REGULARITY OF MILNE PROBLEM WITH GEOMETRIC CORRECTION IN 3D

YAN GUO AND LEI WU

ABSTRACT. Consider the Milne problem with geometric correction in a 3D convex domain. Via bootstrap-
ping arguments, we establish W1 regularity for its solutions. Combined with a uniform LS estimate,
such regularity leads to the validity of diffusive expansion for the neutron transport equation with diffusive
boundary conditions.
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1. INTRODUCTION

1.1. Motivation and Formulation. Milne problem is the main tool to study boundary layer effect in
kinetic equations. Here to motivate 3D e-Milne problem with geometric correction, we consider the steady
neutron transport equation in a three-dimensional convex domain with diffusive boundary. In the space
domain ¥ = (x1,72,23) €  where 9Q € C? and the velocity domain @ = (w1, ws,ws) € S?, the neutron
density u¢(Z, W) satisfies

ew-Vyut+u®—a® = 0 in Q
(1.1)

ut(Zo, W) = Pu) (%) + eg(Zo, W) for -7 <0 and Zy € 09,
where
1

16(%) = — (%, @)dw 1.2
W@ = - [ w@ (12)
- 1 o

Pl = 3= [ w(@ @) (1.3)

AT Jg.os0

U is the outward unit normal vector, with the Knudsen number 0 < ¢ << 1. Also, u* satisfies the normal-
ization condition

/ uf (&, W)dwdz = 0, (1.4)
Qx 82
and ¢ satisfies the compatibility condition
/ / §(Fo, @) (@ - 7)diidy = 0. (1.5)
o Jw-7<0

A classical problem is to study the diffusive limit of (1.1) as ¢ — 0. Generally speaking, the solution
u€ varies smoothly and slowly in the interior of €2, and behaves like u¢ — ¢ = 0 which ignores ew - V u€.
However, its value changes severely when approaching boundary 92 and e - V u® becomes non-negligible.
The smaller € is, the more severe u€ changes. This indicates that u¢ actually contains two separate parts with
different scalings, i.e. interior solution and boundary layer. In particular, the boundary layer is a function
with scaled variable defined in a thin layer of thickness O(e) close to boundary in €.

In the region of boundary layer, assume g denotes the distance to the boundary in the inward normal
direction and (71, 72) denote a local orthogonal curvilinear coordinate system for Q2. Then we have

9] € 0 € -, 0

9 il A 1.

b Vs = —e(d-7) o T

where (7?1,7,?2) are orthogonal tangential vectors associated with (71, 72), and (R1 (7'1,7'2),R2(7'1,Tg)) denote

two radium of principle curvature. Since @ € S?, we define the spherical velocity substitution as

—w-U = sing,
W1, = cos¢sin, (1.7)
Wty = cos¢cos.

With the rescaled distance n = H, we may represent
€
.2 2

sin” 1) n cos® 1) COS¢2
R1 — €n R2 — €n 8¢
Therefore, in order to construct boundary layer, it suffices to study the 3D e-Milne problem with geometric
correction for f€(n, ¢,v) in (n,¢,9) € [0, L] X [-7/2,7/2] x [—m, 7] as
ofe 102 2 €
f . sin” 1) . coS cosgbaf
an Ri—en  Ry—en 99

€w -V, =sin gzbag - e( + higher-order terms. (1.8)
n

+f€_f€ Se(n7¢a¢)a
70, 9,%) he(¢p,1) for sing >0,
fE(L,gﬁ,'()/J) = fe(L,—gb,'()/J),

sin ¢
(1.9)
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where h¢ and S€ are two functions given a priori and

. 1 T /2 .
P =ge [ [ 166 cosgava (1.10)

in which cos ¢ shows up as the Jacobian of spherical coordinates in integration, and L = ¢~ for some n to
be specified later. Note that actually f¢, S€, h¢ and Ry, Ry are all related to (71, 72). Since boundary layer
is defined locally on 92 and our analysis focuses on the case for fixed (71, 72), we do not need to specify such
dependence explicitly unless necessary.

1.2. Main Result. Define norms
[fllpoopee = sup [f(n. 9.9, (1.11)
(n,9,%)

£l oo () = sup |f(n, ¢, 9], (1.12)

(¢,7) with sin ¢>0

/2

||f||L2L2=( / I / . n¢w|cos¢d¢dwdn) , (1.13)

11l (o) = ( | / 5050 coso daﬁdw) , (1.14)

and the inner product as

(f.9) [ [ T 0019l 0.0) o doay (1.15)

Theorem 1.1. (Well-Posedness and Decay) Assume 0 < n < % and there exist some constants M, K > 0
uniform in €, such that
[ L < M, (1.16)
and
7S] e e < M.
Then for Ko > 0 sufficiently small, there exists a constant f§ and the solution f€(n,$,v) to the e-Milne
problem (1.9) satisfies

™0 (f< = i) oo poe < C. (1.17)

Here C' > 0 denotes a universal constant independent of €.

2
Theorem 1.2. (Weighted Regularity) Assume 0 < n < 3 and there exist some constants M, K > 0 uniform

in €, such that

Ohe
et + | G| < (1.18)
L a¢ .
and
05°¢ 05°¢
efnge|l .+ |lefn=— —|—H K ——_ < M.
75 L i . 9 ||,
Then for Ko >0 suﬁiciently small, we have
KO"C — /i) + H Kone 2L JLJ o — fi) < Cn(e)®, 1.19
R 2| <ome (1.19)

where the weight function

2sin® ¢ 2cos? 1/2
() = (1 - <RlR—f”) <R?R‘“7) cos? ¢>> . (1.20)
1 2
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If further fori=1,2,

[ T s e s oS <, (1.21)
O || oo 0T || oo O || oo 100 OTi || poo oo
we have

eKo’r] a(f — fL) + eKo’r] a(f — fL) <C |1H(€)|8 ) (122)

2 Lee oo oTi Leo oo
Remark 1.3. It is easy to see ¢ > |sin@|. Then Theorem 1.2 naturally implies
Ko gin ¢M < C'|n(e)|?, (1.23)
on Loo Lo

which is bounded away from the grazing set. More importantly, due to the half-line geometry of the Milne
problem, the tangential derivatives are bounded in (1.22) up to the grazing set. This is a sharp contrast to
[17] in a bounded domain.

As an application, thanks to the uniform bounds for tangential derivatives (1.22), we finally establish the
diffusive limit of neutron transport equation.

Corollary 1.4. Assume g(Zo,w) € C?(I'~) satisfying (1.5). Then for the steady neutron transport equation
(1.1), there exists a unique solution u®(Z,w) € L (Q x 8?) satisfying (1.4). Moreover, for any 0 < § << 1,
the solution obeys the estimate

€(= = €/ = 1_
[u(#, ) = U (D) < (e s2) < C(6, Q)€ 7, (1.24)
where U§(Z) satisfies
AU = 0 in Q,
5 1
aa[? = = o g9(Z, W) |W - J|da on 09, (1.25)

/ Us@)dE = o0,
in which C(6,€2) > 0 denotes a constant that depends on 6 and ).

1.3. Background and Methods. At the core of boundary layer analysis, the study of Milne problem is
consistent with the development of asymptotic analysis of kinetic equations in bounded domains. Since
1960s, people have discovered several methods to study the well-posedness of Milne problem, and apply
them to asymptotic expansion. We refer to the references [15], [3], [4], [29], [20], [25], [13], [12], [1], [8], [11],
[16], [19], [26], [5], [2], [10], [21], [22], [23], and [24] for more details. In 1979, diffusive limit of steady neutron
transport equation was systematically investigated in [9] (see also [6] and [7]).
The key idea of [9], [6] and [7] is to study the classical Milne problem as

afe € re €
F0,6,0) = he(¢,v) for sing >0, (126)

limy oo f€(0,0,0) = [&-

In [9], the authors proved that f€ is well-posed and decays exponentially fast to some constant f< in L.
Unfortunately, as discovered recently in [27], the lack of regularity of such classical Milne problem (1.26)
has been overlooked for non-flat bounded domains. The solutions of (1.26) are singular in the normal
direction, which leads to singularity in the tangential directions, resulting in break-down of diffusive expansion
with classical Milne boundary layers.
The regularity of the Milne problem is the central issue. In [27] and [28], a new approach with geometric
correction from the next-order diffusive expansion has been introduced to ensure regularity in the cases of

sin ¢
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2D plate and annulus, i.e. to solve for f¢(n, ¢) satisfying

afe ofe _
3{1 _R—eencowajc; +f=F = 59,
f€(0,¢) = h(¢p) for sing >0, (1.27)
f9(L,¢) = f(L,—9),

where R denotes the radius of curvature. Also, in [18], weighted W estimates was proved to treat more
general 2D convex domains.

There are three main ingredients to generalize our previous results to 3D convex domains.

The first difficulty is the lack of conserved energy. Consider the simplest case that S = 0 and we omit e
temporarily. Assume

sin ¢

B sin? ¢ cos? 1
F(n,zﬁ)——e(Rl_enJrRQ_en). (1.28)
Taking inner product with f on both sides of (1.9), we obtain
10 . 1 Af*) 712
Lo o + 3 (PO, B oo} 4 - 1 =0, (1.20)
We may integrate by parts to get
(P, 2 o6 = Lip(, )1, fsine) (130
2 777 ) a¢ - 2 777 9 - -
Since F'(n,1) depends on ¢ when R; # Rs in 3D, we cannot further pull F' out of the integral, i.e.
1 7 1
S (EO. ), Fsin(26)) £ ZF(n,9) (f, fsin(26)). (1.31)

This important equality is true in (1.27) for 2D domains and yields an ordinary differential equation for
(f, fsin(2¢)), leading to the closure of the L? estimate of the microscopic part f — f. Similarly, taking inner
product with 1 on both sides of (1.27) and integrating by parts, we easily get the orthogonality relation

(f,sing) =0, (1.32)
which plays a crucial role in estimating hydrodynamical part f. Unfortunately, both (1.31) and (1.32) break

down in 3D domains.
To circumvent these two major difficulties, as Lemma 3.1 reveals, we decompose

F(n,v) cos (b% = F(n) cos d)% + G(n) cos® ¢ cos (b%, (1.33)
where
- €
Fn) = - o (1.34)
o) = — =) (1.35)

(Ry — en)(Ry —en)’
in which F behaves like 2D force (independent of 1) and G can be regarded as a source term. Roughly

speaking, taking inner product with f in (1.9), we obtain

|f - JFH;LQ N + lower-order terms (1.36)

L
/0 G(y) (f cos? o, f sin ) (y)dy

2
S CH+C|G poe e 1f N2 225

which means we cannot close the estimate for f — f alone without invoking H f H ;272 On the other hand,
taking inner product with sin ¢ in (1.9) indicates

L L L
7., < C /0 / / G(y) (cos ¥, (f — F)sin &) (y)dydz

S C+ OLSHG||L2L2||f - fTHL2L2'

2
ds + lower-order terms (1.37)
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(1.36) and (1.37) form a coupled system for f — f and f and require careful analysis of the interplay between
microscopic and hydrodynamic parts. Also, we have to delicately choose L = ¢~ with 0 < n < 3 to create

a small constant such that an intricate bootstrapping argument can finally close the L? estimates.

The second key ingredient in our analysis is to establish the regularity estimate of e-Milne problem.
Proving diffusive limit in transport equations requires boundary layer expansion higher than leading-order
term, which means we need L estimate of the tangential derivatives

of of of
o’ ry’ and 90 (1.38)

0
In the case when Ry = Ry are constant independent of 71 and 79, as in a perfect ball { || = 1}, a—f for
=
i = 1,2 is smooth, since the tangential derivative commutes with the equation. On the other hand, vlvhen
0 0
relates to the normal derivative —f, and or relates to the velocity

R and Ry are functions of 7;, then

derivative %; .

0 0

5‘f and % are bounded even if Ry and Ry are not identical constant
Ti

for a general convex domain(see Theorem 4.12). Our proof is intricate and delicate, which relies on the

weighted L™ estimates for the normal derivative with detailed analysis along the characteristic curves in the

presence of non-local operator f. The convexity and invariant kinetic distance ¢ defined in (1.20) play the

key role.

The third ingredient is a new L% — L™ framework developed to improve remainder estimates in
ew-Veyut+u—a = S(& W) in Q
u(Zo, W) = Plul(Zy) + h(Zo,w) for @ -7 <0 and Ty € 99,

Our main contribution is to show

(1.39)

The main idea is to introduce special test functions in the weak formulation to treat kernel and non-kernel
parts separately. In principle, we get L% estimate

1 _ 1 _
ey 1A =P)[ulll p2rsy + 1l Lo xs2) + < lu = tl| 20 s2) (1.40)

1 1 1 1
< C<0(1)62 l[ull oo (py + p 150 L2 xs2) + = 151, sy T p 12/l 20—y + ||hL4(I‘)>7

where o(1) denotes a sufficiently small constant (see Theorem A.3). The proof relies on a careful analysis
using sharp interpolation and Young’s inequality. Finally, the utilization of modified double Duhamel’s
principle and a bootstrapping argument yield the L estimate as

1
l[ull Lo (2x.52) < C(eé @l s (xs2) + 191l Lo (axs2) |g|L°°(F)>' (1.41)

Our methods are currently being applied to the study of hydrodynamic limit of Boltzmann equation in
the bounded domains with boundary layer corrections.

1.4. Notation and Structure. Throughout this paper, unless specified, C' > 0 denotes a universal constant
which does not depend on the data and can change from one inequality to another. When we write C(z), it
means a positive constant depending on the quantity z.

Our paper is organized as follows: in Section 2, we present the asymptotic analysis of the equation (1.1);
in Section 3, we prove the well-posedness and decay of e-Milne problem, i.e. Theorem 1.1; in Section 4, we
prove the weighted W1 estimates in e-Milne problem, i.e. Theorem 1.2; finally, in appendix, we prove the
improved L>° estimate of remainder equation and the diffusive limit, i.e. Corollary 1.4.
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2. ASYMPTOTIC ANALYSIS

2.1. Interior Expansion. We first try to approximate the solution of neutron transport equation (1.1).
We define the interior expansion as follows:

U(&,0) ~ US(Z, W) + eUf (Z,0) + 2US(F, ), (2.1)
where U can be determined by comparing the order of € by plugging (2.1) into the equation (1.1). Thus we
have

Us—UE =0, (2.2)
Ui —Uf = — - V.U, (2.3
Us - U5 = — - V,US.

=~
S—

Plugging (2.2) into (2.3), we obtain
Ui = Ui — - V,U§. (2.5)
Plugging (2.5) into (2.4), we get
Us —US =~ - Vo (Uf — 0 - V,U§) = —0 - VoUs + w300, 2, U§ + W300y2, U§ + 2w01w20,,2,U5. (2.6)
Integrating (2.6) over @ € S', we achieve the final form
AUS = 0. (2.7)

which further implies U§(Z, W) satisfies the equation

us = U,
{ AT = 0 28
In a similar fashion, for k = 1,2, U} satisfies
Us = Uf—a@-V,Uf_,
AUE = —/Szzﬁ-VmUﬁ_ldzﬁ. (29)

It is easy to see U,j satisfies an elliptic equation. However, the boundary condition of U,j is unknown at this
stage, since generally Uf does not necessarily satisfy the diffusive boundary condition of (1.1). Therefore,
we have to resort to boundary layer.

2.2. Local Coordinate System. Basically, we use two types of coordinate systems: Cartesian coordinate
system for interior solution, which is stated above, and a local coordinate system in a neighborhood of the
boundary for boundary layer. We need several substitution to describe solution near boundary.

Substitution 1: spacial substitution:

We consider the three-dimensional transport operator -V . In the boundary surface, locally we can always
define an orthogonal curvilinear coordinates system (71, 72) and the surface is described as 7(71,72). From
the differential geometry, we know 017 and Jo7 denote two orthogonal tangential vectors. Then assume the
outward unit normal vector is

(91F X 82’F
= . 2.10
g |(91’I7>< 827:1 ( )
Here |-| denotes the length and 0; denotes derivative with respect to 7;. Let
P = |(917?X (927?] = ‘317:1 |627_’1 = P1P2, (211)
with the unit tangential vectors are
- O o OoF
t)=—, ta=—. 2.12
L= 2T p (2.12)

Then in the new coordinates (i, 71, 72) where p denotes the normal distance to boundary surface, we have

(2.13)

N

T=7F—p
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which further implies the operator becomes

((alr_ 1OV T) X (Do — ,@ﬁ)) -u’)’ai
7 O

@V, = -
<(31F poLV) X (Oo1 — Mazﬁ)> :
((62?—#825))(17) -w ﬁi i)

((8177— u@lﬁ) X (827?— ,uagﬁ>> . ﬁaTl ((8177— Malﬁ) X (6277— Mazﬁ)) 4

+

((alf— oy ﬁ) Ty

0T’

(2.14)

Based on differential geometry, we define the first fundamental form as (E, F, G) and second fundamental

form as (L, M, N), then we have F' = M = 0 and the principal curvatures are given by
L N
K1 = — Ro = —
T B T @

and also
8lﬁ = /4318177, 6217 = @827?.

Hence, we know
((81F— u@lﬁ) X ((927?— uagﬁ)) U= (/11@#2 — (Iil + /QQ)[IJ + 1>P

- ((W ~ 1) (o — 1)) P.

((31F— O 7) X (O — uagﬁ)) S = (m@;ﬁ — (k1 + K2)p + 1> P(v-w)

= (= Dloan = 1)) Pl )

5. o0).

((&F— 1107) ﬁ) = (1 — Kopt)
Py

((811?— (1 7) X ﬁ) = —(1— ,W)Fl(w- Bo7)
2
Hence, we have the transport operator as
o @k 0 _ah o

v-7)

WV, =—(-V .
( 8/1, Pl(lilu — 1) 87'1 PQ(K/QM — 1) 87’2

Therefore, under substitution (1, xa,x3) — (i, 71, 72), the equation (1.1) is transformed into
Ous Wt Ous - Ty am) _ :
el —(W-V)— — — +uf—u*=0 in Q,
( ( ) Op  Pi(kip—1)011  Py(kop—1) 07

u¢(0, 71, 72, W) = Pluc)(0, 71, 72) + €g(m1, T2, W) for @ 7 <0,

—

where
u®(0, 71, 72, W) (W - ¥)dw,

1
Pluc)(0,71,72) = %/qq o
w-v>

Substitution 2: velocity substitution.
Define the orthogonal velocity substitution

—w-v sin ¢,
Wt = cospsiny,
Wty = cos¢cosi.

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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Then we have

) ) .0 (Do X (o1 7 X Do) - T )

o — o k1 Py smz/Ja—d) + ( 7 k1P; tan ¢ cos BT (2.25)
0 0 0 (017 x (D1aF x O17)) - 1y . 0

. — . Ko Ps cos¢a¢ + ( P + ko Py tan ¢ sin 1) 90 (2.26)

Then the transport operator is as
0 sin?y)  cos? v ) 0
WV, = sing— — + cos p— 2.27
0 (Rl — Ry — ¢a¢ ( )
( cos¢sing 9 cosgcosy 8)
Pl(l—lﬂll,t) 87’1 P2(1_K2,LL) 87’2
N ( siny cos

cos¢p 0

(ta X (017 X FQ))%-F PIPQ@,

1—rip 1— Kop

(ﬂ X (3127?>< 7?1)) Fl)

1 1

where Ry = — and R; = —. Hence, under substitution (wi,ws,ws) — (¢,1), the equation (1.1) is
K1 K9

transformed into

., Ouf sin?¢  cos? v > Ous
€sin —€ + cos
(bt?u <R1—M Ry —p ¢3¢

( cos¢psintyy Ou  cos¢pcos 8u€>
ef 2229 SEPROS Y
Pl(].flilﬂ) (97'1 Pg(lflig,u,) 87’2

. (2.28)
u(0, 71,72, ¢, ) = Plu)(0,71,72) + €g(m1, 72, ¢,¢) for sing >0,
where
Plu)(0,7,72) = % //sinqb>0 u®(0, 71, T2, ¢, 1) sin ¢ cos pdpdip, (2.29)

due to Jacobian J = cos ¢, in a neighborhood of the boundary.

Substitution 3: scaling substitution.

1
We define the scaled variable n = H, which implies 82 = faﬁ. Then, under the substitution p — 7, the
€ w  €dn

equation (1.1) is transformed into

Ju‘ sin? ¢ cos? ous
—€ + cos ¢

an Ri—en Ry —en o

iy cospsiny  Ouf cospcostyy Oue
Pl(]. — 6/4317]) 871 P2(1 — 6/43277) 8’7'2

sin ¢

. (2.30)
+ e(l T (007X )Pt e (B X (0127 ) t) e Gy T =0,
u®(0, 71, T2, ,¥) = Plu](0, 71, 72) + €g(11, T2, p, 1) for sing >0,
where
P(0,71,7) = ﬁ / / O g ) singcon oy, (2.31)

in a neighborhood of the boundary.
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2.3. Boundary Layer Expansion with Geometric Correction. We define the boundary layer expansion
as follows:

%6(777 T1, T2, (bv 7/)) ~ 02/06(777 T1, T2, ¢a 1/’) + 662/16 (777 T1, T2, ¢7 /(/))v (232)

where %, can be defined by comparing the order of € via plugging (2.32) into the equation (2.30). Thus, in
a neighborhood of the boundary, we have

. OUf sin® ¢ cos? ¢ OUs .
— Uy — Uy = 2.
sin ¢ an 6<R1—€’I7+R2—677 cos ¢ 96 + %, v =0, (2.33)
. OUf sin? 1) cos? 1) OUy -
— C—Uf = — 2.34
sin ¢ on €<R1—en+R2—en cos ¢ 96 + U — U Go, (2.34)
where
cos ¢sinyy 0% cospcosyy Oy
pr— 2.
Go <P1(1 —ex1n) Or1 Pyl —ekan) Om (2.35)
siny - oo > cosy - o » -\ cos ¢ 0%
+ (1 — eﬁln(tQ X (8217‘ X t2)) tg + 1_ eral] (tl X (8127" X tl)) t1> P1P2 a¢ y
and
B 1 T /2
G =1 [ [ im0 ossdsds. (2:36)
- —m/2

Note that this formulation is always valid locally on the boundary. By open covering theorem, we can find
finite open domains to cover the whole surface. For convenience, we will not change our notation in each
open domain.

2.4. Matching of Interior Solution and Boundary Layer. The bridge between the interior solution and
the boundary layer solution is the boundary condition of (1.1), so we first consider the boundary condition
expansion:

(S + ) = PIUE + %), (2.37)
(Ui + %) =PlUi + %] +g. (2.38)
Note the fact that Ug = P[Uf], we can simplify above conditions as follows:
> =PI, (2.39)
U =Pl + (W-U§ —Plw-U§]) + g. (2.40)

The construction of U, and %, are as follows:

Step 0: Preliminaries.
Assume the cut-off function YTy € C*°[0, 00) are defined as

1
1 0< < =Ry,
To(p) = 1 4 (2.41)
0 §Rmin < 1 < 0.
where
Ruin = HlliTI;{R1(T17T2)7 Ra(1,72)}- (2.42)
2
Define the length of boundary layer L = ™" for 0 < n < 3 and the force as
.2 2
sin“ i cos“ Y
F(e =— . 2.43
() = (gt + ) (243

Also, denote Z¢ = —¢.
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Step 1: Construction of % .
Define the zeroth-order boundary layer as

Us (M, 11,72, 9,9) = YTo(e"n) (f5(7777'1,7'2,¢,¢) - f(iL(ThTQ))y

of§ -
+Flem)eos oG + f5 = = (2.44)

f5(077-177—27 ¢7w) = P[f(ﬂ(O?ThTQ) for Sil’l¢ > 07
f(§<LaTl7T27¢aw) = fé(L,Tl7T2a<%¢’w)7

Afs

sin ¢ an

with
PLf51(0, 71, 72) = 0. (2.45)

By Theorem 3.11, % is well-defined. It is obvious to see f5 = f5 ; = 0 is the only solution.

Step 2: Construction of %, and U§.
Define the first-order boundary layer as

%16(777T17T27¢a 17[}) = TO(enn) (ff(anlaT25¢7¢) - f167L(T177-2)>7

. Off aff _
sin 0L+ Flein ) coso g + £~ i = ~Go, (2.46)
f16(077-177-2a¢7w) = P[fle](077—177-2)+gl(7—177—27¢7,¢)) for Sin¢> 07
ff(L7T177-2a¢a¢) = ff(L7T1aT2a<%¢7w)a
with
P[ff](ou T1, TZ) = 07 (247)
where
g1 = (W -V, U5(Zo) — Pl - V,U§ (Z0)]) + g, (2.48)

with &y is the same boundary point as (0,71,72). To solve (2.46), we require the compatibility condition
(3.102) for the boundary data

(2.49)
L o, /2
/ / (g+w.vag(fo) — Pl - vag(fo)]> sin ¢ cos ¢pdpdyp — / / / e V) Gy cos pdpdipds
sin >0 0 —m JO
= O7
ov . R . - S
where V(0) = 0 and o = —F. Note the fact @ = (sin ¢)7 + (cos ¢sin))t; + (cos ¢ cos 1)ty and
// (1[)' -V, U§ (%) — P[w - VIUS(J?Q)]) sin ¢ cos pdpda) (2.50)
sin >0

= // , O(U_)" VU§(Z0)) sin ¢ cos ¢pdpdyp — 2nP [ - V,US(Zo)]
sin ¢>

= // (W - VUG (Zp)) sin ¢ cos ¢pdpdyy + / (- V,Ug (%)) sin ¢ cos ¢pdepdep
sin ¢>0

sin <0

™ /2
= / (W - V,U§(Zo)) sin ¢ cos ¢pdopdip

—m/2

T /2

/ (7 - V. U5(Zp)) sin ¢ cos ¢pdoddep
—rJ—7/2

= — 7T2V$Ug(f0) U= —WQM.

ov
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We can simplify the compatibility condition as follows:

// g(T1, 72, ¢, %) sin ¢ cos pdepdyp — 8U0 xo / / / VG cos gpdpdypds = 0.(2.51)
sin ¢>0 -7 —7'r/2

Then we have

8U xO 1 L pm /2
0 = // 9(71, T2, &, 1) sin ¢ cos pdpde) + — / / / e V)G, cos pdpdipds(2.52)
in >0 ™ 0 —mJ—7/2

R //sin ¢>0 9(r1, 72, ¢, ) sin p cos pdgdy.

Hence, we define the zeroth order interior solution U§(Z, W) as

us = Us,
AUS = 0 in 9,
o _ L / / 9(r1, 72, 6, 16) sin 6 cos dddyp on 9, (2.53)
ov w2 sin ¢>0
/Ug(fo)dfo = 0.
Q

Step 3: Construction of UT.
We do not expand the boundary layer to % and just terminate at %°. Then we define the first order
interior solution U{(Z) as

Us = Uf—1@- V.U,
AUs = —/ (@ -V, US)dd in €,
[7e 2.54
an = // W - V,US)dwdE on 09, (2:54)
ov S2
/Uf(f)df = // (0 - V,US — 2)dwdz.
Q QJs?

Note that here we only require the trivial boundary condition since we cannot resort to the compatibility
condition in e-Milne problem with geometric correction. Based on [27], this might lead to O(€?) error to the
boundary approximation. Thanks to the improved remainder estimate, this error is acceptable.

Step 4: Construction of Us.
By a similar fashion, we define the second order interior solution as

Us = Us—w- V,Us,

ATs = —/ (@ - VUG in O,

_ 52

€ 2.55
s _ —// (@ - V,US)d@dz on 99, (2:55)
51/ Q.Js2

/ Us(2)dE = / / @ - VUt dwdz.
Q 0 JS2

As the case of Uf, we might have O(e3) error in this step due to the trivial boundary data. However, it will
not affect the diffusive limit.
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3. WELL-POSEDNESS AND DECAY OF e-MILNE PROBLEM
We consider the e-Milne problem for f€(n, ¢, ) in the domain (1, ¢,v) € [0, L] x [-7/2,7/2] X [-7, 7] as
a €

a €
8{7 + F(e;m,9) cos ¢ aj;

sin¢ FfO=F = 5, 0,0),
fe(oa ¢7 1/’) - h6(¢7 11)) fOI‘ sin ¢ > 07 (31)

[0 0) = (L%, ),

where

B 1 ™ /2
F=ge | [ 166 cosgava (32)

7

in which cos ¢ shows up as the Jacobian of spherical coordinates in integration. Note that for ¢ € [—7/2,7/2],
we always have cos ¢ > 0, which means this will not destroy the positivity of integral. Also, we have

sin? 1) n cos? )
Ri—en Ry—en)’

F(en,p) = —6( (3.3)
for R; and Ry radium of two principle curvature, and L = e¢~" for some n > 0 which will be specified later.

In this section, for convenience, we temporarily ignore the superscript €. Note that all the estimates we
get will be uniform in e. We define the norms in the space (1, ¢,v) € [0, L] X [-7/2,7/2] X [=7, 7) as follows:

L /2 ) 1/2
s = ([ [ 150000 comtsavan) (3.4
[fllpeere = sup [f(n,¢,9)]. (3.5)
(n,¢:%)
Also, we define the inner product as
T pm/2
G = [ [ 10901176, 0) cos oy, (36)
—nJ—m/2
Similarly, we can define the norm at in-flow boundary as
1/2
2
115 = (] o) cosdgdv) (37)
1f1l oo () = sup [f(n, ¢, 9)], (3.8)

(¢,7) with sin ¢>0

We further assume
IRl L < M, (3.9)
and
eS| e oo < M,
for M > 0 and K > 0 uniform in e.

3.1. L? Estimates.

3.1.1. L? Estimates when S = 0. Consider the equation

0 0 _
sin¢af£+F(n,w)COS¢£+f—f = S(n,é,0),

f(0,9,%) = h(p,v) for sing >0, (3.10)
f(L,o,0) = f(L, %P, v).
where
F(n,v) cos qbg—i = F(n) coS d)% + G(n) cos? ¢ cos (b%, (3.11)
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for
F) = - & 6_677, (3.12)
_ E(R1 — RQ)
0= = Ry —en)(Ro —en)

(3.13)

Also, Z¢p = —¢. We may decompose the solution
F(n,0,9) = a(n) +r(n, ¢,4), (3.14)

where the hydrodynamical part ¢ is in the null space of the operator f — f, and the microscopic part r is
the orthogonal complement, i.e.

1 ™ /2
o =g [ [ o eosodod, rln6.4) = S0,6.0) ala). (3.15)
—mJ—7/2
: - e o oV . .
Furthermore, we define a potential function V(n) satisfying V(0) = 0 and o = —F(n). It is easy to
compute V(1) = In R
p m=hn{m—"r)

a 2
Lemma 3.1. Assume S = 0 satisfying (3.9) and (3.10) and 0 < n < 5 There exists a solution f(n, d,)
to the equation (3.10), satisfying for some constant |fr| < C,
If = follp2pe < C. (3.16)

The solution is unique among functions such that (A.1) holds.

Proof. As in [27, Section 6], the existence can be proved using a standard approximation argument, so we
will only focus on the a priori estimates. We divide the proof into several steps:

Step 1: r Estimates.
Multiplying f cos ¢ on both sides of (3.10) and integrating over (¢,v) € [—n/2,7/2] X [—7,7), we get the
energy estimate

335 (7 56) () = = I3 — ) { 3, Feos) 0 (3.17)
af 4
- G0 { G cos? v, cos ) () + (5. o)
A further integration by parts in ¢ reveals
~F() (. foos6) (1) = = F(u) {F,Fsin) (), (3.18)
~G(n) {5 cos? v feos ) (1) = = Glo) (7 cos? v Fsin ) o), (3.19)
Hence, we can simplify (3.17) as
33 U Fsind) () = — Il = Fn) (f, £ sing) () (3.20)
— G(n) (f cos® ¥, fsing) (n) + (S, f) ().
Define
aln) = 1 (f, Fsind) (n) (3.21)
Then (3.20) can be rewritten as
do_ ()72 — 2F(n)a(n) — G(n) {f cos® ¥, fsing) (n) + (S, f) (n). (3.22)

dn
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We can solve above in [n, L] and [0, 7] respectively to obtain

(3.23)

- L -
a(n) =2V M=2Vo(L) + / e?V(m=2V(y) ( ()32 + G(y) { f cos® ¥, f sin @) (y) — (S, f) (y)) dy,
(3.24)

o) =V Wa(0) + [T D2D ()] = G (Fcos? v f5n6) )+ (5.1) () ) o
The specular reflexive boundary f(L, ) = f(L, %) ensures a(L) = 0. Hence, based on (3.23), we have
o) > | " v -2v) (60 (eos?v. Fsin0) () 5. 5) ). (3.25)
Also, (3.24) implies '

aln) < Ca(0) + [ "2V ) ( — Gly) (f cos? b, Fsind) () + (S, f) <y>)dy (3.26)

0
<Clhl+ [ T2 ( — Gly) (F o2, Fsin) (4) + (5. f) <y>)dy,
0

due to the fact

1 . 1 ) 1
a0) = 5 s, O < ([ hopsinocosods) < g . (3.27)
sin >0
Then in (3.24) taking n = L, from «(L) = 0, we have
L ~
[ e Il (3.25)
0

L ~
< a(0) + /O e VW ( — G(y) (f cos®, fsin ) (y) + (S, f) <y>)dy

I ( — Gly) (f cos? , fsind) (y) + (S, f) <y>)dy.
0

On the other hand, we can directly estimate

L -
/ =20 |lr(y)|2. dy > Cllrlage. (3.20)
0

Combining above yields

L -
[/ sc<||h|ig+ / e—W(—G@) (feos®p, fsing) (y) + (S, f) <y>)dy>. (3.30)

Since (S, f) = (S,r) due to S = 0, by Cauchy’s inequality, we have

< C'|[rllz2 g2 + ClIS | Zare, (3.31)

) (3.32)

L ~
/0 27 W (5, 1) (y)dy

for C' > 0 sufficiently small. Therefore, absorbing C’ ||r||ig 12 term, we deduce

L
/0 G(y) {f cos® o, f sin 8) (y)dy

)

2 2 2
722 < C <||h|L2 F SN 22 +

C (1 +
< C (14 1G] e oo 713212
<cf

el £l

IN

L
/0 G(y) {1 cos® o, f sin 8) (y)dy
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Note that this estimate is not closed since it depends on f.

Step 2: Quasi-Orthogonality relation.
Multiplying cos ¢ on both sides of (3.10) and integrating over (¢,v) € [—7/2,7/2) X [, 7) imply

d d d _

I (sing, f) (n) = — F <cos 0, dgj;> (n)—-G <cos¢cos P, d£> (n)+ S(n) (3.33)
= —2F (sing, f) (n) — 2G <sin¢cos2 1/),f> (n).

The specular reflexive boundary f(L,¢) = f(L,Z¢) implies (sin @, f) (L) = 0. Then we have

L _
(sing, f) (n) = 2 / VITVWG(y) (sing cos® o, ) (y)dy. (3.34)
n
It is easy to see

(sing, q) (n) = 0. (3.35)

Hence, we may derive
L

(sin ¢, ) —2 [ V-Vl y) (sin g cos® 1, f) (y)dy, (3.36)

_y o2V (n)— V(y)G ) {sin ¢ cos® ¥, ) (y)dy

/nL
-2

Step 3: ¢ Estimates.
Multiplying sin ¢ cos ¢ on both sides of (3.10) and integrating over (¢,v¢) € [—7/2,7/2) x [-m,7) lead to

i 0, ) (1) = = (singur) (1) = Flo) (sincoso. 5 ) () (3.37)
- G(n) <smq§cos¢cos P, 83;> (n) + (sin g, S) (n).

We can further integrate by parts in ¢ as

=) (sin gcos, 51 ) (1) = () (1= 350 6. £) () = Flo) (1 = 35in? 6.1 1), (3.39)
(3.39)
—G(n) <bln¢cos ¢ cos> 1p, g£> (n) = G(n) (1 —3sin® ¢, f cos? ¥) (1) = G(n) (1 — 3sin® ¢, cos ¥) (n)
to obtain
T (s 6.) (1) = = (sin e} (o) + Pl (1= 3sin® 6,7) (1) (3.40)
G(n) <1 — 3sin? ¢, r cos? 1/J> (n) + (sin ¢, S) (n).
Define
B(n) = (sin® o, f) (). (3.41)
Then we can simplify (3.37) as
= D), (3.42)
where
D(n) = — (sing,r) (n) + F(n) (1 = 3sin” ¢, 7) (n) (3.43)

+ G(n) (1 — 3sin® ¢, r cos V) () + (sing, S) (n).
We can integrate over [0,7] in (3.42) to obtain
n
+ / D(y)dy. (3.44)
0
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The quasi-orthogonal relation implies

L ~ _ -
D) =2 / VNV G(y) (sindeos® o, £) (y)dy + F(n) (1 - 3sin® g, ) (1)

+G(n) <1 — 3sin? ¢, r cos? w> (n) + (sin g, S) (n).

Hence, we deduce

17

(3.45)

n L . - n o 9
B(n) — B(0) = 2/0 / eQV(Z)QV(y)G(y) <sin¢cos2 P, r> dydz + /0 F(y) <1 — 3sin” ¢, 7’> (y)dy (3.46)

n

+ /077 G(y) <1 — 3sin? ¢, r cos? @/}> (y)dy + /0 (sin g, S) (y)dy.

For the boundary data,

1/2

1/2
8(0) = (sin® 6, £) (0) < <<f,f sin o) <o>) Jsin 6|22 < c( (. £ lsing) <o>)

Obviously, we have

(f, £ [sin ) (0) = /

sin ¢>0

2
h?(¢) sin ¢ cos pd¢ — ( 10, qs)) sin ¢ cos ¢d .
sin p<0

However, based on the definition of a(n), we can obtain

2
/ h*(¢) sin ¢ cos ¢do + / ( £(0, ¢)) sin ¢ cos ¢dep = 201(0)
sin >0 sin <0

L _
22 [0 (6(3)  cos v fsing) () = (5.0) 1))

Hence, we can deduce

2
-/ (f(0,¢>>) sin ¢ cos pdo
sin <0

L

< / h?(4) sin ¢ cos ¢pdep — 2 / e2‘7(9)(G(y)<f6082w,fsin¢>(y)<S,r>(y)>dy
sin ¢>0 0

L
< |hl3.+C ‘/0 (G(y) (fcos®, fsing) (y) — (S, r) (y))dy

Hence, we obtain

2 L
(50) < <f7f|sin¢>>(0)<CIhIIQLz+C‘ [ (6w reost v psing) ) - (51 ) )
0

(3.47)

(3.48)

(3.49)

(3.50)

. (3.51)
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Note that |G|l e~ < Ce. Since F € L'[0,L] N L0, L], r € L?*([0,L] x [~m,7)), and S exponentially

decays, using Cauchy’s inequality, we have

1/2
+C

1/2

L
BL)| < C 2 +C / (8,7 (y)dy (3.52)

L
/0 G(y) {1 cos® v, f sin 8) (y)dy

y)(1-3 sin? o,7) (y)dy| + 2V g G(y) (sin ¢ cos> 1), r) dydz

y) (1 — 3sin® ¢, rcos® ¥) (y)dy| + (smqﬁ, S) (y)dy

1/2
+ C |l + Cllrll g2

L
<c /0 G(y) (f cos? §, f sin &) (y)dy

2L2||THL2L2 T NGl o2l oz + LIGH 2pell7ll p2p2 + 151 22
1/2
SCHCA+F)r paps +

L
/0 G(y) {1 cos® o, f sin8) (y)dy

1/2)

/0 Gy) (1 cos® v, f sin 8) (y)dy

<C(1+€7%) (1 +

E) (141110
<c( +* ) (1421 = Frllgere + €1 Fzl o )

E) (1 NS = fullpege + ETE L,
where we define
B(L)

fo=q=—""5". (3.53)
[sin ¢[|7»

2
Therefore, for 0 < n < 3 and e sufficiently small, absorbing |f1|, we have

fol € C+Ce3||f = fullpape- (3.54)

Thus, we naturally have
Il ge < C (14 €21 flase) (3.55)
<C (14 f = frllgege + € fellpage)
<C(1+ eI = fllpae)

Furthermore, we have

B(L) — Bn) = / D(y)dy (3.56)

L LoL
/ F(y) <1 — 3sin? ¢, r> (y)dy| + / / 2V(z)*vaG( ) <singi)cos2 P, r> dydz
n n

/ sin ¢, S) (y)dy
7

B(n) = (sin® 6, f) (n) = (sin® ¢, q) () + (sin* ¢,7) (n) = q(n) [|sin $]| 7> + (sin® 6, 7) ().  (3.57)

1 — 3sin? ¢, r cos? w y)dy| +

Note
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Thus considering S decays exponentially, we can estimate

lg = qrl7ope < CllrlZape + ClBM) = BL)II72 12 (3.58)

I 2
< Cllrf e +/O dn
L| pL L .
+ / / / ew(z)*wyG(y) <singf>cos2 P, 'r> dydz
0 n z

L 2 L
+/ dn—i—/
0 0

L L 9
2 2 ~ 2 2 2 2
< C||7‘HL2L2 + ”T”L?L?/O / ’F(y)‘ dydn + L3||G||L2L2H7"”L2L2 + L||G||L2L2||T||L2L2
n

+/OL /WLS(y)dy

1+ 77| 3212)

L+ (14 e f = frllgage)

[ B - sin 1) ()

2
dn

2

L L
/ G(y) <1 — 3sin? ¢, r cos? w> (y)dy / (sin g, S) (y)dy| dn

2
dn

<C
<C

2
Therefore, for 0 < n < R we have

lg =gzl are < € (1+ €21 = Frllyere) - (3.59)
Step 4: Synthesis.
2
For 0 <n < R we have
IPlgeze < C (14 AIf = fullgags)., (3.60)
lg = gzllpare <€ (1+e2If = Fullpare) (3.61)
which further implies
1
17 = Fellgors < Irllpage + g = rllgoge < C (14 1S = fullpags) (362)
Hence, for e sufficiently small, we have |f;| < C and
1f = fellpere < C. (3.63)

In order to show the uniqueness of the solution, we assume there are two solutions f; and f; to the equation
(3.10) satisfying above estimates. Then f’ = f; — fo satisfies the equation

of' of’ _
sino?l s Fyeoso?L 4y o~ o,
an Joler
F0,6,4) = 0 for sing >0, (3.64)
f/(L,¢7,(/)) = fl(L,%(b,w)
Assume |f}| < C and
1f" = frllpzpe < C. (3.65)
Then we can repeat the proof procedure and obtain
17" = Fillzre < O+ Ce2 1 = frll oo (3.66)

Note that in this proof, O(1) term C purely comes from the boundary data and source term. Since all data
are zero in f’ equation, we have

1
1" = fLllpope < Cezllf" = fLllpope (3.67)
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which implies f’ = f} is a constant. Then based on zero boundary data, we must have f’ = 0.
(Il

3.1.2. S # 0 Case. Consider the e-Milne problem for f(n, #) in (1, ¢,%) € [0, L] x [-7/2,7/2) x [, ) with
a general source term

SiH(ZS%JrF(T])COS(ngFf*f = S, ¢,),
Ui 1) .
f(0,0,9) = h(p,¢) for sing >0, (3.68)

f(L,9,0) = [f(L,%Z9,v),
where F = F + G.

2
Lemma 3.2. Assume S = 0 satisfying (3.9) and (3.10) and 0 < n < 5 There exists a solution f(n, )
of the problem (3.10), satisfying for some constant |fr| < C,
1f = frllpzre <C. (3.69)

The solution is unique among functions such that (3.69) holds

Proof. We can utilize superposition property for this linear problem, i.e. write S =S+ (S —S) = Sg + Sk.
Then we solve the problem by the following steps.

Step 1: Construction of auxiliary function f!.
We first solve f! as the solution to

oft =
¢ +f1_f1 = SR(T])¢7¢)7

f (07¢M/)) = h(¢,1/1) for sin¢>>0, (370)
L o,0) = fHLR¢,).

Since S = 0, by Lemma 3.1, we know there exists a unique solution f! satisfying the L? estimate.

) 1
sin¢8—77 + F(n) cos p——

Step 2: Construction of auxiliary function f2.
We seek a function f? satisfying

/ / (sm¢ + F(n) cos (baé;:;) cos pdedy) + S = 0. (3.71)

The following analysis shows this type of function can always be found. An integration by parts transforms
the equation (3.71) into

™ /2
/_ /_ P 6— sin ¢ cos pdpdyp — /_ /_ B F(n) f?sin ¢ cos pdpdrp + 4mSg = 0. (3.72)

Setting
F(0.m) = a(n)sin¢. (3.73)
and plugging this ansatz into (3.72), we have
/ / sin? ¢ cos pdodrh — a(n / / sm ¢ cos pdedyp + 4mSg = 0. (3.74)
—nJ—7/2 —mJ—7/2
Hence, we have
~20_ P(na(n) + 254 =0, (3.75)

where

€ €
/_Tr /_ﬂ/2 ) sin? ¢ cos ¢pdgpdy) ~ (R1 —en + T 677) (3.76)
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This is a first order linear ordinary differential equation, which possesses infinite solutions. We can directly
solve it to obtain

_ noo
a(n) = e Jo Fwdy (a(O) —|—/ eld F(z)dZQSQ(y)dy>. (3.77)
0
We may take
L _
a(0) = —/ el F()d296, (y)dy. (3.78)
0

Based on the exponential decay of Sg, we can directly verify a(n) decays exponentially to zero as n — L
and f? satisfies the L? estimate.

Step 3: Construction of auxiliary function f3.
Based on above construction, we can directly verify

T w/2 o f2 9f2 -
/77T /7r/2 < — sin ¢67]:7 — F(n)cos fﬁaij; — 24+ + SQ> cos ¢pdedy = 0. (3.79)
Then we can solve f3 as the solution to
Sin@i)aig*'F(??)Cosﬁbaiﬁ'f‘fg—fg = —sinqﬁaiz—F(U)cos¢aiﬁ—f2+f2+5627
an o¢ o : o 5.80
2(0,¢,9) = —a(0)sing for sing >0, (3.80)

PLoy) = (LR Y).
By (3.79), we can apply Lemma 3.1 to obtain a unique solution f? satisfying the L? estimate.

Step 4: Construction of auxiliary function f4.
We now define f4 = f2 + f2 and an explicit verification shows

ot aft 4 4

Sln¢afn+F(77)COS¢%+f =" = Son ¢,¥),
f40,¢,9) = 0 for sing >0, (3.81)
AL, 00) = UL, Z,9),

and f* satisfies the L? estimate.

In summary, we deduce that f* + f* is the solution of (3.68) and satisfies the L? estimate. O

Combining all above, we have the following theorem.

Theorem 3.3. For the e-Milne problem (3.1), there exists a unique solution f(n,¢,1) satisfying the esti-
mates

If = frllpzre <C (3.82)

for some constant fr, satisfying
|frl < C. (3.83)

3.2. L* Estimates. This section is similar to Section 3 of [18] with obvious modifications, so we omit the
proof here and only present the main results.

Theorem 3.4. The solution f(n,¢,1) to the Milne problem (3.1) satisfies
I = fullimim < (1417 = fullis ). (3.5)

Theorem 3.5. There exists a unique solution f(n, ¢,1) to the e-Milne problem (3.1) satisfying
If = frll g~ < C. (3.85)
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3.3. Exponential Decay. In this section, we prove the spatial decay of the solution to the Milne problem.
2
Theorem 3.6. Assume (3.9) and (3.10) hold and 0 < n < 5 For Ky > 0 sufficiently small, the solution
f(n, ¢,v) to the e-Milne problem (8.1) satisfies
|€%7(f = fL)|| oo poe < C- (3.86)
Proof. Let ¥ = f — fr. Then ¥ satisfies
oY oY -
sinqﬁa—n +F(n,¢)cos¢a—¢ +¥v v = 5,

7(0,6,9) p(6, 1) = h($,¢) — fr for sing >0, (3.87)

We divide the analysis into several steps:

Step 1: L? Estimates. )
Assume S = 0. We continue using the notation F' = F' + G and the decomposition ¥ = ry + gy . Now we
naturally have (gy)r, = 0. The quasi-orthogonal property reveals

(V. Vsing), (n) = (ry,rysing), (n) +2(ry,qysing), (n) + (gr, gy sing), (n) (3.88)
L _
= (ry,rysing), (n) — 4g»(n) / VM=V G (y) (sin ¢ cos® 1,4 ) (y)dy.
n

Multiplying e2£07% cos ¢ on both sides of equation (3.87) and integrating over (¢,v) € [~7/2,7/2) X [-7, ),
we obtain
1d . .
33 (0 sl () + £ (90 (7,7 sl () (3.59)
— KN (7, ¥ sin @)y, (1) — (v 1) (1)

- GO (590 (7 cos? . ), (1)) + €5 (5.4), )
= (Ko (v rsind) ()= ) ()
+ 4?50 Koy (1) / " ATOOG() (sin o v, ) )y
)
- GO (297 (7 cos? 0. 7 sing), 1)) + 50 (5.2, 1)
For Ko < min{1/2, K}, we have
S s DIZa = Ko Gy sind), () + (v () = & [ ) (390)

Similar to the proof of Lemma 3.1, formula as (3.89) and (3.90) imply

L L - ~
/ 4250 Koy (1) / VM=V G(y) (sin g cos® v, ry ) (y)dydn
0 n

/OL G(n) (eQK‘"’ <7/ cos? 1), ¥ sin ¢>¢ (77)) dn

e ol e <

(3.91)

+ -

L
| s, s

< CLHG||L2L2HQKMT"’/HHHHeKonq"’/HLzm + CE"eK0n7/|’2LZL2
+ O[S || o pale” v || 2
< Ol gy |12y + O3 [0y o+ €™ || o + IS o

< C+ " gy | aps + CEE |5y [y + el ||
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Hence, for € sufficiently small, we know

2 2
[€50ry || y0 < C + Cel[e®qy || s o + Cel| ¥ ||72 e (3.92)
Then similar to the proof of Lemma 3.1, we deduce
2
ey ||z 12 (393)
) L L 2
< [le®omry ||, +/ e?fon / F(y) (1 —3sin® ¢,y ) (y)dy| dn
0 n
L L oL 3 2
+/ e2Kon / / 2V E=2Vy g (y) <sin(b(;052 Y, ry ) dydz| dn
0 n z

L 2 L
n / 2o dn + / o2Kom
0 0

L L
< C+ClleEry 7,0+ ClleXry | ( / / e2K°<"—y>F2(y)dydn)
0 Jn

2

L
/ G(y) (1 — 3sin® ¢, 7y cos® ¥) (y)dy dn
n

L
/ (sin 6, S) (y)dy

L L 2
LR T R e A Al R TP
n

< C+CL+E )Ry |7,

< O+ 0ffeomry |y

<€+ Oc|eRvigy 2, + CelleRor 7|2 (3.0
which implies
1"y |12 p0 < C + Cel|" 0V | (3.95)
In summary, we have
[0 s < 110 [ g+ 11"rs [ < C 4 el |11 (3.96)
which yields
|e®ey]| ... < C. (3.97)

This is the desired result when S = 0. By the method introduced in Lemma 3.2, we can extend above L?
estimates to the general S case. Note all the auxiliary functions constructed in Lemma 3.2 satisfy the desired
estimates.

Step 2: L* Estimates.
This is similar to the proof of exponential decay in [18], so we omit the details here. We have

[ || poe poe < C+ Clle™F | Lo (3.98)

Combining (3.97) and (3.98), we deduce the desired result
%7(f = fL)|| oo poo < C- (3.99)
]

3.4. Diffusive Boundary. In this subsection, we consider the e-Milne problem with diffusive boundary as

sing 2L L P p)coss?L 11— F = Sw.é.w),
o o : 3.100
f0,0,9) = h(é,¢)+P[f](0) for sing >0, (3.100)

f(L7¢a’¢}) = f(L’%(ba ¢)7

where

PII0) = —i // o £(0,¢,9) sin ¢ cos pdpdy, (3.101)
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Similar to [27, Section 6], we can easily prove that

Lemma 3.7. In order for the equation (5.100) to have a solution f(n,¢,¥) € L*>([0, L] x [—m,7) X [—7, ) X
[—7/2,7/2)), the boundary data h and the source term S must satisfy the compatibility condition

L ,m /2
/ / (¢, 1) sin ¢ cos pdpdey + / / / e VS (s, p,1) cos pdpdipds = 0. (3.102)
sin ¢>0 0 JorJory2
In particular, if S =0, then the compatibility condition reduces to
// h(¢, ) sin ¢ cos ¢dddyy = 0. (3.103)
sin ¢>0

It is easy to see if f is a solution to (3.100), then f + C' is also a solution for any constant C. Hence, in
order to obtain a unique solution, we need a normalization condition

PLf1(0) = 0. (3.104)
The following lemma in [27, Section 6] tells us the problem (3.100) can be reduced to the e-Milne problem
with in-flow boundary (3.1).

Lemma 3.8. If the boundary data h and S satisfy the compatibility condition (3.102), then the solution f
to the e-Milne problem (3.1) with in-flow boundary as f = h on sin¢g > 0 is also a solution to the e-Milne
problem (3.100) with diffusive boundary, which satisfies the normalization condition (3.104). Furthermore,
this is the unique solution to (3.100) among the functions satisfying (3.104) and || f(n, ¢,¥) — frll 212 < C.

In summary, based on above analysis, we can utilize the known result for e-Milne problem (3.1) to obtain
the desired results of the solution to the e-Milne problem (3.100).

Theorem 3.9. There exists a unique solution f(n, ¢,1) to the e-Milne problem (3.100) with the normaliza-
tion condition (3.104) satisfying for some constant |fr| < C,

1f(n,¢,9) = frllpere < C. (3.105)

Theorem 3.10. The unique solution f(n,$,v) to the e-Milne problem (3.100) with the normalization con-
dition (3.104) satisfying for some constant |fr| < C,

£, 0,0) = frll poo e < C- (3.106)

Theorem 3.11. There exists Ky > 0 such that the solution f(n,¢,) to the e-Milne problem (3.100) with
the normalization condition (3.104) satisfies

eK(ﬂI (f(na ¢7 1/J> - fL>

<C. (3.107)
L Lo
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4. REGULARITY OF e¢-MILNE PROBLEM

We continue studying the e-Milne problem with in-flow boundary as

0 0 _
smqsa—ﬁw(n,w)cosqs%w—f = S0,
F0,6.0) = h(é) for sing >0, (4.1)

f(L’(ba w) = f(Lﬁ%(baw)

Here we already omit the superscript € and dependence on (71, 72). Besides (3.9) and (3.10), we further
assume

M, 4.2
Ha¢ L= Haw L= Haﬁ L= Ha7'2 L= “2)
and
R R I T I I e
an LeoLoe 00 || oo OV || oo o0 071 || oo e 072 || oo e
ov
for some M, K > 0. Define a potential function V' (n, ) satisfying V' (0,4) = 0 and o = —F(n,v). Also,

2
we know L = ¢ ™ for0<n<g.
Lemma 4.1. We have e~V 0% =1 and

VL) 6lfn sin® ¢ 6lfn cos® b
YY) =1 — 1-— . 4.4
¢ ( Ry > < Ry ) 44

Also, for R = max{R1,Ra} and R’ = min{R;, Ro} which are the mazimum and minimum of Ry and Ra,
we have

R —en v R—en
5 <e (n,) < — (4.5)
Proof. We directly compute
R R
V(n,1) = sin®¢In <R1 _1677) + cos? ¢ In (R2 _2677>, (4.6)
and
sin? cos? 1)
o Vi) _ (Fi—en Ry —en (@7)
Ry Ry ' '
Hence, our result naturally follows. O

4.1. Preliminaries. Tt is easy to see ¥ (0, ¢,¢¥) = f(n, ,¢) — fr satisfies the equation

Si“"b(?): +F(n,9) COS¢% +V =7 = Sn.é,9),
7(0,0,9) = p(¢,) for sing >0, (4.8)
V(L,p,0) = V(L,Bb, ).
where
p(9,¢) = h(,¥) — fr. (4.9)

We intend to estimate the normal, tangential and velocity derivative. This idea is motivated by [17] and
[18]. Define a distance function (7, ¢, 1) as

o\ 1/2
C(n, ¢,0) = (1_ (evmw) COS¢> ) : (4.10)

Note that the closer (n,¢,v) is to the grazing set which satisfies = 0 and sin¢ = 0, the smaller ¢ is. In
particular, at grazing set, ( = 0. Also, we have 0 < ¢ < 1.
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Lemma 4.2. We have
¢

50 =0. (4.11)

sin ng—f] + F(n, ) cos qS

Proof. We may directly compute

2\ ~1/2 -2V (n,%) ;
g — 1 (1 _ (e—V(n,w) cos (b) ) (_ 2e—2V(VIﬂ/)) COS2 ¢)F(’l7, w) _ _e 2V(n F(na w) CO§2 ¢’(412)

an 2 ¢
% _1 1-— (ev(’“/’) cos ¢> N\ ( — 26~ 2V(1¥) o5 ¢> (—sing) = e~272¥) cos psin ¢ (4.13)
) N ¢ ' ’
Hence, we know

(4.14)

P P —sin ¢ (ew("’wF(n, 1)) cos? d)) + F(n,v)cos ¢ (ezv(n,w) cos ¢ sin gb)
sin qb—c + F(n,1) cos p— ¢ _ =0.
on dp ¢
O

As a matter of fact, we are able to prove some preliminary estimates that are based on the characteristics
of ¥ itself instead of the derivative. In the following, let 0 < §y << 1 be a small quantity.

Lemma 4.3. Assume (3.9), (3.10), (4.2) and (4.3). For sin¢ > dg, we have

oY 1
inp— < —= . .
smqﬁa?7 (n,¢)‘_0<1+68> (4.15)

Lemma 4.4. Assume (3.9), (3.10), (4.2) and (4.8). For sing < 0 with |E(n,¢)| < eV E) if it satisfies
ming sin ¢’ > dg where (', ¢’) are on the same characteristics as (1, ¢) with sing’ > 0, then we have

sinqﬁ%(n,qﬁ) < C’<1 + 513> (4.16)
0

Lemma 4.5. Assume (3.9), (3.10), (4.2), (4.3) and ’834/77/‘ < C(1 + In(e)| + |In(n)|). For sing < 0 and

|E(n, ¢)| > efv(L), we have

Singé%(n, %)

< C(1+ [In(e)|). (4.17)
The proofs of Lemma 4.3, Lemma 4.4 and Lemma 4.5 are similar to those in [18] with obvious modifica-
tions, so we omit the details here.

Remark 4.6. FEstimates in Lemma 4.3, Lemma 4.4 and Lemma 4.5 can provide pointwise bounds of deriva-
tives. However, they are not uniform estimates due to presence of oo and In(e). We need weighted L™

estimates of derivatives to close the proof. Also, the estimate

oYV

8' < C(1+ |In(e)| + |In(n)|) are not known
Ul

a priori, so we need an iteration argument.

4.2. Mild Formulation of Normal Derivative. In this and next subsection, we will prove stronger a

priori estimates of derivatives. Consider the e-transport problem for &/ = ¢ B as
Ui

sin(ba{;j—i—F(n,z/))cosqﬁ%j—l—xzf = d+8y,
(0, p,1) P (P,1) for sing > 0, (4.18)
W(L’gb’w) - JZ%(L,%d),?/}),

where p and S, will be specified later with

w/2
Lm0, 9) zb
Fno =g [ [ et 0,60 0)cosudoudy (1.19)
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Lemma 4.7. We have

| e < C< perll o + sdlmm) (4.20)

09 ¢ L°°L°°> .

The rest of this subsection will be devoted to the proof of this lemma. We first introduce some notation.
Define the energy as before

+ Cn(e)f (WHW H

5l L~ + H

Loo Loe [,o0 H on

E(n,¢,¢) = e V1% cos ¢. (4.21)

Along the characteristics, where this energy is conserved and ( is a constant, the equation can be simplified
as follows:

do/ -
An implicit function n*(n, ¢,1)) can be determined through

|E(n, ¢,9)] = eV, (4.23)

which means (77, ¢, 1) with sin¢g = 0 is on the same characteristics as (1, ¢,1). Define the quantities for
0 <1’ <nt as follows:

¢ (6,m.1' 1)) = cos™H (" TITV 1) cos ), (4.24)
'%QS/(QS? m, 7]/7 ¢) = - COS?I(eV(nI’w)i‘/(nyw) COS QS) = 7¢/(¢7 7, 77/5 ’l,[}), (425)

where the inverse trigonometric function can be defined single-valued in the domain [0, 7/2] and the quantities
are always well-defined due to the monotonicity of V. Note that sin ¢’ > 0, even if sin ¢ < 0. Finally we put

n 1
Gy = d¢. 4.26
@)= [ e (4:26)
Similar to e-Milne problem, we can define the solution along the characteristics as follows:
(0, $,%) = Klper) + T[ + Sr], (4.27)
where
Region I:
For sin¢ > 0,
Klper] = par (¢'(0), %) exp(=Gr0,6) (4.28)
; _ "I S0 ) ) /
Tl + Se] = /0 S0 (@ (7)) exp(—Gy,y p)dn. (4.29)
Region II:
For sin¢ < 0 and |E(n, ¢, )| < e~V E¥),
Klper] = par (6'(0),9) exp(=Grop — Gra.w) (4.30)
P
; I N C A URAUNRY) /
T+ Barl = / (@) PG = Gy (31
L
(A + 8", %' ('), ¢) /
+ Ry oG

Region III:
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For sin¢ < 0 and |E(n, ¢, )| > eV E¥),

Klper] = per (¢'(6,1,0),9) exp(=Gp+ 0.5 — Gyt ) (4.32)
- nt QQ;+ S /7 1ol ’ /
Tl + Sur] = /0 ( Si?é’,’(n‘?))(" ) ) (=G — Gt meg )il (4.33)
" + Sa) (0, RS (), 1)) ,
< (@) PG

Then we need to estimate K[p.] and T[</ + S| in each region. We assume 0 < § << 1 and 0 < §y << 1
are small quantities which will be determined later.

4.2.1. Region I: sing > 0. A direct computation reveals

IK[per]l < |lparll o s (4.34)
I TISerll < NSerll o poo- (4.35)

Hence, we only need to estimate I = T [«/]. We divide it into several steps:

Step 0: Preliminaries.
We have

_ / sin2w _ / coszw
E(f,¢) = (R1R1677 > <R2R2€77 ) cos ¢ (4.36)

We can directly obtain

1 !
oo/, 0) < R,\/R@— (= enycosar) = goy/Re = (0 = e (s’ 0, (a)

\/R/2 _ (R/ _ 677/)2 4 \/(R/ _ 677/)2 sin2 (b/

< 7 SC’(Ven’%—sinqﬁ’),

and
1
(', ') > EVRQ —(R—en)2 > Cy/en'. (4.38)
Also, we know for 0 <7’ <n,
R —
sing’ = /1 —cos2¢ <4/1— (R’—

\/(R’ —en)2sin® ¢ + (2R — en — en)(en — en’) cos? ¢

2
{) cos? ¢ (4.39)

€1
€n

— o : (4.40)
Since
0 < (2R —en — e )(en — en) cos® ¢ < 2R'e(n — 1), (4.41)
we have
sin¢ < sin¢’ < 24/sin® ¢ + e(n — 1), (4.42)
which means
! < 1 < L (4.43)

2 Sin2¢+e(17—1]’) - Sin¢/ - Sln(b
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Therefore,

- 1 n 1
) / T / dy (4.44)
y Sing (y) ' 24/sin? ¢ + e(n—y)

1
= (sin¢— sin? ¢ + €(n —77’))
€
n—n
sing + y/sin? ¢ + €(n — 1)
n—n
2\/sin” & + e — 1)

S_

Define a cut-off function y € C°[—m, 7] satisfying

1 for |sing| <4,
= 4.45
x(9) { 0 for |[sin¢| > 24, (4.45)

In the following, we will divide the estimate of I into several cases based on the value of sin ¢, sin ¢’, ery/ and
e(n —n’). Let 1 denote the indicator function. We write

n n n
I:/O 1{sin¢zéo}+/0 1{0§Sin¢S50}1{X(¢*)<1}+/0 Lio<sing<so} Lx(g)=1} 1 {Var>singy  (4.46)
n
+ /O L{o<sin <0} L{x(6.)=1} L{am <sin o} L {sin? p<e(n—n)}

n
+/O 1{0Ssin¢§60}1{x(¢*):1}1{\/W§sin¢/}1{sin2qsze(n_n')}
=L+ L+Is3+ 14+ I5.

Step 1: Estimate of I; for sin ¢ > .
Based on Lemma 4.3, we know

. oY 1
oy 0(e ) e+ [+ |55 e
Hence, we have
oY C
L <Cl— | < = I”l;00 700 . 4.48
1l < ‘877 B é(” s +H8¢ Lo H@(;S LeoLoe Haﬁ LooLoo) ( )
Step 2: Estimate of I for 0 < sin¢ < §p and x(¢.) < 1
We have
(4.49)
K 7r/2 U ’ ’
(] s )(1—X(¢*))~Qf(n,¢*7¢)COS¢*d¢*d¢> b~ Gy
n 7r/2 Y (n' . ,
( / / ¥)(1 —x(@))Wcow*dqs*dw) exp(— Gy ) -
—mJ—7/2 87] ¢
Based on the e-Milne problem of ¥ as
6‘”// / * 9 / aV /, * 9 / 7 (o] /
sin g, L) pof ) cos 0. P L o 60,0) = T0) = S(600), (450)
we have
V(1 Px, ) o 1 / } oV (', s, ) / 77N ’
et (POt cos 0. P ) = ) = S 600) ) (450
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Hence, we have

AR )
o= /_ ] /_ IR x(ga)) 2L 0x) 52 cos .o (4.52)

_/_ﬂ /_ﬂ/QC(n’,W,W(l _X(¢*))Sin1 .

/2 1 ’ IV (', dss )
[0 0o i v cos o, T cos g

= A + .
We may directly obtain

(”f/(n’,%w) V)= S, ¢*,w>) c0s 6. dup

(4.53)

7 " ™/2 ot 1 ’ (o ’
o7 < [ /Wan (= X0D) o (0 0008) = T ) = S0 00.) ) cosdguay

s ( ¢*7'¢) - ( ,) - S(U/,Qﬁ*ﬂb)) cos ¢de.dip

—T

< cw) (H“VHLW " ||S|LW)-

On the other hand, an integration by parts yields

B T /2 9 1
A= [ [ i (€O o0 =0 G P ) om0 ) cosdgndt, (450

which further implies

~ Ce
92| < Sl < COIP N poe e (4.55)
Since we can use substitution to show
o1
/o sin ¢/ exp(—Gpp)dn <1, (4.56)
we have
T o1
120 < CO(I i + 18121 ) [ a7 X0(-Gi)i (457)

< OO (I lymsm + 18l )-
Step 3: Estimate of I3 for 0 < sin¢g < g, x(¢«) =1 and /en/ > sin¢'.

Based on (4.37), this implies
¢’ ¢/, 0) < Cy/en'.
Then combining this with (4.38), we can directly obtain
(4.58)

71'/2
/¥/¥m< e (@)<”¢“W“E@®M¢<C[W[5ﬂn¢Mwaﬁ@mm¢<0ﬂdhmﬁ.

Hence, we have

T 1
1] < Ol | Gy e5p(=Goy D < OB (4.59)

Step 4: Estimate of I for 0 < sin¢ < 8y, x(¢«) = 1, Ve <sin¢’ and sin? ¢ < e(n —1').
Based on (4.37), this implies

C(n',¢',¢) < Csing'. (4.60)
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Based on (4.44), we have

/

Tl n—n' n—n
~Gipy, :—/ ——dy< - L _ < .
m Ty sing/(y) 2/eln—17) ¢

Hence, we know

71'/2 /
77 ¢ / 1 . , ’

< C/O </ﬂ-/6< R JZ{(T] 7(15*;'4[}) COS¢*d¢*d’l/)) sin &/ exp( G77777 ’w)dn

< O || poo oo rexp nn’,w)dn/

awmmm/vﬁmﬁ mﬂ;)«

/
Define z = 77—, which implies d’ = edz. Substituting this into above integral, we have
€

n/e

n
Iyl < CH| || ;o000 - —z|d
L] < Co ||L L 0 fexp< C c Z) z

— O o o (/O Jex (— c\/@>dz + /jk % exp (— C\/@)dz).

We can estimate these two terms separately.

| ( n ) |
—exp| —Cy/——=z dzg/ —dz =2
/0 vz Ve o Vz
n/e 1 n n/e€ n t?=1—2 oo
/ exp(—C”/—z)dzg/ exp(—C,/—z)dz < 2/ te”Ctdt < .
1 Vz € 1 € 0

Hence, we know

Ha| < COl| | e poc -
Step 5: Estimate of I for 0 < sin¢ < 8o, x(¢x) = 1, Ve’ < sin¢’ and sin® ¢ > e(n — 1/).
Based on (4.37), this implies

C(n',¢' ) < Csing'.

Based on (4.44), we have

Tl Cn—n')
Gy =— | —— gy < — )
G /7, sin ¢/ (y) dy < sin ¢

Hence, we have

mOmoe 1 Cn—=n)\ ..
il <Ot s [ ([ [ gy cosotono oo (<S5 ) an

31

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)
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Here, we use a different way to estimate the inner integral. We use substitution to find

) 1 6 1
————— ¢0s ¢, do, < / do.
[5 C(W',%ﬂﬂ) ¢ ¢ _5 1/2
R? — (R — en’)? cos @2
sin ¢, small g Ccos Qﬁ*
< C/ 1/2 dg.

- <R2 — (R —en’)? cos ¢§)

)

COS
<R2 —(R—en')2+ (R—en')?sin qﬁ)
P
=sin ¢, 1
y=sin¢ 0/5 1/2dy.
(R (e (R
Define
p=+R?—(R—en)2 =\/2Ref — 212 < C'\/eny,
¢q=R—en >C,
- <Cyen'.
Then we have
/6 é(w <C ’ ;dy
s S oe ) T T s (D24 Py?) V2

0/02 Wdy - <1n(y VTR — 1n(7‘)>
<1n2+\/7T lnr) <1+ln( ))
< C(l + [In(e)] + [In(y)] )

Hence, we know

n Cln—
[s| < Cll | oo oo /0 <1 + |In(e)| + 1n(77’)|> exp <_(:1n¢n)) dn/

We may directly compute
K Cn—n') ’
141 -
/0 ( +] n(e)) exp ( o dn

Hence, we only need to estimate
‘/ [In(n’ eXp< Cln = n))dn
sin ¢

If n < 2, using Cauchy’s inequality, we have

[ e (-S40 a

< Csing(1 4+ [In(e))).

IN

SlIl

( )1/2</077 exp (_%’gzl:bn’)> dn’)m
(o ([~

(4.69)

(4.70)
(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

(4.77)
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If n > 2, we decompose and apply Cauchy’s inequality to obtain

n C /
o) e ( ijnq;7)) dof (4.78)
n _
< )| exp _Cln=m) dn'| + / In(n’) exp —7C(77. ) dn/
sin ¢ 2 sin ¢
1/2 20(n — 1/ 1/2 n o
n—=n)\ Cln—n)\ .,
< _ _
_</0 In®(7 )dn) (/0 exp( g )dn) +ln(2)/zexp( S0 dn
< C(\/sin(j)—i—singb) < C+/sin ¢.
Hence, we have
15| < C(1+ M(e)) Vol | oo oo - (4.79)
Step 6: Synthesis.
Collecting all the terms in previous steps, we have proved
1] < C(L+ () V60| || o oo + COll | o 1 (4.80)
nmmm‘\ 0 = T =l P ROl (PR E T
54( CaC (173 P 71 P v g P
Therefore, we know
||} < llparll e +||Saf||LooLoe + C(1+ I(e)) /00| || oo oo + COll | oo oo (4.81)
C’
e ] L ) e )
= (AP | I = e = N ROl (E PR T
4.2.2. Region II: sin¢ < 0 and |E(n, ¢, )| < e V),
Klper) = per (¢'(0),9) exp(—=Gr0,4 — GLyw) (4.82)
L 7 VW
of = — " — d 4.
T[ +S£{] /0 Sin(¢/(ﬁl)) exp( GL»W Y GLJM/’) n ( 83)
L
(A +S)(n', Z¢' ('), ) )
+ : exp(—Gy e )dn'.
T (Garneldn
A direct computation reveals
IK[per]l < Iparll o » (4.84)
|T[S»Q{H < HS%HLocLoc- (4.85)

Hence, we only need to estimate I] = 7'[.;%~ ]. In particular, we can decompose

Ao [fAW S ) L [T AR ), )
ﬂM*A sin (' (7)) p(@WwGMW“+L St (' ()

- /0 WGXP( Grayw = Graw)dy
('), %)

exp(fGn/ mﬂﬂ)dn/ (486)

CAuR by [P AR (), ) :
+ —exp ~Grayp — Gryp)dn + - exp(—Gyy pp)dn' .
B ) A A AT )) B
n L
The integral / --- can be estimated as in Region I, so we only need to estimate the integral / -+ . Also,

0 7
noting that fact that

exp(—GL,nw - GL,n,w) < GXP(—Gn/,n,w)7 (4~87)
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we only need to estimate

exp(—Gyr m,p)dn'.

/L A (', R (), V)
. sin(¢/(n))

Here the proof is almost identical to that in Region I, so we only point out the key differences.

Step 0: Preliminaries.
We need to update one key result. For 0 <n <7/,

sing’ = /1 —cos? ¢/ < \/1— (]]:

\/(R —en)2sin® ¢ + (2R — en — en’)(en — en) cos? ¢
R —en/

2
— 6:/) cos? ¢

< [sing].

Then we have

’

o1 n—n
- ——~dy < — —.
/7, sin ¢/ (y) |sin ¢|

(4.88)

(4.89)

(4.90)

(4.91)

In the following, we will divide the estimate of IT into several cases based on the value of sin ¢, sin ¢’ and

en’. We write

L L
IT = / L{sin g<—50} +/ 1{—so<sin <0} Lix(p.)<1}
n n

L

L
+/ 1{—5o§sin¢S0}1{x(¢*):1}1{\/WZSin¢/}+/ L{—so<sin p<0} L{x(p.)=1} L { e <sin ¢/}
n n

=IL+I1L+1I5+114.

Step 1: Estimate of 113 for sin¢ < —dg.
We first estimate sin ¢’. Along the characteristics, we know

e~ V') oog ¢ = e~ V¥ o5 ®,
which implies

cos @ = VDV o5 g < VED"VOD) o5 = oV E VO, /1 _ 52,

Based on Lemma 4.1, we can further deduce that

1-n\ —1
cos ¢’ < (1—6R/ ) \/1-—43.
61_" -2 1_n
sin ¢’ > 1—(1— R’) (1-0%)>0dp—€2"2 >

when € is sufficiently small. Based on Lemma 4.4, we know

a8 oS
sm—<C 1+ )(7/ ww—l—” —|—‘ )
(b ‘ < 53 H HL L a¢ oo oo 8’17 oo oo

L°°L°°>

Then we have

o | S

Hence, we have

oS

RESIRS |51n¢| ‘ - 54 (”yHLwLm H&b

Lo Loe

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

(4.97)

(4.98)
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Step 2: Estimate of I5 for —dp < sin¢ < 0 and x(¢) < 1.
This is similar to the estimate of Is based on the integral

L
1
| i 0l G < 1. (4.99)
n
Then we have

(1| < 0(5)<||7/||Loom + ||S|L°°L°°)' (4.100)

Step 3: Estimate of I3 for —dp < sin¢ < 0, x(¢«) =1 and /e > sin¢’.
This is identical to the estimate of I, we have

(113 < Co|l || poo oo - (4.101)

Step 4: Estimate of I for —dp <sin¢ < 0, x(¢«) =1 and /en/ <sin¢’'.
This step is different. We do not need to further decompose the cases. Based on (4.91), we have,

n—n
-Gy < — . 4.102
mn — |sinq5\ ( )

Then following the same argument in estimating I5, we obtain

L _
110 < Ot [ (1 @]+ a0 ) e (—E ) ay (4109
n

If n > 2, we directly obtain

L ’ L ’
In(n)| ex (—n__n)d’ < / In(n’) ex (—n._n)d’ 4.104
/77 |In(n")| exp sinal ) ; (n') exp snal ) (4.104)
L
n-n
< In(2 ex
@), o (~fagt)
< C4/|sin¢).
If n < 2, we decompose as
L /
/ |1n(7]’)|exp< )dn’ (4.105)
n |sin ¢|

_|_

2 ) - L , n—n ’
/n|1n(n)|eXp( o |)dn / |1n<n>|exp(—|sm¢)d” '

The second term is identical to the estimate in n > 2. We apply Cauchy’s inequality to the first term

/n " ln(o) exp (T’S - qj") ar| < ( /n 2 1n2<n'>dn')l/2< /n exp (W) dn/) " waon)
< ([ weeson) ([ o () o)

< C4/|sin ¢).

Hence, we have

[114] < C(1+ [In(€)|) /S0l || o oo (4.107)

Step 5: Synthesis.
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Collecting all the terms in previous steps, we have proved

1] £ OO+ IOVl e+ O (4108
;(WHW o e = T =) B =T (A PR E P
Therefore, we know
91 < 15+l OO OBy o+ O (4109
(e | e | S - R R (P T |

4.2.3. Region III: sinp < 0 and |E(n, $,1)| > e~V (). We still ignore 1) dependence. Based on [27, Lemma
4.7, Lemma 4.8], we still have

IK[per]l < |lparll o » (4.110)
I TS ]l < NSerll oo poe - (4.111)

Hence, we only need to estimate I1T = T[</]. Note that |E(n, ,)| > e~V %) implies
e V) cos g > eV, (4.112)

Hence, based on Lemma 4.1, we can further deduce that

1—n
cos g > eV Y)=V(L) 5 (VO0)=VI(LY) > (1 — eR, ) (4.113)

Hence, we know

1-n\ 2
lsing| < \/1 - (1 - GR, ) <eiE, (4.114)

Hence, when e is sufficiently small, we always have
lsing| < ez % < 4. (4.115)

This means we do not need to bother with the estimate of sin¢ < —Jy as Step 1 in estimating I and I1.
Since we can decompose

5 n JZ; / / ’ , )
T = / WeXP(—GT,w/,w — Gyt yp)dn (4.116)
)

)
/(n/ ,
sin (;5/(77/ exp(—=Gyt . — Gt y)dn

)
, )
T + Su) 0, R (), )
+/n sin(¢7 (7))

eXP(_Gnﬂmw)d??/) .

,,7+

n
Then the integral / (+-+) is similar to the argument in Region I, and the integral / (--+) is similar to the
0

n
argument in Region II. Hence, combining the methods in Region I and Region II, we can show the desired
result, i.e.

117 < lporll g + 18er | o e + C(L+ () )V/E0| | o e + COll A | o (4.117)

£ C0) (“mw " ||S||W)~



REGULARITY OF MILNE PROBLEM IN 3D 37

4.2.4. Estimate of Normal Derivative. Combining the analysis in these three regions, we have

|| < |lparll e + ”Sﬂf”LOOLOO + C(1+[In(e) ) Vool || oo oo + COl || oo 0 (4.118)
C(
+ = 1l poopo + H H > (6)<|7/| sopoo T 15 1o m>.
(53 Lo L a(b Lo 6¢ Lo Lo 877 . L L Le>°L

Taking supremum over all (7, ¢, %), we have

| || oo oo < [IPerll poe + ”Sﬂ”LwLw + C(1 + [In(e) \/%H«d”LooLoo + || || poo oo (4.119)

C
+ (17l e oo + )
53 (l HL L 8¢ Lo Ha¢ L [

+ OO (s + 1] r ).
Then we choose these constants to perform absorbing argument. First we choose 0 < § << 1 sufficiently
small such that

Lo Lo H n

Cs < (4.120)

A~

Then we take dg = 6 [In(e)] " such that

C(1 + In(e)|)\/do < 2C6 < - (4.121)

for € sufficiently small. Note that this mild decay of §y with respect to € also justifies the assumption in Case
IIT and the proof of Lemma 4.4 that

=)

m\»—A
N\S

0 (4.122)

SE?

for e sufficiently small. Here since § and C' are independent of e, there is no circulant argument. Hence, we
can absorb all the term related to ||.%7|| ;o ;. on the right-hand side of (4.119) to the left-hand side to obtain

7 g e < 0( per e + smmm) (4.123)

L°°L°°>

4.3. Mild Formulation of Velocity Derivative. Consider the general e-Milne problem for & = C 87¢ as

Op
O (17~ + |3

I H
LOC

00 || oo o H on

sin¢%f+F<n,w)cos¢%‘f+% — S
2(0,6,0) = pa(e, ) for sing >0, (4.124)
B(L,p,p) = B(L,AD,Y),

where pg and Sg will be specified later. This is much simpler than normal derivative, since we do not have
%. Then by a direct argument that

IKlpal|
TSl

Pl Lo » (4.125)
1S2l| o 1,00 - (4.126)

IAIA

we can get the desired result.

Lemma 4.8. We have

||93||L00Loo < ||p@||Lw + ”S%'”LOOLO"’ (4'127)
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4.4. Estimate of Derivatives. In this subsection, we combine above a priori estimates of normal and
velocity derivatives.

Theorem 4.9. Assume (3.9), (3.10), (4.2) and (4.3). The normal and velocity derivatives of ¥ are well-
defined a.e. and satisfy

Hg < Clln(e)[®. (4.128)

oY
H%n

on

Proof. Based on the analysis in [18], derivatives are a.e. well-defined. Collecting the estimates for o/ and %
in Lemma 4.7 and Lemma 4.8, we have

P s<7<npdan<+sﬁ|LmLm) (4.129

Loe Loe Loe Loe

Op
+Cln68(7/ oooo+H + IS oooo—I-H H )
L (P e I P 3 NS <t
B 1o oo < Pl e + 1Sl oo poc- (4.130)
Taking derivatives on both sides of (4.8) and multiplying (, based on Lemma 4.2, we have
Doy = €COS gba—z +p—7(0), (4.131)
P# = smqbad) (4.132)
Sd:%%cosd)—i—{@, (4.133)
SggidcosqﬂrF%smqﬂr(a—Z (4.134)
. oF . . . .

Since |F(n)| + o <€, by absorbing & and £ on the right-hand side of (4.129) and (4.130), we derive
o < Cln(e)|®, (4.135)
B < Cln(e)]?. (4.136)
O

Theorem 4.10. Assume (3.9), (3.10), (4.2) and (4.3). The normal and velocity derivatives of ¥ are
well-defined a.e. and satisfy

Koﬁ<

4
9 + H Komge —— o < C[In(e)[®. (4.137)
O || oo o O || oo 00

Proof. This proof is almost identical to Theorem 4.9. The only difference is that S, is added by Ko< sin ¢
and Sg added by Ko%sin ¢. When K| is sufficiently small, we can also absorb them into the left-hand side.
Hence, this is obvious. O

Corollary 4.11. Assume (3.9), (3.10), (4.2) and (4.3). We have

oY
KoM gin p—— < Clln(e)|®. (4.138)
O || oo poo
Proof. This is a natural result of Theorem 4.10 since ((n, ¢, %) > |sin ¢). |

Now we pull 7; for 4+ = 1,2 and @ dependence back and study the tangential derivatives and velocity
derivative.

Theorem 4.12. Assume (3.9), (3.10), (4.2) and (4.3). We have fori=1,2,

oon V. < CIn(e)|?, (4.139)
aTi [,oo [,oo

HeKonW < Cln(e)® (4.140)
L>e L
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Proof. Following a similar fashion in proof of Theorem 4.10, using iteration and characteristics, we can show

—— is a.e. well-defined, so here we focus on the a priori estimate. Let # = . Taking 7; derivative on

873 67-,»
both sides of (4.8), we have # satisfies the equation
o o . as Or, Rysin® ¢ 9r, Ry cos® ¢ oV
G W i _ - 2z i i S h——
sin ¢ o + (n,¢)coa¢8¢ +W - aTi+€<(R1—6?7)2 (B> — )2 cos¢8¢ ,
P0.6,0) = Lo for sing>0, (4141)

W (L, ¢, ) = W (L, Kb, ).

Our assumptions on S verify

<C. (4.142)

HeKoﬂaS
L Lo

aTZ‘

For n € [0, L], we have

.2 2
‘ 0., Ry sin ;/) 0., Ry cos 21/1 <c (4.143)
(R1 —en) (R2—en)? || poopoo
and
016 S F(??, ’Q[J) S CQE. (4144)
Based on Corollary 4.11 and the equation (4.8), we know
eKon (e COS¢W> < C[In(e)[®. (4.145)
99 ) |l oo Lo

Therefore, the source term in the equation (4.141) is in L* and decays exponentially. By Theorem 3.6, we
have

e o(# = #1)|| oo p o < C n(e)[*, (4.146)
for some constant #7. It is easy to see this #7 must be zero due to decay of ¥'. Similarly, let #' = %
Taking 1 derivative on both sides of (4.8), we have #” satisfies the equation

.o’ o’ s sin(2¢y)  sin(2y) oY
F v o= — —
sin ¢ on + F(n,v¢) cos ¢ 9 + 8¢+6(R1—6n Ry —en COS¢8¢ ,
7'0,6,9) = g—Zw Y) for sing >0, (4.147)
V(Lo ) = W'(L, R, 0).
We may directly estimate
sin(2¢)  sin(24) <c (4.148)
Rl - 67] R2 - 677 Loo [,

which means the source term is in L> and decays exponentially. This equation does not involve #” term,
which makes it even simpler. Hence, we get

8
HeKO"W’HLmLm < ClIn(e)|”, (4.149)
for some constant #7. Naturally we have #/ must be zero. O
We finally come to the e-Milne problem with diffusive boundary.

Theorem 4.13. Assume (3.9), (3.10), (4.2) and (4.3). There exists Ko > 0 such that the unique solution
f(n,@,) to the e-Milne problem (3.100) with the normalization condition (3.104) satisfies for i = 1,2,

HeKw@(f_fL) < Cn(e)*, (4.150)
aTi Lo [
Kon OUf — f1) 8
He WT . < C'|In(e)] (4.151)
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APPENDIX A. REMAINDER ESTIMATE

In this section, we consider the remainder equation for u(Z, o) as

eW-Vyut+u—a = f(Z,7) in Q, (A1)
u(Zo, W) = Plul(Zy) + h(Zo,w) for @ -7 <0 and Ty € 99, ’
where
o1 N
u(Z) = g /52 u(&, W)d, (A.2)
1
Plul@) = 4 [ ut@o, )@ 7)dc, (43)
4m w-v>0

¥ is the outward unit normal vector, with the Knudsen number 0 < € << 1. To guarantee uniqueness, we
need the normalization condition

/ u(Z, w)dwdZ = 0. (A.4)
QxS?
Also, the data f and h satisfy the compatibility condition
/ (&, @) dwdz + e/ / h(Zo, W) (W - ¥)dwdzy = 0. (A.5)
Qx 8?2 aQ Jw5-7<0

Based on the flow direction, we can divide the boundary I' = {(Z,w) : £ € 9} into the in-flow boundary
I'", the out-flow boundary I' and the grazing set I'° as

I~ = {(z,4) : & € 0Q,w - ¥ < 0} (A.6)
't = {(#,%): T € 0Q,% - 7 > 0} (A7)
I = {(#) : ¥ € 900w -7 =0} (A.8)

It is easy to see I' = 't UT~ UTP. Hence, the boundary condition is only given for I'". We define the L?
norm with 1 < p < oo and L™ norms in Q x S? as usual:

1/p
lsracsy = ([ [ 1@ oras) (A9

L>(Qx82) = _', 0| . .
171 sup | f(Z, @) (A.10)
(Z,0)eNxS?

Define the LP norm with 1 < p < co and L* norms on the boundary as follows:

1/p
||pr<p>=( J[1s@or s u|dwdx) , (A1)

1/p
|f||Lp(ri>( // FE D) [ u|dwdz) 7 (A12)

[fllpeery = sup |f(Z W), (A.13)
(fw)er

lpmqsy = sup_ /(@ D)]. (A14)
(&%) er+

The direct application of energy method as in [27] and [28], we may obtain

Lemma A.l. Assume f(Z,w) € L®(Q x 8?) and h(xg, @) € L>®(T~). Then for the transport equation
(A.1), there exists a unique solution u(Z,w) € L?(Q x S8?%) satisfying

1 1
210 = Py + Ny < € 2 Mlisanssy + 1 llage-y ) (A.15)
Based on classical L2 — L™ framework, we are able to show

1
HUHLOO(QXSZ) < C(Q)( 3 ||U||L2(st2 + ||f||L°° (@xs2) T ||h||L°° )>~ (A.16)

Therefore, it is natural to deduce L> estimate.
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Theorem A.2. Assume f(%, ) € L>(Q x §%) and h(zg,w) € L>(I'"). Then the solution u(¥,w) to the
transport equation (A.1) satisfies

1

5
2

1
[ull oo (e s2) < C(E) (6; 11l L2xs2) + =5 1Pl Loy + 1l Lo axs2y + 1Al oo (o )

€
However, the estimates here is not strong enough to close the diffusive limit, so we must further improve
them.

A.1. L?>™ Estimate. In this subsection, we try to improve previous estimates. In the following, we assume
m is an integer and let o(1) denote a sufficiently small constant.

Theorem A.3. Assume f(%, %) € L>®(Q x 8§%) and h(zo,w) € L>®°('~). Then for

satisfies

< m < 3, u(Z,w)

N W

1 _ 1 _
3 (1 - P)[“]||L2(F+) + ||U||L2m(Qx$2) + - ||U - U||L2(st2) (A.1.1)

1
< (oW ooy + ¢ Wiy + 2 M1, s gy £ Wlinceny 0l ).
Proof. We divide the proof into several steps:

Step 1: Kernel Estimate.
Applying Green’s identity to the equation (A.1). Then for any ¢ € L%(Q x S2) satisfying @- V¢ € L2(QxS?)
and ¢ € L*(T"), we have

Our goal is to choose a particular test function ¢. We first construct an auxiliary function ¢. Naturally
u € L®(Q x §%) implies @ € L?>™(Q) which further leads to (@)*™~1 € L23ﬁ1(§2). We define ¢((Z) on 2
satisfying

1
AC — (’ﬁ)Qm_l o / (E)Qm_ldf in 97
o 92 Jo (A.1.3)
- — 0 on 0.
ov
In the bounded domain €2, based on the standard elliptic estimate, we have a unique ( satisfying
2m—1
HCHW TET () <C H 2m 1HLzm 1(Q) = HUHLZ"”’L(Q (A.1.4)
and
/ C(#)d7 = 0. (A.15)
Q
We plug the test function
¢ =—w-Vy( (A.1.6)

into the weak formulation (A.1.2) and estimate each term there. By Sobolev embedding theorem, we have
for 1 <m <3,
2m—1
101l 220) < ClICH a1 ) < CICH < Cllalzzmg) - (A.1.7)

<l

W 27n I(Q) -

18l < Cla)F5 g, - (A.1.8)

Easily we can decompose

Lzm I(Q) wh T 2m—T (Q)
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We estimate the two term on the right-hand side of (A.1.9) separately. By (A.1.3) and (A.1.6), we have

_6//Q><82 W Vyp)u = //st2 (w1(w1811C+w2812C)+w2(w1812§+w2822g)> (A.1.10)

= 6//9 o u(w%@llc + w§822§>
= QEW/QTL(anC + 022()

—12m
= 6||U||L2m(Q)-

In the second equality, above cross terms vanish due to the symmetry of the integral over S2. On the other
hand, for the second term in (A.1.9), Holder’s inequality and the elliptic estimate imply

e[| @ Vad) 1) < Celu al e V5], 2 o) (AL.11)
OxS2

< Cellu—ull p2m(axs) ||C||W2,2.gh—m;1(9)

_ _2m—1
< Cellu— ullem(nga) ||u||LT'"(Q) :

Based on (A.1.4), (A.1.7), (A.1.8), Sobolev embedding theorem and the trace theorem, we have

(A.1.12)
2m—1
I9:€l i gy S CNaCly bty gy S CITaln i g S C Uz, g < C Nl
We may also decompose @ = (W - ¥)7 + @ to obtain
e/ updy = e/ w(w - Vz)dy (A.1.13)
r r

e/ru(ﬁ-VmC)(w’-ﬁ)d’y—i-e/ru(zﬁj_-Vzod'y

—c / (i, - VaC)dy

Based on (A.1.4), (A.1.8) and Hélder’s inequality, we have
e/ updy = e/ u(Wy - Vi¢)dy (A.1.14)
r r
—c [ PL(@L - VaOdy e [ (=Pl VaOdy e [ b V.Ody
r r

B (r- >>

< el sy (10 = Pl ., + ||h||L4;n(F_)).

-y / Q=P Vel e [ b Va0

r-

< CENTaCl gy gy (1= Pl g +

Hence, we know

¢ [ty < CelalZonss (10 =P, s )+ 10050 ) (A.1.15)

Also, we have

_ _ 2m—1
//Q o (u—uep<C H¢||L2(Qx52) llu— U||L2(st2) <C ||UHL2m Q) (T “||L2(st2)a (A.1.16)
X

76 Clolinsn Il < C Nl Il qns- (A117)
X
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Collecting terms in (A.1.10), (A.1.11), (A.1.15), (A.1.16) and (A.1.17), we obtain

ellall pom@xs2) < C(‘f lu = @l pomoxs2) + 1= Ullp2oxs2) + 122 (xs2) (A.1.18)
F el =Pl oy + el s )

Step 2: Energy Estimate.
In the weak formulation (A.1.2), we may take the test function ¢ = u to get the energy estimate

3¢ [l ay+ lu=alasn = [[ 1 (A.119)
X

Hence, by L? estimate as in Theorem A.1 and [18], this naturally implies

2 2 2 2
e = P)dlEaqeey + 4= sy < s+ [ Fut Ihlagny. (220
X
On the other hand, we can square on both sides of (A.1.18) to obtain
¢ ||ﬂ||i2m(9xs2) < 0(62 l[u— ﬁ||2L2m(st2) + [Ju— aHi?(st% + ||f||iQ(Q><S2) (A.1.21)

NPl oy TR ).

Multiplying a sufficiently small constant on both sides of (A.1.21) and adding it to (A.1.20) to absorb
[l — 12||22(QX32) and €2 |\1]||2LQ(QX$2), we deduce

2 _2 —112
ell(1 =Pl 720+ + € @l 72maxs2) + 10 = Ul 72 xs2) (A.1.22)

< (€ = W ansey + € 10~ Pl 5

2 2 2
sy + [ Tut Iy + € 12 ))

3
By interpolation estimate and Young’s inequality, for 3 <m < 3, we have

2m—3
10 = P)ll gy < 10 =Pl gy 11 = Pl e (A1.23)
1 QL 6m—9 27;;3
= (o 0 =PIy ) (57 00~ Pl
2m 2m
1 5 g om=—9 2m-3 Tm—
< (g 10 =Pl ) 4o (52 10 - P )
€ 4m
C 3
< = 10 =P)ulll 20y +o(Dez [[(1 = P)[ull| oo 1+
e T+ r+)
c 2
< = (L =P)[wlll p2rey + oD [Jull poo (o s2) -
Similarly, we have
1 m—1
[ =@l pom g2y < llu—all 2 guse lv =l L% o xs2) (A.1.24)
1 i 3m—3 _,m=1
= (37”3 llu — U||E2(st2) ) (6 2m? ||u — u||L$(QX32) )
€ 2m?
1 1 m 3m—3 _ m=1 m"il
< C’( s U — UHEZ(Qsz) > +0(1) <e 2m? |y — u||L;;';,(QX52) )
€ 2m?2

C _ 3 _
< ST Ju— UHL2(st2) +o(1)ex |[u— U||Loo(9xs2) .
€ 2m
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We need this extra ezn for the convenience of L estimate. Then we know for sufficiently small € and

3
§§m§377

2m 3 3
- P)[U}Him(w) < Ce” (1= )[U]Hiz(m) +o(1)e*tm ||u||2L°°(1"+) (A.1.25)
i 3
<en||(1- )[U]||L2(r+) +o(1)e*tm ||u||ioo(r+) . (A.1.26)
3
<o(1)el|(1 - P)[UHEZ(FH +o(1)e*tm Hu||2L°°(F+) :

Similarly, we have

2 _3m=3 _ 12 3 2
lu=alpzmonszy <€ |lu—allaquszy + o)™ UL @xs2) (A.1.27)

3 _ _n2 2
S em 1 ||’U, — u||L2(Q><82) —+ 0(1) 2+m u”LOQ(QXSQ) s (A128)

< o(1) u = @ll 2 sz + oM ulfn (g2
By (A.1.20), we can absorb [|u — @[ 2(qy s2) and €][(1 — P)[u]HQLQ(H) into left-hand side to obtain
2 2 2
e (1 = P)ulllz2sy + € allz2mxse) + 1u = Al2xs2) (A.1.29)

§C<o()2+m Ull? sy + 112 ey + // fu+llhlle<r>+62”hL(r>>

We can decompose
//stZ fuz//ﬂxsz fa+//g)xgz flu—a). (A.1.30)

Holder’s inequality and Cauchy’s inequality imply

_ _ C 2 2 (1112
S T8 e g g Vs < 5 I e g+ 06 Nl sy (A-13)

and
2
J[ 1= < Ol sy + o) =l s (A1.32)
QxS?
Hence, absorbing €2 ||ﬂ||L2m,(QX82) and |lu — ﬂ||ig(QX32) into left-hand side of (A.1.29), we get
2 — 112 _ 112
ell(1=P)ulllz20+y + € @l 72m g2y + ||U —ull12axs?) (A.1.33)
3 2 2

< (o il ooy + 11y + 25 11

which implies

2 2
L2m T (Qx82) + HhHL?(Pf) +e€ ”h”Lm(F )

1 _ 1 _
T IE=P)lllpaey + 1l o @xsz) + ¢ 1w = Uiz o) (A.1.34)

3 1 1 1
< (oW Tullmqrey + 3 llaesn + 2 Ml e gy + 5 Wil + 100 ) ).
O

A.2. L*° Estimate. In this subsection, we prove the L estimate. We consider the characteristics that
reflect several times on the boundary.

Definition A.4. (Stochastic Cycle) For fived point (t, ¥, %) with (Z,@) ¢ T, let (to, To,wWo) = (0,F,w). For
Wiy1 such that Wyy1 - V(Zr41) > 0, define the (k + 1)-component of the back time cycle as

(tkt1, Thr1, Wrt1) = (tk + to(Zh, D), To(Th, Wi ), Wht1) (A.2.1)

where
by(F,15) = inf{t > 0: & — et & Q) (A.2.2)
20(&,18) = & — ety (&, W) ¢ O (A.2.3)
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Set
Xcl S t (E ’lU E 1tk+1<5<tk (f}c — G(tk — S)ﬂ_)'k> (A24)

We(s;t, Z, W) thk+1<s<thwk (A.2.5)

Define g1 = {1 € 8 : 0 - ¥(Fy41) > 0}, and let the iterated integral for k > 2 be defined as

/H kl:[ldaj = /m </uk_1 dcrk_1> ...doy (A.2.6)

k= 1P‘J j=1
where do; = (V(Z;) - W)dw is a probability measure.

Lemma A.5. For Ty > 0 sufficiently large, there exists constants C1,Co > 0 independent of Ty, such that
for k=T,

k—1 1 o1l
/ - 1y, 4,28, @1 ,...,0_1)<To H do; < <2) (A.2.7)
j=1 Hij j=1
Proof. See [14, Lemma 4.1]. O

Theorem A.6. Assume f(Z,w) € L>®(Q x S?) and h(xg, W) € L>¥('~). Then for the steady neutron
transport equation (A.1), there exists a unique solution u(Z,w) € L>(Q x 8?) satisfying

1 1
[ull poe (2 52) < C(eprzsm 1f1lL2@xs2) + oy HfHL%(st% + 1f e (axs2) (A.2.8)
1
+ T 12/l 20—y + HhHLm(F y T ||h||Loc(F)>~

Proof. We divide the proof into several steps:

Step 1: Mild formulation.
We rewrite the equation (A.1) along the characteristics as

w(Z, W) = h(F — ety 0, W)e " + Plu)(F — et 10, w)e (A.2.9)
t1 t1
* / f(Z = ety — s1)0, W)e~ ) ds; + / (% — e(ty — s1)w)e” 1) dsy.
0 0

Note that here P[u] is an integral over uj at &y, using stochastic cycle, we may rewrite it again along the
characteristics to Zs. This process can continue to arbitrary Zp. Then we get

k—1 l k—1 l
(@, W) =e "H+ Yy (/ e G [ doj> +) (/ e Plu) (F, wk-1) [ | daj)A.Q.IO)
=1 M= j=1 =1 M=

j=1
=I1+II+1I1.
where
H = h(Z — et W, W) (A.2.11)
+ " f(& —e(ty — s1)w, W)e® dsy + /t1 u(Z — e(t; — s1)w)e® dsy,
G= h(flo— ety1Wy, W) ' (A.2.12)

L1 t
+ / f(fl — G(tl+1 — Sl+1>7ﬂl, wl)esl+1dsl+1 +/ ’ﬁ(fl — E(tl+1 — sl+1)1ﬁl)esl+1dsl+1.
0 0

We need to estimate each term on the right-hand side of (A.2.10).
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Step 2: Estimate of mild formulation.
We first consider I71. We may decompose it as

k—1 l
nr= >y | P, D)o I do; (A.2.13)
=1 j=1

j=1

k—1 l
= Z/ Ly, <1, Plul (&g, —1)e "+ [ ] doy
=1 /1T j=1

k—1 1
+ Z/ 1y, 51, Plu)(Zg, W—1)e 1 Hdaj,
=1 Hé’:l j=1
= IIT, + IID,

where T > 0 is defined as in Lemma A.5. Then we take k = ClT§/4. By Lemma A.5, we deduce

CoTy*
i <o(3) T Mlimansn- (A2.14)

Also, we may directly estimate
|I[1I,] < Ce 1o ||u||L,,O(QX32) . (A.2.15)
Then taking Tj sufficiently large, we know
(1T < 6 [Jull poo (52 » (A.2.16)

for 6 > 0 small. On the other hand, we may directly estimate the terms in I and I related to h and f,
which we denote as I and II,. For fixed T, it is easy to see

(L] + [TI| < [ fll Lo sy + 1Pl oo oy - (A.2.17)
Step 3: Estimate of @ term.

The most troubling terms are related to @. Here, we use the trick as in [14] and [27]. Collecting the results
in (A.2.16) and (A.2.17), we obtain

ty
lu] <A+ / (% — e(ty — s1)w)e” M7 ds, (A.2.18)
0
k—1 t l
IR —T A
=1 j=1 \JO j=1
= A+ I+ 115,
where
A= [[fllze@xs2y + 1Al oo o=y + 6 ull oo (axs2) - (A.2.19)

By definition, we know

|lo| =

t1
/ (/ u(f — e(ty — s1)0, wsl)dwsl)e(tlsl)dsl
0 S2

where W, € §? is a dummy variable. Then we can utilize the mild formulation (A.2.10) to rewrite u(¥ —
€(t1 — s1)W,Ws, ) along the characteristics. We denote the stochastic cycle as (t},, &, %)) correspondingly

, (A.2.20)
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and (tf, &y, W) = (0,7 — €(t; — $1)W, W, ). Then

ty
11| < ‘/ (/ du’;’sl>e(t151)dsl
S2
tl
(/ / (@ — e(t), — )i, Je~ 10 ds! duii, )e_(tl_sl)dsl
S2
l/

t1 ’ ’
(LQ / (/ ,fL‘l/ — 6(tl,+1 S;,+1)1ﬁl,)e_(tl/+l_sl/+1)dsg/+1> H do'j/dwsl)

=1 j'=1

(A.2.21)

e_(tl_sl)dsl ,

It is obvious that

L] <A (A.2.22)

ty
/ ( Adu_fsl)e_(tl_sl)dsl
0 S2

11l oo (axs2y + 1Ml oo (p-y + 0 llull oo (o s2) -

IN

Then by definition, we know

tl ta ’ ’
/ (/ / u(z — e(ty — s’l)wSI)e—(tl—sl)ds&deI)e—(tl—sl)dsl
0 §2J0

We may decompose this integral

ty th 121 t1
[ A O R A A S S
0 JS2J0 0 J&2Jt)—s1<8 0 82 Jt)—s)>6

For I 5 1, since the integral is defined in the small domain [¢] — §,#]], it is easy to see

[L221] < 6 [ull oo axs2) - (A.2.25)

L] = (A.2.23)

For I35 2, applying Holder’s inequality, we get

[I2,2,2] < / / w(@ — e(th — s))ws, e~ (t1=s1) g (t1=s1) g o/ 1dw, dsy (A.2.26)
§2 Jt)—si>
272)1 1
< (/ / / s (s dsldwsldsl)
S2 t’—s'>5
%
</ / / Lz et —st)w., e al*™ (& — e(th — s} )i, Je™ (fh=si)e=(time dsldw“dsl)
82 Jt)—s|>6 !
5

(/ / / Lz et —st)w., e |a|*™ (& — e(ty — sy )i, Je~ (1 1)e = (o dsldwsldsl)
82 Jt)—s|>6

Since 1, € 8%, we can express it as (sin ¢ cos 1, sin ¢sin, cos ¢). Then considering & — e(t; — /)W, € Q,
we apply the substitution (¢,,s}) = (y1,y2,y3) as

g: T — (tl )ws17 (A227)
whose Jacobian is
5 —e(th — s))cospcosyy  €(t) —s))singsiny  esingcosy
'W —e(t) — sy)cosgpsiny —e(t) — s))sindcosy esingpsiny (A.2.28)
(¢, ¥, ") L
e(ty — s))sing 0 €COS @

= () — s4)*sin ¢. (A.2.29)
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Hence, we can further decompose I 2 2 into |sin¢| < § and |sin¢| > §. In the first part, the integral can be
bounded by 6 [|u| .« o« s2)- Then for the second part, we have

(Y1, Y2, Y3) 3¢3
— TR > €060, (A.2.30)
‘ e, ¥, 1)
Therefore, we know
1 _
L222] < ——— lltll 2moxs2) - (A.2.31)
€2m ) 2m
Hence, we have shown
1
(22| < 60 lull poe (o xs2) + EaE ]| 2m (o s2) - (A.2.32)
After a similar but tedious computation, we can show
1
23] < 6 |ull o (oxs2) + En 1]l p2m (2 52) - (A.2.33)
Hence, we have proved
1 _
[l < 0llull e axsz) + o lTllom sy + 1 lle@xsz) + IR Lo - (A.2.34)
In a similar fashion, we can show
1
[1o] < 6 ||ull o (oxs2) + Ry 7 [l 2m (oxs2) + 1 fll oo (xes2y + 1Bl poe (o) - (A.2.35)
Step 4: Synthesis.
Summarizing all above, we have shown
1
ul < 0 |ull oo ons2) + S Il 2 axs2) + 1l L (@xs2) + 1Bl poc - (A.2.36)
1
<O flull g o xs2) + p—— lull L2 axs2) + 1l Lo (@xes2y + 1Al oo -y -

Since (Z,w) are arbitrary and § is small, taking supremum on both sides and applying Lemma A.1, we have

1

l[ull oo (axs2) < C<623 @]l 2m (@xs2y + 1 fll Lo (xs2) + ||9|Loo(r—))- (A.2.37)

Considering Theorem A.3, we obtain

lullmonsy < C( o Wlisaxsy + vz 1l ey + Il (4.239)
4 Wl + thmr + ||h||Lm<r->) +o() el e
Absorbing |||« g2y into the left-hand side, we obtain
follm e <€ ||f||Lz<Mz i Wl gy + ey (2239
+ i Ihllageny + i I8l gy + Al )

This is the desired estimate. O
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APPENDIX B. DIFFUSIVE LIMIT

Corollary B.1. Assume g(Zo,w) € C*(I'™) satisfying (1.5). Then for the steady neutron transport equation
(1.1), there exists a unique solution u®(Z,w) € L>(Q x 8§?%) satisfying (1.4). Moreover, for any 0 < § << 1,
the solution obeys the estimate

€ € 1_
[ — UO||L°°(Q><S2) <5, Qes ™, (B.1)
where U§ is defined in (2.53).

Proof. Based on Theorem A.6, we know there exists a unique u*(%, @) € L>®(Q x §?), so we focus on the
diffusive limit. We can divide the proof into several steps:

Step 1: Remainder definitions.
We define the remainder as

2 1
R=u"=> Ui = u=u - Q- 2, (B.2)
k=0 k=0
where
Q = U§ + eUs + €2US, (B.3)
D = U + WS, (B.4)

Noting the equation (2.30) is equivalent to the equation (1.1), we write £ to denote the neutron transport
operator as follows:

Llul =eW-Vyu+u—1a (B.5)
ou sin? v cos? ) ou
— g _ _ — U G R
smd>877 €<R1_€n+R2_6n>COS¢8¢+U u + Glu]
where
cos¢siny  Ou cospcosy Ou
Glul = atiad 2= B.6
g 6<P1(1 —ek1n) 011 Pa(1 — eran) O (B-6)
siny - - - cosy - L - -\ cos ¢ Ou
—_— -1 —(t 0 t1)) -t —.
—I—e(l —614177@2 X (O X 1)) -ty + —engn( 1 % (0127 X t1)) 1) PP, 90
Step 2: Estimates of £[Q].
The interior contribution can be estimated as
LIQl =ed-V,.Q+Q—Q = -V,Us. (B.7)
Based on classical elliptic estimates, we have
H‘c[Q]”Loo(QXSZ) < Hegu_)" V:DUSHLOQ(QXsZ) < ce HVIU;HLW(QXS?) < Ce’. (B'S)
This implies
I£1Q)| 2 xs2) < C€, (B.9)
IZ1QN 2 g gn) < O (5.10)
I£[QN L exs2) < C€°. (B.11)

Step 3: Estimates of £L2.
Since %, = 0, we only need to estimate %" = (ff — f{ 1) - o = V9o where f{(n,71,72,¢,v) solves the
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e-Milne problem and ¥ = ff — fi ;. The boundary layer contribution can be estimated as

Y. i2 2 e —
cler] = sin g2 nl) —G(Rsin_fn + gss‘_fﬁ cos ¢ (;¢1) (%) — (1) + Gley] (B.12)
= c[smo(sodr + 750 et AL 4 Y o p 0+ Ot Y G
on 1—en Ry —en 9¢

B oY sin? 1) cos? 1 . 0Yyg
= e¢0<sm¢an — E<R1 e + Ry €77> sgb? + 7 - ”f/) (smd)an”f/ — ez/JOG[”I/]>

= e(sinqi)a(;’i;o“f/ - edJoG["//]> .

Since g = 1 when 1 < Ruyin/(4€™), the effective region of 0,1y is 1 > Ruyin/(4€™) which is further and
further from the origin as ¢ — 0. By Theorem 3.11, the first term in (B.12) can be bounded as

0%,

€sin gba—
Ui

< Cee™ e < C6°. (B.13)
L~ (2x82)

Then we turn to the crucial estimate in the second term of (B.12), by Theorem 4.13, we have

o7 ) (B.14)
Lo~ (Qx82)

HW£WMMMW<&%hh

< Ce|In(e)?.

o
87'2

Lo (2x82) ‘ L>(2x82) H a¢

oY
Also, the exponential decay of o by Theorem 4.13 and the rescaling n = u/e implies
T

oY oY
llebo G| 1.2 2y < €2<‘ — ‘ H ) (B.15)
A5 on L2(QxS?) 2kp) L2(QxS2?) o L2(QxS2?)
5 oy 1/2
(1- dud
(// I e P Haw o ) g T)
/2
. e 2 oy 2 oy 2 '
< b (1- i . . dnd
<a( [ [ a-o([Fo- +Ham<w> L Haw i
1/e /2
<C 3(/ / e~ 2Kon |In() ' dndT)
< Ces |ln(e)| )
Similarly, we have
3— 5 8
Ie66GI I, sy g g0y < O 7 ) (B.16)
In total, we have
IL[2)]| 2 x5y < Ce? [n(e)]®, (B.17)
3— 5 8
1620, 2, ) < €€ (O, (B.18)
L[N e (oxs2) < C€® [In(e)[*. (B.19)

Step 4: Diffusive Limit.
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In summary, since L[u¢] = 0, collecting estimates in Step 2 and Step 3, we can prove

LR 12 (xs2) < Ce? [In(e)f*, (B.20)
3— 5 8

N ol 1 (B.21)
LR L (xs2y < C [In(e)[*. (B.22)

Also, based on our construction, it is easy to see
R —P[R] = —€*(wW - VU — P - V,Uf)]), (B.23)

which further implies

IR = PIR]|| 2y < O, (B.24)
IR =PRIy < O, (B.25)
IR = PIR]|| oo (r-y < Ce? (B.26)

Hence, the remainder R satisfies the equation
e -V,R+R—-R = L[R] for ¥€Q, (B.27)
R—P[R] = R-—P[R] for W-UV<0 and Z; € 0N. )

It is easy to verify R satisfies the normalization condition (A.4) and the data satisfies the compatibility
condition (A.5). By Theorem A.6, we have for 2 < m < 3,

IRl < O i 1ElRllisanssy + i IR

1
b 1R = PRl + = 1R = PRI s+ 1R PLAl e

1+ L
<ol L (e IIn(e)|® ) + L (-2 In(e)® ) + ( € [In(e)[®
S ltas 2+
1 1
+ o () + — (%) + (%)
51+% €2m
< Ce'w |In(e)® < Ces—? (B.29)
Note that the constant C' might depend on m and thus depend on §. Since it is easy to see
2 1
Z U + Z e us < Ce, (B.30)
k=1 k=0 L (Qx82)

our result naturally follows. This completes the proof of diffusive limit. O
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