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ABSTRACT. Structured deformations provide a multiscale geometry that captures the
contributions at the macrolevel of both smooth geometrical changes and non-smooth
geometrical changes (disarrangements) at submacroscopic levels. For each (first-
order) structured deformation (g,G) of a continuous body, the tensor field G is known
to be a measure of deformations without disarrangements, and M := ∇g−G is known
to be a measure of deformations due to disarrangements. The tensor fields G and M
together deliver not only standard notions of plastic deformation, but M and its curl
deliver the Burgers vector field associated with closed curves in the body and the dis-
location density field used in describing geometrical changes in bodies with defects.
Recently, Owen and Paroni [13] evaluated explicitly some relaxed energy densities
arising in Choksi and Fonseca’s energetics of structured deformations [4] and thereby
showed: (1) (trM)+ , the positive part of trM , is a volume density of disarrange-
ments due to submacroscopic separations, (2) (trM)− , the negative part of trM , is
a volume density of disarrangements due to submacroscopic switches and interpene-
trations, and (3) |trM | , the absolute value of trM , is a volume density of all three of
these non-tangential disarrangements: separations, switches, and interpenetrations.
The main contribution of the present research is to show that a different approach to
the energetics of structured deformations, that due to Baía, Matias, and Santos [1],
confirms the roles of (trM)+ , (trM)− , and |trM | established by Owen and Paroni.
In doing so, we give an alternative, shorter proof of Owen and Paroni’s results, and we
establish additional explicit formulas for other measures of disarrangements.

Keywords: Structured deformations, relaxation, disarrangements, interfacial density, bulk
density, isotropic vectors.
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1. INTRODUCTION

In order to motivate our study and to provide necessary background, we discuss briefly in
the following subsections of this introduction some concepts and results from the multiscale
geometry of structured deformations. (Readers familiar with this material may wish to skip
to the last subsection of the introduction where our main results are summarized.)

1.1. Structured deformations and disarrangement densities in the setting of Del
Piero and Owen. The need in continuum mechanics to include the effects of multiscale geo-
metrical changes led Del Piero and Owen [7] to a notion of structured deformations as triples
(κ, g,G) , where

• the injective, piecewise continuously differentiable field g maps the points of a con-
tinuous body into physical space and describes macroscopic changes in the geometry
of the body,

• the piecewise continous tensor field G maps the body into the space of linear map-
pings on the translation space of physical space and satisfies the "accommodation
inequality"

0 < C < detG(x) 6 det∇g(x) at each point x (1.1)
where ∇ denotes the classical gradient operator, and

• κ is a surface-like subset of the body that describes preexisting, unopened macroscopic
cracks.

A geometrical interpretation of the field G is provided by the Approximation Theorem [7]:
for each structured deformation (κ, g,G) there exists a sequence of injective, piecewise smooth
deformations fn and a sequence of surface-like subsets κn of the body such that

g = lim
n−→∞

fn (1.2)

G = lim
n−→∞

∇fn (1.3)

and

κ =

∞⋃
n=1

∞⋂
p=n

κp (1.4)

The limits in (1.2) and (1.3) are taken in the sense of L∞ convergence. A sequence n 7−→
fn of piecewise smooth, injective functions satisfying (1.2) and (1.3) is called a determining
sequence for the pair (g,G) , and each term fn is interpreted as describing the body divided
into tiny pieces that may individually undergo smooth geometrical changes and that also may
undergo disarrangements, i.e., may separate or slide relative to each other. In this context,
we write fn  (g,G) . From (1.3) we see that G captures the effects at the macrolevel of
smooth geometrical changes at submacroscopic levels, and we call G the deformation without
disarrangements.

Del Piero and Owen [6] proved that, for every structured deformation (κ, g,G) , for every
determining sequence n 7−→ fn for (g,G) , and for every point x where g is differentiable and
where G is continuous, there holds

lim
r−→0

lim
n−→∞

∫
J(fn)∩Br(x)

[fn](y)⊗ ν(y) dHN−1(y)

|Br(x)| = ∇g(x)−G(x). (1.5)

Here, HN−1 denotes the (N−1) -dimensional Hausdorff measure on RN , Br(x) denotes the
open ball centered at x of radius r , |Br(x)| denotes its volume (i.e., its N -dimensional Lebesgue
measure), J(fn) denotes the jump set of fn , i.e., points where fn can suffer jump-discontinuities,
and [fn](y)⊗ ν(y) is the tensor product of the jump [fn] of fn with the normal ν to the jump
set. This result permits us to call the tensor

M(x) := ∇g(x)−G(x) (1.6)

the deformation due to disarrangements, because it captures, in the limit as n tends to in-
finity, the volume density of separations and slips between pieces of the body as described by
the approximating deformations fn . We may then regard the tensor field M as a tensorial
disarrangement density that, for every determining sequence n 7−→ fn for (g,G) , reflects the
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limits of interfacial discontinuities of the approximating deformations fn . Moreover, (1.2) and
(1.3) along with the definition of M (1.6) yield the alternative formula for the disarrangement
density:

M = ∇( lim
n−→∞

fn)− lim
n−→∞

∇fn. (1.7)

Consequently, M measures quantitatively the lack of commutativity of the classical gradient
∇ and the limit operator limn−→∞ for L∞ -convergence.

The trivial algebraic relation
∇g = G+M (1.8)

together with the identification relations (1.3) and (1.5) shows that the macroscopic deforma-
tion gradient ∇g has an additive decomposition into its part G without disarrangements and
its part M due to disarrangements. Because G has invertible values, (1.8) leads immediately
to two multiplicative decompositions for ∇g :

∇g = G(I +G−1M) = (I +MG−1)G. (1.9)

The disarrangement density M and the deformation without disarrangements G have an
additional property significant in the description of defects and dislocations in a continuous
body in three dimensions. We consider a smooth surface S with smooth bounding closed curve
γ , both contained in a region in the body where g and G are smooth. The relation (1.8) and
the smoothness of g imply

0 =

∮
γ

∇g(x)dx =

∮
γ

G(x)dx+

∮
γ

M (x) dx.

The vector
∮
γ
M (x) dx measures the displacement due to disarrangements along γ and may

be called the Burgers vector [7] for γ arising from the given structured deformation. Applica-
tion of Stokes’ Theorem to

∮
γ
G(x)dx and

∮
γ
M (x) dx and use of the previous relation yields

the formulas for the Burgers vector:∮
γ

M (x) dx =

∫
S

curlM(x)ν(x)dAx = −
∫
S

curlG(x)ν(x)dAx. (1.10)

The second-order tensor field curlM = −curlG thus determines the Burgers vector associated
with γ for every closed curve and corresponds to familiar measures of dislocation density [9,
12]. In this manner, the disarrangement density tensor M determines both the Burgers vector
and the dislocation density tensor, both basic tools in modelling the effects of submacroscopic
defects on the response of solids.

The tensorial relations (1.6) and (1.5) yield upon application of the trace operator the scalar
relation

lim
r−→0

lim
n−→∞

∫
J(fn)∩Br(x)

[fn](y) · ν(y) dHN−1(y)

|Br(x)| = trM(x) (1.11)

in which [fn](y) · ν(y) is the scalar product of the jump and of the normal at y . The formula
(1.11) tells us that trM is a scalar (bulk) disarrangement density that captures the components
of the jumps of fn that are normal to the jump set. Moreover, this scalar disarrangement
density at x , trM(x), allows for cancellation of positive and negative contributions of [fn](y) ·
ν(y) at points y near x to the integral on the left-hand side of (1.11). Thus, trM(x) does not
distinguish between jumps with [fn](y) · ν(y) > 0 that pull apart small pieces of the body near
x and jumps with [fn](y) · ν(y) < 0 that cause small pieces near x to switch places. Because
the approximating fn are injective, the possibility for the case [fn](y) · ν(y) < 0 that fn can
cause adjacent small pieces of the body to interpenetrate is ruled out.

Owen and Paroni [13] refined the scalar disarrangement density trM by replacing [fn](y) ·
ν(y) by its positive part throughout the jump set of fn , or by its negative part throughout the
jump set:

([fn](y) · ν(y))+ = 1
2
(|[fn](y) · ν(y)|+ [fn](y) · ν(y)) (1.12)

([fn](y) · ν(y))− = 1
2
(|[fn](y) · ν(y)| − [fn](y) · ν(y)). (1.13)

The field ([fn] · ν )+ on the jump set is a scalar (interfacial) disarrangement density that
measures separations of pieces of the body caused by fn , while the field ([fn] · ν )− is a scalar
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(interfacial) disarrangement density that measures the switching of pieces of the body caused
by fn . Since we have

|[fn](y) · ν(y)| = ([fn](y) · ν(y))+ + ([fn](y) · ν(y))−,

the field |[fn](y) · ν(y)| is a scalar disarrangement density that measures both separations and
switches. We fix a part P of the body, we integrate (1.12) or (1.13) over J(fn) ∩ P and use the
formula (1.11) to obtain the relations

lim inf
n−→∞

∫
J(fn)∩P

([fn](y) · ν(y))±dHN−1(y)

=
1

2
lim inf
n−→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y)

± 1

2
lim inf
n−→∞

∫
J(fn)∩P

[fn](y) · ν(y)dHN−1(y)

=
1

2
lim inf
n−→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y)± 1

2

∫
P
trM(x)dLN (x).

(1.14)

Consequently, the limiting behavior of the integral of ([fn](y) ·ν(y))± in (1.14) as n tends to ∞
is determined by the behavior of the integral of |[fn](y) · ν(y)| , and we restrict our attention to
the latter. We expect that

lim inf
n−→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y),

unlike

lim inf
n−→∞

∫
J(fn)∩P

[fn](y) · ν(y)dHN−1(y),

will depend upon the choice of determining sequence for (g,G) . Therefore, we are led to
consider the most economical manner in which separations and switches can arise among the
determining sequences for (g,G) :

V |·|(g,G;P) := inf

{
lim inf
n−→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y) : fn  (g,G)

}
. (1.15)

The number V |·|(g,G;P) so defined has the dimension of volume, and we call V |·|(g,G;P) the
(minimal) volume swept out by disarrangements in P for (g,G) . If we replace |·| everywhere
in (1.15) by ” + ” or everywhere by ”− ” , then we call the number V+(g,G;P) the (minimal)
volume swept out by separations in P for (g,G) , and the number V−(g,G;P) the (minimal)
volume swept out by switches in P for (g,G) . The formulas (1.14) imply the simple formulas

V±(g,G;P) = 1
2
V |·|(g,G;P)± 1

2

∫
P
trM(x)dLN (x) (1.16)

and, in view of the form of the second term on the right-hand side, raise the following basic
question: does the volume swept out by disarrangements V |·|(g,G;P) as defined in (1.15) have
an associated disarrangement density which, when integrated over P , recovers V |·|(g,G;P) .
If so, what specific information can be obtained about the dependence of the integrand upon
the structured deformation (g,G)?

While the setting for structured deformations described in this subsection is quite suitable
for formulating refined field equations in continuum mechanics [8] that reflect the influence
of submacroscopic geometrical changes in a body, this setting has not provided answers to
questions such as the ones just raised. Part of the difficulty with the setting provided in [7]
lies in the choice of smoothness placed on g and its approximates fn , while another part lies
in the requirement that g and fn be injective. An alternative setting provided by Choksi and
Fonseca [4] was proposed for dealing with such questions and is described briefly in the next
subsection.
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1.2. Structured deformations and disarrangement densities in the setting of Choksi
and Fonseca. We describe here a few essential elements of the treatment of structured defor-
mations by Choksi and Fonseca [4]. The articles [3], [1], [2], and [15] also provide summaries
of that treatment, and [1], [2], and [15] provide alternative settings for structured deforma-
tions. The summary in [3] is intended for those interested in immediate applications in con-
tinuum mechanics, while [1] sets the stage for applications of structured deformations to thin
bodies [11]. The article [15] reexamines the results of [4] in a broader setting while provid-
ing refinements of counterparts of the Approximation Theorem and the identification relation
(1.5).

According to Choksi and Fonseca, a structured deformation is a pair (g,G) in which g :
Ω −→ RN , with Ω an open subset of the space RN of N -tuples of real numbers, and G
: Ω −→ RN×N , with RN×N the space of N×N matrices with real entries. The mapping G
is assumed to be integrable on Ω , G ∈ L1(Ω;RN×N ) , and g is assumed to be in the space
SBV (Ω;RN ) , i.e., g is a function of bounded variation with the additional property that its
distributional derivative Dg , as a bounded measure, has zero Cantor part:

Dg = ∇gLN + [g]⊗ νHN−1. (1.17)

Here the integrable mapping ∇g is the density of the absolutely continuous part ∇gLN of Dg
with respect to N -dimensional Lebesgue measure LN , and [g]⊗ν is the density of the singular
part [g] ⊗ νHN−1 of Dg with respect to (N−1) -dimensional Hausdorff measure HN−1 . The
singular part is concentrated on J(g) , the jump set of g , and, as usual, [g] denotes the jump
in g and ν denotes the normal to the jump set J(g) . It is important to note that ∇g in the
present setting is no longer the classical gradient of a smooth field and, consequently, need not
be curl-free. Nevertheless, ∇g satisfies an integral version of the property of approximation
by linear mappings that defines the classical gradient of smooth fields .

Choksi and Fonseca [4] prove a version of the Approximation Theorem with approximating
deformations fn also in SBV (Ω;RN ) and with (1.2) and (1.3) replaced respectively by

fn −→ g in L1(Ω;RN ) (1.18)

and
∇fn ⇀ G weakly in the sense of measures. (1.19)

We note that no restriction in the form of the accommodation inequality (1.1) or in the form of
a requirement of injectivity of g or fn is imposed in the present context. We again use the
term determining sequence to describe a sequence n 7−→ fn satisfying (1.18) and (1.19) for a
given structured deformation (g,G) , and we again write fn  (g,G) when (1.18) and (1.19)
both hold. The properties of distributional derivatives along with relations (1.17), (1.18), and
(1.19) justify the calculation

∇gLN + [g]⊗ νHN−1 = D lim
n→∞

fn

= lim
n→∞

Dfn

= lim
n→∞

(∇fn LN + [fn]⊗ νHN−1)

= GLN + lim
n→∞

([fn]⊗ νHN−1)

where the convergence indicated in the last three lines is weak convergence in the sense of
measures. We conclude that the singular parts [fn] ⊗ νHN−1 of the approximating deforma-
tions fn converge in the same sense and that their limit satisfies

lim
n→∞

([fn]⊗ νHN−1) = (∇g −G)LN + [g]⊗ νHN−1. (1.20)

In particular, the restriction of the limiting measure limn→∞([fn]⊗νHN−1) to the complement
of the jump set J(g) agrees with the corresponding restriction of (∇g − G)LN = M LN .
Consequently, the tensor field M = ∇g − G retains in this broader setting for structured
deformations its identity as a tensor density of disarrangements for (g,G) . The formula
(1.20) shows that when M = ∇g − G 6= 0 , while all of the measures [fn] ⊗ νHN−1 are
supported on sets J(fn) of LN -measure zero and so have LN -parts zero, the limit measure
limn→∞([fn]⊗ νHN−1) has LN -part MLN non-zero. This observation points to the fact that
the jump sets J(fn) can diffuse in the limit throughout the domain Ω so that the limiting



6 ANA CRISTINA BARROSO, JOSÉ MATIAS, MARCO MORANDOTTI, AND DAVID R. OWEN

measure limn→∞([fn] ⊗ νHN−1) is supported in part on sets of positive LN -measure. This
provides a counterpart in the SBV -setting to the relation (1.5) in which the limit of jumps
on the left-hand side delivers the LN -density M . (See [15] for a detailed derivation of a
counterpart of (1.5) in a somewhat broader setting for structured deformations than SBV .)

We note briefly that the scalar density of disarrangements trM = tr(∇g −G) that counts
only normal components of jumps and that emerged in the previous setting also appears in
the present setting when one takes the trace of every member of (1.20): if fn  (g,G) , then

lim
n→∞

([fn] · νHN−1) = tr(∇g −G)LN + [g] · νHN−1. (1.21)

However, as was the case in the setting of Del Piero and Owen, replacement of [fn] ·ν by ([fn] ·
ν)± or by |[fn] · ν| need not yield a limit of the corresponding measures and, if a limit exists,
the limit may depend upon the choice of determining sequence n 7−→ fn . The setting of Choksi
and Fonseca was formulated as a means of resolving these difficulties, and we summarize some
aspects of that resolution in the next subsection.

1.3. Relaxation of energies for structured deformations. Optimal functions arising from
structured deformations such as the one (1.15)

V |·|(g,G;P) = inf

{
lim inf
n−→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y) : fn  (g,G)

}
introduced in Section 1.1 can be analyzed using the results of Choksi and Fonseca [4] on "relax-
ation of energies" for structured deformations. In that approach, the integral

∫
J(fn)∩P |[fn](y) · ν(y)| dHN−1(y)

is replaced by an initial energy functional

E(fn) =

∫
Ω

W (∇fn(y))dLN (y) +

∫
J(fn)∩Ω

ψ([fn](y), ν(y))dHN−1(y) (1.22)

defined for fn ∈ SBV (Ω;RN ) . By imposing conditions on the initial bulk energy density W
and on the initial interfacial energy density ψ , the goal is to obtain for the relaxed energy
I(g,G) defined by

I(g,G) := inf
fn (g,G)

{
lim inf
n−→∞

(∫
Ω

W (∇fn(y))dLN (y)+

∫
J(fn)∩Ω

ψ([fn](y), ν(y))dHN−1(y)

)} (1.23)

a representation of the form

I(g,G) =

∫
Ω

H(∇g(y), G(y))dLN (y) +

∫
J(g)∩Ω

h([g](y), ν(y))dHN−1(y) (1.24)

and to deduce properties of the relaxed bulk energy density H and the relaxed interfacial
energy density h . Because our present interest lies in the case of disarrangement densities,
and not on the full energetics of structured deformations, we shall restrict our attention to the
case W = 0 , and we record the following adaptation for the case W = 0 of results from [4]
(see [13, Theorem 3] for further comments and other adaptations).

Theorem 1.1. Let SN−1 = {ν ∈ RN : |ν| = 1}. Let Ω be a bounded open subset of RN and
ψ : RN × SN−1 → [0,+∞) be such that
(H1) there exists a constant C > 0 such that

0 6 ψ(ξ, ν) 6 C|ξ| (1.25)

for all (ξ, ν) ∈ RN × SN−1 ,
(H2) ψ(·, ν) is positively homogeneous of degree 1:

ψ(t ξ, ν) = t ψ(ξ, ν) (1.26)

for all t > 0 and (ξ, ν) ∈ RN × SN−1 ,
(H3) ψ(·, ν) is subadditive, i.e., for all ξ1, ξ2 ∈ RN and ν ∈ SN−1 ,

ψ(ξ1 + ξ2, ν) 6 ψ(ξ1, ν) + ψ(ξ2, ν). (1.27)
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Then, for any p > 1 , if we define

I(g,G) := inf
{un}

{
lim inf
n→+∞

∫
J(un)∩Ω

ψ([un], ν) dHN−1 : un ∈ SBV (Ω;RN ),

un → g in L1(Ω;RN ),∇un
∗
⇀ G,

sup
n

(
|∇un|Lp(Ω;RN×N ) + |Dun|(Ω)

)
< +∞

}
,

we have
I(g,G) =

∫
Ω

H(∇g(x), G(x)) dLN +

∫
J(g)∩Ω

h([g](x), ν(x)) dHN−1(x),

where

H(A,B) := inf
{u}

{∫
J(u)∩Q

ψ([u], ν) dHN−1 : u ∈ SBV (Q;RN ),

u|∂Q = Ax, |∇u| ∈ Lp(Q),

∫
Q

∇u dLN = B

}
,

(1.28)

and

h(ξ, η) := inf
{u}

{∫
J(u)∩Qη

ψ([u], ν) dHN−1 : u ∈ SBV (Qη;RN ),

u|∂Qη = uξ,η,∇u = 0 a.e.

}
,

(1.29)

with

uξ,η(x) :=

{
0 if − 1

2
6 x · η < 0,

ξ if 0 6 x · η < 1
2
.

(1.30)

Here, Q = (−1/2, 1/2)N and Qη denotes the unit cube centered at the origin and with two faces
normal to η .

In the right-hand side of (1.29) we have corrected an inconsequential misprint that is
present in the corresponding formula in Theorem 3 of [13].

1.4. Explicit formulas for relaxed disarrangement densities. Owen and Paroni [13] ap-
plied Theorem 1.1 to the specific disarrangement densities |[fn](y) · ν(y)| and ([fn](y) · ν(y))±

introduced in Section 1.1 and obtained for each of these densities an explicit formula for the
corresponding relaxed disarrangement densities H in (1.28) and h in (1.29). Among their
results ([13],Theorem 4) are the following (obtained by setting L(x) = I in their Theorem 4):

Theorem 1.2. The initial disarrangement densities

ψ|·|(ξ, ν) := |ξ · ν| (1.31)

ψ±(ξ, ν) := (ξ · ν)± (1.32)
satisfy the hypotheses (H1)-(H3) in Theorem 1.1 and have relaxed disarrangement densities
given by

H |·|(A,B) = |tr(A−B)| , h|·|(ξ, ν) = |ξ · ν| = ψ|·|(ξ, ν), (1.33)
and

H±(A,B) = (tr(A−B))±, h±(ξ, ν) = (ξ · ν)± = ψ±(ξ, ν). (1.34)

Specifically, when the minimal volume swept out by disarrangements V |·|(g,G;P) is de-
fined in the Choksi-Fonseca setting by (1.15), then (1.33) yields the explicit formula

V |·|(g,G;P) =

∫
P
|tr(∇g(x)−G(x))| dLN (x)+

∫
J(g)∩P

|[g](x) · ν(x)| dHN−1(x) (1.35)

for the (minimal) volume swept out by separations and switches among approximations fn
that determine (g,G) . Relation (1.35) provides answers in the setting of Choksi and Fonseca
to the questions raised at the end of Section 1.1: V |·|(g,G;P) has both a bulk disarrangement
density |tr(∇g −G)| = |trM | and an interfacial disarrangement density |[g] · ν| . Similarly,



8 ANA CRISTINA BARROSO, JOSÉ MATIAS, MARCO MORANDOTTI, AND DAVID R. OWEN

Theorem 1.2 shows that the (minimal) volume swept out by separations alone, V +(g,G;P) ,
has the bulk disarrangement density (trM)+ and the interfacial disarrangement density ([g] ·
ν)+ , with a corresponding result for V −(g,G;P) , the (minimal) volume swept out by switches
and interpenetrations (the approximations fn in the Choksi-Fonseca setting are not required
to be injective, so that interpenetrations can arise there, unlike in the setting of Del Piero-
Owen).

1.5. Summary of the research presented in the present article. In the proof of Theo-
rem 1.2 given in [13], the significant part of the argument addresses the verification of the
inequality

H |·|(A,B) 6 |tr(A−B)| (1.36)
where H |·|(A,B) is given by the right-hand side of (1.28) with ψ([u], νu) replaced by ψ|·|([u], ν)
= |[u] · ν| . This inequality was proved in [13] by constructing a family uε of piecewise
affine mappings on the unit cube Q each of whose jump set J(uε) is formed by two (pla-
nar) ends and by a lateral surface constructed from solution curves of the differential equa-
tion ẋ = (A − B)x . The lateral surface, by construction, contributes nothing to the integral∫
J(u)∩Qη

|[u] · ν| dHN−1 , and the contributions of the two ends can be calculated explicitly for
A−B lying in a dense subset of RN×N . Proposition 5.2 of [4] provides sufficient regularity of
H |·|(A,B) to establish (1.36) for all A−B ∈ RN×N .

As one of the main results in this article, we provide an alternate, shorter proof of (1.36)
that employs a different family uε of piecewise affine mappings that does not involve solution
curves of ẋ = (A − B)x . Our approach is based on the following observation. With A,B ∈
RN×N , p > 1 , and with Q = (−1/2, 1/2)N there hold

|tr(A−B)| 6 inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = Ax on ∂Q, ∇u ∈ Lp(Q),

∫
Q

∇u(x)dLN (x) = B

}

6 inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = 0 on ∂Q, ∇u = B −A a.e.

}
.

(1.37)

The first follows by moving the absolute value outside the integral and using the Gauss-Green
Theorem for the space SBV (Q;RN ) of special functions of bounded variation, while the second
follows by noting that if u satisfies the last set of conditions, then the function x 7−→ u(x)+Ax
satisfies the first set of conditions. In this paper, we wish to show that

inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = 0 on ∂Q, ∇u = B −A a.e.

}
6 |tr(A−B)|

(1.38)

so that the two infima in (1.37) have common value |tr(A−B)| .
The second main contribution of the present research concerns the alternative approach to

structured deformations and to relaxed energies due to Baía, Matias, and Santos [1]. They
show in their setting for structured deformations that the second infimum in (1.37)

inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = 0 on ∂Q,∇u = B −A a.e.

} (1.39)

is the bulk disarrangement density for the same interfacial disarrangement density ψ|·|([u], ν)
(1.31) studied by Owen and Paroni in the setting of Choksi and Fonseca. Consequently, our
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proof of (1.38) establishes the equality of the bulk disarrangement densities obtained in two
different settings for structured deformations. Thus, the geometrical significance of the ex-
pression |tr(A−B)| described in [13], namely, a volume density of volume swept out by non-
smooth, submacroscopic geometrical changes, is strengthened by the fact that one and the
same expression arises from two different schemes of relaxation. We note that the two dif-
ferent schemes of relaxation also deliver the same formula for the (relaxed) interfacial dis-
arrangement density h : h = ψ|·| (see [13] for the routine verification that applies to both
schemes).

The explicit formulas for disarrangement densities considered here in the context of struc-
tured deformations will provide scalar fields that can enter as variables in constitutive re-
lations for the response of three-dimensional bodies. For this purpose, frame-indifferent
variants of the specific fields obtained here are available through known factorizations of
structured deformations in which the factor that tracks disarrangements is unchanged un-
der changes in frame [7]. Our explicit formulas also are starting points for the study of
examples in other contexts involving structured deformations: second-order structured defor-
mations [14] in which second gradients and their limits enter into submacroscopic changes in
geometry, as well as processes for dimension reduction [11] in the presence of disarrangements
that describe thin structures undergoing submacroscopic slips, separations, and switches.

In Section 2 we provide a "tilted cube" construction for the family uε of functions employed
in proving (1.38). The common orientation of the tilted cubes is determined in Section 3 by
means of a known result on the isotropic vectors of symmetric linear mappings. The proof of
(1.38) is completed in Section 4, and the paper concludes in Section 5 with some additional
explicit formulas for disarrangement densities.

2. PROOF OF THE UPPER BOUND INEQUALITY

In what follows, a proof of (1.38) is given. The proof requires the following instance of
Lemma 4.3 in [10].

Lemma 2.1. Let M ∈ RN×N and a bounded open set Ω ⊂ RN be given . There exist a number
C(N) > 0 , independent of M and Ω , and u ∈ SBV (Ω;RN ) such that

(1) u|∂Ω = 0
(2) ∇u = M, LN − a.e. on Ω
(3) |Dsu| (Ω) 6 C(N) ‖M‖LN (Ω).

Here, ∇u and Dsu denote the absolutely continuous and the singular parts of the distri-
butional derivative Du = ∇uLN + Dsu of u , and |Dsu| denotes the total variation of the
singular part. In addition, ‖M‖ := (tr(MTM))1/2 is the Euclidean norm of the matrix M .
We shall now use the Lemma to verify (1.38) for M = A−B . To this end, let an integer n > 1
be given and consider the frame

Fn := Q \ (1− 2
n+2

)Q.

We may apply the Lemma to obtain an SBV function u(n) : Fn → RN satisfying
• u(n)|∂Fn = 0

• ∇u(n) = M , LN − a.e. on Fn
• the total variation

∫
J(u(n))

∣∣∣[u(n)]
∣∣∣ (x)dHN−1(x) of u(n) satisfies∫

J(u(n))

|[u(n)]|(x)dHN−1(x) 6 C(N) ‖M‖
(

1− (1− 2
n+2

)N
)

(2.1)

In preparation for defining an appropriate function u on Q\Fn = (1 − 2
n+2

)Q , we write
M̂ := 1

2
(M + MT ) for the symmetric part of M , and we choose an orthonormal basis ei, i =

1, . . . , N of RN that consists of eigenvectors of M̂ :

M̂ei = λiei, i = 1, . . . , N.

We let m be a positive integer and cover (1 − 2
n+2

)Q by a collection Cn,m of congruent, non-
overlapping open cubes Ckn,m , k = 1, . . . ,Kn,m , each of edge-length 1/m , each with the ith

pair of opposite faces orthogonal to the unit vector Rei , for i = 1, . . . , N . Here, R is an
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orthogonal N × N matrix, RRT = RTR = I , to be determined presently. We require in
addition that each each cube Ckn,m satisfies

(1− 2
n+2

)Q ∩ Ckn,m 6= Ø. (2.2)

We denote by ckn,m the center of Ckn,m , and we define un,m : (1− 2
n+2

)Q→ RN

un,m(x) :=

{
M(x− ckn,m) if x ∈ (1− 2

n+2
)Q ∩ Ckn,m for some k = 1, . . . ,Kn,m,

0 if x ∈ (1− 2
n+2

)Q\ ∪Kn,mk=1 Ckn,m.
(2.3)

Using standard reasoning we conclude that un,m ∈ SBV ((1 − 2
n+2

)Q;RN ) with ∇un,m =

M , LN − a.e. on (1 − 2
n+2

)Q . Moreover, the trace of un,m on ∂((1 − 2
n+2

)Q) is bounded
pointwise by

√
N

2m
‖M‖ . Consequently, the function u

(n)
m : Q→ RN defined by

u(n)
m (x) :=

{
u(n)(x) for x ∈ Fn,
un,m(x) for x ∈ (1− 2

n+2
)Q

belongs to SBV (Q;RN ) , has gradient M , LN− a.e., and has zero trace on ∂Q . Moreover, the
jump set of u(n)

m satisfies

J(u(n)
m ) ⊂ J(u(n)) ∪ ∂((1− 2

n+2
)Q) ∪ J(un,m). (2.4)

Since u(n)
m has outer trace 0 on ∂(1− 2

n+2
)Q, there holds for HN−1− a.e. x in ∂((1− 2

n+2
)Q)∣∣∣[u(n)

m ](x)
∣∣∣ 6 √N

m
‖M‖ (2.5)

and, consequently,∫
∂((1− 2

n+2
)Q)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) 6

√
N

m
‖M‖ 2N(1− 2

n+2
)N−1. (2.6)

We note from (2.1) that∫
J(u(n))

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) 6 C(N) ‖M‖ (1− (1− 2
n+2

)N ), (2.7)

and it remains to obtain a corresponding estimate for
∫
J(un,m)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) . To
this end, we note that

J(un,m) ⊂ ∪Kn,mk=1 ∂Ckn,m , (2.8)

and we shall seek an upper bound for
∫
∪Kn,m
k=1

∂Ckn,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) . For each k =

1, . . . ,Kn,m and i = 1, . . . , N, we denote by φk,i+n,m and φk,i−n,m the two faces of the cube Ckn,m ∈
Cn,m orthogonal to Rei . We note that one face φk,i+n,m of Ckn,m has outer normal ν+

i,k = +Rei ,
while the opposite face φk,i−n,m has outer normal ν−i,k = −Rei .

We suppose now that the face φk,i+n,m of Ckn,m ∈ Cn,m satisfies

φk,i+n,m ⊂ (1− 2
n+2

)Q. (2.9)

Then there is a cube Ck
′
n,m ∈ Cn,m that shares the given face with Ckn,m , and we have at each

point x ∈ φk,i+n,m

[u(n)
m ](x) · ν(x) = (M(x− ck

′

n,m)−M(x− ckn,m)) · ν+
i,k(x)

= M(ckn,m − c
k′

n,m) · ν+
i,k(x)

= M(− 1
m
ν+
i,k(x)) · ν+

i,k(x)

= − 1

m
M̂Rei ·Rei

so that ∫
φ
k,i+
n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =

∫
φ
k,i+
n,m

1

m

∣∣∣M̂R ei ·Rei
∣∣∣ dHN−1(x)

=
1

mN

∣∣∣M̂R ei ·Rei
∣∣∣ . (2.10)



FORMULAS FOR RELAXED DISARRANGEMENT DENSITIES 11

The same argument shows that if

φk,i−n,m ⊂ (1− 2
n+2

)Q (2.11)

then ∫
φ
k,i−
n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =
1

mN

∣∣∣M̂R ei ·Rei
∣∣∣ . (2.12)

If (2.9) holds for i = 1, . . . , N , then we may sum the last relation over i to conclude that

N∑
i=1

∫
φ
k,i+
n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =
1

mN

N∑
i=1

∣∣∣M̂R ei ·Rei
∣∣∣

>
1

mN

∣∣∣∣∣
N∑
i=1

M̂R ei ·Rei

∣∣∣∣∣
=

1

mN

∣∣∣∣∣
N∑
i=1

RT M̂R ei · ei

∣∣∣∣∣
=

1

mN

∣∣∣tr(RT M̂R)
∣∣∣ =

1

mN
|trM | .

(2.13)

In (2.13) equality holds if and only if all of the numbers M̂R ei · Rei , i = 1, . . . , N , have the
same sign:

(M̂R ei ·Rei )(M̂R ej ·Rej ) > 0, for i, j = 1, . . . , N. (2.14)

The last two inequalities lead us to consider the problem

Find min
RRT=I

N∑
i=1

∣∣∣M̂R ei ·Rei
∣∣∣ > ∣∣∣tr M̂ ∣∣∣ = |trM | , (2.15)

with equality holding if and only if there exists an orthogonal matrix R satisfying (2.14).

3. ASIDE ON ISOTROPIC VECTORS

We note that the sign inequality (2.14) suggests looking for unit vectors v such that

M̂v · v = 0, (3.1)

the isotropic vectors for M̂ [5]. In particular, in the special case tr M̂ = 0 , the existence of N
mutually orthogonal isotropic vectors v1, . . . , vN would insure that the matrix R defined by
Rei = vi for i = 1, . . . , N would satisfy (2.15) in the form 0 = 0 . More generally, even when
tr M̂ 6= 0 , the existence of isotropic vectors is useful. In fact, the symmetric matrix M̂ −
1
N

(tr M̂)I has zero trace, so we suppose that there exist N mutually orthogonal isotropic unit
vectors v1, . . . , vN for M̂ − 1

N
(tr M̂)I . The relation (3.1) with M̂ replaced by M̂ − 1

N
(tr M̂)I

then becomes

0 =(M̂ − 1

N
(tr M̂)I)vi · vi

=M̂vi · vi −
tr M̂

N

so that M̂vi · vi = tr M̂
N

for i = 1, . . . , N . Again, if we define a linear mapping R on RN by
Rei = vi for i = 1, . . . , N then R is orthogonal, it satisfies the sign inequality for M̂ (2.14),
and it delivers equality in (2.15) in the form

∑N
i=1

∣∣∣ tr M̂N ∣∣∣ =
∣∣∣tr M̂ ∣∣∣ .

The following result ([5], Corollary 15) provides the desired existence of complete orthonor-
mal sets of isotropic vectors.

Theorem 3.1. A symmetric matrix A ∈ RN×N possesses an orthonormal set of N isotropic
vectors if and only if trA = 0 .
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This theorem and the preceding discussion permit us to conclude: for every matrix M ∈
RN×N ,

min
RRT=I

N∑
i=1

|MRei ·Rei| = min
RRT=I

N∑
i=1

∣∣∣M̂R ei ·Rei
∣∣∣

=
∣∣∣tr M̂ ∣∣∣ = |trM | ,

(3.2)

and a minimizing rotation matrix R is one carrying the orthonormal basis of RN consisting
of eigenvectors of M̂ into an orthonormal basis of RN consisting of isotropic vectors of M̂ −
1
N

(tr M̂)I . For this minimizing rotation matrix, we have∣∣∣M̂R ei ·Rei
∣∣∣ =

1

N
|trM | for i = 1, . . . , N . (3.3)

We remark that minimizers are not unique, in general, even when one eliminates trivial
permutations of isotropic vectors. In fact, for N = 3 there are examples of minimizers for
which two of the three terms in

∑3
i=1

∣∣∣M̂R ei ·Rei
∣∣∣ vanish, while the third equals |trM | , so

that only two of the three vectors Rei are isotropic vectors for M̂ .
For the convenience of the reader, we provide the recursive step used in proving the ex-

istence of orthonormal bases made up of isotropic vectors for a traceless symmetric matrix
A ∈ RN×N . We interpret A in the usual way as a linear mapping on RN , endowed with
the standard inner product. Then the nullspace KerA of A and its orthogonal comple-
ment (KerA)⊥ are complementary A -invariant subspaces of RN , and all vectors in KerA
are isotropic vectors for A . If (KerA)⊥ is the zero subspace, then A = 0 and every vector
in RN is an isotropic vector for A , and every orthonormal basis of RN meets the desired re-
quirement. If (KerA)⊥ is not the zero subspace, then we seek additional isotropic vectors for
A in (KerA)⊥ . To this end, the traceless symmetric linear mapping A 6= 0 has both positive
and negative eigenvalues so that

min
|u|=1

Au · u < 0 < max
|u|=1

Au · u

and, since the unit sphere in RN is connected and since the quadratic form u 7−→ Au · u is
continuous, there exists a unit vector v1 ∈ RN such that Av1 · v1 = 0 . Writing v1 as a sum
of two orthogonal vectors, one in KerA and the other in (KerA)⊥ and using the invariance of
(KerA)⊥ under A shows that we may without loss of generality assume that v1 ∈ (KerA)⊥ .
The linear span Lsp(KerA ∪ {v1}) has dimension one larger than that of KerA and consists
solely of isotropic vectors for A . Consequently, we need to search for isotropic vectors of A in
(Lsp(KerA ∪ {v1}))⊥ which has dimension one less than (KerA)⊥ . To procede further, we
define a linear mapping A1 on RN by

A1 = A− v1 ⊗Av1 −Av1 ⊗ v1 (3.4)

where the formula (a⊗ b)v := (b · v)a , for all a, b, v ∈ RN , defines the standard tensor product
a⊗ b ∈ Lin(RN ;RN ) . From the fact that v1 is an isotropic vector for A and from the formula
tr((a⊗ b) = a · b it is easy to see that A1 is traceless; because (a⊗ b)T = b⊗ a , it follows that
A1 is symmetric. In addition, if v ∈ (Lsp(KerA ∪ {v1}))⊥ is an isotropic vector for A1 , then
we have not only v · v1 = 0 but also

0 = A1v · v
= (Av − (Av1 · v)v1 − (v1 · v)Av1) · v
= Av · v − (Av1 · v)(v1 · v)− (v1 · v)(Av1 · v)

= Av · v.

Thus, every isotropic vector for A1 that is in (Lsp(KerA ∪ {v1}))⊥ is an isotropic vector for
A , and dim((Lsp(KerA ∪ {v1}))⊥) = dim((KerA)⊥) − 1 . To be able to apply the forgoing
considerations to A1 , we need only show that (Lsp(KerA ∪ {v1}))⊥ is invariant under A1 .
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To this end, let v ∈ (Lsp(KerA ∪ {v1}))⊥ , vκ ∈ KerA , and α ∈ R be given, and consider

A1v · (vκ + αv1) = A1v · vκ +A1v · αv1

= v ·A1vκ + αv ·A1v1

= 0 + αv · (Av1 − (Av1 ⊗ v1)v1 − (v1 ⊗Av1)v1)

= αv · (Av1 − (v1 · v1)Av1 − (Av1 · v1)v1)

= αv · (Av1 −Av1 − 0) = 0.

We may conclude that A1v ∈ (Lsp(KerA ∪ {v1}))⊥ as desired. In the third line of the above
computation we have used the side-calculation

v ·A1vκ = v · (A− v1 ⊗Av1 −Av1 ⊗ v1)vκ

= v ·Avκ − (Av1 · vκ)(v · v1)− (v1 · vκ)(v ·Av1) = 0.

The first term on the last line vanishes because vκ ∈ KerA , the second vanishes because v ∈
(Lsp(KerA ∪ {v1}))⊥ and the third vanishes because v1 ∈ (KerA)⊥ . The search for isotropic
vectors for A on the A -invariant subspace (KerA)⊥ may now be replaced by the search for
isotropic vectors for A1 on the A1 -invariant subspace (Lsp(KerA ∪ {v1}))⊥ of dimension one
less than that of (KerA)⊥ .

4. COMPLETION OF THE PROOF OF THE UPPER BOUND INEQUALITY

We may use (3.3) and the formulas (2.10), (2.12) to conclude that: if Ckn,m has a face φk,i±n,m ⊂
(1− 2

N+2
)Q , then∫

φ
k,i±
n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =
|trM |
NmN

=
|trM |
N
LN (Ckn,m). (4.1)

On the other hand, if a face φk,i±n,m of Ckn,m ∈ Cn,m fails to satisfy φk,i±n,m ⊂ (1− 2
N+2

)Q , then the
argument used to verify (4.1) may be applied to φk,i±n,m ∩ (1− 2

n+2
)Q to conclude that∫

φ
k,i±
n,m ∩(1− 2

n+2
)Q

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) 6
|trM |
N
LN (Ckn,m). (4.2)

We now consider the cube C1
n,m ∈ Cn,m and choose V 1

n,m , one of its 2N vertices. Exactly
N faces φ1,j , j = 1, . . . , N , of C1

n,m meet at V 1
n,m . Because each cube Ckn,m ∈ Cn,m for

k = 1, . . . ,Kn,m can be obtained from C1
n,m by a unique translation Tk , the choices C1

n,m and
V 1
n,m induce via Tk an assignment of N faces φk,j , j = 1, . . . , N to Ckn,m . It is easy to show

that for all k, k′ = 1, . . . ,Kn,m

k′ 6= k =⇒
{
φk
′,j : j = 1, . . . , N

}
∩
{
φk,j : j = 1, . . . , N

}
= Ø,

i.e., the set of N faces assigned to different cubes are disjoint. If we now apply the mapping

Ckn,m 7−→
{
φk,j : j = 1, . . . , N

}
to each cube in the collection

Cint
n,m :=

{
Ckn,m ∈ Cn,m : Ckn,m ⊂ (1− 2

N + 2
)Q

}
,

then all of the faces φk,j so obtained will be included in (1 − 2
N+2

)Q , and we may apply (4.1)
to each such face to obtain for each Ckn,m ∈ Cint

n,m

N∑
j=1

∫
φk,j

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) = N
|trM |
N
LN (Ckn,m)

= |trM | LN (Ckn,m). (4.3)

We may sum both sides over the cubes Ckn,m ∈ Cint
n,m to obtain∑

Ckn,m∈Cintn,m

N∑
j=1

∫
φk,j

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) = |trM | LN (∪Ckn,m∈Cintn,mC
k
n,m). (4.4)
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The faces represented on the left hand side need not include all of J(un,m) ⊂ ∪Kn,mk=1 ∂Ckn,m , be-
cause some faces of cubes Ckn,m ∈ Cint

n,m that are also faces of cubes Ck
′
n,m ∈ Cn,m\Cint

n,m are left
out, while proper subsets φk,i±n,m ∩ (1− 2

n+2
)Q of faces φk,i±n,m also are left out. However, for those

parts of J(un,m) , we may use (4.1) and (4.2) to estimate the integrals
∫
φ
k,i±
n,m ∩(1− 2

n+2
)Q

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) ,

along with the fact that the cubes whose faces contain these parts of J(un,m) all must con-
tain points of ∂(1 − 2

n+2
)Q and must together cover ∂(1 − 2

n+2
)Q . Combining all of these

contributions to
∫
J(un,m)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) we obtain

0 6
∫
J(un,m)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x)− |trM | LN (∪Ckn,m∈Cintn,mC
k
n,m)

62 |trM | LN (∪Ckn,m∈(Cn,m\Cintn,m)C
k
n,m).

(4.5)

The factor of 2 = 2N
N

in the last expression reflects the fact that the LN -measure of some of
the cubes in the collection Cn,m\Cint

n,m has been counted more than once but no more than 2N
times through the use of the bound (4.2). The relations (4.5), (2.4), (2.6), and (2.7) now yield
the relation

0 6
∫
J(u

(n)
m )

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x)− |trM | LN (∪Ckn,m∈Cintn,mC
k
n,m)

62 |trM | LN (∪Ckn,m∈(Cn,m\Cintn,m)C
k
n,m) +

√
N

m
‖M‖ 2N(1− 2

n+2
)N−1

+ C(N) ‖M‖ (1− (1− 2
n+2

)N ).

(4.6)

We use in turn (4.6) to obtain an upper bound for∫
J(u

(n)
m )

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x).

Let ε > 0 be given and choose n so large that C(N) ‖M‖ (1− (1− 2
n+2

)N ) < ε and, for
such an n , choose m so large that

√
N
m
‖M‖ 2N(1− 2

n+2
)N−1 < ε . Because (1 − 2

n+2
)Q has

finite LN−measure, we may choose m larger if necessary so that the cover Cn,m of (1− 2
n+2

)Q

satisfies LN (∪Ckn,m∈Cn,mC
k
n,m) < LN ((1− 2

n+2
)Q)+ε < 1+ε . Finally, because ∂(1− 2

n+2
)Q has

zero LN−measure and is covered by Cn,m\Cint
n,m , we may again choose m larger, if necessary,

so that 2 |trM | LN (∪Ckn,m∈(Cn,m\Cintn,m)C
k
n,m) < ε . We conclude that for n and m so chosen∫

J(u
(n)
m )

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) < |trM | (1 + ε) + 3ε

= |trM |+ (|trM |+ 3)ε

and, since ε > 0 was arbitrary, that (1.38) holds. �

5. ADDITIONAL EXPLICIT FORMULAS FOR DISARRANGEMENT DENSITIES

Our discussion above shows that the particular choice of interfacial measure of disarrange-
ments ∫

J(u)∩Ω

|[u] · ν| dHN−1 (5.1)

for deformations u of a region Ω ⊂ RN leads in both the Choksi-Fonseca relaxation scheme
[4] and in the Baía-Matias-Santos relaxation scheme [1] to one and the same bulk density of
disarrangements ∫

Ω

|tr(∇g −G)| dLN (5.2)

for structured deformations (g,G) of that region. Moreover, our analysis here provides an
alternative to the proof of this result given in [13] . In that article, it was observed that
replacement of |[u] · ν| by its positive part ([u] ·ν)+ = 1

2
(|[u] · ν|+ [u] ·ν) results in the replace-

ment of |tr(∇g −G)| by its positive part (tr(∇g − G))+ = 1
2
(|tr(∇g −G)|+ tr(∇g − G)) in

the relaxed bulk disarrangement density. (An analogous result holds for the negative parts,



FORMULAS FOR RELAXED DISARRANGEMENT DENSITIES 15

obtained by replacing "+" by "−" in the definition of the positive parts.) As pointed out in
[13], (tr(∇g − G)(x))+ may now be interpreted as the minimum volume fraction at a point
x ∈ Ω that can be swept out by submacroscopic separations associated with deformations un
approximating the structured deformation (g,G) . Moreover, (tr(∇g − G)(x))− is the min-
imum volume fraction at x swept out by submacroscopic switches and interpenetrations, so
that |tr(∇g −G)(x)| = (tr(∇g −G)(x))+ + (tr(∇g −G)(x))− is the minimum volume fraction
swept out by submacroscopic separations, switches, and interpenetrations.

The presence of the inner-product [u] · ν in the initial interfacial density (5.1) tells us that
only normal components of jumps will contribute and that alternative initial interfacial den-
sities are required in order to capture contributions of tangential components of jumps. In
the remainder of this section we shall provide alternative initial interfacial densities that not
only capture contributions of tangential components of jumps but also lead to specific formu-
las for the relaxed bulk disarrangement density via the "tilted cube" construction provided in
Sections 2 and 4 above.

Let a ∈ RN be given and consider the following replacement for (5.1)∫
J(u)∩Ω

|[u] · a| dHN−1 (5.3)

in which the normal component [u] · ν of the jump in u is replaced by the component [u] · a in
the direction of a . To follow again the relaxation scheme in [1] we let A,B ∈ RN×N be given
and require not only u ∈ SBV (Q,RN ) but also

u|∂Q = 0 , ∇u = B −A, LN − a.e. in Q. (5.4)

We now may use the Gauss-Green formula and (5.4) to write∫
J(u)∩Q

|[u] · a| dHN−1 =

∫
J(u)∩Q

|([u · a])ν| dHN−1

>

∣∣∣∣∣
∫
J(u)∩Q

([u · a])νdHN−1

∣∣∣∣∣
=

∣∣∣∣−∫
Q

∇(u · a)dLN +

∫
∂Q

(u · a)νdHN−1

∣∣∣∣
=

∣∣∣∣−∫
Q

(∇u)T a dLN +

∫
∂Q

(0 · a)νdHN−1

∣∣∣∣
=
∣∣∣(B −A)T a

∣∣∣

(5.5)

For the "tilted-cube" construction provided in Sections 2 and 4, we replace the matrix M by
B −A , and the relation (2.10) has here the following counterpart∫

φ
k,i+
n,m

∣∣∣[u(n)
m ](x) · a

∣∣∣ dHN−1(x) =

∫
φ
k,i+
n,m

∣∣∣([u(n)
m ](x) · a)ν(x)

∣∣∣ dHN−1(x)

=

∫
φ
k,i+
n,m

1

m
|((B −A)Rei · a)Rei| dHN−1(x)

=
1

mN

∣∣∣(Rei · (B −A)T a)Rei

∣∣∣ ,
and this formula leads to the following counterpart of (2.13):

N∑
i=1

∫
φ
k,i+
n,m

∣∣∣[u(n)
m ](x) · a

∣∣∣ dHN−1(x) =
1

mN

N∑
i=1

∣∣∣(Rei · (B −A)T a)Rei

∣∣∣
>

1

mN

∣∣∣∣∣
N∑
i=1

(Rei · (B −A)T a)Rei

∣∣∣∣∣
=

1

mN

∣∣∣(B −A)T a
∣∣∣ .

(5.6)

The method employed in Sections 2 and 4 (where the symbol M was used in place of B − A )
then requires the choice of a rotation R for which equality holds in the second line of (5.6). If
(B−A)T a 6= 0 we may choose R to be any rotation satisfying Re1 = (B−A)T a /

∣∣(B −A)T a
∣∣ ,



16 ANA CRISTINA BARROSO, JOSÉ MATIAS, MARCO MORANDOTTI, AND DAVID R. OWEN

and this requirement is then met, because (Rei · (B − A)T a)Rei = 0 for i = 2, . . . , N . If
(B −A)T a = 0 , then R can be chosen arbitrarily, for example, R = I suffices.

These observations show that the analysis in Section 4 for (5.1) may be carried out step by
step for the alternative initial density (5.3), provided that we replace everywhere in Section 4
|trM | = |tr(B −A)| by

∣∣(B −A)T a
∣∣ , the Euclidean norm of the vector (B − A)T a . If we now

define

H(A,B, a) := inf

{∫
J(u)

|[u](x) · a| dHN−1(x) : u ∈ SBV (Q;RN ),

u |∂Q= 0, ∇u = B −A a.e.

}
,

(5.7)

then our observations amount to the formula

H(A,B, a) =
∣∣∣(B −A)T a

∣∣∣ (5.8)

for the relaxed bulk energy density corresponding to the initial interfacial energy (5.3) and
arising from the scheme [1]. Moreover, an argument similar to that used in establishing (1.37)
shows that the formula (5.8) also holds for the relaxed bulk disarrangement density according
to [4]. In the context of a given structured deformation (g,G) on a region Ω , (5.8) implies that
the particular choice of initial interfacial disarrangement∫

J(u)∩Ω

|[u] · a| dHN−1 (5.9)

for deformations u of a region Ω ⊂ RN leads in both the Choksi-Fonseca relaxation scheme
[4] and in the Baía-Matias-Santos relaxation scheme [1] to one and the same relaxed bulk
disarrangement density ∫

Ω

∣∣∣(∇g −G)T a
∣∣∣ dLN (5.10)

for structured deformations (g,G) of that region. The integral in (5.10) represents the most
economical way of introducing jumps in the direction of a while approaching in the limit the
given structured deformation (g,G) , including both jumps normal and tangential to the dis-
continuity surfaces of approximating deformations u .

We note also the formula

max
i=1,...,N

H(A,B, δi) = ‖B −A‖row max (5.11)

where on the left δ1, . . . , δN denotes the standard basis of RN and on the right ‖B −A‖row max

denotes the maximum of the Euclidean norms of the rows of B −A . The mapping ‖·‖row max :

RN×N −→ R turns out to be a norm on RN×N , and our interpretation of the integral in (5.10)
leads us to interpret the integral∫

Ω

‖(∇g −G)(x)‖row max dL
N (x)

as a bulk measure of disarrangements that takes into account at each x ∈ Ω the direction
δi(x) that maximizes the relaxed bulk energy densities H(∇g(x), G(x), δi) for i = 1, . . . , N .
The bulk disarrangement density maxi=1,...,N H(A,B, δi) = ‖B −A‖row max satisfies

max
i=1,...,N

H(A,B, δi) 6 inf

{
max

i=1,...,N

∫
J(u)

|[u](x) · δi| dHN−1(x) :

u ∈ SBV (Q;RN ), u|∂Q = 0, ∇u = B −A a.e.

}
,

and need not be the relaxed bulk energy density corresponding to the initial interfacial energy

max
i=1,...,N

∫
J(u)

|[u](x) · δi| dHN−1(x) .
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