271l ) 2 1 = Clinllyys/2-
The smallness of £(n) sufficiently guarantees that ®, defined in (1.6), is a C! diffeomorphism for each
t € [0,T]. For more details, one can see [8] in 3D domains.
APPENDIX A. PROPERTIES INVOLVING A
We now record some useful properties involving A.

Lemma A.1. The following identities hold.

(1) 0;(JAij) =0 for j =1,2 and each i = 1,2.

(2) JANg =N on %,

(3) RTN = —ON on X, where R is defined by (4.11).
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Proof. The first equality comes from Lemma A.3 in [9]. On 3,

i (1 (4

_ ( — (14 8217 + &)D1Go — i + D201 Go + 291 Con >

1
:<—&@—@W>:N
) )

It is easily to compute that R' = JO;KIsxo — O, AA™L. Since JANy = N,

1]
2]
3]

[4]
[5]

(19]
20]

(21]

RN = (JO,K — 0, AA™Y)J AN
= (—KoJ — 0, AA™Y) T AN,
= (=0 JA = JOLANy = —0,(JANy) = —O:N.
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