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Abstract

In this paper the study of a nonlocal second order Cahn—Hilliard-type
singularly perturbed family of functions is undertaken. The kernels con-
sidered include those leading to Gagliardo fractional seminorms for gradi-
ents. Using I' convergence the integral representation of the limit energy
is characterized leading to an anisotropic surface energy on interfaces sep-
arating different phases.

1 Introduction

In the van der Waals—Cahn—Hilliard theory of phase transitions [15], [38], [47],
[28], the total energy is given by

%/QW(u(x))dm—i-s/Q\Vu(x)\Q dr, (1.1)

where the open bounded set Q C R™ represents a container, u : 2 — R is the
fluid density, and W : R — [0, 400) is a double-well potential vanishing only at



the phases —1 and 1. The perturbation ¢ |, |Vu(:lc)|2 dz penalizes rapid changes
of the density u, and it plays the role of an interfacial energy. This problem
has been extensively studied in the last four decades (see, e.g., [8], [9], [10], [24],
[34], [35], [37], [36], [44], [45]).

Higher order perturbations were considered in the study of shape deforma-
tion of unilamellar membranes undergoing inplane phase separation (see, e.g.,
[30], [46], [31, 40]). A simplified local version of that model (see [40]) leads to
the study of a Ginzburg-Landau-type energy

/W dx—l—qa/ [Vu(z dx—|—€3/ |V2u(x)’2dx, (1.2)
Q

where ¢ € R. This functional is also related to the Swift—-Hohenberg equation
(see [43]). When ¢ = 0, the functional reduces to the second order version of
(1.1), to be precise,

/W ) dz + /|V2u(x)|2dx, (1.3)

which was studied in [23]. The case ¢ > 0 in was treated in [29], with |V2u|?
replaced by |Au|?. The case ¢ < 0 is more delicate and was considered in
[16] and [17]. The original energy functional proposed in [30], [46], [31], [40])
involved also a nonlocal perturbation and was addressed in [22].

A nonlocal local version of (1.1) was studied in [1], [2], [3], with the pertur-
bation € [, |Vu(gc)|2 dz replaced by a nonlocal term, leading to the energy

/W dw—l—s// (@ — ) u@) —uy)Pdedy ,  (14)

Jo(2) = ij(f) (1.5)

e \g

where

and the kernel J : R™ — [0, +00) is an even measurable function such that
/ J(x)(|z| A |z|?) do = My < 40, (1.6)

with @ A b := min{a,b}. Functionals of the form (1.4) arise in equilibrium
statistical mechanics as free energies of continuum limits of Ising spin systems
on lattices. In that setting, u is a macroscopic magnetization density and J
stands for a ferromagnetic Kac potential (see [3]). Note that (1.6) is satisfied if
J is integrable and has compact support. Another important case is when

1
J(x) = |z|7""% with 5 <8< 1, (1.7)

so that J.(x) = £2%|z|~"~2%, which leads to Gagliardo’s seminorm for the frac-
tional Sobolev space H*(R™) (see [20], [25] [32]). A functional related to (1.4)



with kernel (1.7) has been studied in [4], [5], and [39] for 0 < s < 1 (see also
[27] for an L? version in dimension n = 1).

The motivation in [39] was the renewed interest in the fractional Laplacian
(see, e.g., [14] and the references therein), and nonlocal characterizations of
fractional Sobolev spaces ([6], [11], [12], [33] and the references therein).

Another important application of this type of nonlocal singular perturba-
tion functionals is in the study of dislocations in elastic materials exhibiting
microstructure (see, e.g., [13], [18], [26]).

In this paper we consider a nonlocal version of (1.3), to be precise, we study
the functional

Fe(u) == é/ﬂW(u(x)) dx —|—€/Q/QJe(x —y)|Vu(z) — Vu(y)|*dedy  (1.8)

for u € Whljc2 (Q), where Q C R™, n > 2, is a bounded open set with Lipschitz
boundary, the double-well potential W : R — [0, 400) is a continuous function
with W=1({0}) = {1, +1} satisfying appropriate coercivity and growth con-
ditions, and J; is given by (1.5). We assume a non-degeneracy hypothesis (see
(2.2)) on the even measurable kernel J : R™ — [0, 4+00), and that (1.6) holds.

We establish compactness in L?(€2) for energy bounded sequences, and in
order to study the asymptotic behavior of (1.8) as ¢ — 0T, we use the notion of
[-convergence (see [19]) with respect to the metric in L%(2) and we identify the
[-limit of F.. As it is usual, we extend F.(u) to be +oo for u € L? (Q)\Wlicz(Q)
Our first main result is the following theorem.

Theorem 1.1 (Compactness) Assume that W and J satisfy (2.3)-(2.6) and
(1.6), (2.2), respectively. Let {u.} C W22(Q) N L2 (Q) be such that

loc

M :=sup Fe(ues) < +00 . (1.9)

Then there exists a sequence €; — 0 such that {uc,} converges in L*(2) to
some function u € BV (Q;{—1,1}).

The proof of this theorem is more involved than the corresponding one in
[2] due to the presence of gradients in the nonlocal term. This prevents us from
using standard arguments in which discontinuities in « may be allowed. We
first prove compactness in n = 1, and then use a slicing technique to treat the
higher dimensional case.

To state the I' convergence result, we need to introduce some notation. Given
n>2and v € S"71 := 9B1(0), let vy, ..., v, be an orthonormal basis in R"
with v, = v. Here, and in what follows, we denote by B;(z) the open ball in
R™ centered at x and with radius r. Let

VVii={zeR": |z -y|<1l/2fori=1,...,n—1}, (1.10)
Qi ={zeR": |z-y|<1/2fori=1,...,n}, (1.11)



let W2, be the set of all functions v € WL 2(R™) such that v(z+v;) = v(x)
for a.e. x € R™ and for every i =1,...,n— 1, and let

: v(z) = £1 for a.e. x € R™ with +2-v > 1/2} (1.12)

Vp—1 "

X" :={ve Wl}12

When n =1take v = £1, V¥ :=R, Q" := (—1/2,1/2), and let X” be the space
of all functions v € W,'(R) such that v(z) = +1 for a.e. z € R with £z > 1/2.

loc
We define the anisotropic surface energy density

Y(v) = if inf FI(v), (1.13)
where
1
Fl(u) = - W(u(x)) dx + E/ Jo(z —y)|Vu(z) — Vu(y)|*dzdy .
QV v R’n

Finally, we define F : L*(Q) — [0, +00] by

)= / Y(vy) A" ifu e BV(Q;{-1,1}) ,
= s,
+00 otherwise in L?(Q) ,

F(u (1.14)

where S, is the jump set of u, v, is the approximate normal to S,,, and H" !
is the (n — 1)-dimensional Hausdorff measure (see [7] for a detailed description
of these notions).

Theorem 1.2 (I-Limit) Assume that W and J satisfy (2.2)-(2.6) and (1.6),
respectively. Then for every €; — 01 the sequence {Fe,} I-converges to F in
L2(Q).

Although the general structure of the proof is standard, there are remarkable
technical difficulties due to the nonlocality of the perturbation and the presence
of gradients.

This paper is organized as follows. After a brief section on preliminaries, on
Section 3 in order to establish compactness in dimension n = 1, we prove an
interpolation result, which allows us to control the L? norm of v’ in terms of
the full energy (see Lemma 3.5). Section 4 is devoted to compactness in higher
dimensions, and here again we obtain the equivalent to the interpolation Lemma
3.5 (see Lemma 4.3). As it is classical in this type of problems, it is important
to be able to modify admissible sequences near the boundary of their domain
without increasing the limit energy. We address this in Theorem 5.1 in Section
5. Section 6 concerns the I'-liminf inequality, and in Section 7 we construct the
recovery sequence for the I'-limsup inequality.

2 Preliminaries

In what follows, in addition to (1.6) we also assume that the kernel J : R" —
[0,4+00) has the following property: there exist v; > 0, d; € (0,1), ¢; > 0, such



that for all £ € S"~! there are «(¢) < B(€) satisfying

s < al€) < al) + 8 < BE) < (2.1)
and
- - dt < (2.2)
/a(f) J@E-t v '

Remark 2.1 For example, condition (2.2) holds if there exist 0 < r < R and
a > 0 such that J(z) > a for every x € R™ withr < |z| < R. Indeed, it is enough
tosety; =R, 05 =R—r,al)=r, (&) =R, and c; = (na) " *(r~" — R™").

We assume that the double-well potential is a continuous function W : R —
[0, 4+00) such that

W {oh) ={-1.1}, (2:3)
(Is| = 1)* < cwW(s) forallscR, (2.4)
W is increasing on [1,+00) and on [-1,—1 + aw] , (2.5)
W is decreasing on (—oo, —1] and on [1 —aw, 1], (2.6)

for some constants ey > 0 and aw € (0,1).
If s < 0and |s+1] > 4, then |[s — 1| = |s| — 1 + 2, hence (s — 1)? <
2(|s| = 1)2 +4 < 2eyW(s) + 4W W (s), where

m

mw = min W(s)>0. (2.7)
{llsl-11=3}
Together with (2.4) this leads to the estimate
1
(s —1)? < éwW(s) forall s € R with |s+ 1| > 7 (2.8)
where ¢y := 2cw + ﬁ. Similarly, it can be shown that
1
(s +1)? < éwW(s) forall s€R with [s— 1| > 3 (2.9)

We recall that Q C R™ is a bounded open set with Lipschitz boundary. For
every € > 0 and u € L? (Q) consider the functional

Fofuy e { We) 4 Te(w) i u e W@ N L2 (@) (2.10)
S +o0 otherwise, :
where )
We (u) = g/ W(u(z)) de  for u € L? (Q) , (2.11)
Q
and

JTe(u) := a/Q/QJE(:U —y)|Vu(z) — Vu(y)|*dedy for u € V[/llof(Q) (2.12)



In the sequel, we will use a localized version of (2.10). To be precise, given
two open sets A, B C R" we define

W (u, A) 1= é /A W(u(z)) da (2.13)

for u € LQ(A), and
u, A, B) := J.(x —y)|Vu(x) — Vu(y)|*ded 14

for u € VV&N?(A U B). When A = B we set

Fe(u, A) =W (u, A) + T-(u, A, A) and  J.(u, A) := To(u, A, A)  (2.15)

for u € W22 (A) N L2(A).

loc

Since J is even, by Fubini’s theorem for all u € VVﬁ)f (AU B) we have that
J-(u, A, B) = J.(u, B, A) . (2.16)
Moreover, if AN B = @ we have
J(u, AUB) = J-(u, A) + 2. (u, A, B) + J-(u, B) . (2.17)

In the compactness theorem we use a slicing argument based on the following
preliminary result. Given a vector & € S"~1, the hyperplane through the origin
orthogonal to ¢ is denoted by II¢, that is,

I :={x cR": 2-£=0}. (2.18)
If EC R™ and y € II¢, then we define
ES:={teR: y+t{ € E}. (2.19)

The next result is a particular case of the affine Blaschke—Petkantschin for-
mula, for which we refer to [41, Theorem 7.2.7].

Proposition 2.2 Let E C R™ be a Borel set and let g : E X E — [0,400] be a
Borel function. Then

/E/Eg(%y) dzdy

:1/ ///9(z+s£,z+t§)|t—slnfldsdtd?'lnfl(z)d%nfl(f)-
2 Jsn—1 Joe ES JES

Proof. For the convenience of the reader we present a proof. We extend g to
be zero outside E x F. Using the change of variables 7 =t — s, we obtain

/9(Z+S€7Z+t€>lt—sl"*1d8=/g(z+tf—r£,z+tf>|rl"*1dr,
R R



and by Fubini’s theorem we get

/ //g(z+s§,z+t£)|t—s|”71dsdtd7-l”71(z)
n¢ Jr JR

z/n/Rg(y—T&y)lTI"_ldey.

Exchanging the order of integration and using integration in spherical coordi-
nates we have

%/SM /HE/R/Rg(zﬂg,zﬂg)ufs|”*1dsdtcmn*1(z)cm"*(g)
=5 [ ] [atu=reairtaran = €ay

:/n/ng(fﬂ,y) dxdy ,

which concludes the proof. m
For ¢ € S"! and ¢ > 0 define J¢ : R — [0, +00) by

JE) = JEO[™ and  JE(E) = éﬁ (i) (2.20)

By (1.6) and using spherical coordinates, we have
/ JEE)([t) A JE?) dt < 400 (2.21)
R
for H"1-a.e. £ € S"7!, and in view of (2.2) we obtain
ECINNT
/ ——dt<c¢ . (2.22)

© J5@)

Moreover,

n—1

No— st (223)

e

ORTC

For £ € S"7 !, ACR, and ¢ > 0, we define

FE(v, A) = UR:E/AW(UU)) dt+§/A/AJg(sft)(v'(s)fv’(t))stdt (2.24)

for v € W2(4) N L2 (A), where o,y := H"1(8"Y).



3 Compactness and interpolation in dimension
one

For a set A contained in R™ and for > 0 we define

(A)" .= {z e R™ : dist(z, A) < n} ,

(A)y :={zxe A: dist(z,04) >n}. (3.1)

The main result of this section is the following theorem.

Theorem 3.1 Let £ € S*™ 1, let A C R be a bounded open set, and let {u.} C
WL2(A) N L2 (A) be such that

loc

M = sup F&(ue, A) < +oo (3.2)

where F¢ is defined in (2.24). Then there exists a sequence gj — 0T such that
{uc,} converges in L*(A) to some function u € BV (A;{-1,1}). Moreover,
there exists a constant cyw > 0, independent of £, A, and {u.}, such that

#S, < M , (3.3)

CIw

where #S,, denotes the number of jump points of u.

Next we introduce some auxiliary lemmas that will be used in the proof of
Theorem 3.1.

Lemma 3.2 Let £ € S"!, let A CR be an open set, let e > 0, let a < 3, and
letu e WI})’E((A)EW), where vy is the constant in (2.1). Then for a.e. t € A,

e/t T = ) () — () 2ds

755
p o u(t —ea) —ul(t — ?
o[ ) (oY

where J¢ and J¢ are defined in (2.20).

Proof. It is enough to show that for every A € R we have

E/t - JE(t — s) (A —u'(s))%ds

—eB

Ao o u(t —ea) —u(t —ef) 2
>6(5—a)2</aﬁ(z)dz> ()\— =7 —a) > .

This inequality follows by considering the Euler-Lagrange equation of the min-
imum problem

t—ea
min / TSt — 8)(\ — v/ (s))2ds
t—ep



over all v € WH2((t—ef,t—ea)) satisfying v(t —ef) = u(t—ef) and v(t —ea) =
u(t—ea). m

Remark 3.3 Under the same assumptions of Lemma 3.2, it follows from (2.1),
(2.2), and (3.4) that

W 0) < 2 (ult — co(€)) —ult <))’
t+evyy
+ 2cJe/t JE(t — s)(u/(t) —u'(s))%ds

—E&YJ

for a.e. t € A.

Lemma 3.4 Let v; be the constant in (2.1). Then there exists a constant
cyw > 0 such that

T+evs 1 (7t
/ / JE(t—s)(u (t)—u'(s))2dsdt+g/ W (u(t)) dt > cgw (3.5)
g—EYJ g—E&vJ

for every & € S*7L, for every e > 0, for every o, T, with ¢ < T, and for every
uc WlocQ((U —evy, T +¢evy)) such that

u(t) € (—1,3) for everyt € (0,7) , (3.6)

and either
and u(t) =1 (3.7)

" (3.8)

N[ =

u(o) =5 and u(r)=—

Proof. Fix §, ¢, 0, 7, and v as in the statement of the lemma, and let & and i
be such that a(§) < & < < B(£), and

o€) > 1y, B-a> 1 BE-B> 10, (39)

where §; is the constant in (2.1). By (2.4) and (3.6), we have W (u(t)) > 52—
for every t € (o, 7). Therefore, if 7 — o > £d;/2°, then

e 5
- . . 1
6/0 W s (0) dt > (3.10)
If 7 — o < edy/25, define
Ao = dte (o) W) >t (3.11)
0= g, T): (U <97 _o . .

We consider now two cases.



Case 1: Assume that for every ¢ € Ay there exist o € [(€), @] and 3 € [3, 5(€)]

such that fut ) (t—cp) 1
u(t —ea) —u(t —e p
6(/8—05) < §|U (t)| .
Then
, u(t —ea) —u(t — ef) 1 9
(s - == DN Yy

Therefore, by Lemma 3.2,

E/t _mJg(t — 8)(u/(t) —u/(s))%ds

—eB

G-cr (" 1\
>4</ e ) (w()*

and integrating over Ay, using (2.22) and (3.9), we obtain

t— 6@(5) 52
/A /t JE(t — s) (@ (1) — /() 2dsdt > <L w12

G 20¢;

By (3.7), (3.8), and (3.11) using Jensen’s inequality and 7 — o < £, we have

T 1 1 1 3.2
u'(t zdt:/ ' (t 2dt—/ ' ()2dt > -z > )
[ woras [owpa- [ woraz 21200

Hence, from (3.12) we deduce that

/ /T O Sl W) (5)) st > Z‘i". (3.13)

eB(§) 9

Case 2: It remains to study the case in which there exists tqg € Ag such that

u(to —ea) —u(to—ep)| _ 1, ,
> 6(6_04)0 > *|U€(t0)|

for every o € [a(€), @] and for every 8 € [3, 3(€)]. By (3.11) and the inequality
T — o0 < edy/2°%, we have

ulto—ca)—ulto—=B) _ 1 _ 16
e(f—a) T A(r—0) " &by’

hence by (3.9),

u(to — ea) —u(to —eh)| >

10



If |u(t 0= ea)| > 2 for every a € [a(§), @], then by (2.4) we have W (u(ty —
ca)) > o [a(€),a]. This leads to W(u(t)) > i for every
t € [to — ed, tg — ea(£)], hence

1 [Ttevs 1 [fto—ea(§) A 5
2 Wu()) dt > - W) at> L=98 5 ¥ (3.14)
€ Jo—evy € Jtg—ea cw dew

where in the last inequality we used (3.9).

If there exists a € [a(€), @] such that |u(ty — ea)| < 2, then |u(to — e8)| > 2
for every 8 € [, 8] (if not, there exists 5 € [3, 8(€)] such that |u(to —ef8)| < 2,
which gives |u(ty — ea) — u(to — €B)| < 4, a contradiction). Consequently, for
every f € |3, 8(€)] we have W (u(ty — f8)) > i This leads to W (u(t)) > -~

for every t € [to — ef(&), to — 53], hence

THevs 1 to—ef _ A3
W) dt> = | W) dt > B8 45J , (3.15)
€ Jo—ev, € Jto—eB(8) ‘w cw

where in the last inequality we used (3.9). The conclusion follows now from
(3.10), (3.13), (3.14), and (3.15). =

Lemma 3.5 (Interpolation inequality in dimension one) There exists a
constant c( ) such that

£ / (' (1)2dt < c§hy FE(u, (4)*77) . (3.16)
A

for every £ € S"71, for every ¢ > 0, for every open set A C R, and for every
u € Wi)’f((A)Q”J), where vy is the constant in (2.1).

Proof. Fix £, ¢, A, and u as in the statement of the lemma, and define

U= {te A:u(t —ea(§) ult —B(€)) ¢ [3. 3]} -
Vi={te A:u(t—ea()),ult —eB(§)) ¢ [-3,—3]} - (3.17)
If t € V, then by (2.8),
(u(t —ca(€)) — ult — eB(€)))? < 2(u(t — ea(§)) — 1)* + 2(u(t — B(€)) — 1)
< 2y (W (ult — =a(€))) + W (ult — 25(6))))

Using (2.9) we prove the same inequality for ¢ € U. Integrating and using
Remark 3.3, we obtain

E/UUV(u’(t))zdt<( 62 + 2¢7) FE (u, (A)) . (3.18)

Ifte A\ (UUYV), then either

u(t —ea(§)) € [-3,—3] and u(t—ep(§)) €[5, 3]



or

u(t —eB(§)) € [-3,—3] and u(t —ca(§)) € [3,3] .
Then
(ult — ca(€)) — ult — eB(€)2 <9 . (3.19)
Moreover there exist o and 7, satisfying
t—eyy<t—ef§) <o<t<t—call) <t+eyy (3.20)
and such that
u(t) € (—1,3) for every t € (o,7)
and either
u(o) =3 and wu(r)=—3
or
u(o) = -3 and wu(r)=3.

By Lemma 3.4 and by (3.20), there exists c¢;w > 0 such that

t+evs t+2€"‘{J 1 t+2evs
caw < 5/ / (r — s)(ul(r) — u.(s))*dsdr + = W (ue(r)) dr .
t t

ey 2eyy € Jt—2ev;

Therefore by (3.19) we have
[ (utt — za(©) ~ult - e5()at
A

\(qu
t+evs t+2E’YJ
/ / / (r — s)(ul(r) — ul(s))*dsdrdt (3.21)
t t

a CJW

e 2571
t+2ev
/ W (ue(r)) drdt .
CJ w €2 t—2evy

Since

t+n
/ / ) drdt < F(t) dt
t (A)y

for every 7 > 0 and for every integrable function f: A — [0, 00|, from (3.21)
we obtain

[ (ult —ca(€) —ut — eB©)Pdt < o Fo(w (AP . (322

\(ULV)

for a suitable constant ¢ depending only on J and W. The conclusion follows
from (3.18) and (3.22) using Remark 3.3. =

Proof of Theorem 3.1. By (3.2) we have that

/ W(u.(t) dt < Me . (3.23)
A

12



By (2.3) and (2.4) this implies that {u2} converges to 1 in L'(A) and, up to a
subsequence (not relabeled) pointwise a.e. in A.

Let 75 > 0 be the constant given in (2.1). Consider the collection Z. of
all intervals (o — €7y, y- + £7s) such that (o, 7) is contained in (A)%?, and u.
satisfies (3.6) and either (3.7) or (3.8) in (o, 7). Note that by the intermediate
value theorem for all € > 0 sufficiently small there exist such intervals. Moreover,
by construction, all intervals in Z. are contained in A. It follows from (2.4) and
(3.23) that

Me > / W) dt > = —2
o 4cW
hence
T—0 <4dewMe . (3.24)
In particular, for every I € Z. we have
diam I < (dew M + 27y5)e . (3.25)
Moreover, by (3.2) and (3.5), if Iy, ..., I are pairwise disjoint intervals in Z,
then M
k< (3.26)
CIw

Let B. be the union of all intervals in Z. and let C. be the collection of
its connected components. Observe that distinct elements of C. must contain
disjoint intervals of Z., and so by (3.26) the number of elements of C. is uniformly
bounded. To be precise,

M
#C. < (3.27)
CJW
Next we claim that if C' € C., then
. M
diam C <2(4CwM +2v;) | — +1 ) ¢e. (3.28)
CIw
Assume by contradiction that (3.28) fails. Let k be the integer such that Ci‘/lw <
k< %—i—l and partition C' into k subintervals C, ..., Cj of equal length larger
that 2(4Cw M + 2v;)e. The middle point of each C; belongs to some interval
I, € I.. By (3.25), we have that I; C C; and so Iy, ..., I} are pairwise disjoint.

In turn k satisfies (3.26), which contradicts its definition. This concludes the
proof of (3.28).

In view of (3.27) there exist a sequence €; — 07 and a nonnegative integer
k < M such that #C., = kforall j € N. Write C;, = {C]l, ol C]k} and choose

CJ,w

t; € C; Up to a subsequence (not relabeled) we may assume that t; —tecA
foralli=1, ..., k. By (3.28) for every n > 0 we have that C; C [t —n,t +1)
for all j sufficiently large. Let S := {t!,...,t*} and let K be a closed interval
contained in A\ S. Then B, N K = O for all j sufficiently large. We claim

that for all such j either infx u., > f% Or SUDf Ue; < % Indeed, if this does

13



not hold then we can find o; and 7; in K for which u., satisfies (3.6) and either
(3.7) or (3.8). On the one hand (o;,7;) C B, by the definition of B.;. On the
other hand (o, 7;) C K since K an interval. Therefore (0;,7;) C B:, N K and
this contradicts the fact that B., N K = @.

We extract a subsequence, possibly depending on K, not relabelled, such
that, either infx u., > —1 for all j or supy u., < 3 for all j. Since ugj (t)—1
for a.e. t € K, we conclude that u.,(t) — 1 for a.e. t € K in the former case
while uc;(t) — —1 for a.e. ¢ € K in the latter. By iterating this argument
with an increasing sequence of compact intervals K whose union is a connected
component of A\ S, it follows by a diagonal argument that a subsequence
{ue,} (not relabeled) converges pointwise a.e in A\ S to a function u constantly
equal to —1 or 1 in each connected component of A\ S. This implies that
u € BV(A;{-1,1}) with S, C S, hence #S, < #S < k < % The L?
convergence of {uc;} to u now follows from (2.4) and (3.23). = ’

4 Compactness and interpolation for n > 2

Given a € R we define
aV = (=1)V(aAl). (4.1)

Lemma 4.1 Let {u.} C L?(Q) be such that

M :=sup W, (u.) < o0 . (4.2)

Then ue — ut") = 0 strongly in L3(9).

Proof. By (2.11) and (4.2) we have that

/QW(us(x)) dx — 0 (4.3)

ase — 07. By (2.3) and (2.4) this implies that, up to a subsequence, |u.(z)| — 1
for a.e. x € Q. Hence, u.(z) — ugl)(a:) — 0 for a.e. € Q. On the other hand,
by (2.4),
2
(ue(2) = ulV(2))* < (ue(@))? < o V(@) + 2,

so that the conclusion follows from (4.2) and the (generalized) Lebesgue domi-
nated convergence theorem. m

In what follows, given a Borel set £ C R™ and a function u : E — R, for
every ¢ € S"~! and for every y € II¢ (see (2.18)) we define the one-dimensional

function

ui(t) =uly+1t), te Eg ) (4.4)

where EY is defined in (2.19).
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Lemma 4.2 For every A C R™ open, € > 0, and u € W,-?(A) N L2(A), we
have

Fulu, 4) > / FE(E, AS) dHm (2)dH ()
sn—1 Jme

Proof. By Fubini’s theorem, Proposition 2.2, (2.15), (2.23), and (2.24), we
obtain

Fe(u, A)
1 n—1 n—1
_ /S 1/115 [ W 1) dedr = G 6)

Opn—1€

/S” 1/H€/A€/A€ (t=5)|Vu(z+t6) = Vu(z+s6)Pdtdsd "~ (2)dH" (&)
- Un 1€ /S" 1‘/1_15 AEW )dtd'H" 1( )dHn—l(g)

5 St — (WY (1) — (ué) () 2dtdsdH™ 1 (z n—1
" 2/57%1 /m /Ag /A5 JE(E = 8)((u€)'(8) — (uS)'(s)) dedsdH™ " (2)dH" " (€)
= / FE(uS, AS) dH™ 1 (2)dH™ 1 (€) .
Sn—1 JII¢

Proof of Theorem 1.1. Let £; — 0T and, for simplicity, write u; := ue;. By
Lemma 4.2,

/ FE ()5, 95) dH" L (2)dH L (€) < M . (4.5)
Sn—1 JI1¢

We claim that there exist a collection &1, ..., &, € S*~! of linearly independent
vectors and a subsequence (not relabeled) such that

lim FE((ug)§, Q%) dH" 1 (2) =: M; < 400 , (4.6)
J—+oo e

foreveryi=1, ..., n.
Indeed, using Fatou’s lemma by (4.5) we have that

/ liminf [ F& ((u;)5, Q%) dH"(2)dH " () < M . (4.7)
gn—1 Jj—+oo 11¢ J
Hence, there exists &, € S”~! such that
liminf / FE((uy)8, Q5) dH" (2) = My < +o0 , (4.8)
j—=+oo Jrer ’
and we can extract a subsequence (not relabeled) such that (4.6) holds for ¢ = 1.
We proceed by induction. Assume that we found a collection &, ..., & €
S*=1 1 < k < n, of linearly independent vectors and a subsequence (not rela-
beled) such that (4.6) holds for every ¢ =1, ..., k. Note that this subsequence
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still satisfies (4.5), and hence (4.7). Therefore we can find &1 € S"~!, linearly
independent of &1, ..., &, such that

lim inf FEt1 ((uy) e+t Q8+1) dH™ 1 (2) = Myiq < 400,
j—=+oo Skt 7

and we can extract a subsequence (not relabeled) such that (4.6) holds also for

i =k -+ 1. After n steps we obtain that (4.6) is satisfied for every i =1, ..., n.
Giveni =1, ..., nand é > 0, for every j let
i & T (g6 Qb > M
Al = {z € TS : FE ((u))$,08) > T} : (4.9)

and let v} € L*(2) be defined by

J

()8 = (uf)§ ifz e T8\ Ay, (4.10)

where ug.l) is the truncated function defined using (4.1). By (4.6) and (4.9) we
have A
limsup H" "' (A}) <4,

Jj—+oo

hence (4.10) yields

limsup ||vj — U§1)||%2(Q) < ddiam(Q) . (4.11)
j—+o0

By Theorem 3.1 for every z € II% the set {(u;)$ (1 — x4:(2)) : j € N} is

X J
relatively compact in L?(€5%), where x 4i(z) = 1 for z € A% and y 4: (2) = 0 for
z ¢ A; Therefore the same property holds for the set of truncated functions
{(ugl))ﬁ(l —Xai(2)) : j € N}. Tt follows that for every z € TI% the set {(v})$ :
j € N} is relatively compact in L?(Q5). Since this property is valid for every
1 =1, ..., n, we can apply the characterization by slicing of precompact sets
of L*(Q) given by [5, Theorem 6.6] and we obtain that the set {ug»l) :j e N}
is relatively compact in L?(©2). In turn, by Lemma 4.1 the set {u; : j € N} is
relatively compact in L?(2), hence there exist a subsequence (not relabeled) ,

such that u; converges in L2(£2) to some function u. By (1.9),

jEIJPoo A W(uj(z)) de =0,

which, together with (2.3) and (2.4), implies that u(z) € {—1,1} for a.e. x € Q.
It remains to show that v € BV(§2). Using Fubini’s theorem we find that
there exists a subsequence (not relabeled) such that

(u;)S — uf in L2(Q5) . (4.12)
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Moreover, Fatou’s lemma and (4.6) imply that

/ lim inf FE ((u;)$,Q5) dH" ' (2) < M; (4.13)
& J—+oo
hence
hmmf}"&(( )5, 05) < 400 (4.14)
j—+oo

for H" ta.e. z € II%. Fix z € II% satisfying (4.12) and (4.14), and extract a
subsequence {#;}, depending on z, such that

IIIJEI ]—'f‘((uj)g‘ 0%) —hmmf}'&((uj)& Q%) . (4.15)
]4)
By (3.3), (4.12), and (4.15) we have

#S 6 < hmmf}"&(( 5,05 .

CJw J—+o0

Since u$i (t) € {—1,1} for a.e. t € Q%, we deduce that

| DuSi | (Q5) < llmlnff§7(( 5,08
CJ W Jj—+o
for H" '-a.e. z € II%. This property holds for every i = 1, ..., n. Therefore, we

can apply the characterization by slicing of BV functions given by [7, Remark
3.104] and we obtain from (4.13) that v € BV (). =
For A C R™ and n > 0 we recall the notation (3.1).

Lemma 4.3 (Interpolation inequality) There exists a constant cf]nav such
that

e / V() Pz < e F(u, (A7) (4.16)

A

for every e > 0, for every open set A C R™, and for every u € VV&’?((A)QEW),
where vy is the constant in (2.1).

Proof. Fix ¢, A, and u as in the statement of the lemma, and define B :=
(A)2577. Given ¢ € S*71, for H" ! ae. z € II¢ we have that (A$)%*77 C B
and the sliced function u$ (see (4.4)) belongs to VVJ)CQ(BE) Hence by Lemma
3.5 we have

[ Ay @ < o P B
Integrating this inequality in z over II¢ we obtain
a/ (Vulz) - €)2ds < cf,lgv/ FE, BS) dH 1 (2) .
A ’ ¢

Integrating this inequality in & over S”~! and using Lemma 4.2, together with
the identity [y, a - &[PdH" 1 (§) = walal?, we deduce

wna/ |Vu(z)| dx<c() wFe(u,B) .

This concludes the proof. m
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5 The modification theorem

In this section we prove that we can modify an admissible sequence to match a
mollification of its limit in a neighborhood of the boundary, without increasing
the limit energy.

Given v € "1 let

N 1 ifx-v>0,
w(x).—{_l ifz-v<O0. (5.1)

When v = e, the superscript v is omitted. Let 6§ € C° (R™) be such that
suppd C By (0), [z. 0 () dz =1, and for every o > 0 define the mollifier

0y () == 0%9 (g) , x€ER". (5.2)

Note that supp 8, C B, (0). There exists a constant Cy > 1, independent of o,
such that

sup [(w"*60,) —w”| <1, (5.3)
RTL

(W'+0,)(x)=1 fz-v>0 (Wxb,)(x)=-1 fz-v<—-0, (54)

V(w’«0y)(z) =0 if |z -v] >0, (5.5)
sup |[V(w”*6,)| < G and sup |[VZ(w”*6,)| < C—g . (5.6)
Rn g Rn g

Let P be a bounded polyhedron of dimension n — 1 containing 0 and let
v € S*! be a normal to P. For every p > 0 we set

P,={z+tv: z€P,te(—p/2,p/2)}. (5.7)

Theorem 5.1 (Modification Theorem) Let P be a bounded polyhedron of
dimension n—1 containing 0, let p > 0, let e; — 07, and let {u;} be a sequence
in Wh2(P,)NL?(P,) such that uj — w” in L?(P,). Then there exists a constant
dp, > 0 depending only on P, such that for every 0 < 6 < dp, there exists a
sequence {v;} € WE2(P,) N L*(P,) such that v; — w” in L*(P,), v; = uj in
(Py)as, vj = w0, on P,\ (P,)s, and

limsup F¢, (vj, P,) < limsup F., (u;, P,) + k16 , (5.8)

oo j—+oo
where k1 > 0 is a constant independent of j, 6, and P,.

Remark 5.2 By choosing a suitable subsequence, under the same assumptions
of Theorem 5.1 we obtain that

lim inf 7, (v;, P,) < liminf Fe(uj, Py) + K16 . (5.9)
j—+oo

Jj—+oo
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To prove Theorem 5.1 we use the estimate of the following lemma.

Lemma 5.3 Lete > 0, let y € R™, let A be a measurable subset of R™, and let
g: A — R be a measurable function such that

0<g(z) < (alx —y))> Ab* for everyx € A, (5.10)
for some constants a and b. Then

/AJE(:U —y)g(x) dz < M ((ea) Vb)? (5.11)

where My is the constant given in (1.6) and oV B := max{a, 8}.

Proof. Using (1.5) and the change of variables z = (x — y)/e, we obtain

T — z) dz < a? xr — x —y|? dv
[ =g da<a® [ ge—y)a =y d

ANBc(y)

+b2/ JE(:r—y)u dx
A\Be(y) €

< 52a2/ J(2)|z]? dz+b2/ J(2)|z| dz .
B1(0) R\ B1(0)

The conclusion follows from (1.6). m

Lemma 5.4 LetO < e <4, let A and B be open sets in R™, with dist(A, B) > ¢,
and let u € I/VIOC (AU B). Then

Jo(u, A, B) < €w1<%) /AUB \Vu(z)2da | (5.12)

where
wi(t) = 2/ J(2)|z| dz — 0 (5.13)
R™\B;,.(0)

ast — 07.

Proof. Using a change of variables we obtain
J:(u, A, B) = 5/ / Jo(z — )| Vu(z) — Vu(y)|*dedy
AJB
< 28/ (/ Je(x —y) dy)|Vu(m)|2dx
B
+2a/ (/ J.(x dw)|Vu( )|2dy
ANJB
25/ (/ (x — )dy)|Vu(x)\2dac
B R”\Bs(x)
+2€/ (/ )dx)|Vu(y)|2dy
A 7l\Bg
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< 25/ J(2) dz/ |Vu(z)|*dx
R™\ B (0) AUB

< 26/ J(2)|z]| dz/ |Vu(z)|dz .
R™\B 5 (0) AUB

This leads to (5.12). The fact that wq(t) — 0" as t — 07 follows from (1.6). m

Proof of Theorem 5.1. It is not restrictive to assume that 6 < %, g; < 62,

and 8¢;7v; < ¢ for every j. To simplify the notation, set u; := w”* 0.,. From
(5.5) and (5.6) it follows that

Ej/ \Vj(z)|*de < Cyg.p for every j , (5.14)
P

for some constant Cy p > 0 depending only on P and 6.

If the right-hand side of (5.8) is infinite, then there is nothing to prove. Thus,
by extracting a subsequence (not relabeled), without loss of generality we may
assume that

Fe,(uj, P,) <M < 400 for every j, (5.15)

for a suitable constant M > 0.
The functions v; will be constructed as

v = iy + (L= p5)u; (5.16)

where ¢; € C°(R™) are suitable cut-off functions satisfying ¢;(z) = 1 for
x € (P,)s and @;(z) = 0 for 2 ¢ (P,)s/2. Introduce the set

0
S = {33 ep,: 3 < dist (z,0P,) < 6} . (5.17)
To construct the cut-off functions we divide S into m; pairwise disjoint layers

of width 5.
Consider the sequence {n;} defined by

= [ ye) () Pde + /P p /P g P0) = Tty

P,
(5.18)
By Fubini’s theorem, a change of variables, (1.6), and (5.18), we obtain

Iy Je, (@ — )y (z) — Ty ()2 dady
P, Pp\st (?J)

N /P,) </P,)\BE.(I) Iei(z =) dy) (uj(z) — U;(x)) dz
< /P (uj () —ﬂj(a:))Qda:/ J(2) dz < MJ/ () — ()

, R\ B1(0) P,
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Hence, n; — 0 as j — 400, because {u;} and {u;} converge to w” in L*(P,).
Without loss of generality, we assume that 7; < i for every j. Let m; be the
unique integer such that

M<m‘j§M+l. (5.19)
€j €j
Since €; < 1 we have
1 €+ 7j

— < /& and m; < QM (5.20)

m; €j
and "

i< Gy and mis; <2AVE T (5.21)

M€

Divide S into m; pairwise disjoint layers of width %ﬁ_ ,

i S0 (i—1)0 . b i
S5 = {x €ep,: 3 + 2m; < dist (z,0P,) < 5 + 2mj} , (5.22)

1= 1, ‘e ,mj.
For every open set A C R? define

gj(A) = jsj (uj;A7Pp) + Wﬁj (uJ7A)

2 1 () — UWi(2))3dx
+sj/A|Vuj<x>| dm+€j/A<uj< ) — 1y (2))%d (5.23)

1 -
+ 1 / / Ty (@ = y)(us(x) — iy (2)2dady .
Ej A Pp\Baj (y)

Hence, using (5.15), (5.18), and Lemma 4.3, we obtain
> G <G(S) <K -1+,
i=1 ;

where K := M + csn%,M + 1, and so there exists i; € {1,...,m;} such that,
setting _
i
Sj = Sj] y

we have

K-1
— < K ; <K 5.24
m; +mj€j S K\Ejtm S ) ( )

Gj(S;) <

where in the last inequalities we used (5.20), (5.21), and the fact that e; < 1,
n; < i, and K > 1. Define

»
Aj = {x € P, dist(z,0P,) > é—i— ZJ} ,

2 2my
) )
* = . i = - '2
Aj {x € P,: dist(z,0P,) > 5 + om, 4mj} ) (5.25)

— i d (i —1)0
Bj = {ac € P,: dist(z,0P,) < 3 + o )
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and let

pil@) = | 0, (@=y)dy.

Then ¢; € C°(R™) and the following properties hold, thanks to (5.6) and
(5.20):

p;j=1inA4;, 0<¢p; <1in8;, ¢;=0inB;, (5.26)
Cg 3/6]'—’_1//'7]' 809 2 700 Ej +77J

V| <8§—F+—F—= < — | \Y% <2 , 5.27

Sup| SDJ| — 6 Ej — (553 Sup| SDJ| 62 6? ( )

where Cj is the constant given in (5.6).

Let v; be the function defined by (5.16). Since (P,)s C A; and P,\ (P, )5/2 C
Bj, we have that v; = u; in (P,)s and v; = u; on P, \ (P, )5/2 Moreover since
u; and u; converge to w” in L*(P,), we have that v; — w” in L?(P,). Note
that

Vo; = p;Vu; + (1 — ¢;)Vu; + (u —u;)Ve; . (5.28)

Fix 0 < n < 3. Using the inequality |a + b* < —|— ‘bl , we obtain

[Vvj(x) = Vo, (y)|* < 17\% WVauj(x) = @i (y)Vu;(y)

+ (1= (@) Vit (@) = (1 - ;) V; (y)|” (5.29)
+ %|(Uj () = W (2))Veps () = (u(y) — T (1) Ve ()] -

In view of the same inequality and the convexity of | - |2, we get

|05 (2) V(@) = 05 (y) Vs (y) + (1 = 05(2)) Vitg(@) = (1= ¢;(9)) Vit ()]
() = Vu;(y)) + (5(2) = 95 (y) Vu;(y)
+ (1= 5 (@) (Vi (2) = Vi () — (05(2) = 0;(1) Vi (y)]”
< 777\% (2)(Vu (@) = Vu; () + (1 = 05(2)) (Vi (2) = Vi ()]

= |¢0j(2)(Vuy

+ f|<% () (Vu(y) = Vit ()]
< Sfj_("i; |Vuj (x) — Vuj(y)’ + 1 %éx |V — Vu;, (y)‘Q
+ %(w(x) DIV () = Vs )]
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This inequality and (5.29) yield

2 %‘(x) 2
Va3 (0) = Vo, < 2 (Vs 0) = Ty o)
1—¢i(®) o~ IENE:
+ WW“J‘(I) — Vi, (y)|
+ %wj(x) — 52|V () — Vit )|
+ %Muj () — 11 (2)) Vo () — () — 5 () Vo, )

hence for every pair of open sets A, B C P, we obtain by (2.14)

Je;(uj, A, BN (A; US;) e, (u;, A, BN (S; U By))
(1—-n)? (1—-n)2

\75] (’Uj,A,B) <

* 2%/A (/B Je; (@ = y)(pj(x) — soj(y))Qd:c) \Vu;(y) — Vi (y)2dy  (5.30)
+ %/A (/BJ}_,» (fU*y){(Uj(x)*aj(x))ij(x) — (uj(y)—ﬂj(y))Vgoj(y)|2dxdy.

By (2.17) we have

Te; (05, Py) = Te; (uj, Aj) + Te, (v5,S5) + Te, (ug, By)
+2‘75j(11j,5j,AjUBj)—FZJEj(’Uj,Aj,Bj) . (531)

We now estimate all the terms but the first on the right-hand side of (5.31).
By (5.30),

Te, (uj,55) N T, (U, Sj)
(1 —mn)? (1—mn)?

= ( / (o= )(3(0) 300 ) = Vi) Py

v ( / s ) ) Vi) )= ) Vo )y

From (2.17) and (5.5) it follows that

Te; Uy, 85 U By) = Tz, (1, (S; U Bj) N Pae;)
+2x76j(’ﬁj7(sjUBj)ﬂP25j7(SjUBj)\P2€j) . (533)

By the mean value theorem and by (5.6), for every y € P, the function g(z) :=
|V, (x)—Vu,;(y)|* satisfies (5.10) with a = % and b = %, hence by Lemma 5.10

we obtain

1
/ Jo, (@ = y) |V, (z) — Vi (y)[Pde < 403MJ;2 :

P, J
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Therefore by (2.14) and (5.33) we have

‘_75]. (ﬂj,Sj, Sj U BJ) + jsj (ﬂj,Bj) < jsj (ﬂj, Sj U B])

1
< L™((S; UB;)N Pye,) 403MJZ.
J

We now use the fact that there exist two constants Cp, > 0 and dp, > 0,
depending only on P,, such that

LM(((Po)s, \ (Pp)s,) N Pe) < Cp,e(d2 = 61) (5.34)

for every 0 < e < d; < da < dp,. Therefore
J-,;(u;,8;5,8; UB;j) + J.,(u;, Bj) < 4Cp,C3 M5 . (5.35)
By the mean value theorem, (5.20), and (5.27), for every y € S; the function

g(x) = (p;j(z) — ¢j(y))? satisfies (5.10) with a = % and b=1< 809, where
we used the inequalities Cyp > 1 and § < 1. Hence, by Lemma 5.3 we have

2
[ o= u)(erte) — ertw)Pdn < 2520
P/J

In turn, by (5.5), (5.6), (5.23), and (5.24),

2e ~
f/ /’Q )(5(2) — 04(9))2dx ) Vs (y) — Vil () Py
C2M, CaMy 1
8 2 8 ~gttJ )
<2 /|vuj( Pay+ 2L LS, P (556)
C2M CiM
< P20 (K Vg + Vi) +2°Ch, eéJw§7

where in the last inequality we used the estimate
LM(S;NP.,) < cpp(s% < Cp,0e /55 (5.37)
J

which follows fron (5.20) and (5.34).
To treat the last term on the right-hand side of (5.32) we observe that

|(uj () — 1 (2)) Vepy () = (u () — i (1)) Veps ()|
= [(u; (@) — @ (2))(Vep;(2) — Vo () +

+ (uj () — 11 () — u; () + U (1) Vs ()|
< 2(uy(z) — @j(2))?| Ve () — Vi (y)|”

+2(u () — () — u;(y) + ()2 [V, ()|
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Integrating and using the symmetry of J, we obtain
= / / e, (@ —y)| (uj(2) =T, () Vs (x) — (us(y) —T; (1)) Vep; ()| *dardy
<™ / / -, (@ = ) V5 () = Vo (9) e ) () = T () *dy  (5.38)
+ 2% /S /Sj Je; (@ = y)(uj(z) —u;(z) — u;(y) + ﬂj(y))zdz> Ve, (y)|2dy -

By the mean value theorem and (5.27), for every y € S; the function g(z) =
|Vp,(x) — V;(y)|? satisfies (5.10) for every z € R™, with a = 2;#675# <
20y VIV g b = 20 YINT < 20 VT

52 J 4 5 -

equalities 6 < 1, ¢; <1 1 and 7; < i. Hence, by Lemma 5.3 we have

, where we used the in-

C2Mje; +n;
JRCRIDCRADUIEERE S

&j

In turn, by (5.23) and (5.24),

(] 09— e )~ )Py

_214C;§‘f (© +m>; ] G = )2 (5.39)

J
LC2M;K

<ozl
= 7]64

(e +mj) -

Since J is even, by Fubini’s theorem, a change of variables, and (5.27),

= /S ( /P 7 = )05 (0) = ) ~ 1500 +155(y))%d ) [V (y) Py

< 2802 Ej+77j/ (/Pjaj(x y)(u](x)—a](x)—uj(y)+ﬂj(y))2dm)dy

— om0 g Js, Nk w)
280 i + _
([ )~ ) + 5 )Py
n P\B <y)
28C2 ¢, + _ _

R e el / (15 y + 2) = 3 (y + 2) = () + () *dy ) 2
n €j B ,(0) s;
290925j+77j/ / 2

4+ —=F Je; (x —y)(uj(z) —uy(z)) dx ) dy 5.40
e SJ_( o o0 (@) = () ) (5.40)
290925j+77j/ / SN

+ - Je, (x —y)dz ) (ui(y) —u;(y)) dy
T Sj( o) ) (wsy) — ()
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Since £ < 6/4, by (5.20) and (5.22) for y € S; and |z| < €; the segment joning y
and y+ z is contained in (P,)s/4, and so by the mean value theorem for |z| <¢;,

/ (i (y+ ) — Ty + 2) — s () + 70 () 2y < |22 / Vs () — Vi (9) 2y
S (Pp)s/a

Therefore, recalling that 2e;v; < 6/4, it follows from (1.5), (1.6), (5.14), and
Lemma 4.3, that

2807 €+, _ -
o [ @[ il sl 2) )15
n €j B, (0) S;

2802 ¢c. + 1. -
<ZCtm /B J., (2)]2dz /( Vi (y) — Vi () Py

ne? g <;(0) Pp)s/a
29092 2 2
< ZSE e tmes [ IR [ [Vu) Py (5.41)
n Bl(o) (Pp)6/4
29 g 2 ~ 2
+ 25 e [ @R [ 9T )Py
n B1(0) (Pp)s/a
(n)
< 29002MJCJ,WM 2909209,13MJ

< 02 €j+ﬁj)+T(€j +m;) -

By (5.23) and (5.24)

2900253""773'/ / ~ 2

s Je; (x —y)(uj(z) —uj(z)) dr |dy 5.42
e sj(pp\Bgf.@) ) (@) — i (x))*de) (5.42)
203K
S e

(g5 +mj) -

Using (1.6), (5.23), and (5.24) we obtain

2903 €j +7]j / / ~ 2
- Je; (x —y)dz ) (u;(y) —u;(y)) dy
7]52 6_7' s ( PAB.. () ( ) )( J( ) J( ))

1 2C2M ;K
<2677 () — T () 2y < 2 eIy )
=0 - /S (uj(y) —u;(y)) dy < e (g5 +m;) . (5.43)

Combining (5.32), (5.35), (5.36), (5.38), (5.39), (5.40), (5.41), (5.42), and
(5.43), we have

L (uy,S;)  ACp,C2M
e, (g 85) | A0nCollys 0 (5 g

jEJ(Uj?Sj)+j€j(aj’Bj) < (1_77)2 (1_77)2 J

where 0;1) — 0% as j — +oo.
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Next we consider the term T, (v;, Sj, A; U B;) in (5.31) . By (5.30), using
(5.26),

Je,; (vj, S5, A; U Bj) < AL ) + Jeu (01,5, Bs)

(1—n)? (1—1n)?
+ = / /A U5, —y)(pj(z) — j(y))2d$> \Vu; (y) — Vi (y)2dy
" %] / /A_UBJ_ Je,; (=) (uj (y) =1 (9))*[Vp;(y)|*dwdy . (5.45)

Since n < 1/2, by (5.23) and (5.24) we have

jf:‘j(uj)Sijj)
(1—mn)?

The second and third terms on the right-hand side of (5.45) can be estimated
using (5.35) and (5.36). For the last term, we use the fact that V,(z) = 0 if
x € A; U B;. Hence, by a change of variables, from (1.6), (5.23), (5.24), (5.27)
and from the inequalities 6 < 1, e; <1, and n; < 1, we obtain

S 4j5j (Uj, Sj, AJ) S 4K\/§ + 4\/% . (546)

T e )T Vo)
< i/ /B w e, (=) (uj(y) — 0 (1)) Vp;(y) — Vi (x)[*dwdy

/ / 1) (3 (4) 53 (1) 2|V 5 (9) [Py
P,\Be(y
<ol sfj"ﬂ / /( - =gl — ylde ) (us(y) i)y

27092 €j+1;
7752 Ej

/5» </P e (2—y) da) (uj{y) ~Ti;(y))*dady ~ (5.47)

SR / (uy () 75 (9))y < 24 SRy
S no

J

Therefore, by (5.35), (5.36), (5.45), (5.46), and (5.47) we get

where O'J(-Z) — 0" as j — +oo0.
We now estimate the term J., (U],A Bj) in (5.31). Since v; = u; in Aj,
vj = u; = 1in By, and dist(A4;, B;) = 2m , by a change of variables and in view
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of (5.14), (5.21), and Lemmas 4.3 and 5.4, for j large enough we obtain

m;e; ~
Je,; (vj, Aj, Bj) < 2wy (2 ji J ) <5j/ |Vuj(m)|2dx + 6j/A |Vuj(y)|2dy>
B; j
j + j n
< 2w (4@)(6’07134-057%/]\4) . (5.49)

Combining (5.31), (5.35), (5.44), (5.48), and (5.49) we deduce

Je,(uj, P,)  12Cp, CZM;

je,-(”japp) < (1—n)2 (1—n)2

s +ot?, (5.50)

where 05-3) — 0T as j — +oo.

Next we consider the term W, (v;, P,). Fix x € S; with x-v > ¢, so that
u;(z) = 1. By (2.5) and (2.6) we have W (v;(z)) < W(u;(x)) if uj(z) > 1—aw.
Let sg < —1 be such that

W(so) = [Izlla)f] W =: My . (5.51)

If uj(x) < sg, then either u;(z) < vj(z) < —1or —1 < vj(z) < 1. In both cases
we get Wi(v;(z)) < W(u;(x)), either by (2.6) or by (5.51). If so < u,(x) <
1 —aw, then sop < v;(x) < 1 and we have

W(vj(z)) < W(so) = Mw
by (2.6) and (5.51). We conclude that
W (vj(x)) < W(u;(x)) + Mw
for every x € S; with = - v > ¢;. Integrating we obtain

1 1
L W (o)) do < - W (uy(2) da
€5 JSsjn{z-v>e;} €5 Jsjn{zv>o;}
M,
+ %E"(Sj N{ly; — 1 >aw}n{z-v>¢})
J
1 M,
<= W(u;(z)) do+ —

(uj(z) — 1)%dx
€5 Jsjn{zv>e ) sja%/[/ Sin{z-v>e;} !

A similar inequality can be obtained for S; N {x - v < —¢;}, and adding these
two inequalities we conclude that

1 1

- W (v;(x)) do < — / W (u;(x)) da

€5 JS;\P., gj Jsp\rp,
My 1 B
TW*./ (uj(x) = uj(x))?de,  (5.52)
Ay €5 JS;\P.;
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where in the last inequality we used the fact that u; = w” on P, \ P,.
On the other hand, since W (v;(x)) < W(u;j(z)) + Mw for every x € P,,
integrating over S; N P., and using (5.37), we obtain

1 W (v;(z)) da < l W (u;(z)) do + MWc”(Sj nP.,)
S;NP., S;NP, €j
< l W(uj(x)) dxr + C’ppré\/@ . (553)

SinP.,
Adding (5.52) and (5.53) gives
1

1
= W) de< = W) da

My 1 N
+ K= / (uj(x) — @y (x))2da + Cp, M d,/55
Ay €5 S;

hence by (5.23) and (5.24) we have

1
— [ W(v(x)) dz < —/ W (u;(z
€5 Js;
My
+ g (K /& + /i) + O, M8 5 - (5.54)
w
By (5.3), (5.4), (5.34), and (5.51) we get
1 1
- W(vj(z)) dov = — W (u;(z)) do
€5 B; €j B;
My
< ?ﬁn( Ej) < Cppr(s . (555)
j

From (5.54) and (5.55) it follows that

1
= W(vj(x)) de < —/ W (u(x)) dx + Cp, Mwd + U , (5.56)
i Jp,
where ¢ — 0+ as j — +o0.

Adding (5.50) and (5.56) we obtain
.FE,(’IJ,]‘,PP)
Fe.(vj, Py) < —2——--

]( J p) (1 _ 77)2

— 0% as j — +oo. This implies that

+Cp, (48 C3My + My)d + 0

3)

where o ;

limsup 7, (vj, Pp) < ———5 limsup F¢, (u;, P,) + K16,
j—+oo (1=n)? jo+oe

where 1 is a constant independent of j, J, and P,. Passing to the limit as
n — 0T we obtain (5.8). m
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6 Gamma Liminf Inequality
In this section we prove the I'-liminf inequality.

Theorem 6.1 (I'-Liminf) Lete; — 0" and let {u;} be a sequence in I/Vlf)CQ(Q)ﬂ
L%(Q) such that u; — u in L*(Q) and

lim inf 7. (u;,2) < 400 . (6.1)
Jj—-+oo
Then u € BV (Q;{-1,1}) and
lim inf 7, (u;, Q) 2/ V() dH™ (6.2)
Jj—+o0 Su

where v is defined by (1.13).

Given v € S 1, let v, ..., v, be an orthonormal basis in R® with v, = v,
let

Qui={z€eR": |z ;| <p/2,i=1,....,n}, Q=R"\QY  (63)

and let A
Sy={reR": |v-v|<p/2}, S;:=R"\S,.

When vy, ..., v, is the canonical basis eq, ..., e, in R” we omit the superscript
v in the above notation.

We recall the definition of the sets V¥ and X in (1.10) and in (1.12),
respectively. We will use these sets in what follows. Further, as in Section 5, 6.
is the standard mollifier (see (5.2)), and we set

Ue = w" * 0, , (6.4)
where w" is the function defined in (5.1), with v € S*~1.

Lemma 6.2 Let 0 < & < 6 < 1/3, let Cs5 := Q145 \ Q1-s, and let @ be the
function in (6.4), with v =e,. Then

Je('asa CJ) S "{25
for some constant ko > 0 independent of € and §.

Proof. For every o > 0 define CY := Cs N {|z,| < o}, C’g = Cs N{|z,| > o},
and write

Cs x Cs = (C2 x CFYU(C5 x CEYU(CFE x C5)U (C5 x C5) .
Since J is even, we have

Te(iie, Cs) < Te(iie, CF) + 2. (11, C5, CF) + T (@, C§) . (6.5)
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By (5.2) we have that Vii. = 0 on C§ and so
Jeliie, G5) =0 . (6.6)

We now estimate the first term on the right-hand side of (6.5). Since eV, and
e2V24, are bounded in L> uniformly with respect to €, there exists a constant

¢ > 0 such that
T — r—y|?
A=)
€ €

for every z, y € R™. Therefore, by the change of variables z = (z — y)/e and

(1.6) we get
/ / (x—vy ‘ ‘/\‘x—y )dxdy (6.7)
025 025
CMJ

Vie(z) - Vae(y)* < 5

= 22

T (e, CF°)

| /\

< LM(C5) < 2" eMys .

Next we study the second term on the right-hand side of (6.5). Since Vi, = 0
on CZ° and Vi, is bounded in L* uniformly with respect to e, there exists a
constant ¢ > 0 such that

i C5.C8) = [ ([ L—war) VP ©8)

< EE"(CE)/ J(z) dz < 2"cMyd ,
< R\ B1(0)

where we used again the change of variables z = (z — y)/e and (1.6). The
conclusion follows by combining (6.5)—(6.8). m
The following result will be crucial in the proof of the I'-liminf inequality.

Lemma 6.3 Let 0 < ¢ < 6 < 1/3, let w € XV be such u = 4. in QY \ Qf_;,
where e is the function defined in (6.4). Then there exist two constants ks and
K4, depending only on the dimension n of the space, such that

TV BY) = T, Q) < wad + (o (5) g (9))z [ Vuto) P
QY

where Ko is the constant in Lemma 6.2, and wy is the function defined in (5.13).

Proof. Without loss of generality, we may assume that v = e,,, the n-th vector
of the canonical basis. For simplicity we omit the superscript v in the notation
for .Sy, Sy, VY, XY, w”, and the subscript p when p = 1. Write

VxR"=((V\Q)XQ)U((V\Q)XQ)U(QXQ)U(QXQ) (6.9)
C (5xQ) U ((V\Q)xS) U (Sx8) U(Q@xQ) U (@x(S\Q)) U (@xS) .
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Since J is even we have

Te(u, V,;R") — T (u, Q) < 26/ (/Q 7 Je(x — y)|Vu(x)|2dx>dy

S

+5/V\Q(/S Jg(l‘—y)\vu(x)\Qd:v)dy (6.10)
we [ ([, Hote = oiTute)  Vut)ds)dy

where we have used the equalities u = +1 and Vu = 0 in 5‘1,5, which follow
from the facts that v € X and u = @ on Q1 \ Q1-s (see (5.4), (5.5), and the
inequalities 0 < & < § < 1/3).

We now estimate the first term on the right-hand side of (6.10). By Lemma
5.4 and because Vu = 0 in S, we have

s/s(/Q Js(x—y)|Vu(x)|2dx)dy §5w1(§) /QM \Vu(e)|?dz . (6.11)

To estimate the second term on the right-hand side of (6.10), we identify
Z™ with Z"! x Z so that for a = (ay,...,a,_1) € Z" ! and 8 € Z we have
(o, B) = (@1, ..., apn—1,0) € Z™. Write

S\ Qs = U (e0o+Q, v={JW0,8+Q),
a€Zm 1 | >2 BEZL
where |aoo := max{|a1],...,|an—1|}. Then
_ 2
E/V\Q(/Slé Je(x —y)|Vu(z)| dm)dy
(r — w(z)|?dx ) d .
e L e piuE )y (612

+ Z ZE/(O,,B)JrQ (/(a,o)+Q Je(z — y)|Vu(x)\2dx)dy .

a€Z"~ 1, |lalo>2 BEL

By Lemma 5.4 and because Vu = 0 in V' \ @, we have

5/ (/ Je(z — y)|Vu(:c)|2dm)dy < awl(g) / |Vu(x)2dz .
VAQ W S1-sNQ3 0 S1-5NQs3

To estimate the second term on the right-hand side of (6.12), we use the change
of variables ¢ = x —y and observe that for z € (a,0) + @ and y € (0, 5) + Q we
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have ¢ € (a, —f) + Q2. Therefore, we obtain

/ ( / Jo(a — y)|Vu(x)de ) dy
0,8)+Q * J(a,0)+Q
— [ wu@P(] ey dy)is
(,0)+Q (0,8)+Q
g/ |Vu(x)|2dx/ Je(¢) d¢
(a,0)4+Q (a,—B)+Q2
- / Vu(z) Pz / J.(¢) d¢
Q (a7_5)+Q2

where in the last equality we used the periodicity of v € X. Hence

2 /(0,/3)+Q (/(a,o>+Q Tl y)wu(x)lex) w

a€Z" 1, |a|e>2 BEL
ge/|w<z)|2dx > J.(C) de
(a,—B)+Q2

a€Z" 1, |l >2 BEL

/IVu d:c/2 (¢) de .

In the last inequality we used the fact that each point of QQ belongs to at most
2" cubes of the form (a, =) + Q2 for a € Z"~1, with |a|s > 2, and 3 € Z.
After the change of variables z = (/¢ we obtain (see (5.13))

/ Jo(¢) d¢ §/ J(z) dz <wi(e) .
2 R™\B;,.(0)

Combining the last five inequalities and using the periodicity of u, from (6.12)
we obtain

. /V . ( /S ECe ) V() ) dy (6.13)
< (wl(%) +2RW1(E))6/50Q |Vu(z)|2dz

:3”_1( (6 —|—2"w1 /|Vu )|da .

Finally, to estimate the last term on the right-hand side of (6.10), we use
the inclusion

Qx(5\Q)C(Q@x(5\Q3))U(Qi-s x (SN(Q3\ Q1))
U((Q1\Q1-s) X Qs \ Q1)) U ((Q1\ Q1-5) x (SN (Q3\ Q1+5)))
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and we write

: /Q ([, = pIvu) ~ vut)az)ay

< 5/@(/3\@ Je(x —y)|Vu(x) — Vu(y)|2dx)dy
* s </5'0(Q3\Q1) Je(r — y)|Vu(z) — Vu(y)|2dx) dy (6.14)

g/

Q

+ 6/ (/ Je(x —y)|Vu(z) — Vu(y)|2d:c) dy
Q1\Q1-s V' Q145\Q1

+€/ (/ J.(z — )| Vu(z) —Vu(y)\2dx)dy
Q1\Q1-s /' 5SN(Q3\Q1+s)

By Lemma 5.4,

: /Q </3n<Q3\Q1) Je(w —y)[Vu(z) - VU(y)|2dx)dy
e /Ql\Q15 (/‘SO(QS\Q1+5) Je(z = y)[Vu(z) - Vu(y)|2dm) dy (6.15)

£ 20y — 9.3n—1 €
§26w1(6> /SOQ3|Vu(x)| dx =23 €w1(5)/Q|VU($) dz

where in the last equality we used the periodicity of u. On the other hand, by
Lemma 6.2

e’:‘/ (/ Jo(x —y)|Vu(z) — Vu(y)|2da:) dy < K96 . (6.16)
Qi\Qi-s JQ1+5\Q1)

It remains to study the first term on the right-hand side of (6.14). We have
[ ([ dla-n)ivu) - Vuw)lds)dy
Q "/ S\Qs
<9 / ( / Jo(x )| Vu(x) Pdr) dy (6.17)
Q */5\Qs
+2<€/ (/ Je(x —y) dx)|Vu(y)|2dy .
Q */S5\Qs
To estimate the first term on the right-hand side of (6.17) we write
25/ (/ Je(x — y)|Vu(z)|2dx)dy
Q JS\Qs
- L[ e —wivutraz)ay

a€ZN( S\Qg
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By Fubini’s theorem and the change of variables { = x — y, we get

/Q</a+Q Je(x — y)|Vu(x)|2dx)dy = /(HQ (/Q J.(z—y) dy) V()| de
< [ ([ r@a)wu@pars [ wu@pa [ g0

where in the last inequality we have used the periodicity of u and the inclusion
x—Q Ca—Q for z € a+ Q. Hence,

/ / )| Vu() ) dy

<25/|Vu )[2dx Z /

a€ZmN(S\Qs)

/\Vu dx/2 () dC

where in the last inequality we used the fact that each point of Qg belongs to
at most 2"~ ! cubes of the form a — Q for « € Z" N (S \ Q3). After the change
of variables z = (/e, we obtain

a€ZnN( S\Q

Qg/Q( Je(x—y)|Vu(:c)|2dx)dy<2”5/Q|Vu(x)2dx J(2)|2] dz . (6.18)

S\ Qs R™\B;,.(0)

We now estimate the second term on the right-hand side of (6.17). With the
change of variables z = (z — y) /e, we have

26/ (/ J(z — ) dx)|Vu(y)|2dy§26/ J(2)|2] dz/ Vu(y)?dy . (6.19)
Q M S\Qs R™\ B, . (0)
Combining the inequalities (6.17)—(6.19), we obtain
% / ( / Js(x—y)|Vu(:r)|2dx)dy§Q”swl(s) / \Vu(z)|?dz . (6.20)
Q "/ S\Qs Q

The conclusion follows from (6.11), (6.13), (6.14), (6.15), (6.16), and (6.20). m

Proof of Theorem 6.1. By Theorem 1.1 we deduce that u € BV (Q; {—1,1}).
Let ;1; be the nonnegative Radon measure on {2 defined by

B % /BW(“J‘(m))dere /B /Q Je(z = y)IVu; (2) = Vuy (y) P*dxdy (6.21)

for every Borel set B C Q. Since u;(Q) = F, (u;,), by (6.1) 11;(£2) is bounded
uniformly with respect to j. Extracting a subsequence (not relabeled), we may
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assume that the liminf in (6.2) is a limit and that p; 2 1 weakly™ in the space
M;p(2) of bounded Radon measures on 2, considered, as usual, as the dual of
the space Cy(f2) of continuous functions on © vanishing on 9Q. Let g be the
density of the absolutely continuous part of x4 with respect to H"~! restricted
to S,. Then the inequality (6.2) will follow from

g(w0) > ¥(vy(x0)) for H* ! ae. zg € S, . (6.22)

To prove this inequality, fix zo € S, such that, setting v := v, (x¢), we have

1

lim — |u(z + z9) — w”(x + x)| dx =0, (6.23)
p=0F P Jqu

z0+ QY

9(wo) = lim plao +Q5)

< . 6.24
P_>0+ p’nfl +OO ( )

It is well-known (see [21, Theorem 3 in Section 5.9]) that (6.23) and (6.24) hold
for "' a.e. xy € S,,. Since p; — pu weakly* in M,(Q), by (2.15) and (6.21),
using a change of variables, we get

plwo + Q%) _ . wi(zo + Q})
———— = limsup limsup —————
p—0F p" p—0t  j—+oo P

Fe.(uj,zo + Q)
> lim sup lim sup 25 j,n,l 22 = limsup lim sup Fjn (050, Q1)
p—0t  j—+oo 14 p—0t  j—+4oo

where 1, , :=¢;/p and v; ,(y) := u;(xo + py). On the other hand, since u; — u
in L2(Q2), by (6.23) we obtain

1
0= lim lim —/ luj(x + xo) — w”(z + x0)| dz
@5

p—0t j—r+o0 pT

= lim i (@) — w”(2)] da .
S i S |vj,p(2) — w”(2)] da

Since for every p > 0

li 5=
1, =0,
by a diagonal argument we can choose p; — 0% such that, setting 7; := Mj.p,;

— < Tl
and v; := vj,,, we have n; = 0%, v; = w” in L'(QY), and

g(xo) > limsup F;), (vj, QY) (6.25)

J—+o0

The finiteness of g(z) and Theorem 1.1 yield that v; — w” in L?(QY). We can
now apply the modification Theorem 5.1: there exists §,, > 0 such that for every
0 < § < 8, we obtain a sequence {w;} C W,-2(Q¥) N L*(QY) with w; — w” in
L2(QY), wj = w’x 0., in Q¥ \ QY_s, and

limsup F, (v;, Q7) > limsup F, (w;, Q) — K16 , (6.26)

Jj—4o0 Jj—4oo
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where, we recall, the constant «; is independent of . Extend w; to R™ in such
a way that w;(z) = £1 for £z -v > $ and w(z + v;) = w(x) for all z € R" and
for all i =1, ..., n — 1, where v; are the vectors in (1.11). Then w; € X¥ and
so we can apply Lemma 6.3 to obtain

limsup 7, (wy, Q7) > limsup(Wy, (w;, QY) + T, (wy, V¥, R™)) + (6.27)

Jj—r+oo j—+o0

Jj—+oo

. nj 2
— kg6 — limsup  wawy ( = ) + Kaw1 (1) 77‘/ [Vw;(2)["dz
(rar () ) or

where we recall that WV, is defined in (2.13). By (1.13),
W, (W, QF) + T (wy, V', R™) = 4p(v) (6.28)

for every j with n; < 1. By (6.25) and (6.25) the finiteness of g(x) implies
that 7, (wj, QY) is bounded uniformly with respect to j. Therefore Lemma
4.3, together with the periodicity of w;, proves that the same property holds
for n; fQ’f |Vw;(z)|?dz. Together with (5.13), (6.25), (6.26), (6.27), and (6.28),

this shows that g(z) > ¥ (v) — k10 — k2 for every 0 < 6 < §,. Taking the limit
as § — 07 we obtain (6.22). This concludes the proof of the theorem. m

7 Gamma Limsup Inequality

In this section we prove the I'-limsup inequality. Fix e; — 0. For every
u € BV(2;{—1,1}) we define

F (u, Q) := inf{limsup ., (u;,Q) : u; — uin L*(Q)} . (7.1)

Jj—+oo

Theorem 7.1 (I-Limsup) For every u € BV (2;{—1,1}) we have

F (u,9) < /S W(vy) dH L (7.2)

To prove the I'-limsup inequality we need the results proved in the following
lemmas.

Lemma 7.2 Let u € BVioo(R™;{—1,1}) and, for every ¢ > 0, let 4. be as in
(6.4). Assume that there exists a bounded polyhedral set ¥ of dimension n — 1
such that S, = %, let X2 the union of all its n — 2 dimensional faces, and
let (X"72)° be defined as in (3.1). Then there exists 8 > 0 such that for
0<e<d<ds we have

je(ﬂsy (En72)6) S 0167{”72(2:”72)

for some constant c; > 0 independent of €, §, and X.
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Proof. It is enough to repeat the proof of Lemma 6.2 with C§ and C’g replaced
by {x € (¥"2)0 . dist(z, %) < e} and {z € (¥"72)%: dist(z,X) >¢c}. =

Lemma 7.3 Let P be a bounded polyhedron of dimension n — 1 containing 0
with normal v, let p > 0, and let P, be the n-dimensional prism defined in
(5.7). Then for every > 0 there exists a sequence {u.} C W%(P,) such that
ue — w” in L*(P,) and

lim Slip (We(u57 Pp) + T (ue, P, Rn)) < (¥(v) + 77)7'[”_1(13) .
e—=0
Proof. Without loss of generality, we assume that v = e,,. For simplicity, we
omit the superscript v in the notation for w”, X, V¥, @Y, and the subscript
p when p = 1. By the definition of 9 (see (1.13)), given n > 0 there exist
e« € (0,1) and u, € X such that

Define u.(x) := u.(=x) for x € R". Since u.(z) = +1 for £x,, > 1/2, the
sequence {u.} converges to w in L _(R™).
To estimate Wi (u., P,) and Jz (ue, P,, R™), we consider the (n—1)-dimensional

cube QY := QN {x,, = 0} and we set
= "o, = =1y (&=
ZE._{{an Can =0, (a+Q )m(gp);é@}.

Observe that

n—1
(55) #7. 5 H"Y(P) ase— 0T, (7.4)

where # 7. is the number of elements of Z..
Let S :={xz € R": |z,| < 1/2}. Since u.(z) = £1 for £z, > 1/2, by (2.3)

we have W (u.(z)) = 0 for z € R™\ S. Therefore a change of variables and the
periodicity of u, give

e = ()72 = (2) W (o (2809

Ex
£

< (g)“_1 S W (0 + Q) = (i)"_l#zsws*(u*,cg) . (7.5)
a€Z,
Similarly,
- (e, Py, R") = (i)”‘}s* (v, =, 1)

< (gi)nilz je* (u*,a + V,Rn) = (55)”71#Z5j6* (u*,V,R") :
* a€Z, *
(7.6)

The result now follows from (7.3)—(7.6). ®
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Lemma 7.4 Let u € BVjoo(R™;{—1,1}). Assume that there exists a bounded
polyhedral set 3 of dimension n — 1 such that S, = %. For every p > 0 let

p = {x € R*: dist(z,X) < p/2}. Then for every o > 0 there exist p > 0
and § € (0,p) with the following property: for every e; — 07 there exists
v; € WH2(2,) such that v; =u on ¥, \ $,_5 and

limsup F¢, (v, ¥ / P(vy) dH 1 +
Jj—4o00

Proof. Let dx > 0 be as in Lemma 7.2. Fix ¢ and & with ¢ € (0, min{o, dx}).

There exist p € (0,6) and a finite number of bounded polyhedra P!, ..., P*

of dimension n — 1 and contained in the n — 1 dimensional faces of ¥ such that

PN P, =0 fori+#jand

N \UPl (xn2) (7.7)

where P} and (£"72)% are defined as in (5.7) and Lemma 7.2, respectively.
Find R', ..., R*, bounded polyhedra of dimension n — 1 contained in the n — 1
dlmensmnal faces of ¥, such that P! € R’ and R’ N RJ @ for i # j.

Fix 7 > 0 such that nH"~1(2) < 0/2. By Lemma 7 3foreveryi=1, ...,
k, there exists a sequence {u}} C W'?(R}) such that u} — u in L*(R}), and

imasup (WL, (a5, ) + ., (u T B) < (6(01) + )M (1) (7)
j—+4o0
By Theorem 5.1 there exist 6 € (0, min{g, p/2}) and {v}} € W2(R}) such that
vt —win L*(R}) as j — 400, v} = ux 0., on R, \ (R});, and
lim sup F, (v?, R;) < limsup F; (ué-,RZ) + K10 (7.9)
j—+oo j—+o0

< @W@") +n)H"H(R) + K16,

where, we recall, the costant x; > 0 is independent of j, &, and Rﬁ). Define

vj == v on R} and v; := ux 6., on A, := %, \ Ule R. Then v; € W12(3))

and v; = uwin L?(3,). Moreover v; = u on X,\ X,_s for all j sufficiently large.
By additivity we obtain

Wg.(vj,E

J

W, (v, R) + W, (vj, A,) - (7.10)

IN
i

Since (ux 0., )(x) = £1 for x ¢ ¥y, and —1 < (ux6.,)(r) < 1, by (2.3) and
(7.7) we have
W, (v, A,) < W, (uk O, (5"2)7 N Dy,

J

1
;MWL"((E" )7 N Ly.,) < MwesaH" 2(8"?)
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where My, is the constant in (5.51) and ¢x > 0 is a constant depending only
on the geometry of ¥. The previous inequality together with (7.10) gives

k
(05,8 Z 1)],]%z )+ MyesaHP2(2"2) . (7.11)

To estimate J., (v;,%,) we use the inclusion

k k k
S, x 8, € |J@®, x R U J(PLx (3, \ R)) U (S, \ RL) x Pl
i=1 i=1

i=1
k
U ((ZP\UP;;) (2 \UP’)) (R, x Ri)
i=1 i#£j
which, together with (7.7), gives

k
jeJ Uj7 <Z-7EJ Vs, ;)—FZ%J(’U‘],P;’EP\RZP) (712>

+ZJ5J v, S \ R, P + T2, (0, (S"72)7) + 3 T2 (v, RE, RY)

i=1 i#j

By Lemma 4.3 and (7.9) the sequence {g; [, |[Vv}[*dz} is uniformly bounded
P

with respect to j. Taking into account (5.5) and (5.6) we see that the same

property holds for {e¢; fzp |Vv;|2dz}. Hence, by Lemma 5.4, the second, third,

and fifth terms on the right-hand side of (7.12) tend to zero as j — +o00. By

Lemma 7.2,

Te; (0, (E"7)%) < o H (B 72) . (7.13)
Combining (7.9), (7.11), (7.12), and (7.13) we get

lim sup F, (v;,£,) < / V() dH L+ H (S
by

j—+oo
+ K16 + Myes6HP (22 4+ e H 22" 72) .

Since nH"~1(X) < /2, the conclusion can be obtained by taking & sufficiently
small. m

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. By [8, Lemma 3.1] for every u € BV (Q;{-1,1})
there exists a sequence {2} in BV (Q;{—1,1}) converging to u in L?(Q) such
that S,, is given by the intersection with 2 with a bounded polyhedral set X
of dimension n — 1 and H"~1(S,,) — H"1(S,). By Reshetnyak’s convergence
theorem (see, e.g., [42]) this implies that

lim/ Y(vs,) dH"‘lz/ Y(vy) dH™ .
- Su

k—+oo S
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Hence, using the lower semicontinuity of F ”(-, ) with respect to convergence
in L2(92) it suffices to prove (7.2) for u € BV (Q;{—1,1}) such that S, = QNX
with 3 a bounded polyhedral set of dimension n — 1.

In this case, for every 0 > 0 let 0 < § < p and v; € WH?(X,) be as in
Lemma 7.4. Define u; :=v; on ¥, and u; := v on Q\ X,. The properties of v;
imply that u; := « on Q\ X,_; for all j sufficiently large. Hence, by (2.3) we
have

WE (Uj,Q) < WEJ. (uj,Ep) . (714)

J

To estimate J., (u;,2) we consider the inclusion
0 x Q (2, % ) U (s x (Q\ S, UQ\ D) x Bpg)  (7.15)
U((Q\Ep-6) x (Q\ Zp-5)) -
Since Vu; = Vu=0o0n Q\ £,_s, in view of (7.15) we obtain
Tz, (1, ) < T, (g, 2p) + Te, (ug, Bpes, Q\Zp) +Te, (s, Q\E), 8p—5) . (7.16)

By Lemmas 4.3 and 5.4 the last two terms tend to zero as j — oo, and by
Lemma 7.4 we deduce

limsup F¢, (uj, ¥,) < / V() dH"  + o .
)

Jj—+o0
Together with (7.14) and (7.16) this shows that
F'(u,Q) < limsup 7, (u;, Q) < / P(vy) dH + o
j—+oo ' =

Letting o tend to 0 we obtain (7.2). m
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