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Abstract. The formation of microdomains, also called rafts, in biomembranes can be attributed
to the surface tension of the membrane. In order to model this phenomenon, a model involving a
coupling between the local composition and the local curvature was proposed by Seul and Andelman
in 1995. In addition to the familiar Cahn-Hilliard/Modica-Mortola energy, there are additional
‘forces’ that prevent large domains of homogeneous concentration. This is taken into account by
the bending energy of the membrane, which is coupled to the value of the order parameter, and
reflects the notion that surface tension associated with a slightly curved membrane influences the
localization of phases as the geometry of the lipids has an effect on the preferred placement on the
membrane.

The main result of the paper is the study of the Γ-convergence of this family of energy
functionals depending on the size of the sample, involving nonlocal as well as negative terms.
Since the limiting energy is minimized by a phase function with minimal interfaces, the physical
interpretation is that, within a certain parameter range, raft microdomains are not formed.
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1. Introduction

The continuum theory of membranes has been an active area of research in material and biological
sciences since the pioneering works of Canham and Helfrich, [6, 16]. Biological cell membranes or
biomembranes are complex structures commonly made up of lipids, proteins, and cholesterol. Of
recent very widespread interest is the phase separation and domain formation of these compounds
forming the cell membrane. The resulting nanoscale microdomains, referred to as ‘lipid rafts’, are
believed to be responsible for membrane trafficking, intracellular signaling, and assembly of specialized
structures, [31]. Many important biological processes, such as virus budding, endocytosis, and immune
responses, are believed to be linked to membrane rafts, [27]. Ever since the first experimental evidence
of raft formation in late 1980’s, there has been a growing body of literature on both theoretical and
experimental aspects of this phenomenon, [11]. However, due to very small scales associated with raft
domains (they are too small to be optically resolved) [27, 5, 23], there are different viewpoints on the
precise structure and stability of lipid rafts, [22]. As a result, understanding the conditions for the
formation, as well as mechanisms driving stability (and instability), of these microdomains is of great
importance.

It has been proposed in [20] that raft formation can be attributed to the surface tension of the
membrane. The experimental basis for the theory comes from the work of Rozovsky et al in [29], in
which domain formation in a ternary mixture of sphingomyelin, DOPC, and cholesterol is observed for
a vesicle adhered to a substrate structure. To study the relation between an increase in surface tension
and the morphological transitions on the membrane plane, a coupling between the local composition
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Figure 1. Experimental and schematic representation of rafts. The first picture is
reprinted with permission from S. Rozovsky, Y. Kaizuka, and J. T. Groves. Formation
and spatio-temporal evolution of periodic structures in lipid bilayers. J. Am. Chem.
Soc., 127(1):36–37, 1 2005. Copyright 2005 American Chemical Society. The second
picture is reprinted with permission from S. Komura, N. Shimokawa, and D. An-
delman. Tension-induced morphological transition in mixed lipid bilayers. Langmuir,
22:6771–6774, 2006. Copyright 2006 American Chemical Society.

and the local curvature was proposed in [20]. The authors consider a free energy framework and use
an energy functional first introduced in [30] to model phase separation of a di-block copolymer in a
membrane allowing out of plane (bending) distortions (see also [18, 32, 21]).

Similar to the classic Ginzburg-Landau models, the system is described in terms of an order
parameter u that may, for instance, model the relative composition of the lipids and cholesterol on
the membrane plane. However, in addition to the familiar Cahn-Hilliard/Modica-Mortola energy (see
[25]),

Aε[u] :=

∫
Ω

(
1

ε
W (u) + ε|∇u|2

)
dx,

that models line tension between domains and represents ‘short-range’ interactions and whose mini-
mization drives the system to evolve into A rich and B rich phases (corresponding to u = α or u = β,
minima of a double-well potential W ), there are additional ‘forces’ that prevent large domains of ho-
mogeneous concentration. In [30] Seul and Andelman proposed a nonlocal contribution to the energy
by considering an energy functional that takes into account the bending energy of the membrane,
and couples it to the value of the order parameter. The idea is that surface tension associated with
a slightly curved membrane influences the localization of phases as the geometry of the lipids has an
effect on the preferred placement on the membrane. Similarly, the geometry of the membrane may
adapt to that of the molecules. The resulting energy has the form

E [φ, h] =

∫
D

(
f(φ) +

1

2
b|∇φ|2 +

1

2
σ|∇h|2 +

1

2
k(∆h)2 + Λφ∆h

)
dx̄. (1.1)

Here D := {Lx : x ∈ Ω} is the domain with the characteristic size L, φ is the order parameter, h
represents the height profile of the membrane, f(φ) := a2

2 φ
2 + a4

4 φ
4, where a2, a4 are constants, b > 0

is related to the line tension between different domains, σ > 0 and κ > 0 are the surface tension and
bending rigidity of the membrane, respectively, and Λ is the composition-curvature coupling constant,
[20]. Since minimizers of E satisfy the Euler-Lagrange equations, we may consider the minimization
problem for E [φ, h] under the constraint, δE

δh = 0. Using the last equation to eliminate h (see the
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Appendix) and rescaling

u(x) = φ(Lx), ε :=

√
k

L2σ
, q := 1− bσ

Λ2
, W (u) :=

2k

Λ2
f(u), and F∗ε :=

1

ε

2k

Λ2Ld
E ,

one can reduce (1.1) to

F∗ε [u] :=
1

ε

∫
Ω

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx. (1.2)

Here q is a constant parameter and the second order differential operator 1−ε2∆ : H2(Ω)→ L2(Ω) is
subject to Neumann boundary conditions. A detailed derivation is given in the Appendix. In particular,
Table 1 in the Appendix lists typical values for the parameters. One may easily check from the table
that the relevant values of the parameter q fall in the interval (−1, 1), and for fixed b and Λ correspond
to varying the surface tension.

We approach the question of stability of rafts from the viewpoint of the Calculus of Variations.
The main result of the paper is the Γ-convergence of the functional F∗ε to the interfacial perimeter
functional for sufficiently small q > 0. Since the limiting energy is minimized by a phase function with
minimal interfaces, the physical interpretation is that when L2 � k/σ, (ε� 1) raft microdomains are
not formed. Finally, we remark that when q ≤ 0 the functional is nonnegative (this can be seen from
the reformulation of the problem presented in (2.1)). This is not the case when q > 0, which renders
the analysis more complicated.

2. Preliminaries, Notation, and Statement of Results

A natural mathematical framework for studying the asymptotic behavior of the family of functionals
(1.2) is the notion of Γ-convergence introduced by De Giorgi in [14] (see also [4, 10]). In a general
metric space setting the definition is given below.

Definition 2.1. Let (Y, d) be a metric space and consider a sequence {Fn} of functionals Fn: Y →
[−∞,∞]. We say that {Fn} Γ-converges to a functional F : Y → [−∞,∞] if the following properties
hold:

1. (Liminf Inequality) For every y ∈ Y and every sequence {yn} ⊂ Y such that yn → y,

F [y] ≤ lim inf
n→∞

Fn[yn].

2. (Limsup Inequality) For every y ∈ Y there exists {yn} ⊂ Y such that yn → y and

lim sup
n→∞

Fn[yn] ≤ F [y].

The functional F is called the Γ-limit of the sequence {Fn}.

A key property of Γ-convergence is the fact that the sequence of minimizers of the functionals
Fn converge to a minimizer of the limiting functional F . Moreover, one can show that the isolated
local minima of the Γ-limit F persist under small perturbations (see [19, 10]).

The problem of finding a characterization of the Γ-limit of (1.2) has been considered in the one-
dimensional setting by Ren and Wei in [28], but in a different parameter regime. Due to the different
scaling of the terms, the technique used in that paper is not applicable to our case. Recall that the
last term in (1.2) renders the problem nonlocal. A local approximation of (1.2) was studied in [7]
and [8]. We refer to the derivation of (5.20) in the Appendix for the precise connection between the
models. Qualitative properties of local minimizers of the local approximation model have been studied
extensively to explain the formation of periodic layered structures (see [3, 9, 24, 26]).

We now give the precise formulation of our results. Let Ω ⊂ Rd be an open, bounded set of class
C2, and let W be a twice continuously differentiable double-well potential defined on the real line. We
make the following hypotheses on W .

Hypotheses 2.2.
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1. W (s) > 0 if s 6= ±1.
2. W (±1) = 0.
3. There exists cw > 0 such that W (s) ≥ cw(s∓ 1)2 for ± s ≥ 0.

4. There exist constants Kw, Cw > 0 such that |W ′(s)| ≤ Cw
√
W (s) and |W ′′(s)| ≤ Kw for all

s ∈ R.

Remark 2.3. Note that conditions 3 and 4 imply that W has quadratic growth at infinity.

For the purposes of our analysis it will be convenient to rewrite the functional F∗ε as follows.
Given u ∈W 1,2(Ω), we define v ∈W 3,2(Ω) via

−ε2∆v + v = u in Ω and
∂v

∂n
= 0 on ∂Ω,

where n denotes the outward unit normal to ∂Ω, and use the abbreviatory notation v := (1−ε2∆)−1u.
Integrating by parts we obtain (see the Appendix)

F∗ε [u] =

∫
Ω

(
1

ε
W (u)− εq|∇u|2 + ε3(∆v)2 + ε5|∇∆v|2

)
dx

=

∫
Ω

(
1

ε
W (u)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

Hence, we may also view F∗ε as Fε[v] with Fε : L2(Ω)→ (−∞,∞] given by

Fε[v] :=

{
Fε[v; Ω] if v ∈W 3,2(Ω), ∂v∂n = 0 on ∂Ω,
+∞ otherwise,

(2.1)

where

Fε[v;A] =

∫
A

(
1

ε
W (−ε2∆v + v)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx

for every open set A ⊂ Ω.

Remark 2.4. Observe that if v ∈W 3,2(Ω) does not satisfy Neumann boundary conditions on ∂Ω, then
Fε[v; Ω] < Fε[v] =∞.

Definition 2.5. Given a vector ν ∈ Sd−1 (d − 1 dimensional unit sphere), let {ν1, · · · , νd−1, ν} be an
orthonormal basis of Rd. We will denote by Qν an open unit cube centered at the origin with two of
its faces normal to ν, i.e.,

Qν :=

{
x ∈ Rd : |x · ν| < 1

2
, |x · νi| <

1

2
, i = 1, . . . , d− 1

}
.

If x0 ∈ Rd and r > 0, then Qν(x0, r) := x0 + rQν . If {ν1, · · · , νd−1, ν} is the canonical basis, we drop
the dependence on ν, i.e., Q(x0, r) := x0 + r(−1/2, 1/2)d = x0 + rQ, where Q is the open unit cube
centered at the origin with faces normal to the coordinate axes.

Define the admissible set to be

Aν := {v ∈W 3,2
loc (Rd) : v = −1 in a neighborhood of x · ν = −1/2,

v = 1 in a neighborhood of x · ν = 1/2, v(x) = v(x+ νi) for all x ∈ Rd, i = 1, . . . , d− 1},

and set

md := inf{Fε[v;Qν ] : 0 < ε ≤ 1, v ∈ Aν}. (2.2)

Remark 2.6. Since the gradient and Laplacian are invariant with respect to rotations, we can choose
the coordinate system in such a way that the standard vector ed is parallel to ν. It follows that md

does not depend on ν, and we abbreviate A := Aed .

Remark 2.7. We will show in Proposition 3.4 that md > 0 if q is sufficiently small.
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We introduce the functional F : L2(Ω)→ [0,+∞],

F [v] :=

{
mdPer({v = 1}) if v ∈ BV (Ω; {−1, 1}),
+∞ if v ∈ L2(Ω)\BV (Ω; {−1, 1}). (2.3)

Here BV (Ω; {−1, 1}) denotes the space of functions of bounded variation taking values in the set
{−1, 1}, (see the discussion at the end of the section). The following theorem establishes the Γ-
convergence of Fε to F .

Theorem 2.8. Assume that W ∈ C2(R) satisfies Hypotheses 2.2. There exists q0 > 0, depending only
on the potential W and Ω, such that for all 0 < q < q0 the following inequalities hold:

1. Liminf Inequality: For every sequence of positive real numbers εn → 0, for every v ∈ L2(Ω), and
for every {vn} ⊂W 3,2(Ω) such that vn → v in L2(Ω),

lim inf
n→∞

Fεn [vn; Ω] ≥ F [v]. (2.4)

2. Limsup Inequality: For every v ∈ L2(Ω) and for every sequence of positive real numbers εn → 0,
there exists a sequence {vn} ⊂W 3,2(Ω) such that vn → v in L2(Ω) and

lim sup
n→∞

Fεn [vn; Ω] ≤ F [v]. (2.5)

Remark 2.9. We remark that Theorem 2.8 and the compactness property stated in Theorem 3.5 have
analogous formulations for the functional F∗ε in (1.2). Since for vn := (1 − ε2∆)−1un, Fεn [vn] =
F∗εn [un], using Theorems 2.8 and 3.5 it is straightforward to show that the family of functionals F∗ε
Γ-converges to F .

We now give a proof of an elliptic regularity result used in the sequel.

Proposition 2.10. If Ω has a piecewise C2 boundary, then there exists a constant C(Ω), depending on
Ω, such that

||∇2v||2L2(Ω) ≤ 3||∆v||2L2(Ω) + C(Ω)||v||2L2(Ω) (2.6)

for all v ∈W 2,2(Ω) such that ∂v
∂n = 0 on ∂Ω.

Proof. Theorem 3.1.1.2 from [15] yields∫
Ω

|∇2v|2dx ≤
∫

Ω

|∆v|2dx+ C1(Ω)

∫
∂Ω

|∇v|2dx (2.7)

for all v ∈ W 2,2(Ω) with ∂v
∂n = 0 on ∂Ω, where the constant C1(Ω) depends only on the curvature of

∂Ω. In turn, applying Theorem 1.5.1.10 from [15] to each component of ∇v we obtain

C1(Ω)

∫
∂Ω

|∇v|2dx ≤ 1

2

∫
Ω

|∇2v|2dx+ C2(Ω)

∫
Ω

|∇v|2dx

for some C2 > 0 and for all v ∈W 2,2(Ω). This, together with (2.7), reduces to∫
Ω

|∇2v|2dx ≤ 2

∫
Ω

(∆v)2dx+ 2C2(Ω)

∫
Ω

|∇v|2dx. (2.8)

Finally, using the Neumann boundary condition and integration by parts we conclude that

2C2(Ω)

∫
Ω

|∇v|2dx = 2C2(Ω)

∫
Ω

(−∆v)vdx ≤
∫

Ω

(∆v)2dx+ C(Ω)

∫
Ω

v2dx, (2.9)

where in the last step we also used Young’s Inequality. Inequalities (2.8) and (2.9) now imply (2.6). �

For the reader’s convenience we end the section with a summary of standard measure-theoretic
results used in the remainder. A key concept used in the development of the Liminf Inequality in
Section 4 is that of a reduced boundary of the set E := {x ∈ Ω : v(x) = 1} associated to v ∈
BV (Ω; {−1, 1}). We recall that v ∈ L1(Ω) is said to be of bounded variation, v ∈ BV (Ω), if the
generalized partial derivatives Di of v in the sense of distributions are bounded Radon measures. In
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Figure 2. The sets E (in grey), R1 := {x ∈ Qν(x0, r) ∩ E : (x − x0) · ν(x0) > 0},
and R2 := {x ∈ Qν(x0, r)\E : (x− x0) · ν(x0) < 0}.

particular BV (Ω; {−1, 1}) denotes functions of bounded variation taking values in the set {−1, 1},
and PerΩ(E) := |DχE |(Ω) <∞.

For sets of finite perimeter the reduced boundary ∂∗E of E is defined as the set of points
x0 ∈ spt|DχE | ∩ Ω such that the limit

ν(x0) := − lim
r→0+

DχE(Br(x0))

|DχE |(Br(x0))

exists and satisfies |ν(x0)| = 1. Here Br(x0) is the open ball of radius r centered at x0. For x0 ∈ ∂∗E
the vector ν(x0) is called the generalized outer unit normal to E. In particular, by Theorem 3.59 from
[1], |DχE | = Hd−1 ∂∗E, and for x0 ∈ ∂∗E,

lim
r→0+

Hd−1(Qν(x0, r) ∩ ∂∗E)

rd−1
= 1,

lim
r→0

1

rd
|{x ∈ Qν(x0, r) ∩ E : (x− x0) · ν(x0) > 0}| = 0, (2.10)

lim
r→0

1

rd
|{x ∈ Qν(x0, r)\E : (x− x0) · ν(x0) < 0}| = 0, (2.11)

where | · | denotes the Lebesgue measure in Rd.

3. Compactness

In this section we prove the compactness Theorem 3.5. We use the following interpolation inequality.

Proposition 3.1. Let A ⊂ Rd be a bounded open set in Rd. Assume, in addition, that either A has a
C1 boundary or that A can be written as the union of finitely many pairwise disjoint open rectangles
and a set of Lebesgue measure zero. Then there exist a constant q∗ ∈ (0, 1), independent of A, and
ε0 = ε0(A, q∗) > 0 such that

q∗

∫
A

ε|∇v|2dx ≤
∫
A

(
W (v)

ε
+ ε3|∇2v|2

)
dx (3.1)

for every ε ∈ (0, ε0) and v ∈W 2,2(A).

Proof. See Theorem 1.2 in [7]. �
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For every open set A ⊂ Ω, v ∈W 3,2(Ω), and ε > 0, define the functional

Iε[v;A] :=

∫
A

(
1

ε
W (v) + ε|∇v|2 + ε3|∇2v|2 + ε5|∇∆v|2

)
dx.

Next, we prove a result that will be useful to bound the energy from below and to obtain compactness
of energy bounded sequences (see Theorem 3.5).

Proposition 3.2. Let Kw, Cw, cw, q∗, ε0 > 0 be the constants given in Hypotheses 2.2 and Proposition
3.1. Then there exist q̄ > 0, depending only on Kw, Cw, q∗ (see (3.6)), and ε1 > 0, depending only on
Cw, such that for every 0 < q ≤ q̄, v ∈W 3,2(Ω), and 0 < ε < ε1,

Fε[v] ≥ q Iε[v; Ω]− 12q

q∗
C(Ω)ε3|Ω| (3.2)

for some constant C(Ω) > 0.

Remark 3.3. We note that in the energy Fε[v] the potential W acts on u, which is related to v through
the condition u = −ε2∆v+v, while in Iε[v] the potential acts on v. Hence Fε differs from the standard
Cahn-Hilliard energies involving solely the potential W (v). In addition, the second order term in Fε[v]
involves the Laplacian ∆v, while the second order term in Iε[v] involves the Hessian ∇2v.

Proof. If v does not satisfy ∂v
∂n = 0 on ∂Ω then Fε[v] = ∞ and there is nothing to prove. Otherwise,

fix 0 < θ ≤ 1. Using Taylor’s formula for W and the fact that W ′′ is bounded by Hypotheses 2.2,
yields

Fε[v] = Fε[v; Ω] =

∫
Ω

(
1

ε
W (−ε2∆v + v)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx

≥
∫

Ω

(θ
ε
W (v)− θW ′(v)ε∆v − εq|∇v|2 +

(
1− 2q − θ

2
Kw

)
ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

(3.3)

By Young’s Inequality and the condition |W ′(s)| ≤ Cw
√
W (s) from Hypotheses 2.2, we have

W ′(v)∆v ≤ 1

2ε2C2
w

(W ′(v))2 +
ε2

2
C2
w(∆v)2 ≤ 1

2ε2
W (v) +

ε2

2
C2
w(∆v)2. (3.4)

Substituting (3.4) into (3.3) implies

Fε[v] ≥
∫

Ω

(
θ

2ε
W (v)− εq|∇v|2 +

(
1− 2q − θ

2
Kw −

θ

2
C2
w

)
ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

Multiplying (3.1), with A = Ω, by 2q/q∗ and using it in the previous inequality gives

Fε[v] ≥
∫

Ω

((
θ

2
− 2q

q∗

)
1

ε
W (v) + εq|∇v|2 +

(
1− 2q − θ

2
Kw −

θ

2
C2
w

)
ε3(∆v)2

− 2qε3

q∗
|∇2v|2 + (1− q)ε5|∇∆v|2

)
dx. (3.5)

Fix δ > 0. Using Proposition 2.10 we get

Fε[v] ≥
∫

Ω

((
θ

2
− 2q

q∗

)
1

ε
W (v)−

(
δ +

2q

q∗

)
ε3C(Ω)v2 + εq|∇v|2

+

(
1− 2q − θ

2
Kw −

θ

2
C2
w −

6q

q∗
− 3δ

)
ε3(∆v)2 + δε3|∇2v|2 + (1− q)ε5|∇∆v|2

)
.
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Finally, it follows from Hypotheses 2.2 that W (s) ≥ (cw/4)s2 for |s| ≥ 2. Hence

Fε[v] ≥
∫

Ω

([
θ

2
− 2q

q∗
− ε4 4C(Ω)

cw

(
δ +

2q

q∗

)]
1

ε
W (v) +

(
1− 2q − θ

2
Kw −

θ

2
C2
w −

6q

q∗
− 3δ

)
ε3(∆v)2

+ εq|∇v|2 + δε3|∇2v|2 + (1− q)ε5|∇∆v|2
)
dx− 4

(
δ +

2q

q∗

)
ε3C(Ω)|Ω|.

Choosing δ := q
q∗

, θ := 8q
q∗

, ε1 := min

{
ε0,
(

cw
12C(Ω)

)1/4
}

and

q̄ :=
q∗

2q∗ + 4Kw + 4C2
w + 10

(3.6)

yields (3.2). �

We now prove that for q sufficiently small the “cell” energy is positive.

Proposition 3.4. Let md be defined in (2.2) and let q̄ be as in Proposition 3.2. Then md > 0 for every
0 < q < q̄.

Proof. Without loss of generality we may assume that the infimum in the definition of md is taken
over 0 < ε < ε0. The result of the proposition then follows if we show that

inf

{∫
Q

(
W (v)

ε
+ ε|∇v|2

)
dx : 0 < ε < ε0, v ∈ A

}
> 0. (3.7)

Indeed, let v ∈ A. Since v satisfies periodic boundary conditions on Q, integration by parts yields

||∇2v||2L2(Q) = ||∆v||2L2(Q). (3.8)

Repeating the proof of Proposition 3.2 with Q instead of Ω and using (3.8) in (3.5), we obtain

Fε[v;Q] ≥ q Iε[v;Q] ≥ q
∫
Q

(
W (v)

ε
+ ε|∇v|2

)
dx

if q ≤ q̄. To prove (3.7) we follow [13]. In particular, for v ∈ A,∫
Q

(
W (v)

ε
+ ε|∇v|2

)
dx ≥ 2

∫
Q

√
W (v)|∇v|dx ≥

∫
Q′

∫ 1/2

−1/2

√
W (v)

∣∣∣∣ ∂v∂xd
∣∣∣∣ dxddx′, (3.9)

where Q′ := (−1/2, 1/2)d−1. Since v(x′,±1/2) = ±1 a change of variables yields∫
Q′

∫ 1/2

−1/2

√
W (v)

∣∣∣∣ ∂v∂xd
∣∣∣∣ dxd dx′ ≥ ∫ 1

−1

√
W (s) ds.

Using this lower bound in (3.9) and taking the infimum over v ∈ A and 0 < ε < ε0 gives (3.7). �

Theorem 3.5. (Compactness) Let q̄ be as in Proposition 3.2. If q ≤ q̄, εn → 0+ and {vn} ⊂ W 3,2(Ω)
satisfies

sup
n
Fεn [vn; Ω] <∞, (3.10)

then there exist a subsequence {vnk} of {vn} and v ∈ BV (Ω; {−1, 1}) such that

vnk → v and ε2
nk

∆vnk → 0 in L2(Ω). (3.11)

Proof. By Proposition 3.2 and (3.10)

sup
n
Iεn [vn; Ω] <∞ (3.12)

and the existence of v ∈ BV (Ω; {−1, 1}) and a subsequence {vnk} converging to v in L1(Ω) now
follows from standard results for the Modica-Mortola functional (see [25]).
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To show the convergence in L2(Ω), we recall again that by Hypotheses 2.2, W (s) ≥ (cw/4)|s|2
for |s| ≥ 2, and hence for every measurable set E ⊂ Ω,∫

E

|vn|2 dx =

∫
{y∈E:|vn(y)|<2}

|vn|2dx+

∫
{y∈E:|vn(y)|≥2}

|vn|2dx

≤ 4|E|+ 4

cw

∫
E

W (vn) ≤ 4|E|+ C(q)εn,

where in the last step we used (3.12). Therefore {|vnk |2} is equi-integrable, and convergence of {vnk}
to v in L2(Ω) is a consequence of Vitali’s Convergence Theorem.

To prove (3.11)2, note that (3.12) implies ε2
n‖∆vn‖L2(Ω) ≤ C(q)ε

1/2
n . It follows that ε2

n∆vn → 0

in L2(Ω). �

The slicing argument in the following proposition uses the notation introduced in Definition 2.5.

Proposition 3.6. Let K > 0, let k ∈ N, and let v ∈W 3,2(Q(x0, r0)) be such that

Iε[v;Q(x0, r0)] ≤ K (3.13)

for some 0 < ε < ε1 := r0

4k
√
C(d)

. Then there exist a constant C(d) > 0 and i ∈ {1, . . . , k} (depending

on v) such that

Fε[v;Q(x0, r)] ≥ q Iε[v;Q(x0, r)]−
q

q∗

6K

k

and

Iε[v;L] ≤ K

k
,

for all r ∈
(
r0
2

(
1 + 2i−1

2k

)
, r02

(
1 + i

k

))
and all 0 < q < q̄ := q∗

2q∗+4Kw+4C2
w+3C(d)+1 , where

L := Q

(
r0

2

(
1 +

i

k

))
\Q
(
r0

2

(
1 +

i− 1

k

))
.

Proof. For simplicity we will use the notation Q(r) := Q(x0, r). The following estimate is obtained
from the proof of Lemma 9.2.3 in [17]. Let 0 < r1 < r2 < r0. Then,∫

Q(r1)

|∇2v|2 ≤ C(d)

(∫
Q(r2)

|∆v|2 dx+
1

(r2 − r1)2

∫
Q(r2)\Q(r1)

|∇v|2 dx

)
. (3.14)

Given k > 0, we first partition the set Q(r0)\Q(r0/2) into k layers

Li := Q

(
r0

2

(
1 +

i

k

))
\Q

(
r0

2

(
1 +

i− 1

k

))
, i = 1, . . . , k.

Since
k∑
i=1

Iε[v;Li] ≤ Iε[v;Q(r0)],

by (3.13) there exists a layer Li
∗

satisfying

Iε[v;Li
∗
] ≤ 1

k
Iε[v;Q(r0)] ≤ K

k
. (3.15)

Fix r ∈
(
r0
2

(
1 + 2i∗−1

2k

)
, r02

(
1 + i∗

k

))
. Choosing r1 := r0

2

(
1 + i∗−1

k

)
, r2 := r and applying estimate

(3.14) we obtain ∫
Q(r1)

|∇2v|2 dx ≤ C(d)

(∫
Q(r)

|∆v|2 dx+
16k2

r2
0

∫
Li∗
|∇v|2 dx

)
.
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Adding
∫
Li∗
|∇2v|2 dx to both sides and multiplying by ε3 yields, by (3.15),

ε3

∫
Q(r)

|∇2v|2 dx ≤ C(d)

(
ε3

∫
Q(r)

|∆v|2 dx+
16k2

r2
0

ε3

∫
Li∗
|∇v|2 dx

)
+ ε3

∫
Li∗
|∇2v|2 dx

≤ C(d)

(
ε3

∫
Q(r)

|∆v|2 dx+
16k2

r2
0

ε2K

k

)
+
K

k
.

Let 0 < ε2
1 ≤

r20
16k2C(d) . Then for 0 < ε < ε1 we have

ε3

∫
Q(r)

|∇2v|2 dx ≤ C(d) ε3

∫
Q(r)

|∆v|2 dx+
2K

k
. (3.16)

Repeating the argument of the proof of Proposition 3.2 with θ := 8q
q∗

until (3.5) and using (3.16)

multiplied by 3 in place of Proposition 2.10 yields

Fε[vn;Q(r)] ≥
∫
Q(r)

(
2q

q∗

1

ε
W (v) +

(
1− 2q − 4q

q∗
Kw −

4q

q∗
C2
w −

3q

q∗
C(d)

)
ε3|∆v|2

+ qε|∇v|2 +
q

q∗
ε3|∇2v|2 + (1− q)ε5|∇∆v|2

)
dx− q

q∗

6K

k

≥ q Iε[v;Q(r)]− q

q∗

6K

k
,

provided

0 < q < q̄ :=
q∗

2q∗ + 4Kw + 4C2
w + 3C(d) + 1

.

This completes the proof. �

Proposition 3.7. Let k ∈ N, εn → 0+, ν ∈ Sd−1, and {wn} ⊂W 3,2(Qν(0, 1)) be such that

lim
n→∞

∫
Qν(0,1)

|wn − v0|2dx = 0,

and

Iεn [wn;L] ≤ C0

k
(3.17)

for all n and some C0 > 0, where

v0(y) :=

{
−1 if y · ν > 0,
1 if y · ν < 0,

and

L := Qν(0, 1)\Qν(0, 1− 1/(2k)).

Then

Fεn [wn;Qν(0, 1)] ≥ md −
C

k
.

Proof. We modify {wn} to belong to the admissible class Aν without increasing the energy. Given
Ψ ∈ C∞c (Rd), with supp(Ψ) ⊂ B1(0) and

∫
Rd Ψ(y)dy = 1, consider the mollifier

Ψε(y) :=
1

εd
Ψ
(y
ε

)
(3.18)

and

ϕn := v0 ∗Ψεn .

Note that ϕn ∈ C∞(Rd) and

||ϕn||L∞(R) ≤ 1, ||∇ϕn||L∞(R) ≤ Cε−1
n , ||∇2ϕn||L∞(R) ≤ Cε−2

n , ||∇3ϕn||L∞(R) ≤ Cε−3
n . (3.19)
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In addition,

ϕn(y) =

{
−1 if y · ν < −εn,
1 if y · ν > εn,

and

∇sϕn(y) = 0 if |y · ν| > εn, s = 1, 2, 3.

Hence for εn sufficiently small ϕn ∈ Aν . We want to define a function zn to equal ϕn near the boundary
of Qν and wn away from the boundary. To be precise, we first partition the set Qν(0, 1)\Qν(0, 1 −
1/(2k)) into dε−1

n e layers of width 1
4kdε−1

n e
,

Lin := Qν

(
0, 1− i− 1

2kdε−1
n e

)∖
Qν

(
0, 1− i

2kdε−1
n e

)
, i = 1, . . . , dε−1

n e,

where dxe is defined as the smallest integer not less than x. Since both wn → v0 in L2(Qν) and
ϕn → v0 in L2(Qν), we have

||wn − ϕn||2L2(Qν) → 0 as n→∞.
Note that ∪iLin = L ⊂ Qν(0, 1) and that Lin are pairwise disjoint, so the sum over all of the layers is
bounded by ∑

i

Iεn [wn;Lin] +

∑
i ||wn − ϕn||2L2(Lin)

||wn − ϕn||2L2(Qν)

≤ C0

k
+ 1.

Since there are dε−1
n e layers, for one of these layers, say Ln := Li

∗

n , it holds

Iεn [wn;Ln] +
||wn − ϕn||2L2(Ln)

||wn − ϕn||2L2(Qν)

≤
(
C0

k
+ 1

)
εn. (3.20)

Define

zn := ηnwn + (1− ηn)ϕn,

where ηn is a smooth function with support in Qν(0, 1) such that

ηn(x) :=


0 if x ∈ Qoutn := Qν (0, 1) \Qν

(
0, 1− i∗−1

2kdε−1
n e

)
,

∈ (0, 1) if x ∈ Ln,
1 if x ∈ Qinn := Qν\(Qoutn ∪ Ln),

and

||∇sηn||L∞(Qν) = O
(
ks

εsn

)
, s = 1, 2, 3. (3.21)

Moreover,

Fεn [zn;Qν ] = Fεn [ϕn;Qoutn ] + Fεn [zn;Ln] + Fεn [wn;Qinn ].

We observe that since Fεn [wn;Qν\Qinn ] can be negative it is not necessarily true that Fεn [wn;Qinn ] ≤
Fεn [wn;Qν ]. Instead, we use (3.17) to control the negative terms to obtain

Fεn [zn;Qν ] ≤ Fεn [ϕn;Qoutn ] + Fεn [zn;Ln] + Fεn [wn;Qν ] + q

∫
L

εn|∇wn|2dx

≤ Fεn [ϕn;Qoutn ] + Fεn [zn;Ln] + Fεn [wn;Qν ] + q
C0

k
. (3.22)

Note that for s = 1, 2, 3,

ε2s−1
n

∫
Qoutn

|∇sϕn|2dx ≤ ε2s−1
n

C

ε2s
n

|{x ∈ Qoutn : ϕn 6= ±1}| ≤ C

k
. (3.23)

In addition, by the continuity of W ,

1

εn

∫
Qoutn

W (−ε2
n∆ϕn + ϕn)dx ≤ C

εn
|{x ∈ Qoutn : ϕn 6= ±1}| ≤ C

k
. (3.24)
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Together (3.23) and (3.24) imply

Fεn [ϕn;Qoutn ] ≤ C

k
. (3.25)

To estimate Fεn [zn;Ln], we first note that

∂xizn = ∂xiηn(wn − ϕn) + ηn∂xiwn + (1− ηn)∂xiϕn,

and

∂xixkzn = ∂xixkηn(wn − ϕn) + ∂xiηn∂xkwn + ∂xkηn∂xiwn + ηn∂xixkwn

− ∂xiηn∂xkϕn − ∂xkηn∂xiϕn + (1− ηn)∂xixkϕn.

We use (3.20) to control the derivatives of wn in the transition region Ln. From (3.19), (3.20), (3.21),
the expressions for the derivatives of zn and the fact that ||wn −ϕn||L2(Q) → 0, we readily obtain the
following bounds on the terms in Fεn [zn;Ln],

εn

∫
Ln

|∇zn|2dx ≤ C
∫
Ln

(
εn|∇ηn|2|wn − ϕn|2 + εnη

2
n|∇wn|2 + εn(1− ηn)2|∇ϕn|2

)
dx

≤ C
(
k2εn
ε2
n

||wn − ϕn||2L2(Ln) +

(
C0

k
+ 1

)
εn +

εn
ε2
n

|{x ∈ Ln : ϕn 6= ±1}|
)

≤ C
(
k2

(
C0

k
+ 1

)
||wn − ϕn||2L2(L) +

(
C0

k
+ 1

)
εn +

εn
k

)
≤ C

k
(3.26)

for n sufficiently large, where we used |{x ∈ Ln : |x · ν| < εn}| = O(ε2
n/k). Similarly,

ε3
n

∫
Ln

|∇2zn|dx ≤ Cε3
n

∫
Ln

(
|∇2ηn|2|wn − ϕn|2 + 2|∇ηn|2|∇wn|2 + 2|∇ηn|2|∇ϕn|2 + η2

n|∇2wn|2

+ (1− ηn)2|∇2ϕn|2
)
dx ≤ C

(
ε3
nk

4

ε4
n

(
C0

k
+ 1

)
εn||wn − ϕn||2L2(L) +

ε2
nk

2

ε2
n

(
C0

k
+ 1

)
εn

+ ε3
n

(
k2

ε2
n

1

ε2
n

+
1

ε4
n

)
|{x ∈ Ln : ϕn 6= ±1}|+

(
C0

k
+ 1

)
εn

)
≤ C

k

for n sufficiently large. To bound the integral involving the potential W we first remark that by
Hypotheses 2.2 (and Remark 2.3) W grows quadratically at infinity. Splitting the integral into regions
where | − ε2

n∆zn + zn| ≤ 2 and | − ε2
n∆zn + zn| > 2, we use the quadratic growth of W to obtain,∣∣∣∣ 1

εn

∫
Ln

W (−ε2
n∆zn + zn)dx

∣∣∣∣ ≤ sup|s|≤2W (s)

εn
|Ln|+

C2
w

4εn

∫
Ln

(−ε2
n∆zn + zn)2dx

≤ C

k
+
C2
w

2

∫
Ln

ε3
n|∆zn|2dx+

C2
w

2εn

∫
Ln

z2
ndx ≤

C

k
+
C2
w

2

∫
Ln

ε3
n|∆zn|2dx+

C2
w

εn

∫
Ln

(w2
n + ϕ2

n)dx

≤ C

k
+
C2
w

2

∫
Ln

ε3
n|∆zn|2dx+

C

εn

∫
Ln

W (wn)dx+
C

εn
|Ln| ≤

(
C0

k
+ 1

)
εn +

C

k
≤ C

k
(3.27)

for n sufficiently large, where we again used (3.20). Analogous calculations are used to estimate
ε5
n

∫
Ln
|∇∆zn|2dx. Combining estimates (3.25), (3.26)-(3.27) with (3.22) completes the proof. �

4. Proof of the Liminf Inequality

In this section we prove the Liminf Inequality of Theorem 2.8. We use the blow-up method to reduce
the problem to a unit cube (see [7]). In what follows we assume q ≤ q̄ (see Theorem 3.5 and Proposition
3.2). Fix εn → 0+ and {vn} ∈W 3,2(Ω), vn → v ∈ L2(Ω). We may assume that

lim inf
n→∞

Fεn [vn] <∞, (4.1)
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and we extract a subsequence {vnk} of {vn} satisfying

lim
k→∞

Fεnk [vnk ] = lim inf
n→∞

Fεn [vn] <∞.

By selecting a further subsequence, if necessary, we can assume that supk Fεnk [vnk ] < ∞ so that by

(3.12)

sup
k
Iεnk [vnk ; Ω] =: K <∞. (4.2)

Since vnk → v in L2(Ω), Theorem 3.5 implies that v ∈ BV (Ω; {−1, 1}). Therefore,

v = χE − χΩ\E , (4.3)

where PerΩ(E) <∞. In what follows, to simplify notation we denote the subsequence of {vn} extracted
in (4.2) by {vn}.

We first note that, due to (4.1) and (4.2), the sequences of functions

fn :=
1

εn
W (−ε2

n∆vn + vn)− εnq|∇vn|2 + (1− 2q)ε3
n|∆vn|2 + (1− q)ε5

n|∇∆vn|2,

gn :=
1

εn
W (vn) + εn|∇vn|2 + ε3

n|∆vn|2 + ε5
n|∇∆vn|2

are bounded in L1(Ω). Consider the signed Radon measures defined on Borel subsets of Ω,

λn(E) :=

∫
E

fn dx, ζn(E) :=

∫
E

gn dx.

Up to subsequences, not relabeled, we may assume that there exist Radon measures λ, µ, ζ such that

λn ⇀∗ λ, |λn|⇀∗ µ, ζn ⇀
∗ ζ

in the space Mb(Ω) of all bounded signed Radon measures on Ω (see Proposition 1.202 in [12]). We
claim that λ ≥ 0.

Indeed, for r > 0 sufficiently small |λ|(Q(x0, r)) > 0, and by the Besicovitch Derivation Theorem
(Theorem 1.155 in [12]), for |λ| − a.e. x0 ∈ Ω

dλ

d|λ|
(x0) = lim

r→0+

λ(Q(x0, r))

|λ|(Q(x0, r))
∈ R, (4.4)

where |λ| is the total variation of λ. Fix any x0 for which (4.4) holds. Let η ∈ (0, 1) and find r̄η > 0
such that

dλ

d|λ|
(x0) ≥ λ(Q(x0, r))

|λ|(Q(x0, r))
− η (4.5)

for all 0 < r < r̄η.

Fix 0 < r0 < r̄η and k ∈ N. By Proposition 3.6 for every n there exists in ∈ {1, . . . , k} such that

Fεn [v;Q(x0, r)] ≥ qIεn [v;Q(x0, r)]−
q

q∗
6K

k
(4.6)

for all r ∈
(
r0
2

(
1 + 2in−1

2k

)
, r02

(
1 + in

k

))
where K is given in (4.2). Since in ∈ {1, . . . , k} for all n, there

exists i(1) ∈ {1, . . . , k} such that i(1) = in for countably many n, say nl, l ∈ N. Let k be so large that

q

q∗

6K

k
≤ |λ|(Q(x0, r0/2))η (4.7)

and take

r1 ∈
(
r0

2

(
1 +

2i(1) − 1

2k

)
,
r0

2

(
1 +

i(1)

k

))
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such that µ(∂Q(x0, r1)) = 0. Then by (4.5), Corollary 1.204 in [12], (4.6), and (4.7)

dλ

d|λ|
(x0) ≥ λ(Q(x0, r1))

|λ|(Q(x0, r1))
− η = lim

n→∞

Fεnl [vnl ;Q(x0, r1)]

|λ|(Q(x0, r0))
− η

≥ lim inf
n→∞

qIεnl [vnl ;Q(x0, r1)]− |λ|(Q(x0, r0/2)η

|λ|(Q(x0, r1))
− η

≥ −2η,

where we used the fact that r0/2 < r1 so that |λ|(Q(x0, r1)) ≥ |λ|(Q(x0, r0/2)). Letting η → 0+ we
conclude that dλ

d|λ| (x0) ≥ 0.

This shows that λ ≥ 0. In turn, by the Radon-Nikodym and Lebesgue Decomposition theorems
([12] Theorem 1.180) we can decompose

λ = λac + λs,

where λac � ξ, λs ≥ 0, λs ⊥ ξ, with

ξ(B) := Hd−1(B ∩ ∂∗E), B ⊂ Ω Borel.

We claim that for Hd−1-a.e. x0 ∈ Ω ∩ ∂∗E,

dλac
dξ

(x0) ≥ md, (4.8)

where md is the constant defined in (2.2). Observe that if (4.8) holds, then, since λs ≥ 0,

lim
n→∞

Fεn [vn; Ω] = lim
n→∞

λn(Ω) ≥ λ(Ω) ≥ λac(Ω) =

∫
Ω

dλac
dξ

dξ

≥ mdHd−1(Ω ∩ ∂∗E) = mdPer(E; Ω),

which gives (2.4) (see (2.3) and (4.3)). In the remainder of the proof we show (4.8).

To this end we first note that by the Besicovitch Derivation Theorem (Theorem 1.155 in [12]),
for Hd−1-a.e. x0 ∈ Ω ∩ ∂∗E

∞ >
dλac
dHd−1

(x0) = lim
r→0+

λ(Qν(x0, r))

Hd−1(Qν(x0, r) ∩ ∂∗E)
= lim
r→0+

λ(Qν(x0, r))

rd−1
, (4.9)

∞ >
dζac
dHd−1

(x0) = lim
r→0+

ζ(Qν(x0, r))

Hd−1(Qν(x0, r) ∩ ∂∗E)
= lim
r→0+

ζ(Qν(x0, r))

rd−1
. (4.10)

Fix x0 ∈ Ω ∩ ∂∗E for which (4.9) and (4.10) hold. Then there exists r̄ > 0 such that

ζ(Qν(x0, r))

rd−1
≤ dζac
dHd−1

(x0) + 1 =: M

for all 0 < r ≤ r̄. Let 0 < r0 ≤ r̄ be such that ζ(∂Qν(x0, r0)) = µ(∂Qν(x0, r0)) = 0. Then by Corollary
1.204 in [12],

lim
n→∞

Iεn [vn;Q(x0, r0)]

rd−1
0

=
ζ(Qν(x0, r0))

rd−1
0

≤M

and so

Iεn [vn;Q(x0, r0)] ≤ (M + 1) rd−1
0

for all n ≥ n0 = n0(r0). Let k ∈ N. By Proposition 3.6 with K := (M + 1)rd+1
0 , for each n ≥ n0 there

exists in ∈ {1, . . . , k} such that

Iεn [vn;Ln] ≤ (M + 1) rd−1
0

k
,

where Ln := Q
(
r0
2

(
1 + in

k

))
\Q
(
r0
2

(
1 + in−1

k

))
.
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Since in ∈ {1, . . . , k} for all n ≥ n0, there exists i(1) ∈ {1, . . . , k} such that i(1) = in for infinitely

many n, say n
(1)
l , l ∈ N. Let L(1) := Li(1) . Then

Iε
n
(1)
l

[v
n
(1)
l

;L(1)] ≤ (M + 1) rd−1
0

k

for all n
(1)
l , l ∈ N. Let r1 ∈

(
r0
2

(
1 + 2i(1)−1

k

)
, r02

(
1 + i(1)

k

))
be such that ζ(∂Qν(x0, r1)) =

µ(∂Qν(x0, r1)) = 0. Inductively, for every j we find a sequence {v
n
(j)
l

}l∈N ⊂ {vn(j−1)
l

}l∈N, a layer

L(j) := Q

(
rj−1

2

(
1 +

i(j−1)

k

))
\Q
(
rj−1

2

(
1 +

i(j−1) − 1

k

))
(4.11)

such that

Iε
n
(j)
l

[v
n
(j)
l

;L(j)] ≤
(M + 1) rd−1

j−1

k
(4.12)

for all l ∈ N, and we take

rj ∈
(
rj−1

2

(
1 +

2i(j) − 1

2k

)
,
rj−1

2

(
1 +

i(j)

k

))
(4.13)

such that ζ(∂Qν(x0, rj−1)) = µ(∂Qν(x0, rj−1)) = 0. Note that rj → 0+.
Since by (4.9), Corollary 1.204 in [12],

dλac
dHd−1

(x0) = lim
j→∞

λ(Qν(x0, rj))

rd−1
j

= lim
j→∞

lim
n→∞

Fεn [vn;Q(x0, rj)]

rd−1
j

and by Theorem 3.59 from [1] (see also (2.10) and (2.11))

lim
j→∞

lim
n→∞

1

rdj

∫
Q(x0,rj)

|vn − v0|2dx = lim
j→∞

1

rdj

∫
Q(x0,rj)

|v − v0|2dx = 0,

also by (4.12) and using the fact that for  ∈ N, ε
n
(j)
l

→ 0 as l→∞, we can use a diagonal argument

to find ε(j) ∈ {ε
n
(j)
l

}l∈N and ṽj ∈ {vn(j)
l

}l∈N such that ε(j)/rj → 0,

dλac
dHd−1

(x0) = lim
j→∞

Fε(j) [ṽj ;Q(x0, rj)]

rd−1
j

, (4.14)

lim
j→∞

1

rdj

∫
Q(x0,rj)

|ṽj − v0|2dx = 0, (4.15)

Iε(j) [ṽj ;L(j)] ≤
(M + 1) rd−1

j−1

k
, (4.16)

where v0 was introduced in Proposition 3.7. Define

wj(y) := ṽj(x0 + rjy), y ∈ Qν(0, 1),

and
L := Qν(0, 1)\Qν(0, 1− 1/(2k)).

Since L(j) ⊇ Q(x0, rj)\Q(x0, rj(1− 1/(2k))) =: L by (4.11) and (4.13), by (4.16) we have

Iε(j)/rj [wj , L] =
1

rd−1
j

Iε(j) [ṽj , x0 + rjL] ≤ 1

rd−1
j

Iε(j) [ṽj , L(j)] ≤
rd−1
j−1

rd−1
j

(M + 1)

k
≤ (M + 1) 2d−1

k
,

where we also used rj >
rj−1

2 . Moreover (4.14) and (4.15) become

dλac
dHd−1

(x0) = lim
j→∞

Fε(j)/rj [wj ;Qν(0, 1)],

and

lim
j→∞

∫
Qν(0,1)

|wj − v0|2dy = 0.
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We can apply Proposition 3.7 to obtain

dλac
dHd−1

(x0) ≥ md −
C

k
.

Letting k →∞ completes the proof.

5. Proof of the Limsup Inequality

We now turn to the proof of (2.5), where we follow closely the argument in [7].

Step 1. Assume first that the target function v has a flat interface orthogonal to a given direction
ν ∈ Sd−1, and that Ω has Lipschitz boundary that meets this interface orthogonally. More precisely,
without loss of generality (under suitable rigid transformations of the coordinate system), we assume
that v ∈ BV (Ω; {±1}) is of the simple form

v(x) :=

{
−1 if xd < 0,
1 if xd > 0,

where we use the notation xd := x · ed = x · ν, and that the normal to ∂Ω is orthogonal to ed for all
x ∈ ∂Ω with |xd| small enough. Let ρ > 0. By definition of md (see (2.2) and the remark after), there
exist ε0 > 0 and w ∈ Aν such that∫

Q

(
1

ε0
W (−ε2

0∆w + w)− ε0q |∇w|2 + (1− 2q)ε3
0|∆w|2 + (1− q)ε5

0|∇∆w|2
)
dx < md + ρ. (5.1)

Define

wn(x) :=


−1 if xd < − εn

2ε0
,

w
(
ε0x
εn

)
if |xd| ≤ εn

2ε0
,

1 if xd >
εn
2ε0
.

Note that, for n large enough, wn ∈W 3,2(Ω). Moreover, we claim that wn → v in L2(Ω). Indeed,

‖wn − v‖L2(Ω) = ‖wn − v‖L2({x∈Ω: |xd|< εn
2ε0
}) ≤ ‖wn‖L2({x∈Ω: |xd|< εn

2ε0
}) + ‖v‖L2({x∈Ω: |xd|< εn

2ε0
}),

where for n sufficiently large

‖v‖L2({x∈Ω: |xd|< εn
2ε0
}) =

∣∣∣∣{x ∈ Ω : |xd| <
εn
2ε0

}∣∣∣∣→ 0 as n→∞.

Further, setting Ω′ := {x′ ∈ Rd−1 : (x′, 0) ∈ Ω}, we have for sufficiently large n, that {x ∈ Ω : |xd| ≤
εn/(2ε0)} = Ω′ × [−εn/(2ε0), εn/(2ε0)]. Hence, applying the change of variables t := ε0xd

εn
yields

‖wn‖2L2({x∈Ω: |xd|< εn
2ε0
}) =

∫
{
x∈Ω:|xd|< εn

2ε0

}
∣∣∣∣w(ε0x

εn

)∣∣∣∣2 dx =
εn
ε0

∫ 1/2

−1/2

∫
Ω′

∣∣∣∣w(ε0x
′

εn
, t

)∣∣∣∣2 dx′dt. (5.2)

Since w is periodic in the first d−1 arguments, applying Fubini’s Theorem and the Riemann-Lebesgue

Lemma (see for example Lemma 2.85 in [12]) to
∫ 1/2

−1/2

∣∣∣w ( ε0x′εn
, t
)∣∣∣2 dt ∈ L1

loc(Rd−1) gives

lim
n→∞

∫
Ω′

∫ 1/2

−1/2

∣∣∣∣w(ε0x
′

εn
, t

)∣∣∣∣2 dt dx′ =

∫
Ω′

∫
Q′

∫ 1/2

−1/2

|w(y, t)|2 dt dy dx′ = Ld−1(Ω′)||w||2L2(Q).

It then follows from (5.2) that

‖wn‖2L2({x∈Ω: |xd|< εn
2ε0
}) ≤

Cεn
ε0
||w||2L2(Q) → 0, as n→∞.

This concludes the proof that wn → v in L2(Ω).
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Ω1 2Ω

E

Ω

δ
4

U δ
4

Figure 3. Construction in Step 2.

Since wn = ±1 on {x ∈ Ω : |xd| ≥ εn
2ε0
}, the contribution to the energy only comes from the

interfacial region {x ∈ Ω : |xd| ≤ εn
2ε0
}, where we have

−ε2
n∆wn(x) + wn(x) = −ε2

0∆w

(
ε0x

εn

)
+ w

(
ε0x

εn

)
.

Setting, as before, t := ε0xd
εn

we have for n sufficiently large

Fεn [wn; Ω] =

∫
{x∈Ω: |xd|< εn

2ε0
}

{
1

εn
W
(
−ε2

0∆w + w
)
− ε2

0

εn
q |∇w|2 + (1− 2q)

ε4
0

εn
|∆w|2+

+ (1− q) ε
6
0

εn
|∇∆w|2

}(
ε0x

εn

)
dx

=

∫
Ω′

∫ 1
2

− 1
2

{
1

ε0
W
((
−ε2

0∆w + w
)
− qε0 |∇w|2 +

+ (1− 2q)ε3
0|∆w|2 + (1− q)ε5

0|∇∆w|2
}(ε0x

′

εn
, t

)}
dt dx′.

Since w is periodic in the first d− 1 arguments, also the functions

x′ 7→
∫ 1

2

− 1
2

W (−ε2
0∆w + w)(x′, t) dt, x′ 7→

∫ 1
2

− 1
2

|∇w|2 (x′, t) dt,

x′ 7→
∫ 1

2

1
2

|∆w|2(x′, t) dt, and x′ 7→
∫ 1

2

− 1
2

|∇∆w|2(x′, t) dt

are periodic and locally in L1, where for the integral involving W we used the quadratic growth
assumption from Hypothesis 2.2. Thus, by the Riemann-Lebesgue Lemma and the choice of w (see
(5.1)),

lim
n→∞

Fεn [wn; Ω] = Ld−1(Ω′)

∫
Q

{ 1

ε0
W (−ε2

0∆w + w)− qε0 |∇w|2 + (1− 2q)ε3
0|∆w|2

+ (1− q)ε5
0|∇∆w|2

}
dx ≤ (md + ρ)PerΩ({v = 1}), (5.3)

and the limsup inequality follows since ρ > 0 is arbitrarily small.

Step 2. Consider now the case in which

v = χE − χΩ\E ,



18 Fonseca, Hayrapetyan, Leoni and Zwicknagl

where PerΩ(E) < ∞ and E has the form E = P ∩ Ω with P a polyhedron, i.e., there is L ∈ N such
that ∂P = H1 ∪ H2 ∪ · · · ∪ HL ∪ F with pairwise disjoint relatively open convex polyhedra Hi of
dimension d− 1, Hi ⊂ {x ∈ Rd : (x− xi) · νi = 0} for some xi ∈ Rd and νi ∈ Sd−1, i = 1, . . . , L, and
F is the union of a finite number of convex polyhedra of dimension d− 2. Finally, we assume that E
meets the boundary of Ω transversally, more precisely

∂Ω ∩ ∂P is the union of a finite number of C1 manifolds of dimension d− 2. (5.4)

We extend v to Rd by setting

v(x) := χP (x)− χRd\P (x),

and define

ϕn := v ∗Ψεn (5.5)

with mollifiers Ψεn (see (3.18)). For fixed (small) 0 < δ < 1 set

Uδ := {x ∈ Ω : dist(x, ∂Ω ∪ F ) ≤ δ}

and let H ′i be relatively open subsets of Hi with a d− 2 dimensional C∞ boundary such that{
x ∈ Hi ∩ Ω : dist(x, ∂Ω ∪ F ) ≥ δ

2

}
⊂ H ′i ⊂ H ′i ⊂ Hi ∩ Ω

and H ′i ∩ U δ
4

= ∅. Fix 0 < η < δ/2, and set for every i = 1, 2, . . . , L,

Ωi := {x+ tνi : x ∈ H ′i, |t| < η} .

Taking η sufficiently small we may assume, without loss of generality, that Ω1, . . . ,ΩL are pairwise
disjoint and

Ωi ∩ U δ
4

= ∅. (5.6)

We apply Step 1 to every Ωi to obtain a sequence {win} ⊂ W 3,2(Ωi) such that win → v in L2(Ωi),
and limn→∞ Fεn [win; Ωi] ≤ (md + ρ)Hd−1(Hi ∩ Ωi). For every δ > 0 choose cut-off functions ηδ ∈
C∞c (Rd; [0, 1]) such that

ηδ = 0 in Uδ, ηδ = 1 in Rd \ U2δ, ‖∇kηδ‖L∞(Rd) ≤ C/δk for k = 1, 2, 3. (5.7)

Define Vn by

Vn :=

{
ηδw

i
n + (1− ηδ)ϕn in Ωi, i = 1, . . . , L,

η δ
8
ϕn in A := Ω \ (Ω1 ∪ · · · ∪ ΩL).

(5.8)

We claim that Vn ∈W 3,2(Ω) and satisfies Neumann boundary conditions on ∂Ω. Indeed, considering
Vn in the neighborhood of ∂A, we observe that by construction of win in Step 1

win(x) = v(x) for x ∈ Ωi and dist(x,Hi) ≥
εn
2ε0

.

Hence, from (5.5), for sufficiently large n we have win = ϕn in a neighborhood of {x ∈ ∂Ωi :
dist(x,Hi) = η} (the part of ∂Ωi parallel to Hi), and by (5.6) in that region both ηδw

i
n + (1− ηδ)ϕn

and η δ
8
ϕn are equal to ϕn. In addition, {x ∈ ∂Ωi : dist(x,Hi) < η} (the part of ∂Ωi orthogonal

to Hi) is contained in Uδ\Uδ/4 and both ηδw
i
n + (1 − ηδ)ϕn and η δ

8
ϕn are equal to ϕn also in that

region. Finally, Vn is identically zero in a neighborhood of U δ
8

so the Neumann boundary conditions

are satisfied.

Furthermore, limn→∞ ||Vn − v||L2(Ω) ≤ Cδ, since win → v in L2(Ωi) and ϕn → v in L2(Ω\U δ
8
).

It remains to estimate the energies. By (5.5), Vn is possibly different from ±1 only on U δ
4

and on

Rn := {x ∈ Ω : dist(x, ∂P ) ≤ max{εn/(2ε0), εn}} .
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Using the notation from (5.8), Vn = η δ
8
ϕn on U δ

4
, Vn = ϕn on A\U δ

4
, A∩Rn ⊂ Uδ andHd−1(∂P∩Uδ) ≤

Cδ. Thus, for n sufficiently large,

Fεn [Vn;A] ≤
∣∣∣Fεn [η δ

8
ϕn;U δ

4
]
∣∣∣+

∫
A∩Rn

( 1

εn
W (−ε2

n∆ϕn + ϕn) + εn|q||∇ϕn|2 + (1− 2q)ε3
n|∆ϕn|2

+ (1− q)ε5
n|∇∆ϕn|2

)
dx ≤ Cδ,

where we also used (3.19) and (5.7) to bound the derivatives of ϕn and η δ
8
, respectively. Next we

estimate the energy in Ωi. In Ωi ∩ Uδ, Vn = ϕn and using (3.19) yields

Fεn [Vn; Ωi ∩ Uδ] = Fεn [Vn; Ωi ∩ Uδ ∩Rn] ≤ Cδ. (5.9)

To obtain estimates inside T := Ωi ∩ (U2δ\Uδ) we first observe that

∂xiVn = win∂xiηδ + ηδ∂xiw
i
n − ϕn∂xiηδ + (1− ηδ)∂xiϕn,

and arguing as in (5.3),

lim
n→∞

ε2k−1
n ||∇kwin||2L2(Ωi∩U2δ)

≤ C(ρ)Hd−1(Hi ∩ U2δ) ≤ C(ρ) δ for k = 0, . . . 3, (5.10)

where we also used the fact that w ∈ W 3,∞
loc (Rd). Combined with the bounds on ϕn from (3.19), it

follows that,∫
T

εn|∇Vn|2dx =

∫
T∩Rn

εn|∇Vn|2dx ≤ C(ρ)
(εn
δ2
||win||2L2(T ) + εn||∇win||2L2(T ) +

εn
δ2
||ϕn||2L2(T )+

+ εn||∇ϕn||2L2(T )

)
≤ C(ρ)

(
δ +

εn
δ2

)
.

Analogous calculations for the higher derivatives of Vn, yield the bound

Fεn [Vn; Ωi ∩ (U2δ \ Uδ)] ≤ C(ρ) δ (5.11)

for n sufficiently large. Next, by (5.8), (5.10) and (3.19), we have

lim
n→∞

∫
Ωi∩U2δ

εn|∇Vn|2 dx ≤ C(ρ) δ,

and hence∫
Ωi\U2δ

{
1

εn
W (Vn)− εnq|∇Vn|2 + (1− 2q)ε3

n|∆Vn|2 + (1− q)ε5
n|∇∆Vn|2

}
dx

≤
∫

Ωi

{
1

εn
W (Vn)− εnq|∇Vn|2 + (1− 2q)ε3

n|∆Vn|2 + (1− q)ε5
n|∇∆Vn|2

}
dx+ C(ρ) δ.

(5.12)

Combining (5.3), (5.9), (5.11), and (5.12), we obtain for δ sufficiently small a sequence Vn ∈W 3,2(Ω),
with Neumann boundary conditions on ∂Ω, satisfying

lim
n→∞

||Vn − v||L2(Ω) ≤ ρ

and

lim sup
n→∞

Fεn [Vn] = lim sup
n→∞

Fεn [Vn; Ω] ≤ lim sup
n→∞

L∑
i=1

Fεn [Vn; Ωi] + lim sup
n→∞

Fεn [Vn;A]

≤ (md + ρ)

L∑
i=1

Hd−1(Ωi ∩Hi) + C(ρ) δ

≤ (md + ρ)Hd−1(Ω ∩ ∂P ) + ρ,

and the Limsup Inequality (2.4) follows by a standard diagonalizing argument.
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Symbol Description Value
a4 10−5J/m2

b line tension 5× 10−19J
σ surface tension 5× 10−6 to 10−4J/m2

κ bending rigidity of the membrane 10−19J
Λ composition-curvature coupling constant 4.9× 10−12J/m

Table 1. Parameter descriptions and characteristic values, [20].

Step 3. Lastly we consider the case in which the target function is

v = χE − χΩ\E ,

where E is an arbitrary set of finite perimeter in Ω. Since Ω is bounded and has C2 boundary, we can
approximate E with smooth sets (see Remark 3.43 in [1]) and then with polyhedral sets. In particular,
we may find sets Ek ⊂ Ω of the form Ek = Pk ∩Ω, where Pk are polyhedral sets satisfying (5.4) such
that Hd−1(∂Ek ∩ ∂Ω) = 0, χEk → χE in L2(Ω), and PerΩ(Ek) → PerΩ(E) as k → +∞. We apply
Step 2 to each function vk := χEk − χΩ\Ek to find a sequence

V kn → vk

satisfying
lim sup
n→∞

Fεn [V kn ; Ω] ≤ mdHd−1(Ek ∩ ∂Pk)

and
lim sup
k→∞

lim sup
n→∞

Fεn [V kn ] ≤ lim sup
k→∞

(
mdHd−1(Ek ∩ ∂Pk)

)
= mdPerΩ(E).

The general result now follows by a diagonalizing argument.

Appendix

We derive the energy functional (1.2) from (1.1). To eliminate the dependence on h we assume that
φ and h satisfy the Euler-Lagrange equation

δE
δh

(φ, h) = 0. (5.13)

After changing variables, x := x̄/L, u(x) := φ(x̄) in (1.1) we have

1

Ld
E [u, h] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2 +

σ

2L2
|∇h|2 +

k

2L4
[∆h]2 +

Λ

L2
u∆h

)
dx, (5.14)

where Ω := {x/L : x ∈ D}. Assuming natural boundary conditions, the Euler-Lagrange equation
(5.13) takes the form {

∆
(
k
L4 ∆h− σ

L2h+ Λ
L2u

)
= 0 in Ω,

∂h
∂n = 0, ∂∆h

∂n = 0, ∂u∂n = 0, ∂∆u
∂n = 0 on ∂Ω.

(5.15)

Consider the Fourier Series expansions of h and u,

h =

∞∑
i=0

hiψi, u =

∞∑
i=0

uiψi,

where ψi are the eigenfunctions of −∆ on H1(Ω) with Neumann boundary conditions. Denote the
corresponding nonnegative eigenvalues by λ2

i . Then, since ψ0 = const (due to Neumann boundary
conditions), we have

∆h = −
∞∑
i=1

λ2
ihiψi, and ∆2h =

∞∑
i=1

λ4
ihiψi,
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and thus by (5.15)
∞∑
i=1

λ2
i

(
k

L2
λ2
ihi + σhi − Λui

)
ψi = 0.

Taking the L2 inner product with ψj , and noting that 〈ψi, ψj〉L2(Ω) = δij , we obtain

λ2
j

(
k

L2
λ2
jhj + σhj − Λuj

)
= 0 for j = 1, . . . ,∞.

Solving for hj yields

hj =
Λuj

σ + (k/L2)λ2
j

for j = 1, . . . ,∞,

and

h(x) =

∞∑
i=0

hiψi(x) = const+

∞∑
i=1

hiψi(x) = const+

∞∑
i=1

Λuiψi(x)

σ + (k/L2)λ2
i

.

Using this expansion and ∆ψi = −λ2
iψi gives

−∆h(x) =

∞∑
i=1

Λλ2
iuiψi(x)

σ + (k/L2)λ2
i

. (5.16)

In addition, multiplying (5.15) by h and integrating by parts, we obtain∫
Ω

(
(k/L2)(∆h)2 + σ|∇h|2 + Λu∆h

)
dx = 0,

and consequently

1

2

∫
Ω

(
(k/L2)(∆h)2 + σ|∇h|2

)
dx = −1

2

∫
Ω

Λu∆h dx. (5.17)

Substituting (5.17) into (5.14) yields

1

Ld
E [u, h] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2 +

Λ

2L2
u∆h

)
dx. (5.18)

To eliminate the dependence on h observe that since 〈ψi, ψj〉L2(Ω) = δij , (5.16) implies that∫
Ω

u∆h dx = −
∫

Ω

( ∞∑
i=0

uiψi(x)

) ∞∑
j=1

Λλ2
jujψj(x)

σ + (k/L2)λ2
j

 dx = −
∞∑
i=1

Λλ2
iu

2
i

σ + (k/L2)λ2
i

.

Substituting this expression into the energy functional (5.18) yields

1

Ld
E [u] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− 1

2L2

∞∑
i=1

Λ2λ2
i

σ + (k/L2)λ2
i

u2
i

=

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− Λ2

2k

∞∑
i=1

(
(k/L2)λ2

i + σ − σ
σ + (k/L2)λ2

i

)
u2
i

=

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− Λ2

2k

∞∑
i=1

u2
i +

Λ2

2k

∞∑
i=1

(
σ

σ + (k/L2)λ2
i

)
u2
i . (5.19)

At this point one can use a long-wavelength approximation as suggested for example in [20] resulting
in

σ

σ + (k/L2)λ2
i

∼ 1− k

L2σ
λ2
i +

k2

L4σ2
λ4
i ,
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and an approximation energy

1

Ld
Eap[u] :=

∫
Ω

(
f(u) +

b

2L2
|∇u|2

)
dx− Λ2

2L2σ

∞∑
i=1

λ2
iu

2
i +

Λ2k

2L4σ2

∞∑
i=1

λ4
iu

2
i

=

∫
Ω

(
f(u) +

1

2L2

(
b− Λ2

σ

)
|∇u|2 +

Λ2k

2L4σ2
(∆u)2

)
dx, (5.20)

which was studied in [7, 8]. Returning to the full energy in (5.19), we have

1

Ld
E [u] =

∫
Ω

(
f(u) +

b

2L2
|∇u|2 − Λ2

2k
u2

)
dx+

Λ2L2σ

2k2

∞∑
i=1

1
L2σ
k + λ2

i

u2
i

=

∫
Ω

(
f(u) +

b

2L2
|∇u|2 − Λ2

2k
u2 +

Λ2L2σ

2k2
u

(
L2σ

k
−∆

)−1

u

)
dx

=

∫
Ω

(
f(u)− Λ2

2k
u2 +

b

2L2
|∇u|2 +

Λ2

2k
u

(
1− k

L2σ
∆

)−1

u

)
dx

=
Λ2

2k

∫
Ω

(
2k

Λ2
f(u)− u2 +

kb

L2Λ2
|∇u|2 + u

(
1− k

L2σ
∆

)−1

u

)
dx.

Setting

ε :=

√
k

L2σ
, q := 1− bσ

Λ2
, W (u) :=

2k

Λ2
f(u), and F∗ε :=

1

ε

2k

Λ2Ld
E ,

yields

F∗ε [u] :=
1

ε

∫
Ω

(
W (u)− u2 + (1− q)ε2|∇u|2 + u

(
1− ε2∆

)−1
u
)
dx.

We now outline the derivation of (2.1). Given u ∈W 1,2(Ω), we define v ∈W 3,2(Ω) via

−ε2∆v + v = u in Ω and
∂v

∂n
= 0 on ∂Ω,

where n denotes the outward unit normal to ∂Ω, and use the abbreviatory notation v := (1−ε2∆)−1u.
Integrating by parts we obtain∫

Ω

u2 dx =

∫
Ω

(ε4(∆v)2 + 2ε2|∇v|2 + v2) dx,

∫
Ω

u(1− ε2∆)−1u =

∫
Ω

uv dx =

∫
Ω

(ε2|∇v|2 + v2) dx,

and ∫
Ω

|∇u|2 dx =

∫
Ω

∣∣−ε2∇∆v +∇v
∣∣2 dx =

∫
Ω

(
ε4|∇∆v|2 + 2ε2(∆v)2 + |∇v|2

)
dx,

which allows us to rewrite the functional as

F∗ε [u] =

∫
Ω

(
1

ε
W (u) + (1− q)ε|∇u|2 − ε|∇v|2 − ε3(∆v)2

)
dx

=

∫
Ω

(
1

ε
W (u)− εq|∇u|2 + ε3(∆v)2 + ε5|∇∆v|2

)
dx

=

∫
Ω

(
1

ε
W (u)− εq|∇v|2 + (1− 2q)ε3(∆v)2 + (1− q)ε5|∇∆v|2

)
dx.

This is the form that appears in (2.1).
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