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1. Introduction

Our aim in this paper is to study the asymptotic behaviour of a family of coupled singular pertur-
bations of a non-convex functional of the type∫

Ω

f(u(x),∇u(x), ρ(x)) dx,

where u ∈ W 1,p(Ω;Rd) represents the vector-valued fluid density of d fluids present in a container

Ω and is subject to the volume constraint

∫
Ω

u(x) dx = Vf . The energy density f(·, 0, 0) is assumed

to vanish if and only if u ∈ {α, β}, for some fixed {α, β} ⊂ Rd+. Our model includes an additional
unknown ρ, that is taken to be a non-negative L1 function whose volume is also fixed, and which
interplays with the gradient of u in the formation of interfaces. One possible application of this model
is within the theory of phase transitions in the presence of surfactants, in which case ρ represents the
density of the surfactant.

A surfactant (a contraction of the term surface acting agent) is usually an organic compound that
when present in a system has the property of altering its interfacial energy, in general reducing it (see
[18] for a comprehensive study of the properties and applications of surfactants).

In [14], Fonseca, Morini and Slastikov studied a two-phase field model to explain the role of
surfactants in the formation of bubbles in foams. Their energy, which is based on a modification
of the van der Waals-Cahn-Hilliard model for fluid-fluid phase transitions (c.f [8], [19]) suggested by
Perkins, Sekerka, Warren and Langer, includes an additional term that describes the influence of the
surfactant in preventing the coalescence of bubbles and in encouraging the formation of interfaces.
Precisely, in [14], the authors considered a penalized energy of the form∫

Ω

1

ε
W (u) + ε|∇u|2 + ε(ρ− |∇u|)2 dx

where W is a double-well potential and ε is the scaling that is used to drive systems towards phase
separation. The limiting energy functional, obtained by Γ-convergence, reveals that, on the one hand,
the surfactant is essentially located on the interfaces separating the foam bubbles and that, on the
other hand, interfaces are created where the surfactant is present.

The Γ-convergence of a more general coupled class of energies of the form

1

ε

∫
Ω

f
(
u(x), ε∇u(x), ερ(x)

)
dx (1.1)

was addressed by Acerbi and Bouchitté [1] under some convexity hypothesis on f and still in the case
of scalar fluid density.

The objective of this work is to generalise the results of [14] to the coupled case, and of [1] to the
case of vector-valued fluid densities and under non-convexity hypotheses on f .

We point out that our analysis also holds in the case where a mixture of surfactants is considered,
i.e. when ρ : Ω → Rm, m ≥ 1, however, for simplicity of notation, we consider ρ taking nonnegative
real values.

Precisely, we consider a family of energy functionals as in (1.1) where u ∈ W 1,p(Ω;Rd) represents
the vector-valued fluid density of d fluids, d ∈ N, ρ : Ω → [0,+∞) is the density of a surfactant
and Ω is an open bounded subset of RN which represents the container where the d fluids and the
surfactant are mixed. We assume further that each scalar component of u, ui, i ∈ {1, . . . , d}, which
identifies the density of the ith-ingredient of the mixture, is nonnegative, that is, u ∈ Rd+ (we refer
to Section 2 for all the notations used throughout this work). In addition, the bulk energy density
f : Rd+ × Rd×N × R+ → R is assumed to satisfy the following hypotheses:
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(H1) f is nonnegative and continuous on Rd+ × Rd×N × R+;

(H2) f(u, 0, 0) = 0 if and only if u ∈ {α, β}, for some fixed {α, β} ⊂ Rd+.

Also, there exists p ∈ [1,+∞) such that,

(H3)
1

C

(
g(u) + |ξ|p

)
≤ f(u, ξ, ρ) ≤ C

(
h(u, ρ) + |ξ|p

)
for all (u, ξ, ρ) ∈ Rd+ × Rd×N × [0,+∞) and for some C ≥ 1, where g ∈ L∞loc(Rd+; [0,+∞)),

h ∈ L∞loc(Rd+× [0,+∞); [0,+∞)) and g is such that g(u) = 0⇔ u ∈ {α, β} and inf
|u|≥L

g(u) > 0;

(H4) for every M > 0 there exists a constant CM > 0 such that for every (u, ξ) ∈ Rd+ × Rd×N and
every ρ1, ρ2 ∈ [0,+∞),∣∣f(u, ξ, ρ1)− f(u, ξ, ρ2)

∣∣ ≤ CM ∣∣ρ1 − ρ2

∣∣(1 + |ξ|p
)
,

whenever ρ1, ρ2 ≤M and |u| ≤M ;

(H5) lim
ρ→0+

1

ρ
f(α, 0, ρ) = 0, lim

ρ→0+

1

ρ
f(β, 0, ρ) = 0;

(H6) for every M > 0 there exists a constant CM > 0 such that if |u− α| < δ then

|f(u, ξ, ρ)− f(α, ξ, ρ)| ≤ CM |u− α|(1 + |ξ|p),

respectively, if |u− β| < δ then

|f(u, ξ, ρ)− f(β, ξ, ρ)| ≤ CM |u− β|(1 + |ξ|p
)
,

whenever ρ ≤M .

The counterpart of (H3) for p = +∞ leads to sequences of gradients and of surfactants that are
bounded in L∞ which is not physically interesting. A prototype for f , satisfying the above hypothesis
in the case p = 2, is

f(u, ξ, ρ) := |u− α|2|u− β|2 + |ξ|2 + (ρ− |ξ|)2.

However, we point out that our hypothesis are weaker than those considered in [14] and include
functions which do not satisfy polynomial type growth conditions, for example

f(u, ξ, ρ) := |u− α|p|u− β|p + |ξ|p + ρ2e|u|ρ.

In our setting, the volume of the surfactant is given a priori and fixed, and the total amount of
bulk material is preserved, i.e., (u, ρ) ∈ V where

V =

{
(u, ρ) ∈W 1,p(Ω;Rd+)× L1

(
Ω; [0,+∞)

)
:

∫
Ω

ρ(x) dx = Vs,

∫
Ω

u(x) dx = Vf

}
(1.2)

for some Vs > 0 and some Vf = (V 1
f , . . . , V

d
f ) ∈ Rd+ satisfying

|Ω| min(αi, βi) ≤ V if ≤ |Ω| max(αi, βi) for every i = 1, . . . , d, (1.3)

where αi and βi are the i-th components of α and β, respectively.

Our aim in this article is to characterise the asymptotic behaviour, as ε → 0+, of the family of
functionals

Eε(u, ρ) :=
1

ε

∫
Ω

f(u(x), ε∇u(x), ερ(x)) dx, for (u, ρ) ∈W 1,p(Ω;Rd+)× L1
(
Ω; [0,+∞)

)
, (1.4)

subject to the constraints defined in (1.2). We will use a Γ-convergence argument. For this purpose
we consider the space

X(Ω) := L1(Ω;Rd+)×M+(Ω)
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endowed with the product topology τ1 × τ2, where τ1 denotes the strong convergence in L1(Ω;Rd+)
and τ2 stands for the weak*-convergence in the space M+(Ω) of nonnegative finite Radon measures
supported on Ω, and we define

W =

{
(u, µ) ∈ X(Ω) : µ(Ω) = Vs,

∫
Ω

u(x) dx = Vf

}
. (1.5)

Note that if (u, ρ) ∈ W 1,p(Ω;Rd+) × L1
(
Ω; [0,+∞)

)
are such that (u, ρ) ∈ V and µ = ρLN Ω, then

(u, µ) ∈ W.

We now extend the functional Eε to the whole space X(Ω) by setting, for every (u, µ) ∈ X(Ω),

Fε(u, µ) :=


Eε(u, ρ) if u ∈W 1,p(Ω;Rd+), µ = ρLN Ω ,

ρ ∈ L1
(
Ω; [0,+∞)

)
, (u, ρ) ∈ V

+∞ otherwise.

(1.6)

Given ν ∈ SN−1 and θ ∈ [0,+∞) the set

A(ν, θ) :=

{
(u, ρ) ∈W 1,p

loc (Sν ;Rd+)× L1
loc

(
RN ; [0,+∞)

)
: u(y) = α if y · ν = −1

2
,

u(y) = β if y · ν =
1

2
,

∫
Qν

ρ(y) dy ≤ θ,

u and ρ are periodic with period one in the directions of ν1, . . . , νN−1

}
,

(1.7)

represents the class of admissible pairs of density functions and surfactants for (ν, θ), where the
boundary values of u are understood in the sense of traces, {ν1, . . . , νN−1, ν} is an orthonormal basis
of RN and Sν is the strip

Sν :=

{
x ∈ RN : |x · ν| < 1

2

}
.

Finally, we introduce the anisotropic surface energy density σ : SN−1× [0,+∞)→ [0,+∞) defined
by

σ(ν, θ) := inf

{∫
Qν

1

t
f
(
u(y), t∇u(y), tρ(y)

)
dy : t > 0, (u, ρ) ∈ A(ν, θ)

}
, (1.8)

and the limit energy functional F : L1(Ω;Rd+)×M+(Ω)→ R that is given by

F (u, µ) :=



∫
Su

σ

(
νu(x),

dµ

d
(
HN−1 Su

) (x)

)
dHN−1(x)

if (u, µ) ∈ [BV
(
Ω; {α, β}

)
×M+(Ω)] ∩W

+∞ otherwise.

(1.9)

Our first result establishes that the topology in X(Ω) is compact for sequences with bounded
energy. In the case p = 1, this is a direct consequence of Poincaré’s inequality and the fact that
Cf(u, ξ, ρ) ≥ |ξ|. For other values of p, to prove this result we need to make use of the coercivity
condition in (H3), Cf(u, ξ, ρ) ≥ g(u), where inf

|u|≥L
g(u) > 0 (cf. [17]). Precisely, our theorem reads as

follows.
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Theorem 1.1. Assume that hypotheses (H1)-(H3) hold. Let εn → 0 and let (un, ρn) ∈ [W 1,p(Ω;Rd+)×
L1(Ω; [0,+∞)] ∩ V be such that

sup
n
Fεn(un, ρn) < +∞.

Then there exist a subsequence {(unk , ρnk)}k ⊂ {(un, ρn)}n and (u, µ) ∈ [BV (Ω; {α, β})×M+(Ω)]∩W
such that

(unk , ρnk)→ (u, µ) in X(Ω).

The main result of this paper is the following.

Theorem 1.2. Under hypotheses (H1)–(H6), the family of functionals Fε in (1.6) Γ[X(Ω)]-converge
to the functional F in (1.9).

The proof of Theorem 1.2 is based on the blow-up method, introduced by Fonseca & Müller (see
e.g [15] and [16]), which allows us to consider the case where Ω is a small cube and the target function
has planar interface. We also rely on a slicing argument (cf. Lemma 3.1), enabling us to modify a
sequence near the boundary of the cube without increasing the total energy, as well as on periodicity
arguments based on the Riemann-Lebesgue Lemma.

The following property is an immediate consequence of Theorem 1.2 and Theorem 1.1 (see also
Theorem 2.11).

Corollary 1.3. Assume that hypotheses (H1)–(H6) hold and let {(uε, µε)}ε be a sequence such that
(uε, µε) is a minimum point of Fε. Then the sequence {(uε, µε)} is relatively compact with respect to the
(τ1 × τ2)-convergence of X(Ω), and any cluster point (ū, µ̄) of {(uε, µε)}ε belongs to BV (Ω; {α, β})×
M+(Ω) and is a solution of the minimisation problem

min{F (u, µ) : (u, µ) ∈ X(Ω) ∩W}.

This article is organized as follows: in Section 2 we set up the notation and state some preliminary
results on measure theory, functions of bounded variation and Γ-convergence which will be used
throughout the paper. In Section 3 we prove some auxiliary results which will be needed in the sequel.
Section 4 is devoted to the proof of a compactness result for sequences with bounded energy, whereas
the statements and proofs of our main results can be found in Section 5.

2. Preliminaries

In this section we set up the notation used throughout this work and recall some well-known facts
about measure theory, functions of bounded variation and Γ-convergence. Standard references on
these topics include [3, 10, 11, 12, 13], on which most of the presentation is based.

2.1. Notation. Throughout the text, unless otherwise specified, Ω ⊂ RN , N ≥ 2, will denote an open
bounded set with Lipschitz boundary and we will use the following notations.

• |Ω| denotes the Lebesgue measure of Ω.
• Rd+ := [0,+∞)d.

• LN and HN−1 stand, respectively, for the N -dimensional Lebesgue measure and the (N − 1)-
dimensional Hausdorff measure in RN .
• |x| denotes the Euclidean norm of a vector x.
• Given x ∈ RN we write x = (x′, xN ), where x′ stands for its first N − 1 coordinates and xN

for the N -th one.
• Q is the open unit cube centered at the origin with faces normal to the coordinates axes.
• B(x, r) denotes the open ball centered at x ∈ Rd with radius r > 0.
• SN−1 := {x ∈ RN : |x| = 1}.
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• Given ν ∈ SN−1, the set Sν represents the strip

Sν :=

{
x ∈ RN : |x · ν| < 1

2

}
and Qν denotes an open unit cube centered at the origin with two of its faces normal to ν,
i.e., if {ν1, . . . , νN−1, ν} is an orthonormal basis of RN then

Qν :=

{
x ∈ RN : |x · ν| < 1

2
, |x · νi| <

1

2
, i = 1, . . . , N − 1

}
. (2.1)

• Qν(x0, r) := x0 + rQν for x0 ∈ RN , r > 0 and ν ∈ SN−1. If {e1, . . . , eN} is the canonical basis
of RN then QeN (x0, r) = x0 + rQ =: Q(x0, r).

• SO(N) denotes the set of rotations in RN .
• a⊗ b is the N × d-matrix given by (a⊗ b)ij = aibj , a ∈ RN and b ∈ Rd.
• C denotes a generic positive constant whose value might change from line to line.

• lim
n,m→+∞

:= lim
n→+∞

lim
m→+∞

.

2.2. Periodic functions and the Riemann-Lebesgue Lemma. We state here the Riemann-
Lebesgue Lemma that, due to the periodicity in the first N − 1 variables of the admissible functions
for the limit energy functional, will be useful in the proof of Theorem 1.2 (more precisely Lemma 5.4).
We recall that a function v defined in RN is periodic with period one in the direction of a vector ν if
v(y) = v(y + kν), for all y ∈ RN , and is said to be Q-periodic if it is periodic with period one in all
the directions of the canonical basis of RN .

Lemma 2.1 (Riemann-Lebesgue Lemma; cf. Lemma 2.85 in [13]). Let f ∈ Lploc(RN ), 1 ≤ p ≤ +∞,

be a Q-periodic function. Define fn(x) = f
(
x
εn

)
, where {εn}n is a given fixed sequence of positive

real numbers converging to zero. Then the sequence fn converges weakly in Lploc(RN ), 1 ≤ p < +∞

(weakly-* in L∞) to the function

∫
Q

f(x) dx.

The following corollary can be found in [9].

Corollary 2.2. Let fn ∈ Lploc(RN ), 1 < p < +∞, be a sequence of Q-periodic functions such that

‖fn‖Lp(Q) ≤ C and lim
n→+∞

∫
Q

fn(x) dx = f. Define gn(x) = fn

(
x
εn

)
, where {εn}n is a given fixed se-

quence of positive real numbers converging to zero. Then the sequence gn converges weakly in Lploc(RN )

to the function f .

2.3. Remarks on measure theory. Let X be a locally compact separable metric space and let
B(X) denote its Borel σ-algebra. We represent by M(X;RN ) the space of finite RN -valued Radon
measures, that is, the set of all µ : B(X)→ RN , µ = (µ1, ..., µN ), such that

< µ,ϕ >:=

∫
X

ϕdµ ≡
N∑
i=1

∫
X

ϕi dµi

for all ϕ = (ϕ1, ..., ϕN ) ∈ C0(X;RN ), and we endow this space with the weak∗-topology. In particular,

a sequence {µn} ⊂ M(X;RN ) is said to weak∗-converge to µ ∈ M(X;RN ) (indicated by µn
?
⇀ µ) if

for all ϕ ∈ C0(X;RN )

lim
n→+∞

∫
X

ϕdµn =

∫
X

ϕdµ.

If N = 1 we write by simplicity M(X) and we denote by M+(X) its subset of positive measures.
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The following is a well known result on measure theory which is important to understand the
structure of the class of BV -functions.

Theorem 2.3 (Lebesgue-Radon-Nikodým Theorem). Let µ ∈M+(X) and ν ∈M(X;RN ). Then

(i) there exist two RN -valued measures νa and νs such that

ν = νa + νs (2.2)

with νa << µ and νs ⊥ µ. Moreover, the decomposition (2.2) is unique, that is, if ν = ν̄a + ν̄s
for some measures ν̄a, ν̄s, with ν̄a << µ and ν̄s ⊥ µ, then νa = ν̄a and νs = ν̄s;

(ii) there is a µ-measurable function u ∈ L1(Ω;RN ) such that

νa(E) =

∫
E

u dµ

for every E ∈ B(Ω). The function u is unique up to a set of µ measure zero.

The decomposition ν = νa+νs is called the Lebesgue decomposition of ν with respect to µ (see [13,
Theorem 1.115]), νa and νs are called, respectively, the absolutely continuous part and the singular
part of ν with respect to µ and the function u is called the Radon-Nikodým derivative of ν with respect
to µ, denoted by u = dν/dµ (see [13, Theorem 1.101]).

In the sequel, we will often identify a function f ∈ L1
(
Ω; [0,+∞)

)
with the measure fLN Ω.

Given µ ∈ M(X;RN ) its total variation will be indicated by |µ| and its support by supp µ. In
addition, given E ∈ B(X) we will denote by µ E the measure given by µ E(A) := µ(E ∩ A) for
every A ∈ B(X).

The next result is a strong version of the Besicovitch Derivation Theorem due to Ambrosio and
Dal Maso [2] (see also [3, Theorem 2.22 and Theorem 5.52] or [13, Theorem 1.155]) and it is crucial
for the proof of Theorem 1.2 (see Lemma 5.1).

Theorem 2.4. Let µ ∈ M+(Ω) and ν ∈ M(Ω;RN ). Then there exists a Borel set E ⊂ Ω with
µ(E) = 0 such that for every x ∈ (supp µ)\E

dν

dµ
(x) =

dνa
dµ

(x) = lim
ε→0+

ν
(
(x+ εD) ∩ Ω

)
µ
(
(x+ εD) ∩ Ω

) ∈ R

and
dνs
dµ

(x) = lim
ε→0+

νs
(
(x+ εD) ∩ Ω

)
µ
(
(x+ εD) ∩ Ω

) = 0,

where D is any bounded, convex, open set containing the origin and the exceptional set E is independent
of the choice of D.

2.4. Functions of bounded variation. We recall that a function u ∈ L1(Ω;Rd) is said to be of
bounded variation, and we write u ∈ BV (Ω;Rd) (or BV (Ω) for d = 1), if all its first order distributional
derivatives Djui belong to M(Ω). It is well known that BV (Ω;Rd) is a Banach space when endowed
with the norm

‖u‖BV = ‖u‖L1 + |Du|(Ω)

where Du is the matrix-valued measure whose entries are Djui.

Clearly, we have that any u ∈W 1,1(Ω;Rd) is a BV -function with Du ∈ L1(Ω;Rd) and the measures
Duij are absolutely continuous with respect to the Lebesgue measure.

Given u ∈ BV (Ω;Rd), let Ωu be the set of points x ∈ Ω where the approximate limit of u exists,
i.e. such that there exists z ∈ Rd with
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lim
ε→0+

−
∫
B(x,ε)

|u(y)− z| dy = 0.

If x ∈ Ωu and z = u(x) we say that u is approximately continuous at x (or that x is a Lebesgue point
of u). The function u is approximately continuous LN -a.e. x ∈ Ωu and

LN (Su) = 0

where we denote by Su the set of points where u is not approximately continuous, ie., Su = Ω \ Ωu.
We say that x ∈ Su is an approximate jump point of u if there exists νu(x) ∈ SN−1 and u±(x) ∈ Rd
such that

lim
r→0+

1

rN

(∫
B+(x,r)

∣∣u(y)− u+(x)
∣∣ dy +

∫
B−(x,r)

∣∣u(y)− u−(x)
∣∣ dy) = 0,

with B±(x, r) := {y ∈ B(x, r) : ±(y − x) · νu(x) > 0}. The triple (νu(x), u+(x), u−(x)) is unique up
to a change of sign of νu(x) and a permutation of u+(x) and u−(x). The set of approximate jump
points is denoted by Ju.

By the Lebesgue-Radon-Nikodým Theorem 2.3, if u ∈ BV (Ω;Rd) then

Du = ∇uLNbΩ +Dsu,

where ∇u is the Radon-Nikodým derivative of Dau with respect to LN .
We recall that an HN−1-measurable set E ⊂ RN is said to be a countably HN−1-rectifiable set if

it can be covered HN−1-almost everywhere by a countable family of (N − 1)-dimensional surfaces of
class C1. The proof of the well known Structure Theorem for BV-functions that we present below can
be found in [3, Theorem 3.78 (Federer-Vol’pert) and Proposition 3.92].

Theorem 2.5 (Structure Theorem for BV -functions). If Ω ⊂ RN is open and u ∈ BV (Ω;Rd), then
Ju is a countably HN−1-rectifiable set oriented by νu, HN−1(Su \ Ju) = |Du|(Su \ Ju) = 0 and Dsu
can be decomposed as Dcu + Dju, where |Dcu|(E) = 0 for every Borel set E with HN−1(E) < +∞,
and

Dju = (u+ − u−)⊗ νuHN−1 Ju.

Dcu and Dju are called the Cantor part and the jump part of the measure Du, respectively.

We also recall that a LN -measurable subset E ⊂ RN is a set of finite perimeter in Ω if the
characteristic function χE of E is a function of bounded variation. In this case, the perimeter of E
in Ω is given by the total variation of χE in Ω, i.e., PerΩ(E) := |DχE |(Ω).

Definition 2.6 (Reduced boundary). Let E be a LN -measurable subset of RN and Ω be the largest
open set such that E is locally of finite perimeter in Ω, i.e., such that χE ∈ BVloc(Ω). The reduced
boundary of E, ∂∗E, is the collection of all points x0 ∈ Ω such that

(i)
∣∣DχE∣∣(B(x0, r)

)
> 0 for all r > 0, that is, x0 ∈ supp|DχE |;

(ii) the limit νE(x0) := lim
r→0+

DχE
(
B(x0, r)

)
|DχE |

(
B(x0, r)

) exists in RN ;

(iii) |νE(x0)| = 1.

The function νE : ∂∗E → SN−1 is called the generalized unit inner normal to E.

It can be easily checked that ∂∗E is a Borel set and that νE is a Borel map. By the Besicovitch
Derivation Theorem 2.4 the measure |DχE | is concentrated on ∂∗E andDχE = νE |DχE |. In addition,
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by De Giorgi’s Rectifiability Theorem, see [3, Theorem 3.59], |DχE | coincides with HN−1 ∂∗E, and
for every x ∈ ∂∗E the following properties hold

lim
r→0+

1

rN−1
HN−1

(
∂∗E ∩QνE(x)(x, r)

)
= 1 (2.3)

lim
r→0+

1

rN
LN
({
y ∈ QνE(x)(x, r) \ E : (y − x) · νE(x) ≥ 0

})
= 0 (2.4)

lim
r→0+

1

rN
LN
({
y ∈ QνE(x)(x, r) ∩ E : (y − x) · νE(x) ≤ 0

})
= 0 (2.5)

(see also Evans & Gariepy [11, § 5.7.2, Corollary 1] and [16] for the proof of (2.3) when cubes are
considered instead of balls).

Remark 2.7. (The set BV (Ω; {α, β})) Given α, β ∈ Rd, α 6= β, we denote by BV
(
Ω; {α, β}

)
the set

of all vector-valued functions u of bounded variation in Ω such that u(x) ∈ {α, β} for LN -a.e. x ∈ Ω.
If u ∈ BV

(
Ω; {α, β}

)
, that is, u = βχE + αχΩ\E for some LN -measurable set E of finite perimeter,

then Su, the reduced boundary ∂∗E and the jump set Ju of u have the same HN−1-measure in Ω. By
(2.4) and (2.5), we also have νu(x) = νE(x), u+(x) = β and u−(x) = α, for HN−1-a.e. x ∈ ∂∗E.

The following theorem is a variant of a well-known approximation result for sets of finite perimeter
and it will be used in the proof of Theorem 1.2 for the construction of the recovery sequence for the
limit energy functional since it will allow us to reduce our study to the case where the limit target is
suitably regular.

Theorem 2.8. Let Ω be an open, bounded set with Lipschitz boundary and let E be a subset of Ω
with PerΩ(E) < +∞. There exists a sequence {En} of polyhedral sets (i.e., for each n, En is a
bounded Lipschitz domain with ∂En = H1,n ∪H2,n ∪ . . . HLn,n, where each Hj,n is a closed subset of a
hyperplane {x ∈ RN : x · νj = cj}, for some cj ∈ R and νj ∈ SN−1, j = 1, . . . , Ln, Ln ∈ N) satisfying
the following properties:

(i) χEn → χE in L1(Ω), as n→ +∞,

(ii) lim
n→+∞

PerΩ(En) = PerΩ(E),

(iii) HN−1(∂∗En ∩ ∂Ω) = 0,

(iv) LN (En) = LN (E).

For the construction of the sets En in Theorem 2.8 we refer to Lemma 3.1 in [4].

2.5. Γ-convergence and its main properties. Let X denote a metric space.

Definition 2.9. (Γ-convergence of a sequence of functionals) Let Fn, F : X → R ∪ {+∞}. The
functional F is said to be the Γ-lim inf (resp. Γ-lim sup) of {Fn}n with respect to the metric of X if
for every u ∈ X

F (u) = inf
{un}

{
lim inf
n→+∞

Fn(un) : un ∈ X, un → u in X

}
(resp. lim sup

n→+∞
).

In this case we write

F = Γ-lim inf
n→+∞

Fn

(
resp. F = Γ-lim sup

n→+∞
Fn

)
.

Moreover, F is said to be the Γ-lim of {Fn}n if

F = Γ-lim inf
n→+∞

Fn = Γ-lim sup
n→+∞

Fn,
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and in this case we write

F = Γ- lim
n→+∞

Fn.

For every ε > 0 let Fε be a functional defined in X with values in R∪{+∞}, Fε : X → R∪{+∞}.

Definition 2.10. (Γ-convergence of a family of functionals) A functional F : X → R∪ {+∞} is said
to be the Γ- lim inf (resp. Γ-lim sup or Γ-lim) of {Fε}ε with respect to the metric of X, as ε→ 0+, if
for every sequence εn → 0+,

F = Γ-lim inf
n→+∞

Fεn

(
resp. F = Γ-lim sup

n→+∞
Fεn or F = Γ- lim

n→+∞
Fεn

)
,

and we write

F = Γ-lim inf
ε→0+

Fε

(
resp. F = Γ-lim sup

ε→0+

Fε or F = Γ- lim
ε→0+

Fε

)
.

One of the most important properties of Γ-convergence is that under appropriate compactness
assumptions it implies the convergence of minimisers of a family of functionals to the minimum of the
limiting functional, as a consequence of the following result (see Corollary 7.20 in [10]).

Theorem 2.11. (Fundamental Theorem of Γ-convergence) Let {Fε}ε be a family of functionals defined
in X and let

F = Γ- lim
ε→0+

Fε.

If uε is a minimiser of Fε in X and uε → u in X then u is a minimiser of F in X and

F (u) = lim
ε→0+

Fε(uε).

3. Auxiliary results

In this section we present some auxiliary results for the proof of Theorem 1.2. Our first lemma
is crucial to apply a blow-up argument in the lower bound estimate for the limit energy (see Propo-
sition 5.2). It relies on a slicing argument applied in the cube Qν , for ν ∈ SN−1, and to a target
function of the type

u0(x) :=

{
β, if x · ν > 0,

α, if x · ν < 0,
(3.1)

allowing us, given a fixed θ ≥ 0, to replace a sequence {(uk, ρk)}, converging to (u0, θ) by a sequence
{(wk, γk)} of admissible pairs in A(ν, θ), still converging to (u0, θ) in X(Ω) and without increasing
the total energy.

Given u ∈ L1
loc

(
RN
)

and ε > 0, we denote by uε the standard mollification of u. We recall that,

i) if u is bounded, then for every 1 ≤ p < +∞,

uε → u in Lploc

(
RN
)
, ‖uε‖∞ ≤ ‖u‖∞ , ‖∇uε‖∞ ≤ C

‖u‖∞
ε

. (3.2)

ii) if u = βχE + αχRN\E for some set E ⊂ RN with Lipschitz boundary, then

‖uε − u‖L1(Ω) =

∫
{x∈Ω: dist(x,Ω∩∂E)≤ε}

|uε(x)− u(x)| dx

≤ C(α, β,N)LN ({x ∈ Ω : dist(x,Ω ∩ ∂E) ≤ ε}) = O(ε).
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Finally we note that the convolution with the target function defined in (3.1), which we denote in
the sequel by ũε, has the following properties

ũε(x) = β if x · ν > ε, ũε(x) = α if x · ν < −ε, (3.3)

∇ũε(x) = 0 if |x · ν|> ε. (3.4)

Lemma 3.1. Assume that (H1)–(H4) hold. Let εk → 0+ as k → +∞. If {vk} ⊂ W 1,p(Qν ;Rd+)

converges in L1(Qν ;Rd+) to u0, and if {λk} ⊂ L1
(
Qν ; [0,+∞)

)
is such that

lim
k→+∞

∫
Qν

λk(x) dx ≤ θ, (3.5)

then there exist a subsequence {k′} of {k} and {(wk′ , γk′)} ⊆ W 1,p(Qν ;Rd+) × L1
(
Qν ; [0,+∞)

)
such

that

(i) wk′ → u0 in L1(Qν ;Rd+) and wk′ = u0 ∗Ψεk′ near the boundary ∂Qν ;

(ii)

∫
Qν

γk′(x) dx ≤ θ for every k′;

(iii) lim sup
k′→+∞

∫
Qν

1

εk′
f
(
wk′(x), εk′∇wk′(x), εk′γk′(x)

)
dx

≤ lim inf
k→+∞

∫
Qν

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx.

Proof. The outline of the proof is as follows. We begin by proving the lemma in the particular case
where vk and λk are uniformly bounded in L∞, i.e., we assume that there exists M > 0 such that, for
all k, ||vk||∞ < M and ||λk||∞ < M . In a second step, we prove that given δ > 0, for every k, there
exist M(k, δ) and vk,δ ∈W 1,p(Qν ;Rd+)∩L∞(Qν ;Rd+), λk,δ ∈ L1

(
Qν ; [0,+∞))∩L∞

(
Qν ; [0,+∞)) such

that ||vk,δ||∞ < M(k, δ), ||λk,δ||∞ < M(k, δ) and∫
Qν

1

εk
f
(
vk,δ(x), εk∇vk,δ(x), εkλk,δ(x)

)
dx ≤

∫
Qν

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx+ δ.

The result then follows by a diagonalisation argument.

Without loss of generality, we assume that ν = eN and we denote Qν by Q. Extracting a subse-
quence if necessary, we may also assume that vk(x)→ u0(x) for LN -a.e. x ∈ Q, and that

lim inf
k→+∞

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx = lim

k→+∞

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx < +∞.

(3.6)

Step 1: case of L∞ uniformly bounded sequences.

Step 1a: construction of wk. Assume that there exists M > 0 such that, for all k, ||vk||∞ < M
and ||λk||∞ < M . We first notice that, if p > 1, then

lim
k→+∞

∫
Q

|vk(x)− u0(x)|p dx = 0. (3.7)

(if p = 1 this holds by hypothesis). In fact, since ||vk||∞ < M and u0 ∈ L∞, the claim follows
immediately since ∫

Q

|vk(x)− u0(x)|p dx ≤ ||vk − u0||1||vk − u0||p−1
∞ .

Notice also that, by (H3) and (3.6), we have

lim sup
k→+∞

∫
Q

εp−1
k |∇vk(x)|p dx < +∞. (3.8)
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For 0 < s < 1/2, define

Qs :=

{
x ∈ Q : dist(x, ∂Q) > s

}
.

Choose a sequence sm ↓ 0+, and for each m ∈ N and h ∈ N define

Lm,h :=

{
x ∈ Q : sm ≤ dist(x, ∂Q) ≤ sm +

1

h

}
.

If vk equals the mollified target function ũk := ũεk for infinitely many k, we choose wk = ũk to achieve
the conclusions of the lemma. Otherwise, without loss of generality, we may assume that for every
k ∈ N, ‖vk − ũk‖Lp(Q;Rd+) > 0. Partition Lm,h into Tm,h,k pairwise disjoint layers

L
(i)
m,h,k :=

{
x ∈ Lm,h : δi−1 < dist

(
x, ∂Qsm

)
≤ δi

}
, i = 1, . . . , Tm,h,k,

of constant width δi − δi−1 = εk‖vk − ũk‖1/pLp(Q;Rd+)
, with δ0 = 0 and δTm,h,k = O(1/h), so that

Tm,h,kεk
∥∥vk − ũk∥∥1/p

Lp(Q;Rd+)
= O

(
1

h

)
, (3.9)

and
Tm,h,k∑
i=1

∫
L

(i)
m,h,k

[
1 + εpk|∇vk(x)|p + εpk|∇ũk(x)|p +

|vk(x)− ũk(x)|p

‖vk − ũk‖Lp(Q;Rd+)

]
dx

=

∫
Lm,h

[
1 + εpk|∇vk(x)|p + εpk|∇ũk(x)|p +

|vk(x)− ũk(x)|p

‖vk − ũk‖Lp(Q;Rd+)

]
dx.

Thus, there exists i∗ = i∗(m,h, k) such that∫
L

(i∗)
m,h,k

[
1 + εpk|∇vk(x)|p + εpk|∇ũk(x)|p +

|vk(x)− ũk(x)|p

‖vk − ũk‖Lp(Q;Rd+)

]
dx

≤ 1

Tm,h,k

∫
Lm,h

[
1 + εpk|∇vk(x)|p + εpk|∇ũk(x)|p +

|vk(x)− ũk(x)|p

‖vk − ũk‖Lp(Q;Rd+)

]
dx.

(3.10)

Consider cut-off functions ϕm,h,k ∈ C∞c (Qsm ; [0, 1]) such that

ϕm,h,k = 0 on
(
Q \Qsm

)
∪
i∗−1⋃
i=1

L
(i)
m,h,k =: Am,h,k

ϕm,h,k = 1 on
(
Qsm \ Lm,h

)
∪

( Tm,h,k⋃
i=i∗+1

L
(i)
m,h,k

)
=: Bm,h,k,

and

‖∇ϕm,h,k‖∞ = O
(
ε−1
k ‖vk − ũk‖

−1/p

Lp(Q;Rd+)

)
. (3.11)

Define

wm,h,k(x) := ϕm,h,k(x)vk(x) + (1− ϕm,h,k(x))ũk(x), x ∈ Q, (3.12)

and

ρm,h,k(x) :=

{
λk(x) if x ∈ Q \Am,h,k,

0 if x ∈ Am,h,k.
Then wm,h,k ∈W 1,p(Q;Rd+), and by (3.5)

lim sup
m,h,k→+∞

∫
Q

ρm,h,k(x) dx ≤ lim sup
m,h,k→+∞

∫
Q\Am,h,k

λk(x) dx ≤ θ. (3.13)
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From (3.7) and (3.2)1, we have that for each m ∈ N

lim
m,h,k→+∞

‖wm,h,k − u0‖Lp(Q;Rd+) = 0.

Furthermore, ∫
Q

1

εk
f
(
wm,h,k(x), εk∇wm,h,k(x), εkρm,h,k(x)

)
dx

≤
∫
Am,h,k

1

εk
f
(
ũk(x), εk∇ũk(x), 0

)
dx

+

∫
L

(i∗)
m,h,k

1

εk
f
(
wm,h,k(x), εk∇wm,h,k(x), εkλk(x)

)
dx

+

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx.

(3.14)

By (H2), (H3), (3.2), (3.3) and (3.4), we have

lim sup
m,h,k→+∞

∫
Am,h,k

1

εk
f
(
ũk(x), εk∇ũk(x), 0

)
dx

≤ C lim sup
m,h,k→+∞

∫
{x∈Am,h,k: |xN |<εk}

1

εk

[
h(ũk(x), 0) + εpk|∇ũk(x)|p

]
dx

≤ C lim sup
m,h→+∞

{
lim sup
k→+∞

1

εk
LN
(
{x ∈ (Q \Qsm) ∪ Lm,h : |xN | < εk}

)}
= C lim sup

m→+∞
LN
(
∂Qsm

)
= 0.

Given that h ∈ L∞loc and wm,h,k and εkλk are uniformly bounded in L∞, in view of (H3), (3.11),
(3.10) and (3.9), in this order, we have for each m ∈ N,

lim sup
h,k→+∞

∫
L

(i∗)
m,h,k

1

εk
f
(
wm,h,k(x), εk∇wm,h,k(x), εkλk(x)

)
dx

≤ lim sup
h,k→+∞

C

εkTm,h,k

∫
Lm,h

[
1 + εpk|∇vk(x)|p + εpk|∇ũk(x)|p +

|vk(x)− ũk(x)|p

‖vk − ũk‖Lp(Q;Rd+)

]
dx

≤ lim sup
h,k→+∞

Ch
∥∥vk − ũk∥∥1/p

Lp(Q;Rd+)

{∫
Lm,h

[
1 + εpk|∇vk(x)|p + εpk|∇ũk(x)|p

]
dx

+‖vk − ũk‖p−1

Lp(Q;Rd+)

}
= 0,

where in the last equality we used (3.2), (3.7), and (3.8). Thus, (3.14) becomes

lim sup
m,h,k→+∞

∫
Q

1

εk
f
(
wm,h,k(x), εk∇wm,h,k(x), εkρm,h,k(x)

)
dx

≤ lim
k→+∞

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx.
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Finally, using a diagonalisation process (see [7, Lemma 7.1]) we can extract subsequences {m(k)} and
{h(k)} such that setting wk := wm(k),h(k),k and ρk := ρm(k),h(k),k, we have that

lim
k→+∞

‖wk − u0‖L1(Q;Rd+) = 0, lim
k→+∞

∫
Q

ρk(x) dx ≤ θ,

lim sup
k→+∞

∫
Q

1

εk
f
(
wk(x), εk∇wk(x), εkρk(x)

)
dx ≤ lim inf

k→+∞

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx,

(3.15)

where we used (3.6) and the fact that the limit along any subsequence equals the limit along the
original sequence.

Step 1b: construction of γk. We now need to modify the sequence {ρk}k in order to obtain a new

sequence {γk}k satisfying

∫
Q

γk(x) dx ≤ θ for all k (and not only in the limit as k → +∞). Set

γk := ckρk, where ck := min

{
1,

θ∫
Q
ρk(x) dx

}
.

If
∫
Q
ρk(x) dx = 0 then we take ck = 1. It is clear that γk satisfies (ii) for every k ∈ N. We also claim

that

lim sup
k→+∞

∫
Q

1

εk
f
(
wk(x), εk∇wk(x), εkγk(x)

)
dx ≤ lim sup

k→+∞

∫
Q

1

εk
f
(
wk(x), εk∇wk(x), εkρk(x)

)
dx.

(3.16)
In order to prove (3.16), we begin by noting that, by (3.6) and (3.15),

lim sup
k→+∞

∫
Q

1

εk
f
(
wk(x), εk∇wk(x), εkρk(x)

)
dx < +∞,

so (H3) yields

lim sup
k→+∞

∫
Q

εp−1
k |∇wk(x)|p dx < +∞. (3.17)

Since by construction ck → 1 as k → +∞, using hypothesis (H4), (3.17) and the uniform bounds
||vk||∞ < M , ||ρk||∞ ≤ ||λk||∞ < M , we have

lim sup
k→+∞

1

εk

∫
Q

∣∣f(wk(x), εk∇wk(x), εkγk(x)
)
− f

(
wk(x), εk∇wk(x), εkρk(x)

)∣∣ dx
≤ lim sup

k→+∞

CM
εk

∫
Q

∣∣εkρk(x)− εkγk(x)
∣∣(1 + |εk∇wk(x)|p

)
dx

≤ lim sup
k→+∞

C(1− ck)

∫
Q

ρk(x)
(
1 + |εk∇wk(x)|p

)
dx = 0.

Thus the proof of (3.16) is complete.

Step 2: truncation. Now let εk → 0+ as k → +∞, {vk} ⊂ W 1,p(Qν ;Rd+) converge in L1(Qν ;Rd+)

to u0 and {λk} ⊂ L1
(
Qν ; [0,+∞)

)
be such that

lim
k→+∞

∫
Qν

λk(x) dx ≤ θ. (3.18)

We will use a truncation argument to show that, for each δ > 0 and for each fixed k, there exist
M = M(k, δ) and functions vk and λk such that ||vk||∞ < M(k, δ), ||λk||∞ < M(k, δ), vk → u0 in

L1(Qν ;Rd+), lim
k→+∞

∫
Q

λk(x) dx ≤ θ and∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx ≤

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx+ δ. (3.19)
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For each k ∈ N, M > ‖u0‖∞, define

vk,M (x) =

{
vk(x) if |vk(x)| < M,

u0(x) if |vk(x)| ≥M + 1

and such that, for all x ∈ Q, |vk,M (x)| ≤ |vk(x)|, |∇vk,M (x)| ≤ |∇vk(x)| (cf. [5]), and

λk,M (x) =

{
λk(x) if λk(x) < M,

0 if λk(x) ≥M.

Comparing the energies we have that∫
Q

1

εk
f (vk,M (x), εk∇vk,M (x), εkλk,M (x)) dx

=

∫
Q∩{|vk|<M,λk<M}

1

εk
f (vk(x), εk∇vk(x), εkλk(x)) dx

+

∫
Q∩{|vk|<M,λk≥M}

1

εk
f (vk(x), εk∇vk(x), 0) dx

+

∫
Q∩{|vk|≥M+1, λk<M}

1

εk
f(u0(x), 0, εkλk(x)) dx

+

∫
Q∩{|vk|≥M+1, λk≥M}

1

εk
f(u0(x), 0, 0) dx

+

∫
Q∩{M≤|vk|<M+1, λk<M}

1

εk
f (vk,M (x), εk∇vk,M (x), εkλk(x)) dx

+

∫
Q∩{M≤|vk|<M+1, λk≥M}

1

εk
f (vk,M (x), εk∇vk,M (x), 0) dx,

where, by (H2), the fourth term is zero. Using hypothesis (H3) yields,∫
Q

1

εk
f (vk,M (x), εk∇vk,M (x), εkλk,M (x)) dx ≤

∫
Q

1

εk
f (vk(x), εk∇vk(x), εkλk(x)) dx

+C

∫
Q∩{λk≥M}

1

εk
(h(vk(x), 0) + |εk∇vk(x)|p) dx

+C

∫
Q∩{|vk|≥M+1}

1

εk
h(u0(x), εkλk(x)) dx

+C

∫
Q∩{|vk|≥M}

1

εk
(h(vk,M (x), εkλk(x)) + (εk|∇vk(x)|)p) dx

+C

∫
Q∩{λk≥M}

1

εk
(h(vk,M (x), 0) + (εk|∇vk(x)|)p) dx,

≤
∫
Q

1

εk
f (vk(x), εk∇vk(x), εkλk(x)) dx+ δ,

provided M = M(k, δ) large enough. Defining vk = vk,M(k,δ) and λk = λk,M(k,δ) it is clear that these
functions satisfy the required properties.

Step 3: diagonalisation. Fix M > ‖u0‖∞. Since the sequences {vk,M}k and {λk,M}k are uniformly
bounded in L∞, by Step 1, there exist sequences wk,M and γk,M , satisfying the conditions in the
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statement of the lemma and such that

lim sup
k→+∞

∫
Q

1

εk
f
(
wk,M (x), εk∇wk,M (x), εkγk,M (x)

)
dx

≤ lim inf
k→+∞

∫
Q

1

εk
f
(
vk,M (x), εk∇vk,M (x), εkλk,M (x)

)
dx.

Thus, for all j, there exists k(j) such that

lim
j→+∞

∫
Q

1

εk(j)
f
(
wk(j),M (x), εk(j)∇wk(j),M (x), εk(j)γk(j),M (x)

)
dx

≤ lim
j→+∞

∫
Q

1

εk(j)
f
(
vk(j),M (x), εk(j)∇vk(j),M (x), εk(j)λk(j),M (x)

)
dx

and so, for every δ > 0, there exists k(j, δ) such that∫
Q

1

εk(j,δ)
f
(
wk(j,δ),M (x), εk(j,δ)∇wk(j,δ),M (x), εk(j,δ)γk(j,δ),M (x)

)
dx

≤
∫
Q

1

εk(j,δ)
f
(
vk(j,δ),M (x), εk(j,δ)∇vk(j,δ),M (x), εk(j,δ)λk(j,δ),M (x)

)
dx+ δ.

Thus, if in the previous inequality we set δ =
1

j
and Mj = M(k(j, 1

j ), 1
j ) from Step 2, and we define

εj = εk(j, 1j ), wj = wk(j, 1j ),Mj
and γj = γk(j, 1j ),Mj

, we get, using the estimate obtained in Step 2,

lim sup
j→+∞

∫
Q

1

εj
f
(
wj(x), εj∇wj(x), εjγj(x)

)
dx

≤ lim inf
j→+∞

(∫
Q

1

εk(j, 1j )

f
(
vk(j, 1j ),Mj

(x), εk(j, 1j )∇vk(j, 1j ),Mj
(x), εk(j, 1j )λk(j, 1j ),Mj

(x)
)
dx+

1

j

)

≤ lim inf
j→+∞

(∫
Q

1

εk(j, 1j )

f
(
vk(j, 1j )(x), εk(j, 1j )∇vk(j, 1j )(x), εk(j, 1j )λk(j, 1j )(x)

)
dx+

2

j

)

≤ lim inf
k→+∞

∫
Q

1

εk
f
(
vk(x), εk∇vk(x), εkλk(x)

)
dx.

This completes the proof of the lemma. �

Remark 3.2. Notice that by (3.3) and Lemma 3.1 (i)-(ii), we have that (wk, γk) ∈ A(ν, θ) for
sufficiently large k.

We will now analyse some properties of the surface energy density σ given in (1.8). These properties
will be useful for the construction of recovery sequences to obtain an upper bound for the limit energy
(see Proposition 5.3) as they will allow us to reduce the target function to a suitably regular class of
functions.

Proposition 3.3. If (H1) and (H3) hold, then

(i) 0 ≤ σ(ν, θ) ≤ C
(
1 + |α|p + |β|p

)
for all (ν, θ) ∈ SN−1 × [0,+∞);

(ii) for all (ν, θ) ∈ SN−1 × [0,+∞), σ(ν, θ) = σ∞(ν, θ) where

σ∞(ν, θ) := inf

{∫
Qν

1

t
f
(
u(y), t∇u(y), tρ(y)

)
dy : t > 0,

(u, ρ) ∈ A(ν, θ) ∩ L∞(Sν ;Rd+)× L∞(RN ; [0,+∞))

}
;

(iii) σ is upper semicontinuous on SN−1 × [0,+∞) and non-increasing with respect to θ.
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Notice that the continuity of f is not used to prove (i).

Proof. (i) Fix (ν, θ) ∈ SN−1 × [0,+∞), and let

w(x) := (β − α)(x · ν) +
α+ β

2
. (3.20)

Since (w, 0) ∈ A(ν, θ), f ≥ 0 and (H3) holds, we have

0 ≤ σ(ν, θ) ≤
∫
Qν

f
(
w(x),∇w(x), 0

)
dx ≤

∫
Qν

C
(
h(w(x), 0) + |∇w(x)|p

)
dx

≤
∫
Qν

C
(
1 +

∣∣(β − α)⊗ ν
∣∣p) dx ≤ C(1 + |α|p + |β|p

)
.

(ii) Clearly σ(ν, θ) ≤ σ∞(ν, θ). To show the reverse inequality fix ε > 0 and let (uε, ρε) ∈ A(ν, θ),
tε > 0 be such that ∫

Q

1

tε
f
(
uε(x), tε∇uε(x), tερε(x)

)
dx < σ(ν, θ) +

ε

2
.

We follow the truncation argument given in the proof of Lemma 3.1 to obtain sequences {uε,j} and
{ρε,j}, bounded in L∞, and such that, for j large enough,∫

Q

1

tε
f (uε,j(x), tε∇uε,j(x), tερε,j(x)) dx ≤

∫
Q

1

tε
f (uε(x), tε∇uε(x), tερε(x)) dx+

ε

2
< σ(ν, θ) + ε.

Thus,

σ∞(ν, θ) ≤
∫
Q

1

tε
f (uε,j(x), tε∇uε,j(x), tερε,j(x)) dx < σ(ν, θ) + ε,

so to conclude the result it suffices to let ε→ 0+.

(iii) The fact that σ is non-increasing with respect to its second variable is obvious from the
definition. To prove upper semicontinuity, we observe that, by a change of variable argument it is
clear that, for every (ν, θ) ∈ SN−1 × [0,+∞),

σ(ν, θ) = inf

{∫
Q

1

t
f
(
w(x), t∇w(x)RT , tγ(x)

)
dx : t > 0, (w, γ) ∈ A(eN , θ), ReN = ν, R ∈ SO(N)

}
,

(3.21)

where Q stands for QeN . Let (νn, θn) ∈ SN−1 × [0,+∞) be such that (νn, θn) → (ν, θ) and choose a
rotation R such that ReN = ν. Given ε ∈ (0, 1), let tε > 0 and (wε, γε) ∈ A(eN , θ) be such that∣∣∣∣σ(ν, θ)−

∫
Q

1

tε
f
(
wε(x), tε∇wε(x)RT , tεγε(x)

)
dx

∣∣∣∣ < ε. (3.22)

Since by (ii), σ(ν, θ) = σ∞(ν, θ), we may also assume that ‖wε‖∞ ≤ C and ‖γε‖∞ ≤ C, for all
ε ∈ (0, 1).

By (3.22) and (i),

sup
ε∈(0,1)

∫
Q

1

tε
f
(
wε(x), tε∇wε(x)RT , tεγε(x)

)
dx < +∞. (3.23)

Notice also that, if θ = 0, then

∫
Q

γε(x) dx ≤ 0, that is, γε(x) = 0 for a.e. x ∈ Q. For every n ∈ N,

choose Rn ∈ SO(N) such that RneN = νn and Rn → R as n→ +∞, and define γn,ε ∈ L1
(
Q; [0,+∞)

)
by setting γn,ε = 0 if θ = 0 and γn,ε := θn

θ γε if θ 6= 0. Clearly,∫
Q

γn,ε(x) dx ≤ θn and lim
n→+∞

‖γn,ε − γε‖L1(Q) = lim
n→+∞

∣∣∣∣1− θn
θ

∣∣∣∣ ‖γε‖L1(Q) = 0.
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Since (wε, γn,ε) ∈ A(eN , θn), in view of (3.21), we have

σ(νn, θn) ≤
∫
Q

1

tε
f
(
wε(x), tε∇wε(x)RTn , tεγn,ε(x)

)
dx. (3.24)

By (H1) and (H3), for a.e. x ∈ Q

lim
n→+∞

1

tε
f
(
wε(x), tε∇wε(x)RTn , tεγn,ε(x)

)
=

1

tε
f
(
wε(x), tε∇wε(x)RT , tεγε(x)

)
,

and

f
(
wε, tε∇wεRTn , tεγn,ε

)
≤ C

(
h(wε, tεγn,ε) + tpε |∇wε|p

)
∈ L1(Q),

since, by (3.23) and (H3), tpε |∇wε|p ∈ L1
(
Q; [0,+∞)

)
, and by the uniform L∞ bounds on wε and tεγε,

h(wε, tεγε) ∈ L1
(
Q; [0,+∞)

)
, and so also h(wε, tεγn,ε) ∈ L1

(
Q; [0,+∞)

)
. Thus, by the Lebesgue

Dominated Convergence Theorem, we obtain that

lim
n→+∞

∫
Q

1

tε
f
(
wε(x), tε∇wε(x)RTn , tεγn,ε(x)

)
dx =

∫
Q

1

tε
f
(
wε(x), tε∇wε(x)RT , tεγε(x)

)
dx

so, in view of (3.24) and (3.22), we conclude that

lim sup
n→+∞

σ(νn, θn) ≤ σ(ν, θ) + ε.

It suffices now to let ε→ 0+. �

In view of the previous proposition, it is possible to extend σ to the whole RN × [0,+∞) by setting

σ(z, θ) :=

 |z|σ
(
z

|z|
,
θ

|z|

)
, for every z ∈ RN \ {0} and every θ ∈ [0,+∞),

0, for z = 0 and every θ ∈ [0,+∞).
(3.25)

so that σ is upper semicontinuous, positively homogeneous of degree one, and non-increasing with
respect to θ on RN × [0,+∞). Moreover, σ(z, θ) ≤ C|z| for every (z, θ) ∈ RN × [0,+∞).

4. Proof of the compactness Theorem 1.1

To prove Theorem 1.1 let εn → 0 and let (un, ρn) ∈ [W 1,p(Ω;Rd+) × L1(Ω; [0,+∞))] ∩ V be such
that

sup
n
Fεn(un, ρn) < +∞.

We must see that there exist a subsequence {(unk , ρnk)}k ⊂ {(un, ρn)}n and (u, µ) ∈ [BV (Ω; {α, β})×
M+(Ω)] ∩W such that

(uεk , ρεk)→ (u, µ) in X(Ω).

In the case p = 1, by (H3) any sequence with bounded energy satisfies

sup
n

∫
Ω

|∇un(x)| dx < +∞.

Hence, by Poincaré’s inequality, un is bounded in W 1,1(Ω;Rd+), and thus (up to a subsequence) un → u

for some u ∈ L1(Ω;Rd).
For other values of p, we use the coercivity condition in (H3) given by

1

C

(
g(u) + |ξ|p

)
≤ f(u, ξ, ρ)
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where g(u) = 0 ⇔ u ∈ {α, β} and inf
|u|≥L

g(u) > 0, for some L > 0. In this case, to achieve the L1

convergence of un to some u ∈ L1(Ω;Rd) we argue as follows. By (H3), for each n ∈ N, it follows by
Young’s inequality that

Fεn(un, ρn) ≥
∫

Ω

C

εn

(
g(un(x)) + εpn|∇un(x)|p

)
dx

≥ C

∫
Ω

(g(un(x)))
1
q |∇un(x)| dx ≥ C

∫
{|un|≥L}

|∇un(x)| dx,

where 1
p + 1

q = 1. By the argument given in [17, Theorem 1.1], using the volume constraint∫
Ω

un(x) dx = Vf , we conclude that {un}n is bounded in L1(Ω;Rd+) and equi-integrable. Thus (up to

a subsequence) un → u for some u ∈ L1(Ω;Rd+).

For any p ≥ 1, the proof that u ∈ BV (Ω; {α, β}) and is such that

∫
Ω

u(x) dx = Vf relies on the

fact that g(u) = 0 ⇔ u ∈ {α, β} and can be achieved following an argument analogous to the one
used in Lemma 4.3 in [6].

As for the sequence {ρn}, since

∫
Ω

ρn(x) = Vs for every n ∈ N then it follows (up to a subsequence)

that ρn
∗
⇀ µ in M+(Ω), for some µ ∈M+(Ω). Moreover,

µ(Ω) ≥ lim sup
n→+∞

∫
Ω

ρn(x) dx = Vs,

because Ω is compact. On the other hand, setting ρn equal to zero outside of Ω, we obtain

µ(Ω) ≤ µ(RN ) ≤ lim inf
n→+∞

∫
RN

ρn(x) dx = Vs,

because RN is open. Hence (u, µ) ∈ [BV (Ω; {α, β})×M+(Ω)] ∩W.

5. Main result

The following lemma addresses the proof of Theorem 1.2 in the case where (u, µ) ∈ X(Ω) \[(
BV

(
Ω; {α, β})×M+(Ω)

)
∩W

]
.

Lemma 5.1. Let (u, µ) ∈ X(Ω) \
[(
BV

(
Ω; {α, β})×M+(Ω)

)
∩W

]
. Then

Γ− lim
ε→0+

Fε(u, µ) = +∞ (5.1)

Proof. Given (u, µ) ∈ X(Ω) \
[(
BV

(
Ω; {α, β})×M+(Ω)

)
∩W

]
to show (5.1) it is enough to see that

for every sequence εn → 0+ and for every sequence (un, µn) ⊂ X(Ω) such that (un, µn) → (u, µ) in
X(Ω) we have that

lim inf
n→+∞

Fεn(un, µn) = +∞.

Without loss of generality we can consider the case u ∈ L1(Ω;Rd+) \ BV
(
Ω; {α, β}

)
, (u, µ) ∈ W

and (un, µn) → (u, µ) in X(Ω) with {un} ⊂ W 1,p(Ω;Rd+), µn = ρnLNbΩ, ρn ∈ L1(Ω; [0,+∞)) and
(un, ρn) ∈ V (otherwise there is nothing to show).

We proceed by contradiction, assuming that there exist εn → 0+ and (un, µn) as above and such
that

lim inf
n→+∞

Fεn(un, µn) = lim inf
n→+∞

∫
Ω

1

εn
f
(
un(x), εn∇un(x), εnρn(x)

)
dx < +∞.
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However, in this case, it was shown in Theorem 1.1 that (u, µ) ∈ [BV (Ω; {α, β})×M+(Ω)]∩W thus
yielding the desired contradiction. �

We note that to complete the proof of Theorem 1.2 it suffices to show that

(a) Lower bound: For every (u, µ) ∈ [BV
(
Ω; {α, β}

)
×M+(Ω)] ∩ W and for all εn → 0+ and

{(un, ρn)} ⊂ [W 1,p(Ω;Rd+)× L1
(
Ω; [0,+∞)

)
] ∩ V with (un, ρn)→ (u, µ) in X(Ω) then

F (u, µ) ≤ lim inf
n→+∞

Fεn(un, ρn).

(b) Upper bound: For every (u, µ) ∈ [BV
(
Ω; {α, β}

)
×M+(Ω)] ∩ W and every εn → 0+ there

exists a sequence {(un, µn)} ⊂ [W 1,p(Ω;Rd+)×M+(Ω)] ∩W such that

(un, µn)→ (u, µ) in X(Ω) and lim sup
n→+∞

Fεn(un, µn) ≤ F (u, µ).

The proofs of properties i) and ii) can be found in Subsections 5.1 and 5.2 below.

5.1. Lower bound.

Proposition 5.2 (Lower bound). Let Ω be an open and bounded subset of RN with Lipschitz boundary,
and assume that hypotheses (H1)-(H4) hold. Let (u, µ) ∈ [BV

(
Ω; {α, β}

)
× M+(Ω)] ∩ W and let

εn → 0+ and {(un, ρn)} ⊂ [W 1,p(Ω;Rd+) × L1
(
Ω; [0,+∞)

)
] ∩ V be such that (un, ρn) → (u, µ) in

X(Ω), then

F (u, µ) ≤ lim inf
n→+∞

Fεn(un, ρn). (5.2)

Proof. Let (u, µ) and {(un, ρn)} be as stated. If the right hand side of the inequality in (5.2) is infinite
there is nothing to prove. Otherwise, we can extract subsequences, not relabeled, such that un → u
LN -a.e. in Ω and

lim inf
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnρn(x)) dx = lim
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnρn(x)) dx < +∞.

Let E with PerΩ(E) < +∞ be such that u = βχE + α
(
1− χE

)
. We must show that

lim
n→+∞

∫
Ω

1

εn
f
(
un(x), εn∇un(x), εnρn(x)

)
dx ≥

∫
Ω∩∂∗E

σ
(
νu(x), µ0(x)

)
dHN−1(x), (5.3)

where νu(x) is the inner unit normal to E at x (in the sense of Definition 2.6), and

µ0(x) :=
dµ

d
(
HN−1 (Ω ∩ ∂∗E)

) (x). (5.4)

Set fn := 1
εn
f
(
un(·), εn∇un(·), εnρn(·)

)
. Since the integrands fn form a sequence of nonnegative

functions which are bounded in L1
(
Ω; [0,+∞)

)
, there exists a subsequence (not relabeled) and a

nonnegative bounded Radon measure ζ such that

fn LN Ω
∗
⇀ ζ in M+(Ω). (5.5)

Consider the nonnegative measure

π(A) := HN−1(A ∩ ∂∗E)

defined over all Borel subsets A ⊂ Ω, where ∂∗E is the reduced boundary of E (see Definition 2.6).
Since PerΩ(E) < +∞, we have that

π(Ω) = PerΩ(E) < +∞,
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so that π is a bounded Radon measure. Hence, using Theorem 2.3, we may decompose ζ as ζ = ζaπ+ζs,
where ζa is a nonnegative π-integrable function and ζs is a nonnegative Radon measure with π and
ζs mutually singular. We claim that

ζa(x) ≥ σ
(
νu(x), µ0(x)

)
, for HN−1-a.e. x ∈ Ω ∩ ∂∗E. (5.6)

Assuming that (5.6) holds, we obtain

lim
n→+∞

∫
Ω

1

εn
f
(
un(x), εn∇un(x), εnρn(x)

)
dx ≥ ζ(Ω)

≥
∫

Ω

ζa(x) dHN−1 (Ω ∩ ∂∗E)(x)

≥
∫

Ω∩∂∗E
σ
(
νu(x), µ0(x)

)
dHN−1(x),

which asserts (5.3).

It remains to show that (5.6) holds. Recall that, for every x ∈ ∂∗E, equalities (2.3), (2.4) and
(2.5) hold, where νE is the generalised unit inner normal to E in the sense of Definition 2.6, which
coincides on Su = ∂∗E with νu by Remark 2.7. Fix any such x and abbreviate ν := νE(x) = νu(x).
In view of the Besicovitch Derivation Theorem 2.4 we can also assume that

ζa(x) = lim
r→0+

ζ(Qν(x, r))

HN−1
(
Qν(x, r) ∩ ∂∗E

) < +∞.

Choosing rk → 0+ such that ζ
(
∂Qν(x, rk)

)
= 0 and µ

(
∂Qν(x, rk)

)
= 0, by (5.5), (2.3), we have (see,

e.g., [13, Proposition 1.203]),

ζa(x) = lim
r→0+

ζ
(
Qν(x, r)

)
rN−1

= lim
k→+∞

1

rN−1
k

lim
n→+∞

∫
Qν(x,rk)

1

εn
f
(
un(z), εn∇un(z), εnρn(z)

)
dz

= lim
k,n→+∞

∫
Qν

rk
εn
f
(
un(x+ rky), εn∇un(x+ rky), εnρn(x+ rky)

)
dy

= lim
k,n→+∞

∫
Qν

rk
εn
f

(
vn,k(y),

εn
rk
∇vn,k(y),

εn
rk
λn,k(y)

)
dy, (5.7)

where vn,k ∈W 1,p(Qν ;Rd+) and λn,k ∈ L1(Qν ; [0,+∞)) are defined by

vn,k(y) := un(x+ rky), λn,k(y) := rkρn(x+ rky).

Since (un, ρn)→ (u, µ) in X(Ω), we have that

lim
k,n→+∞

‖vn,k − u0‖L1(Qν ;Rd+) = 0 and lim
k,n→+∞

∫
Qν

λn,k(y) dy = µ0(x), (5.8)

where µ0 is given by (5.4) and

u0(y) :=

{
β, if y · ν = y · νE(x) > 0,

α, if y · ν = y · νE(x) < 0.
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Indeed,

lim
k,n→+∞

∫
Qν

|vn,k(y)− u0(y)| dy

= lim
k,n→+∞

[∫
Qν∩{y:y·ν>0}

|un(x+ rky)− β| dy +

∫
Qν∩{y:y·ν<0}

|un(x+ rky)− α| dy

]

= lim
k→+∞

[∫
Qν∩{y:y·ν>0}

|u(x+ rky)− β| dy +

∫
Qν∩{y:y·ν<0}

|u(x+ rky)− α| dy

]

= lim
k→+∞

1

rNk

[∫
Qν(x,rk)∩{y:(y−x)·ν>0}\E

|α− β| dy +

∫
Qν(x,rk)∩{y:(y−x)·ν<0}∩E

|β − α| dy

]
= 0,

where in the last equality we used (2.4) and (2.5). Furthermore, since ρn
∗
⇀ µ inM+(Ω), we have by

(2.3)

lim
k,n→+∞

∫
Qν

λn,k(y) dy = lim
k,n→+∞

∫
Qν

rkρn(x+ rky) dy

= lim
k,n→+∞

∫
Qν(x,rk)

1

rN−1
k

ρn(y) dy

= lim
k→+∞

1

rN−1
k

µ(Qν(x, rk))

= lim
k→+∞

µ
(
Qν(x, rk)

)
HN−1

(
Qν(x, r) ∩ Ω ∩ ∂∗E

) = µ0(x),

where we also used the fact that µ
(
∂Qν(x, rk)

)
= 0.

By (5.7), (5.8), and using a diagonalisation argument, we may find a subsequence {εnk} of {εn}
such that, setting λk := λnk,k,

tk :=
εnk
rk
→ 0, vk := vnk,k → u0 in L1(Qν ;Rd+) ,

∫
Qν

λk(y) dy → µ0(x),

as k → +∞, and

ζa(x) = lim
k→+∞

∫
Qν

1

tk
f

(
vk(y), tk∇vk(y), tkλk(y)

)
dy.

Applying Lemma 3.1 to the sequences {tk}, {vk}, and {λk}, with ν = νE(x) = νu and θ = µ0(x),
we conclude that there exist a subsequence {k′} of {k} and a sequence {(wk′ , γk′)} ∈W 1,p(Qν ;Rd+)×
L1
(
Qν ; [0,+∞)

)
such that wk′ → u0 in L1(Qν ;Rd+), (wk′ , γk′) ∈ A(ν, µ0(x)), and

ζa(x) = lim
k→+∞

∫
Qν

1

tk
f

(
vk(y), tk∇vk(y), tkλk(y)

)
dy

≥ lim sup
k′→+∞

∫
Qν

1

tk′
f
(
wk′(y), tk′∇wk′(y), tk′γk′(y)

)
dy.

(5.9)

Since (wk′ , γk′) ∈ A(ν, µ0(x)) (cf. Remark 3.2), (5.6) follows by (1.8) and (5.9). �

5.2. Upper bound.

Proposition 5.3 (Upper bound). Let Ω be an open and bounded subset of RN with Lipschitz boundary.
Assume that hypotheses (H1)–(H6) hold. Let (u, µ) ∈ [BV

(
Ω; {α, β}

)
×M+(Ω)]∩W and let εn → 0+.
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Then there exist {(un, ρn)} ⊂ [W 1,p(Ω;Rd+)×L1
(
Ω; [0,+∞)

)
]∩V with (un, ρn)→ (u, µ) in X(Ω) such

that

F (u, µ) ≥ lim sup
n→+∞

Fεn(un, ρn). (5.10)

To prove the upper bound in Proposition 5.3 we begin by considering the case where, given a fixed
direction ν ∈ SN−1,

u(x) :=

{
β if (x− x∗) · ν > 0

α if (x− x∗) · ν < 0,
(5.11)

for some x∗ ∈ RN , the domain is a rectangle of the form Ων := {x + tν : x ∈ Hν , |t| < r} for
some relatively open subset Hν of a hyperplane orthogonal to ν and some r > 0, and the measure
µ ∈M+(Ων) has the form

µ := θχKH
N−1 Hν + aδx0

(5.12)

where θ ≥ 0 is assumed to be constant, K is a relatively compact subset of Hν , a ∈ R+
0 and x0 ∈

Ων\Hν .

Lemma 5.4. Assume that (H1)–(H6) hold. Let u and µ be given as in (5.11) and (5.12), respectively,
and satisfy ∫

Ων

u(x) dx = Vf , µ(Ων) = Vs.

Then, for every εn → 0+, there exist sequences {un} ⊆ W 1,p(Ων ;Rd+), {ρn} ⊆ L1
(
Ων ; [0,+∞)

)
such

that∫
Ων

un(x) dx = Vf ,

∫
Ων

ρn(x) dx = Vs, (un, ρn)→ (u, µ) in X(Ων) with ‖un−u‖L1(Ων ;Rd+) = O(εn)

(5.13)
and

lim sup
n→+∞

1

εn

∫
Ων

f(un(x), εn∇un(x), εnρn(x)) dx ≤
∫
Hν

σ
(
ν, θχK(x)

)
dHN−1(x) = F (u, µ).

Proof. Since µ is given by (5.12), we must show that, given εn → 0+ there exist sequences {un} ⊆
W 1,p(Ων ;Rd+), {ρn} ⊆ L1

(
Ων ; [0,+∞)

)
satisfying (5.13) and such that

lim sup
n→+∞

1

εn

∫
Ων

f(un(x), εn∇un(x), εnρn(x)) dx

≤ σ(ν, θ)HN−1(K) + σ(ν, 0)HN−1(Hν \K) = F (u, µ).

(5.14)

For simplicity, we assume that x∗ = 0, that r = 1
2 and that ν = eN and we denote Ων by Ω, Hν

by H, and Qν by Q.

We fix η > 0 and, by Proposition 3.3 and (1.7), choose t1, t2 > 0, (w1, γ1) ∈ A(eN , θ) and
(w2, 0) ∈ A(eN , 0) such that w1, w2 ∈ L∞(SeN ;Rd+), γ1 ∈ L∞(RN ; [0,+∞)) and∫

Q

1

t1
f
(
w1(x), t1∇w1(x), t1γ1(x)

)
dx < σ(eN , θ) + η,

∫
Q

γ1(x) dx = sθ,∫
Q

1

t2
f
(
w2(x), t2∇w2(x), 0

)
dx < σ(eN , 0) + η.

(5.15)

for some s ∈ [0, 1].

We extend w1 and w2 to the whole space RN by setting wi(x) = α if x · ν = xN ≤ −1/2 and
wi(x) = β if x·ν = xN ≥ 1/2, for i = 1, 2. We recall that wi(·, xN ) and γ1(·, xN ) are periodic functions
with period one.
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For every fixed δ > 0, let Kδ ⊂ H be such that K ⊂ Kδ, HN−1(Kδ \ K) = O(δ) and choose a
cut-off function ϕ ∈ C∞0 (H; [0, 1]) such that ϕ ≡ 1 in K, ϕ ≡ 0 in H \Kδ, and ‖∇ϕ‖∞ ≤ C

δ with C

independent of δ. Setting t0 := min{t1, t2}, we now define vn ∈W 1,p(Ω;Rd+) and λn ∈ L1(Ω; [0,+∞))
by

vn(x) :=


ϕ(x′)w1

(
t1x

εn

)
+
(
1− ϕ(x′)

)
w2

(
t2x

εn

)
if x = (x′, xN ) ∈ H ×

(
− εn

2t0
,
εn
2t0

)
,

u(x) if x ∈ Ω and |xN | ≥
εn
2t0

,

(5.16)

where, denoting by ωN the measure of the N -dimensional unit ball,

λn(x) :=



t1
εn
γ1

(
t1x

εn

)
if x = (x′, xN ) ∈ K ×

(
− εn

2t1
,
εn
2t1

)
,

a

ωN
√
εn

if x ∈ B
(
x0, ε

1
2N
n

)
,

t1(1−s)θ√
εn

ifx = (x′, xN ) ∈ K ×
(
−
εn +

√
εn

2t1
,
εn +

√
εn

2t1

)
\
(
− εn

2t1
,
εn
2t1

)
,

0 elsewhere,

with B
(
x0, ε

1
2N
n

)
⊂ {|xN | > εn

2t0
}. Notice that ‖vn‖∞ ≤ ‖w1‖∞ + ‖w2‖∞, for all n ∈ N.

We claim that

lim
n→+∞

∫
Ω

λn(x) dx = µ(Ω). (5.17)

Indeed, by the Riemann-Lebesgue Lemma (see Lemma 2.1) and (5.15),

lim
n→+∞

∫
Ω

λn(x) dx = lim
n→+∞

∫ εn
2t1

− εn
2t1

∫
K

t1
εn
γ1

(
t1x
′

εn
,
t1xN
εn

)
dx′ dxN + a+ (1− s)θHN−1(K)

= lim
n→+∞

∫ 1/2

−1/2

∫
K

γ1

(
t1y
′

εn
, yN

)
dy′ dyN + a+ (1− s)θHN−1(K)

= HN−1(K)

∫ 1/2

−1/2

∫
Q′
γ1(y′, yN ) dy′ dyN + a+ (1− s)θHN−1(K)

= sθHN−1(K) + (1− s)θHN−1(K) + a = µ(Ω),

where Q′ is the projection of Q on RN−1, i.e., Q′ := {x′ ∈ RN−1 : (x′, 0) ∈ Q}. This proves
(5.17). Therefore, it is possible to choose a normalization constant cn → 1 in such a way that, setting
ρn := cnλn, we have ∫

Ω

ρn(x) dx = µ(Ω), for all n ∈ N.

We also claim that ρn
∗
⇀ µ in M+(Ω). Indeed, let ψ ∈ C0(Ω) and ε > 0. A direct computation

yields∫
Ω

ψ(x)λn(x) dx =

∫ εn
2t1

− εn
2t1

∫
K

t1
εn
ψ(x′, xN )γ1

(
t1x
′

εn
,
t1xN
εn

)
dx′ dxN

+

∫
B
(
x0,ε

1
2N
n

) aψ(x) dx+

∫ − εn
2t1

− εn+
√
εn

2t1

t1(1− s)θ
√
εn

∫
K

ψ(x′, xN ) dx′ dxN
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+

∫ εn+
√
εn

2t1

εn
2t1

t1(1− s)θ
√
εn

∫
K

ψ(x′, xN ) dx′ dxN

=

∫ 1/2

−1/2

∫
K

[
ψ

(
x′,

εn
t1
xN

)
− ψ(x′, 0)

]
γ1

(
t1x
′

εn
, xN

)
dx′ dxN

+

∫ 1/2

−1/2

∫
K

ψ(x′, 0)γ1

(
t1x
′

εn
, xN

)
dx′ dxN +

∫
B
(
x0,ε

1
2N
n

) aψ(x) dx

+

∫ − εn
2t1

− εn+
√
εn

2t1

t1(1− s)θ
√
εn

∫
K

[ψ(x′, xN )− ψ(x′, 0)] dx′ dxN

+

∫ εn+
√
εn

2t1

εn
2t1

t1(1− s)θ
√
εn

∫
K

[ψ(x′, xN )− ψ(x′, 0)] dx′ dxN

+

∫ − εn
2t1

− εn+
√
εn

2t1

t1(1− s)θ
√
εn

∫
K

ψ(x′, 0) dx′ dxN

+

∫ εn+
√
εn

2t1

εn
2t1

t1(1− s)θ
√
εn

∫
K

ψ(x′, 0) dx′ dxN

=: I1
n + I2

n + I3
n + I4

n + I5
n + I6

n + I7
n.

Choose nε ∈ N such that∣∣∣∣ψ(x′, εnt1 xN
)
− ψ

(
x′, 0

)∣∣∣∣ < ε for everyx′ ∈ H, |xN | < r, and every n > nε,

and such that∣∣∣∣ψ(x′, xN)− ψ(x′, 0)∣∣∣∣ < ε for everyx′ ∈ H, |xN | <
εn +

√
εn

2t1
, and every n > nε.

Then, for every n > nε, ∣∣I1
n

∣∣ < ε

∫ 1/2

−1/2

∫
K

γ1

(
t1x
′

εn
, xN

)
dx′ dxN .

By the Riemann-Lebesgue Lemma and (5.15) we get

lim sup
n→+∞

I1
n ≤ ε sθHN−1(K),

and also, since K ⊂ {xN = 0},

lim
n→+∞

I2
n = sθ

∫
K

ψ(x′, 0) dx′ = sθ

∫
K

ψ(x) dHN−1(x′).

Similarly, we conclude that

lim sup
n→+∞

I4
n = O(ε), lim sup

n→+∞
I5
n = O(ε),

and that

lim
n→+∞

I6
n + lim

n→+∞
I7
n = (1− s)θ

∫
K

ψ(x′, 0) dx′ = (1− s)θ
∫
K

ψ(x) dHN−1(x′).
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Hence, letting ε→ 0+, we obtain

lim
n→+∞

∫
Ω

ψ(x)λn(x) dx = sθ

∫
K

ψ(x) dHN−1(x′) + (1− s)θ
∫
K

ψ(x) dHN−1(x′) + aψ(x0)

=

∫
Ω

ψ(x) dµ(x),

which, since cn → 1, shows that ρn = cnλn
∗
⇀ µ in M+(Ω).

We next prove the convergence in L1(Ω;Rd+) of vn to u. In fact, we can prove that

‖vn − u‖L1(Ω;Rd+) = O(εn). (5.18)

Indeed, using a change of variable in the last coordinate and the periodicity of w1 and w2 in the first
N − 1 coordinates, we have for n sufficiently large

‖vn‖L1({x∈Ω: |xN |≤ εn
2t0
};Rd+)

=
εn
t0

∫ 1/2

−1/2

∫
H

∣∣∣∣ϕ(y′)w1

(
t1y
′

εn
,
t1yN
t0

)
+
(
1− ϕ(y′)

)
w2

(
t2y
′

εn
,
t2yN
t0

)∣∣∣∣ dy′ dyN
≤ εnHN−1(H)

(
1

t1
‖w1‖L1(

t1
t0
Q;Rd+) +

1

t2
‖w2‖L1(

t2
t0
Q;Rd+) + 1

)
,

(5.19)

and thus

‖vn − u‖L1(Ω;Rd+) ≤ ‖vn‖L1({x∈Ω: |xN |≤ εn
2t0
};Rd+) + C LN

({
x ∈ Ω : |xN | ≤

εn
2t0

})
= O(εn).

To meet the first constraint in (5.13), we will modify the sequence {vn}, defined above, to obtain a
new sequence {un} converging to u in L1(Ω;Rd+) such that (5.13) and (5.14) are satisfied. We define

un := vn + bn where bn :=

∫
Ω

u(x)− vn(x) dx.

It is clear that bn → 0, un → u in L1(Ω;Rd+) and that the first constraint in (5.13) holds. To prove
(5.14), we first observe that by (5.18)

|bn| ≤
∫

Ω

∣∣vn(x)− u(x)
∣∣ dx = O(εn). (5.20)

It follows that ‖un − u‖L1(Ω;Rd+) = O(εn). We now proceed by estimating Eεn(un, λn). Since, by

construction,

B
(
x0, ε

1
2N
n

)
⊂
{
|xN | >

εn
2t0

}
and since, by definition, vn(x) ∈ {α, β} whenever |xN | ≥ εn

2t0
, vn(x) = w1

(
t1x
εn

)
∈ {α, β} whenever

x′ ∈ K and |xN | ≥ εn
2t1

, vn(x) = w2

(
t2x
εn

)
∈ {α, β} whenever x′ ∈ H \ Kδ and |xN | ≥ εn

2t2
, and

λn(x) = 0 whenever x /∈
(
K ×

(
− εn+

√
εn

2t1
,
εn+
√
εn

2t1

))
∪B

(
x0, ε

1
2N
n

)
, in view of (H2) we can write,

1

εn

∫
Ω

f
(
un(x), εn∇un(x), εnλn(x)

)
dx

=

∫ εn
2t1

− εn
2t1

∫
K

1

εn
f

(
w1

(
t1x
′

εn
,
t1xN
εn

)
+ bn, t1∇w1

(
t1x
′

εn
,
t1xN
εn

)
, t1γ1

(
t1x
′

εn
,
t1xN
εn

))
dx′ dxN

+

∫ εn
2t2

− εn
2t2

∫
H\Kδ

1

εn
f

(
w2

(
t2x
′

εn
,
t2xN
εn

)
+ bn, t2∇w2

(
t2x
′

εn
,
t2xN
εn

)
, 0

)
dx′ dxN



27

+

∫ εn
2t0

− εn
2t0

∫
Kδ\K

1

εn
f
(
vn (x′, xN ) + bn, εn∇vn (x′, xN ) , 0

)
dx′ dxN

+

∫
B
(
x0,ε

1
2N
n

) 1

εn
f

(
u(x) + bn, 0,

√
εn

a

ωN

)
dx

+
1

εn

∫ − εn
2t1

− εn+
√
εn

2t1

∫
K

f(u(x) + bn, 0,
√
εnt1(1− s)θ) dx′ dxN

+
1

εn

∫ εn+
√
εn

2t1

εn
2t1

∫
K

f(u(x) + bn, 0,
√
εnt1(1− s)θ) dx′ dxN

= E(1)
n + E(2)

n + E(3)
n + E(4)

n + E(5)
n + E(6)

n . (5.21)

By a change of variable, Corollary 2.2 (hypothesis (H3) and Fatou’s Lemma guarantee that the
sequence fn(y′) = f

(
(w1 + bn)(y′, yN ), t1∇w1(y′, yN ), t1γ1(y′, yN )

)
satisfies the required conditions)

and (5.15) we have

lim sup
n→+∞

E(1)
n

= lim sup
n→+∞

∫ 1/2

−1/2

∫
K

1

t1
f

(
w1

(
t1y
′

εn
, yN

)
+ bn, t1∇w1

(
t1y
′

εn
, yN

)
, t1γ1

(
t1y
′

εn
, yN

))
dy′ dyN

= HN−1(K)

∫ 1/2

−1/2

∫
Q′

1

t1
f (w1(y′, yN ), t1∇w1(y′, yN ), t1γ1(y′, yN )) dy′ dyN

<
(
σ(eN , θ) + η

)
HN−1(K).

(5.22)

Analogously, a similar reasoning yields

lim sup
n→+∞

E(2)
n = lim sup

n→+∞

∫ 1/2

−1/2

∫
H\Kδ

1

t2
f

(
w2

(
t2y
′

εn
, yN

)
+ bn, t2∇w2

(
t2y
′

εn
, yN

)
, 0

)
dy′ dyN

= HN−1(H \Kδ)

∫ 1/2

−1/2

∫
Q′

1

t2
f (w2(y′, yN ), t2∇w2(y′, yN ), 0) dy′ dyN

<
(
σ(eN , 0) + η

)
HN−1(H \Kδ).

(5.23)

By (H3), the definition of vn and the triangle inequality, we have

E(3)
n =

∫ εn
2t0

− εn
2t0

∫
Kδ\K

1

εn
f
(
vn (x′, xN ) + bn, εn∇vn (x′, xN ) , 0

)
dx′ dxN

≤ C

εn

∫ εn
2t0

− εn
2t0

∫
Kδ\K

(
h(vn(x′, xN ) + bn, 0) + εpn|∇vn(x)|p

)
dx′ dxN

≤ C

εn

∫ εn
2t0

− εn
2t0

∫
Kδ\K

[
h(vn(x′, xN ) + bn, 0) + tp1

∣∣∣∣∇w1

(
t1x

εn

)∣∣∣∣p + tp2

∣∣∣∣∇w2

(
t2x

εn

)∣∣∣∣p
+ εpn|∇ϕ(x′)|p

∣∣∣∣w1

(
t1x

εn

)
− w2

(
t2x

εn

)∣∣∣∣p ] dx′ dxN .

(5.24)
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First notice that, since w1, w2 ∈W 1,p(Q;Rd+),

lim sup
n→+∞

C εp−1
n

∫ εn
2t0

− εn
2t0

∫
Kδ\K

|∇ϕ(x′)|p
∣∣∣∣w1

(
t1x

εn

)
− w2

(
t2x

εn

)∣∣∣∣p dx′ dxN
= lim sup

n→+∞

C

t0
εpn

∫ 1
2

− 1
2

∫
Kδ\K

|∇ϕ(x′)|p
∣∣∣∣w1

(
t1x
′

εn
, xN

)
− w2

(
t2x
′

εn
, xN

)∣∣∣∣p dx′ dxN = 0.

Also, since bn = O(εn) by (5.20), as vn is uniformly bounded in L∞ and h ∈ L∞loc, we have

lim sup
n→+∞

C

εn

∫ εn
2t0

− εn
2t0

∫
Kδ\K

h(vn(x) + bn, 0) dx ≤ lim sup
n→+∞

Cε−1
n LN

(
(Kδ \K)×

[
− εn

2t0
,
εn
2t0

])
≤ CHN−1(Kδ \K) = O(δ).

The two remaining terms on the right hand side of the last equality in (5.24) are also O(δ) since they
can be treated by the usual change of variables and the Riemann-Lebesgue Lemma. For example,

lim sup
n→+∞

∫ εn
2t0

− εn
2t0

∫
Kδ\K

tp1
εn

∣∣∣∣∇w1

(
t1x
′

εn
,
t1xN
εn

)∣∣∣∣p dx′ dxN
= lim sup

n→+∞

∫ εn
2t1

− εn
2t1

∫
Kδ\K

tp1
εn

∣∣∣∣∇w1

(
t1x
′

εn
,
t1xN
εn

)∣∣∣∣p dx′ dxN
= lim sup

n→+∞
tp−1
1

∫ 1/2

−1/2

∫
Kδ\K

∣∣∣∣∇w1

(
t1y
′

εn
, yN

)∣∣∣∣p dy′ dyN
= HN−1(Kδ \K) tp−1

1

∫
Q

|∇w1(y)|p dy = O(δ).

Thus, we obtain

lim sup
n→+∞

E(3)
n ≤ CHN−1(Kδ \K) = O(δ), (5.25)

where C depends on t1, t2, the L∞-norms of w1, w2 and the Lp-norms of ∇w1,∇w2. Using (H5) and
(H6) we conclude that

lim sup
n→+∞

E(4)
n = lim sup

n→+∞

∫
B
(
x0,ε

1
2N
n

) 1

εn
f

(
u(x) + bn, 0,

√
εn

a

ωN

)
dx

≤ lim sup
n→+∞

∫
B
(
x0,ε

1
2N
n

) 1

εn

[
f

(
u(x) + bn, 0,

√
εn

a

ωN

)
− f

(
u(x), 0,

√
εn

a

ωN

)]
dx

+ lim sup
n→+∞

∫
B
(
x0,ε

1
2N
n

) 1

εn
f

(
u(x), 0,

√
εn

a

ωN

)
dx

≤ lim sup
n→+∞

ωN
√
εn
C

εn
bn + lim sup

n→+∞
ωN
√
εn

1

εn
f(u, 0,

√
εn

a

ωN
) = 0,

(5.26)

where u = α or u = β, depending on the location of the ball B
(
x0, ε

1
2N
n

)
. By a similar reasoning, we

conclude that
lim sup
n→+∞

E(5)
n = 0 and lim sup

n→+∞
E(6)
n = 0. (5.27)

Combining (5.21), (5.22), (5.23), (5.25), (5.26) and (5.27), we obtain

lim sup
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnλn(x)) dx

≤
(
σ(eN , θ) + η

)
HN−1(K) +

(
σ(eN , 0) + η

)
HN−1(H \K) +O(δ) < +∞.

(5.28)
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By (H3) and (5.28)

lim
n→+∞

∫
Ω

εp−1
n |∇un(x)|p dx < +∞.

Thus, by (H4), using the fact that cn → 1 and since un and εnλn are uniformly bounded in L∞ and
λn is bounded in L1, we have

lim
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnλn(x)) dx = lim
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnρn(x)) dx. (5.29)

Hence, by (5.29) and (5.28), we obtain

lim sup
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnρn(x)) dx

≤
(
σ(eN , θ) + η

)
HN−1(K) +

(
σ(eN , 0) + η

)
HN−1(H \K) +O(δ),

and thus, due to the arbitrariness of η and δ, we finally get (5.14), i.e,

lim sup
n→+∞

1

εn

∫
Ω

f(un(x), εn∇un(x), εnρn(x)) dx ≤ σ(eN , θ)HN−1(K) + σ(eN , 0)HN−1(H \K)

= F (u, µ).

�

Remark 5.5. The statement of Lemma 5.4 holds trivially in the case where u and Ων are as before
and

µ := θχKH
N−1 Hν +

k∑
j=1

cjδxj ,

with xj ∈ Ων \Hν and cj ∈ R+
0 . Following the procedure in [6], this result can be generalised for

u = χEβ + (1− χE)α,

where E = E′ ∩Ω with E′ a polyhedral set. The idea is to use an induction argument on the number
of flat interfaces corresponding to Su ∩ Ω, taking vn to be a convolution of a convex combination
of α and β and λn = 0 around the “edges”, and (H2) and (H3). The compliance with the volume
constraints follows from (H3) and (H6).

It is easy to show that the same result holds for u as above and

µ := θHN−1 Su +

k∑
j=1

cjδxj

with θ ≥ 0 piecewise constant. In fact, by the assumption on µ, there exist a finite collection of
pairwise disjoint relatively compact subsets K1, . . . ,Kl ⊂ Hν , and positive constants θ1, . . . , θl such
that

θ|Ki = θi and θ = 0 on Hν \
l⋃
i=1

Ki.

Since the sets Ki are pairwise disjoint relatively compact sets in Hν , the construction of the recovery
sequence can be localized near each set Ki so this case can be reduced to the one where θ is constant
in a set K ⊂ Hν .

To complete the proof of the upper bound inequality (5.10) for the general case we will rely on a
lower semicontinuity argument as in [14]. Namely, since X(Ω) is not metrisable and it is not clear a
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priori that the functional Γ
(
X(Ω)

)
− lim sup

n→+∞
Fεn is lower semicontinuous with respect to the topology

of this space, we introduce a new family of auxiliary functionals as follows. Given M > 0 we consider

XM (Ω) := {(u, µ) ∈ X(Ω) : µ(Ω) ≤M}

endowed with the convergence inherited from X(Ω) and we define

FM (u, µ) :=

 Γ
(
XM (Ω)

)
− lim sup

n→+∞
Fεn(u, µ) if (u, µ) ∈ XM (Ω),

+∞ (u, µ) ∈ X(Ω) \XM (Ω),
(5.30)

where, for every (u, µ) ∈ XM (Ω),

Γ
(
XM (Ω)

)
− lim sup

n→+∞
Fεn(u, µ) := inf

{
lim sup
n→+∞

Fεn(un, µn) : (un, µn)→ (u, µ) in XM (Ω)

}
.

The advantage of considering this family of functionals is that from the metrisability of XM (Ω) (see
Theorem A.56 in [13]) FM is sequentially lower semicontinuous with respect to the convergence in
X(Ω).

Since it is clear that

Γ
(
X(Ω)

)
− lim sup

n→+∞
Fεn ≤ FM , ∀M > 0,

to complete the proof of the upper bound (5.10) it suffices to show that

FM (u, µ) ≤ F (u, µ), ∀M > 0, ∀(u, µ) ∈ XM (Ω) such that u ∈ BV (Ω; {α, β}). (5.31)

We point out that (5.31) has already been proved for every pair (u, µ) satisfying the conditions of
Lemma 5.4 or, more precisely, the conditions in Remark 5.5, and such that µ(Ω) ≤M. We now address
the general case.

Proof of Proposition 5.3.

Step 1. We begin by considering the case where u = χEβ + (1 − χE)α, with E an open set such
that E = E′ ∩ Ω where E′ is a polyhedral set, and

µ = gHN−1 Su +

k∑
j=1

cjδxj ,

with g : Ω→ R continuous. Let {gn} be a sequence of piecewise constant functions that converge to
g in Lp(Su;HN−1), ∀p ≥ 1 and such that∫

Su

gn(x) dHN−1(x) =

∫
Su

g(x) dHN−1(x), ∀n ∈ N (5.32)

and set

µn = gnHN−1 Su +

k∑
j=1

cjδxj .

By (5.32) we clearly have that µn(Ω) = µ(Ω), ∀n ∈ N and µn
∗
⇀ µ. Let M ≥ µ(Ω). By Remark

5.5, the lower semicontinuity of FM , the upper semicontinuity of σ (cf. Proposition 3.3) and Fatou’s
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Lemma, we have that

FM (u, µ) ≤ lim inf
n→+∞

FM (u, µn)

≤ lim inf
n→+∞

∫
Su

σ(νu(x), gn(x)) dHN−1(x)

≤
∫
Su

lim sup
n→+∞

σ(νu(x), gn(x)) dHN−1(x)

≤
∫
Su

σ(νu(x), g(x)) dHN−1(x) = F (u, µ).

Step 2. We consider now the case where u = βχA∩Ω +α(1−χA∩Ω), for an arbitrary set A of finite
perimeter in Ω and with µ as in the previous step. By Theorem 2.8 we can consider a sequence {An}
of polyhedral sets such that

χAn → χA in L1(RN ), PerΩ(An)→ PerΩ(A) and LN (Ω ∩An) = LN (Ω ∩A).

Define

µn := gHN−1 ∂∗An + tn

k∑
j=1

cjδxj and un = βχAn∩Ω + α(1− χAn∩Ω)

where tn are chosen so that µn(Ω) = µ(Ω) and notice that

∫
Ω

un(x) dx =

∫
Ω

u(x) dx, so the volume

constraints are satisfied. Then un → u in L1(Ω;Rd+) and, by Reshetnyak’s Theorem (see [3]), we have
that, for every ψ ∈ C(Ω),∫

Ω

ψ(x)g(x) dHN−1 ∂A∗n(x)→
∫

Ω

ψ(x)g(x) dHN−1 ∂∗A(x),

and so we conclude that µn
∗
⇀ µ and tn → 1.

As σ is upper semicontinuous and satisfies σ(z, θ) ≤ C|z| for every (z, θ) ∈ RN×[0,+∞) (cf. (3.25)),
there exists a non increasing sequence {φm} of continuous functions φm : RN × [0,+∞) → [0,+∞)
such that, for every (z, θ) ∈ RN × [0,+∞),

σ(z, θ) ≤ φm(z, θ) ≤ C|z| and σ(z, θ) = inf
m∈N

φm(z, θ). (5.33)

Thus, from the previous step and again by Reshetnyak’s Theorem, we obtain that

FM (u, µ) ≤ lim inf
n→+∞

FM (un, µn)

≤ lim inf
n→+∞

∫
Ω

σ(νun(x), g(x)) dHN−1 ∂A∗n(x)

≤ lim inf
n→+∞

∫
Ω

φm(νun(x), g(x)) dHN−1 ∂A∗n(x)

=

∫
Ω

φm(νu(x), g(x)) dHN−1 ∂∗A(x).

for any m ∈ N. Passing to the limit in m, by Lebesgue’s Monotone convergence Theorem and (5.33)
we obtain

FM (u, µ) ≤
∫

Ω

σ(νu(x), g(x)) dHN−1 ∂∗A(x) = F (u, µ).
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Step 3. Finally we consider the general case where u = βχA∩Ω +α(1−χA∩Ω) for an arbitrary set
A of finite perimeter in Ω, and where µ ∈M+(Ω) is arbitrary. We define the sequence of measures

µn := gnHN−1 ∂∗A+

kn∑
j=1

cnj δxnj ,

where gn : Ω→ R are continuous,

gn →
dµ

dHN−1 Su
in L1(Su;HN−1),

kn∑
j=1

cnj δxnj
∗
⇀ µ− dµ

dHN−1 Su
HN−1 ∂∗A,

and µn(Ω) = µ(Ω). Clearly µn
∗
⇀ µ and, extracting a subsequence if necessary, we may assume that

gn(x)→ dµ

dHN−1 Su
(x) for a.e. x ∈ Su. Hence, by Step 2, the upper semicontinuity of σ and Fatou’s

Lemma, we conclude that

FM (u, µ) ≤ lim inf
n→+∞

FM (u, µn)

≤ lim inf
n→+∞

∫
Su

σ(νu(x), gn(x)) dHN−1(x)

≤
∫
Su

lim sup
n→+∞

σ(νu(x), gn(x)) dHN−1(x)

≤
∫
Su

σ

(
νu(x),

dµ

dHN−1 Su

)
dHN−1(x) = F (u, µ).
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