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ABSTRACT. In this paper we study, via I’-convergence techniques, the asymptotic behaviour of a
family of coupled singular perturbations of a non-convex functional of the type

[ #u@). Va@). pla)) da
as a variational model to address two-phase transition problems under the volume constraints
Jou(x)dz = Vg, / p(z)dz = Vs, and where the additional unknown p interplays with Vu in
Q

the formation of interfaces.
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1. INTRODUCTION

Our aim in this paper is to study the asymptotic behaviour of a family of coupled singular pertur-
bations of a non-convex functional of the type

/ f(u(), Vu(z), p(z)) dz,
Q

where v € W1P(Q; R?) represents the vector-valued fluid density of d fluids present in a container
Q and is subject to the volume constraint / u(z) dr = Vy. The energy density f(-,0,0) is assumed
Q

to vanish if and only if u € {a, 8}, for some fixed {a, 8} C Ri. Our model includes an additional
unknown p, that is taken to be a non-negative L' function whose volume is also fixed, and which
interplays with the gradient of u in the formation of interfaces. One possible application of this model
is within the theory of phase transitions in the presence of surfactants, in which case p represents the
density of the surfactant.

A surfactant (a contraction of the term surface acting agent) is usually an organic compound that
when present in a system has the property of altering its interfacial energy, in general reducing it (see
[18] for a comprehensive study of the properties and applications of surfactants).

In [14], Fonseca, Morini and Slastikov studied a two-phase field model to explain the role of
surfactants in the formation of bubbles in foams. Their energy, which is based on a modification
of the van der Waals-Cahn-Hilliard model for fluid-fluid phase transitions (c.f [8], [19]) suggested by
Perkins, Sekerka, Warren and Langer, includes an additional term that describes the influence of the
surfactant in preventing the coalescence of bubbles and in encouraging the formation of interfaces.
Precisely, in [14], the authors considered a penalized energy of the form

1
/ gW(u) +e|Vul®> +e(p — |Vu|)? dz
Q

where W is a double-well potential and ¢ is the scaling that is used to drive systems towards phase
separation. The limiting energy functional, obtained by I'-convergence, reveals that, on the one hand,
the surfactant is essentially located on the interfaces separating the foam bubbles and that, on the
other hand, interfaces are created where the surfactant is present.

The I'-convergence of a more general coupled class of energies of the form

1

g/ f(u(z),eVu(z),ep(x)) da (1.1)
Q

was addressed by Acerbi and Bouchitté [1] under some convexity hypothesis on f and still in the case

of scalar fluid density.

The objective of this work is to generalise the results of [14] to the coupled case, and of [1] to the
case of vector-valued fluid densities and under non-convexity hypotheses on f.

We point out that our analysis also holds in the case where a mixture of surfactants is considered,
i.e. when p: Q — R™, m > 1, however, for simplicity of notation, we consider p taking nonnegative
real values.

Precisely, we consider a family of energy functionals as in (1.1) where v € WP (Q; R?) represents
the vector-valued fluid density of d fluids, d € N, p : Q — [0,400) is the density of a surfactant
and € is an open bounded subset of RN which represents the container where the d fluids and the
surfactant are mixed. We assume further that each scalar component of u, u;, i € {1,...,d}, which
identifies the density of the ith-ingredient of the mixture, is nonnegative, that is, u € Rﬁlr (we refer
to Section 2 for all the notations used throughout this work). In addition, the bulk energy density
[ RE x RN x Ry — R is assumed to satisfy the following hypotheses:



(H1) f is nonnegative and continuous on R% x RN x R, ;
(H2) f(u,0,0) =0 if and only if u € {a, 8}, for some fixed {a, 3} C RY.

Also, there exists p € [1,+00) such that,
(H3)
1
— P < < p
= (90 +1617) < fu€p) < O (w,p) + k)
for all (u,&,p) € RL x RN x [0, +00) and for some C > 1, where g € L2, (R%;[0, +00)),

loc

h € L2 (RY x [0, 400); [0, 400)) and g is such that g(u) = 0 < u € {a, 8} and |i|n>ng(u) > 0;

loc

(H4) for every M > 0 there exists a constant C; > 0 such that for every (u,§) € R‘i x RN and
every p1, pa € [0,400),

|f(ua€7p1) - f(u7£7p2)| < CM‘Pl - p2|(]— + |£|p)’
whenever p1, ps < M and |u| < M;
1 1
H5) lim — 0,p) =0, lim —f(8,0,p) =0;
(H5) lim, = f(e,0,p) =0, lim ~£(5,0,p)
(H6) for every M > 0 there exists a constant Cps > 0 such that if ju — o] < § then
[f(u, &, p) = fle, & p)| < Curlu — af (1 + [§]),
respectively, if |u — 8] < § then
[f(u & p) = (8.6 p)] < Curlu— BI(L + [&]7),
whenever p < M.

The counterpart of (H3) for p = 400 leads to sequences of gradients and of surfactants that are
bounded in L* which is not physically interesting. A prototype for f, satisfying the above hypothesis
in the case p = 2, is

Fu, &, p) = lu—allu— BI* + €° + (p — [€])*.
However, we point out that our hypothesis are weaker than those considered in [14] and include
functions which do not satisfy polynomial type growth conditions, for example

F,€,p) = Ju—allu— BIP + ¢ + pellr.

In our setting, the volume of the surfactant is given a priori and fixed, and the total amount of
bulk material is preserved, i.e., (u, p) € V where

V= {(u, p) € WhHP(Q;RY) x L (£2;[0, +00)) : / p(x)dr = Vs, / u(z) dx = Vf} (1.2)
Q Q
for some V, > 0 and some V; = (Vfl, ceey Vfd) € Ri satisfying
|Q| min(a’, B%) < sz’ < |9Q| max(a’, %) for every i = 1,....,d, (1.3)

where o and 3’ are the i-th components of a and 3, respectively.

Our aim in this article is to characterise the asymptotic behaviour, as € — 0T, of the family of
functionals

E.(u,p) := %/Qf(u(x),EVu(x),ep(x)) dx, for (u,p) € WHP(Q;RE) x L (3]0, +00)),  (1.4)

subject to the constraints defined in (1.2). We will use a I'-convergence argument. For this purpose
we consider the space

X(Q) == LY RE) x MT(Q)
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endowed with the product topology 7 X 7o, where 71 denotes the strong convergence in Ll(Q;Ri)
and 7o stands for the weak*-convergence in the space M™(Q) of nonnegative finite Radon measures
supported on 2, and we define

W= {(u, W) EX(Q): p(Q) =V, /Qu(x) da = vf} . (1.5)

Note that if (u,p) € W'P(Q;RL) x L (Q;[0,+00)) are such that (u,p) € V and p = pLV L€, then
(u, ) € W.

We now extend the functional E. to the whole space X () by setting, for every (u,u) € X (£2),
E.(u,p) ifue WhP(sRY), p=pLNLQ,
Folu,p) = p € L'(Q[0,+00)), (u,p) €V (1.6)

+o00 otherwise.

Given v € S¥~! and 6 € [0, +00) the set
1
A, 0) = {(u,p) € V[/li)’f(S,,;Ri) X Llloc(RN; [0,400)) s u(y) =a if y-v= —5

u(y) =pif y-v= %/ p(y)dy <0, (1.7)

v

u and p are periodic with period one in the directions of vy, ..., vN_1 },

represents the class of admissible pairs of density functions and surfactants for (v,0), where the
boundary values of u are understood in the sense of traces, {v1,...,vN_1,7} is an orthonormal basis
of RY and S, is the strip

1
SV::{J:E]RN: |x~u<2}.

Finally, we introduce the anisotropic surface energy density o : S¥ =1 x [0, +00) — [0, +00) defined
by

o(v,0) := inf { / %f(u(y),tVu(y),tp(y)) dy:t>0, (u,p) € A(v, 9)}, (1.8)

v

and the limit energy functional F: L'(€; Ri) X MT(2) = R that is given by

jgua<wxx»dCHNfﬁLéh)@ﬂ)dHN;luﬁ

Fu, p) = if (u, p) € [BV (2 {a, B}) x MH(Q)]NW

400 otherwise.

Our first result establishes that the topology in X () is compact for sequences with bounded
energy. In the case p = 1, this is a direct consequence of Poincaré’s inequality and the fact that
Cf(u,& p) > |€|. For other values of p, to prove this result we need to make use of the coercivity

condition in (H3), C'f(u, &, p) > g(u), where ‘ i|n>ng(u) > 0 (cf. [17]). Precisely, our theorem reads as
follows. .
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Theorem 1.1. Assume that hypotheses (H1)-(H3) hold. Let e, — 0 and let (un, pn) € [W1P(RE) x
LY(;]0,+00)] NV be such that
sup F. (tn, prn) < +00.
n

Then there exist a subsequence {(un,, pny )} p C {(Un, pr)}n and (u, ) € [BV(Q; {a, B}) x MT(Q)]NW
such that

(Unys Pry) = (u, ) in X ().
The main result of this paper is the following.

Theorem 1.2. Under hypotheses (H1)-(HG), the family of functionals Fr in (1.6) T'[X (Q)]-converge
to the functional F in (1.9).

The proof of Theorem 1.2 is based on the blow-up method, introduced by Fonseca & Miiller (see
e.g [15] and [16]), which allows us to consider the case where €2 is a small cube and the target function
has planar interface. We also rely on a slicing argument (cf. Lemma 3.1), enabling us to modify a
sequence near the boundary of the cube without increasing the total energy, as well as on periodicity
arguments based on the Riemann-Lebesgue Lemma.

The following property is an immediate consequence of Theorem 1.2 and Theorem 1.1 (see also
Theorem 2.11).

Corollary 1.3. Assume that hypotheses (H1)—(H6) hold and let {(ue, pe)}e be a sequence such that
(tg, pe) is a minimum point of F.. Then the sequence {(ue, i)} is relatively compact with respect to the
(11 X T2)-convergence of X(Q), and any cluster point (u, i) of {(ue, pte)}e belongs to BV (Q; {«, B}) x
MT(Q) and is a solution of the minimisation problem

min{F(u, p) : (u, p) € X(Q) N W}.

This article is organized as follows: in Section 2 we set up the notation and state some preliminary
results on measure theory, functions of bounded variation and I'-convergence which will be used
throughout the paper. In Section 3 we prove some auxiliary results which will be needed in the sequel.
Section 4 is devoted to the proof of a compactness result for sequences with bounded energy, whereas
the statements and proofs of our main results can be found in Section 5.

2. PRELIMINARIES

In this section we set up the notation used throughout this work and recall some well-known facts
about measure theory, functions of bounded variation and I'-convergence. Standard references on
these topics include [3, 10, 11, 12, 13], on which most of the presentation is based.

2.1. Notation. Throughout the text, unless otherwise specified, @ C RN, N > 2, will denote an open
bounded set with Lipschitz boundary and we will use the following notations.

|2 denotes the Lebesgue measure of €.

e R? := [0, +00)".

o LN and HVN ! stand, respectively, for the N-dimensional Lebesgue measure and the (N —1)-
dimensional Hausdorff measure in RY.

e |z| denotes the Euclidean norm of a vector z.

e Given z € RN we write 2 = (2/,xx), where 2’ stands for its first N — 1 coordinates and zy
for the N-th one.

e () is the open unit cube centered at the origin with faces normal to the coordinates axes.

e B(x,r) denotes the open ball centered at x € R? with radius r > 0.

o SNli={zeRV: |z|=1}.



e Given v € SN~ the set S, represents the strip

1
S,,::{xERN: |x-1/|<}

2
and @), denotes an open unit cube centered at the origin with two of its faces normal to v,
i.e., if {v1,...,un_1,v} is an orthonormal basis of RY then
1 1
Q. = {xERN: |z - v] < 3 |z - v| < 2,11,...,N1}. (2.1)
o Q,(wg,7) :=x0+7Q, for 1g € RN r > 0and v € S¥~1. If {e1,...,en} is the canonical basis

of RN then Q. (zo,7) = o + rQ =: Q(xo, 7).

e SO(N) denotes the set of rotations in RY.
e a®bis the N x d-matrix given by (a ® b);; = a;b;, a € RN and b € R%.
e (' denotes a generic positive constant whose value might change from line to line.
. lim := lim lim
n,m—+00 n—-+o0o0 m——+oo

2.2. Periodic functions and the Riemann-Lebesgue Lemma. We state here the Riemann-
Lebesgue Lemma that, due to the periodicity in the first N — 1 variables of the admissible functions
for the limit energy functional, will be useful in the proof of Theorem 1.2 (more precisely Lemma 5.4).
We recall that a function v defined in R¥ is periodic with period one in the direction of a vector v if
v(y) = v(y + kv), for all y € R, and is said to be Q-periodic if it is periodic with period one in all
the directions of the canonical basis of RV,

Lemma 2.1 (Riemann-Lebesgue Lemma; cf. Lemma 2.85 in [13]). Let f € LY (RY), 1 < p < +o0,

loc

g

be a Q-periodic function. Define fn(x) = f (i), where {e,}n is a given fized sequence of positive
real numbers converging to zero. Then the sequence f, converges weakly in LY (RM), 1 < p < 400

loc
(weakly-* in L) to the function ][ f(z) de.
Q

The following corollary can be found in [9)].
Corollary 2.2. Let f, € L?

loc
| frllzr (@) < C and lim ][ fo(z)dx = f. Define g,(z) = fn (EL), where {en}n, s a given fized se-
n Q n

(RM), 1 < p < +o0, be a sequence of Q-periodic functions such that

li

—+o0

quence of positive real numbers converging to zero. Then the sequence g,, converges weakly in L7 . (RM)
to the function f.

2.3. Remarks on measure theory. Let X be a locally compact separable metric space and let
B(X) denote its Borel o-algebra. We represent by M(X;RY) the space of finite R -valued Radon
measures, that is, the set of all y: B(X) — R, u = (u1, ..., un), such that

N
<u7s0>:=/ wduEZ/ i dp;
X = Jx

for all o = (g1, ..., on) € Co(X;RY), and we endow this space with the weak*-topology. In particular,
a sequence {f,} € M(X;RY) is said to weak*-converge to u € M(X;RYN) (indicated by p, = p) if
for all ¢ € Co(X;RYN)

lim gpd,un:/ pdpu.
X X

n—-+o0o

If N =1 we write by simplicity M(X) and we denote by M™(X) its subset of positive measures.
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The following is a well known result on measure theory which is important to understand the
structure of the class of BV -functions.

Theorem 2.3 (Lebesgue-Radon-Nikodym Theorem). Let € M (X) and v € M(X;RYN). Then
(i) there exist two RY -valued measures v, and v, such that
V="1,+ Vs (2.2)
with v, << p and vs L p. Moreover, the decomposition (2.2) is unique, that is, if v = Uy + Us

for some measures Uy, Vs, with U, << p and vs L u, then v, = U, and vy = Ug;
(ii) there is a p-measurable function u € L'(Q;RYN) such that

va(E) = [Eudu

for every E € B(Q). The function u is unique up to a set of p measure zero.

The decomposition v = v, + v is called the Lebesgue decomposition of v with respect to u (see [13,
Theorem 1.115)), v, and v; are called, respectively, the absolutely continuous part and the singular
part of v with respect to u and the function w is called the Radon-Nikodym derivative of v with respect
to u, denoted by u = dv/du (see [13, Theorem 1.101]).

In the sequel, we will often identify a function f € L! (Q; [O,Jroo)) with the measure fLY L Q.
Given u € M(X;RY) its total variation will be indicated by |u| and its support by supp u. In
addition, given E € B(X) we will denote by ul E the measure given by ulL E(A) := pu(E N A) for
every A € B(X).

The next result is a strong version of the Besicovitch Derivation Theorem due to Ambrosio and
Dal Maso [2] (see also [3, Theorem 2.22 and Theorem 5.52] or [13, Theorem 1.155]) and it is crucial
for the proof of Theorem 1.2 (see Lemma 5.1).

Theorem 2.4. Let i € M*(Q) and v € M(Q;RY). Then there exists a Borel set E C § with
w(E) =0 such that for every x € (supp p)\F

D)NQ
Wy = Wy =y AEEEDIND) g
du dp =0+ p((z +eD)NQ)
and
dv, _ g VS((J:+5D)OQ) _

)

du R p((z+eD)NQ)

where D is any bounded, convex, open set containing the origin and the exceptional set E is independent
of the choice of D.

2.4. Functions of bounded variation. We recall that a function v € L'(£;R?) is said to be of
bounded variation, and we write u € BV (Q;R?) (or BV (Q) for d = 1), if all its first order distributional
derivatives Dju; belong to M(Q). It is well known that BV (€; R?) is a Banach space when endowed
with the norm
lullBv = llullLr + [Dul(2)

where Du is the matrix-valued measure whose entries are Dju;.

Clearly, we have that any u € W11(Q;R?) is a BV-function with Du € L'(Q; R?) and the measures
Dué are absolutely continuous with respect to the Lebesgue measure.

Given u € BV (Q;R%), let €2, be the set of points z € { where the approximate limit of u exists,
i.e. such that there exists z € R? with



lim lu(y) — z|dy = 0.

e—0t B(z,¢)

If x € Q, and z = u(z) we say that u is approzimately continuous at x (or that x is a Lebesgue point
of u). The function u is approximately continuous £N-a.e. z € Q, and

LN(S,) =0

where we denote by S, the set of points where u is not approximately continuous, ie., Sy, = Q\ Q.
We say that 2 € S, is an approximate jump point of u if there exists v, (z) € SN~! and u*(z) € R?

such that
1 . )
i ( Lo i) = @y [ )~ (x)!dy> ~ 0,

with B*(z,7) := {y € B(z,r) : £(y — ) - vu(z) > 0}. The triple (v, (x),u(x),u " (x)) is unique up
to a change of sign of v, (x) and a permutation of u™(x) and u~(x). The set of approximate jump
points is denoted by J,.

By the Lebesgue-Radon-Nikodym Theorem 2.3, if u € BV (£2;RY) then
Du = Vul™ |Q + Du,

where Vu is the Radon-Nikodym derivative of D% with respect to £V.

We recall that an H~~!-measurable set £ C R" is said to be a countably H™ ~'-rectifiable set if
it can be covered H™~1-almost everywhere by a countable family of (N — 1)-dimensional surfaces of
class C'. The proof of the well known Structure Theorem for BV-functions that we present below can
be found in [3, Theorem 3.78 (Federer-Vol'pert) and Proposition 3.92].

Theorem 2.5 (Structure Theorem for BV-functions). If Q@ C RY is open and u € BV (Q;R?), then
Ju is a countably HN~'-rectifiable set oriented by vy, HN~1(Sy \ Ju) = |Du|(Sy \ Ju) = 0 and D*u
can be decomposed as Du + D’u, where |Du|(E) = 0 for every Borel set E with HN~1(E) < +o0,
and

Diu=(ut —u")@u,H L J,.

D¢u and D’u are called the Cantor part and the jump part of the measure Du, respectively.

We also recall that a L£N-measurable subset E C RY is a set of finite perimeter in € if the
characteristic function X of E is a function of bounded variation. In this case, the perimeter of F
in Q is given by the total variation of X in Q, i.e., Perq(E) := |DX |(9).

Definition 2.6 (Reduced boundary). Let E be a £-measurable subset of R and €2 be the largest
open set such that E is locally of finite perimeter in €2, i.e., such that X5 € BViec(2). The reduced
boundary of E, 0*E, is the collection of all points zy € Q such that

(i) |Dxg|(B(wo,r)) > 0 for all r > 0, that is, 29 € supp|DX gl;
Dxg(B
(ii) the limit vg(20) := lim X (B(o,7))
r—0+ |DX g|(B(2o,7))
(iii) [vg(zo)| = 1.

The function vg : *E — SV~ is called the generalized unit inner normal to E.

exists in RV,

It can be easily checked that 0*F is a Borel set and that vg is a Borel map. By the Besicovitch
Derivation Theorem 2.4 the measure | DX | is concentrated on 0*F and DX p = vg|DX g|. In addition,
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by De Giorgi’s Rectifiability Theorem, see [3, Theorem 3.59], | D | coincides with H¥~1L9*E, and
for every x € 0*F the following properties hold

lim TN HY 0 BN Qi (7)) =1 (2.3)
Tgrg+ T—N LY{y € Quuy(@,7)\E: (y—2) -vp(x) >0}) =0 (2.4)
rli%l+ rTV LY{y € Qup)(@,r)NE: (y—2) vp(x) <0}) =0 (2.5)

(see also Evans & Gariepy [11, § 5.7.2, Corollary 1] and [16] for the proof of (2.3) when cubes are
considered instead of balls).

Remark 2.7. (The set BV (Q; {«, 8})) Given o, 8 € R%, o # 3, we denote by BV (Q;{«a, 3}) the set
of all vector-valued functions u of bounded variation in Q such that u(z) € {a, 8} for LN-a.e. x € Q.
Ifue BV(Q; {a,ﬁ}), that is, u = BXp + aXq\p for some LN -measurable set E of finite perimeter,

then S, the reduced boundary 0*E and the jump set J,, of u have the same H¥ ~!-measure in 2. By
(2.4) and (2.5), we also have v, (z) = vg(z), ut(z) = 8 and v (x) = a, for HN"l-ae. x € O*E

The following theorem is a variant of a well-known approximation result for sets of finite perimeter
and it will be used in the proof of Theorem 1.2 for the construction of the recovery sequence for the
limit energy functional since it will allow us to reduce our study to the case where the limit target is
suitably regular.

Theorem 2.8. Let ) be an open, bounded set with Lipschitz boundary and let E be a subset of Q
with Perq(E) < +4o0o0. There exists a sequence {E,} of polyhedral sets (i.e., for each n, E, is a
bounded Lipschitz domain with OF,, = H1,UHs,U... Hy ,, where each H;,, is a closed subset of a
hyperplane {x € RN : z-v; = ¢;}, for some c; € R andv; € SN, j=1,...,L,, L, € N) satisfying
the following properties:
(i) Xg, = Xg in LY(), as n — +oo,

hm Perq(E,) = Perq(E),

( ) n—-4o0o
(iil) HN-L(0*E, N 0Q) = 0,
(iv) LY(En) = LY(E).

For the construction of the sets E,, in Theorem 2.8 we refer to Lemma 3.1 in [4].

2.5. I'-convergence and its main properties. Let X denote a metric space.

Definition 2.9. (I-convergence of a sequence of functionals) Let F,,, F : X — RU {+oo}. The
functional F is said to be the I'-liminf (resp. I'-limsup) of {F,}, with respect to the metric of X if
for everyu € X

F(u) = inf { liminf F, (u,) : up € X, up, = u in X} (resp. limsup).

{un} n—-+00 n——+oo
In this case we write
F =T-liminf F, (resp. F =T-limsup Fn> .

n—r+400 n—+00

Moreover, F is said to be the T-lim of {F,}, if

F=T- hmlann = I"-limsup F,,

n—+00 n—-+o0o
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and in this case we write
F=T-lm F,.

n—-+o0o
For every € > 0 let F. be a functional defined in X with values in RU {400}, F. : X = RU {+o0}.

Definition 2.10. (I-convergence of a family of functionals) A functional F': X — RU {400} is said
to be the T-liminf (resp. T-limsup or U-lim) of {F.}. with respect to the metric of X, as € — 0%, if
for every sequence €, — 07,

F =T-liminf F, <resp. F =T-limsupF;, or F=T- lim F8n>,

n——+oo n—s—+o0o n—-+o0o

and we write

F =T-liminf F_ (resp. F =T-limsup F. or F =T-lim Fe> .
e—0t

e—0t =0t

One of the most important properties of I'-convergence is that under appropriate compactness
assumptions it implies the convergence of minimisers of a family of functionals to the minimum of the
limiting functional, as a consequence of the following result (see Corollary 7.20 in [10]).

Theorem 2.11. (Fundamental Theorem of I'-convergence) Let { F. }. be a family of functionals defined
in X and let
F=T-lim F..

e—0t

If u. is a minimiser of F. in X and ue — u in X then u is a minimiser of F in X and

F = lim F, .
(u) 6_1>r(1)1+ = (ue)

3. AUXILIARY RESULTS

In this section we present some auxiliary results for the proof of Theorem 1.2. Our first lemma
is crucial to apply a blow-up argument in the lower bound estimate for the limit energy (see Propo-
sition 5.2). It relies on a slicing argument applied in the cube Q,, for v € S¥~! and to a target

function of the type
3, if x-v >0,
uo(x) == (3.1)

«@ if x-v <0,

)

allowing us, given a fixed 6 > 0, to replace a sequence {(ux, px)}, converging to (ug,6) by a sequence
{(wg, %)} of admissible pairs in A(v, #), still converging to (ug,6) in X (2) and without increasing
the total energy.

Given v € L} (RN ) and ¢ > 0, we denote by u. the standard mollification of u. We recall that,

loc

i) if u is bounded, then for every 1 < p < 400,

. Ul 5o
ue s win I BY), el <l [Vl < 01 (3.2)

loc

ii) if u=BXpg + aXpn g for some set E C RY with Lipschitz boundary, then

u%—ummnz/‘ e () — u(w)| da
{zeQ: dist(z,QNOE)<e}

< C(a,B,N) LN ({x € Q: dist(z,QNIE) < e}) = O(e).
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Finally we note that the convolution with the target function defined in (3.1), which we denote in
the sequel by ., has the following properties

Ue(x)=p ifax-v>e, Ue(z)=a ifzx-v<—eg (3.3)
Vue(z) =0 if |z-v|>e. (3.4)

Lemma 3.1. Assume that (H1)-(Hj) hold. Let ey — 0T as k — +oo. If {vp} C WHP(Q,;R%)
converges in L'(Q,;RL) to ug, and if {\,} C L' (Ql,; [0, +oo)) is such that

lim A () de < 6, (3.5)
k—+o00 Q.

then there exist a subsequence {k'} of {k} and {(wi, )} € W'P(Qu;RL) x L*(Q,;[0,400)) such
that

(i) wr — ug in Ll(Qy;R‘i) and wy = ug * Ve, near the boundary 0Q,,;

(i) / i (x) dx < 0 for every K';

v

1
(iii) lim sup/ s f(wp (), e Vwp (2), ey (2)) da
QV k/

k’—+o00
1
< lklgigof o, gf(vk(x), exVur(2), ex i (w)) da.

Proof. The outline of the proof is as follows. We begin by proving the lemma in the particular case
where v and Ay are uniformly bounded in L*°, i.e., we assume that there exists M > 0 such that, for
all k, |[vg|loe < M and [[Ag|[oc < M. In a second step, we prove that given d > 0, for every k, there
exist M (k,d) and Ty 5 € Wi’p(Qy;Ri)ﬂLc’o(Qy; R%), Ao € L1 (Qu; [0, 400))NL>(Qy; [0, +00)) such
that ||k s]lec < M(k,6), || Akslloc < M(k,d) and
1 - 1
/ af(m’g(x), ek Vs (2), exp,s()) do < / ﬁf(vk(x), exVug(2), ex X () da + 6.

QV QV

The result then follows by a diagonalisation argument.

Without loss of generality, we assume that v = ey and we denote @, by Q. Extracting a subse-
quence if necessary, we may also assume that vy(z) — ug(x) for LN-a.e. 2 € @, and that

1 1
%girgof/Q af(vk(m),EkVUk(x),ak)\k(x))dx = kETOO A af(vk(as),Evak(w),ak)\k(x))dm < 4o00.
(3.6)

Step 1: case of L> uniformly bounded sequences.

Step la: construction of wy. Assume that there exists M > 0 such that, for all k, ||vk||lec < M
and [|Aklloc < M. We first notice that, if p > 1, then

lim /Q |vg (2) — uo(x)|P dx = 0. (3.7)

k— 400

(if p = 1 this holds by hypothesis). In fact, since ||vk|lcc < M and ug € L*°, the claim follows
immediately since

[ 1ov(@) = wo(@)? do < o = ol — ol
Q
Notice also that, by (H3) and (3.6), we have

k—4o00

lim sup/ 2NV (2) P dz < +oo. (3.8)
Q
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For 0 < s < 1/2, define
Qs = {x € Q : dist(z,0Q) > s}
Choose a sequence s,, | 07, and for each m € N and h € N define
Ly = {x €Q: sy < dist(x,0Q) < s + fll}

If vy, equals the mollified target function wy := u,, for infinitely many k, we choose wy, = uy, to achieve
the conclusions of the lemma. Otherwise, without loss of generality, we may assume that for every
keN, |v — ﬁkHLp(Q;Ri) > 0. Partition L, j into T}, » pairwise disjoint layers

LY, =0 € Lyt dio1 <dist(2,0Qs,) <6}, i=1,....,Tmnn,

of constant width §; — §;—1 = eg|jvi, — ﬂk”}:/PIEQ-Rd ) with g =0 and 47, , , = O(1/h), so that
EE v

~ 1
Ton,h kEk |0k — Uk”iisz;Ri) = O(h)’ (3.9)

and

3

ok

- p
Lo P+%Wwww+£wmuw+'ww)u“@|}“
L, )

llox — ak”LP(Q;Ri
o P

o) — ()] ]M_
)

|vr — ak”Lv(Q;Ri

i=1

Jhuk

/me

Thus, there exists i, = i.(m, h, k) such that

{1 + b |V ()P + e} [ Vg (z)|P +

— 7 p
fo P*iWw@W+#WmmW+|%@)UM@|]M
L' )

llvx — akHLP(Q;Rd

i 1 ‘ (+) ~ ( )‘p (310)
< [1+aﬂVw«ww+fivau¢np+ T }dx
Tonhoke Lon llvx — uk”LP(Q;Ri)
Consider cut-off functions @, .1 € C°(Qs,,; [0,1]) such that
iu—1
Cmpk =0 on (Q\Qs,)U U walz),hJc =: Am .k
i=1
T h ke )
Omhk =1 on (Qs,, \ Li,n) U < U Lﬁ,?,h,k> =: B h .k
=i 1
and
— -1 ~ 1—1/p
I96mnilloo = O (e ok = el otz ) (3.11)
Define
Wi, b k(T) = Om .k ()vE(2) + (1 — ©m pk(2))ur(x), T € Q, (3.12)
and

Me(w) ifz€Q\ Apnk,
0 ifz e Am,h,k~

pm,h,k(x) = {
Then Wy, p.kx € Wl’p(Q;Ri), and by (3.5)

lim sup / Pm.hk(x)dr < limsup / Ar(z) de < 6. (3.13)
Q Q\Am,h, ¢

m,h,k—4+o0 m,h,k—4o0
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From (3.7) and (3.2);, we have that for each m € N

poplim e = wollo(girg) = 0.

Furthermore,

1
/ = (Wi (%), €6V Wi 1k (T), EPrmp k(@) d
Q

< /A if(ﬂk(x),akVEk(x),O)dx

m,h,k

(3.14)

1
+/(,_ ) af(wm,h,k(x),€kvwm,h,k(117),€k>\k(il?))d$
Ll»

m,hk

+ /Q if(vk(z), svak(x), EkAk(x))d‘r'

By (H2), (H3), (3.2), (3.3) and (3.4), we have

1 ., ~
lim sup / — f(un(z), ex Vug(z),0)dx
m,h,k—+o0 J A Ek

1 ~ ~
< C limsup / — [h(uk(:c), O) + si\Vuk(x)V’] dx
m,hk—+o00 J{x€An hi |z yI<er} €k

1
< C limsup {limsupeﬁN({x €(Q\Qs,,) ULy p: |xy] <Ek})}
k

m,h—+o0 k— oo

m,h,k

= C limsup £V (0Qs,,) = 0.

m——+oo

Given that h € Ly, and wy, p, and ey are uniformly bounded in L*°, in view of (H3), (3.11),

loc

(3.10) and (3.9), in this order, we have for each m € N,

h,k—+o00 ). Ck

. 1
hmsup/(A — (wm’fhk(m),skam,h,k(x),ek)\k(x))da:
=

ule) =Bl 1,
)

vk — akHLv(Q;Rd

C ~
< limsup 7/ {1 + P Vg (z) [P + ¥ [V (x)|P +
Lp.n 1

hk——+o00 €kLm bk

< limsup Ch||v — ak”iﬁ@md) { / {1 + &P | Vg (z) P + 5£|Vﬂk(x)|P} dx
h,k—+o0 T Lom,h

+||Uk - ak”ip(lQ;Ri)} = 07
where in the last equality we used (3.2), (3.7), and (3.8). Thus, (3.14) becomes

. 1
lim sup / L (@), 1Vt (), e (@) da
m,h,k—+o00 JQ €k

1
< i — :
< kgrf_loo ; Ekf(vk(x),EkVUk(a:),ek)\k(x))dx
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Finally, using a diagonalisation process (see [7, Lemma 7.1]) we can extract subsequences {m(k)} and
{h(k)} such that setting wg := Wy (k),n(k),k AN Pk = P (k),h(k).k> We have that

kEToo [|wr — UOHLI(Q;Ri) =0, kgrfoo ; pr(x)dx <0,

X . (3.15)
lim sup/ —f(wk(x),Ekak(J;),Ekpk(x))dx < lim inf/ —f(vk(x),skVUk(x),Ek)\k(ac))dw,
k=400 JQ €k k—=+oo Jg €k

where we used (3.6) and the fact that the limit along any subsequence equals the limit along the
original sequence.

Step 1b: construction of y,. We now need to modify the sequence {pi }¢ in order to obtain a new

sequence {7y} satisfying / ~i(x) dr < 0 for all k (and not only in the limit as k — +00). Set
Q

0
Vi = CkPk, where ¢ := min {1, }
fQ pr(x) dx

If fQ pr(x) dx = 0 then we take ¢, = 1. It is clear that ~ satisfies (ii) for every k € N. We also claim
that

lim sup/Q if(wk(;zc)7E;CVwk(:chEkmc(as))dgc < lim sup/Q if(wk(ar:),Ekak(a?),gkpk(a:))dac.

k—+o0 €k k—+o0 €k
(3.16)
In order to prove (3.16), we begin by noting that, by (3.6) and (3.15),
1
lim sup/ —f(wk(x),akak(x),akpk(a:))dx < 400,
k—+oc0 JQ €k
so (H3) yields
limsup/ PN Vwg (z) P dz < +oo. (3.17)
k—+oc0 JQ

Since by construction ¢, — 1 as k — +oo, using hypothesis (H4), (3.17) and the uniform bounds
[lvklloe < M, [[prllo < [[Ak]loc < M, we have

lllcrgfifflk/cg |f(wk(:r),skak(x),skvk(x)) — f(wk(x),ekak(x),ekpk(x)){d:r

Cwm

< limsup — / ‘ekpk(x) — 6k7k(m)‘(1 + \ekak(x)\p) dx
k—4o0o €k Q

<limsup C(1 — ck)/ o (@) (1 + |exVwg(2)|P) dz = 0.
k——+oco Q
Thus the proof of (3.16) is complete.

Step 2: truncation. Now let e, — 0% as k — 400, {vx} C WHP(Q,;R%) converge in L'(Q,;R%)
to up and {A\y} C L' (Q,;[0,+00)) be such that
lim / () dz < 6, (3.18)
Qu

k——+o0

We will use a truncation argument to show that, for each § > 0 and for each fixed k, there exist

M = M(k,d) and functions T and Ay such that |[Ux||lcc < M(k,9), || Akllec < M(k,0), T — up in
1 .Td : BY <

LY(Qu:RY), kgrfoo/Q)\k(x) dx < 0 and

/Q if (U (2), ex VR (2), ex Ak (2)) da < /Q if(”’f(x)"fkvvk(l“)ﬁk/\k(x)) dz + . (3.19)



For each k € N, M > ||ug||oc, define

oo (@) = { vg(x) if |og(z)] < M
M up(z) if Jog(x)| > M +1
)

and such that, for all x € Q, |vi,m(2)] < vk ()], [Vorm(x)] < [Vog(x)| (cf. [5]), and

M () = { 0 if )= M

Comparing the energies we have that

Q 1kf(’l)k M( ) 5kvvk,M(x)75k)\k,M(x)) dx

— /Q if (vk(), e, Vur(z), exAi(z)) do

N{|ok| <M, A<M} €k

n — f (0r(0). 2 V0u(0),0) do

/Qﬁ{vk|<M Ae>M} €
/ L (@), 0, e60u () da
on

{Jor|>M+1, A<M} €k

_|_

+

/ L f(uo(2),0,0) dx
Qn

{Jor|>M+1, \e>M} €k

+

/Q if(vk (), eV ar (), ek (2)) da

{M<|vp|<M+1, A\, <M} €k

N / L opn (@), 20 Vo (), 0) da,

QN{M<|vk|<M+1, 2y >M} €k

where, by (H2), the fourth term is zero. Using hypothesis (H3) yields,

€k

/ if(vk m(x), €6 Vor, (), exre,m(x)) do < / if(”uk(x),Evak(ac),z—:k)\k(x)) dx
Q Q Ck

1
+C — (h(vi(x),0) + |ex Vg (z)|P) da
Qn{Ar>M} €k

1
+C —h(ug(z), epAp(z)) do
Qn{lvk|>M+1} €k

1

15

+C — (h(vg,p (), e (x)) + (ek| Vo (2)])P) da

QN{|vk|>M} Ek

JrC/Q L (h(vk,a1 (), 0) + (e&|Vor(x)])P) de,

n{A>M} €k

S/ if(Uk(x),€kVUk(x),5k)\k(x)) dx + 6,
Q En

provided M = M (k, §) large enough. Defining v, = Vg, M (k,5) and g = Ak, M(k,s) it is clear that these

functions satisfy the required properties.

Step 8: diagonalisation. Fix M > |lug||eo. Since the sequences {vg ar}r and {Ag ar}x are uniformly
bounded in L°°, by Step 1, there exist sequences wy ar and g, s, satisfying the conditions in the



16

statement of the lemma and such that

. 1
lim sup/ —f(wk,M(x), erVwg m(z), Ekvk,M(m)) dx
k—+oo JQ €k

1
< liminf/ —f(vk,M(:c),evak,M(:c),sk/\hM(x)) dx.
k—+oc0 Q ¢k

Thus, for all j, there exists k(j) such that

1
lim [ —— f (i Vi VTG d
S gy (maar (@) e Vi) (@) ey T () o

< lim
I+ JQ €k(j)

F (k) ar (@) ex() Vori),m (2)s exy Argy e () dae

and so, for every § > 0, there exists k(j,d) such that

1
/ F(wi(j.6).0 (%), €x5.5) VWk(s.5) 10 ()5 Er(5.6) Vh(s0),: (2)) d
Q €k(4,9)

1
< / F (k00,00 (), €n5.8) VVk(5.6),0 (%), Ek(j,6) Me(i,0),0 (2)) dz 4 6.
Q €k(5,6)

1
Thus, if in the previous inequality we set 6 = — and M; = M (k(j, %), %) from Step 2, and we define
J

€j = Er(j, L)y Wi = Wr(j,1),M; and v; = Vh(,1),M,0 We get, using the estimate obtained in Step 2,

limsup/Q Eljf(wj(x),Eijj(x),sj'yj(ac)) dx

j—+oo

1 1
< lim inf o (@) e 1 V01 ap () e 1y A 1y ap, (7)) d =
< lim inf (/Q gk(j%)f(”ku,;),% (), €x5,2) YOk 1), (2)s €0, 1) Ay 2,0, (7)) dae + ]>

1 2
< lim inf . RV e 1A (@) do + =
< lim inf (/Q gk(j%)f(”k(;%)(x)’%(%;) k1) (@) a1 A 1) (7)) ff+J>

o 1
< lklgir;of 0 gf(vk(x), ex Vo (2), exAe(z)) da.

This completes the proof of the lemma. O

Remark 3.2. Notice that by (3.3) and Lemma 3.1 (i)-(ii), we have that (wg,vx) € A(v,6) for
sufficiently large k.

We will now analyse some properties of the surface energy density o given in (1.8). These properties
will be useful for the construction of recovery sequences to obtain an upper bound for the limit energy
(see Proposition 5.3) as they will allow us to reduce the target function to a suitably regular class of
functions.

Proposition 3.3. If (H1) and (H3) hold, then

(i) 0<o(v,0) <C(1+|afP + |BIP) for all (v,0) € SN7! x [0, +00);
(ii) for all (v,0) € SN=1 x [0, +00), o(v,0) = 00 (v, 0) where

Ooo(v,0) := inf /Q %f(u(y),tVu(y),tp(y)) dy:t>0,

(u,p) € A(v,0) N LOO(SV;]Ri) x L>=(RY; o, —|—oo))};

(iii) o is upper semicontinuous on SN~ x [0, +00) and non-increasing with respect to 0.
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Notice that the continuity of f is not used to prove (i).

Proof. (i) Fix (v,0) € S¥=! x [0, +00), and let

w(@) = (8- a)(z-v) + 28 (3.20)

2
Since (w,0) € A(v,0), f > 0 and (H3) holds, we have

0<o(rv,0) < / f(w(z), Vw(z),0) dz < / C(h(w(x),()) + |Vw(x)|1’> dx

v v

< [ CO+IB-0 o) de< O +loP +13P)

v

(ii) Clearly o(v,0) < (v, 0). To show the reverse inequality fix € > 0 and let (u., p.) € A(v,0),
te > 0 be such that

/ tlf(us(x)vtsvus(x)atspe(x)) dx < o(v,0) + %
Q ‘e

We follow the truncation argument given in the proof of Lemma 3.1 to obtain sequences {u. ;} and
{p-;}, bounded in L*°, and such that, for j large enough,

/Qlif(ua,j(x),tgvug’j(x%tspe’j(x)) dx S

Thus,

lf (ue(x), t-Vue(z), tepe(x)) do + ‘< o(v,0) +e.
ot 2

1
Too(1,0) < t*f (ue,j (@), te Ve j(2), tepe,j(2)) dx < o(v,0) + ¢,
Q e
so to conclude the result it suffices to let ¢ — 0F.

(iii) The fact that o is non-increasing with respect to its second variable is obvious from the
definition. To prove upper semicontinuity, we observe that, by a change of variable argument it is
clear that, for every (v,0) € SN=1 x [0, +00),

o(v,0) = inf { /Q %f(w(a;),ti(x)RT,t’y(x)) dr: t >0, (w,v) € Alen,0), Ren =v, R € SO(N)},
(3.21)

where @ stands for Q.. Let (vn,0,) € S¥~! x [0, 4+00) be such that (v,,6,) — (v,6) and choose a
rotation R such that Rey = v. Given € € (0,1), let t. > 0 and (w., ) € A(en, ) be such that

o(v,0) — / tif(wg(x),tEsz(z)RT,tE*ye(:c)) dr| <e. (3.22)

€

Since by (ii), o(v,0) = 0oo(v,0), we may also assume that |welloc < C and ||Vl < C, for all
€ (0,1).
By (3.22) and (i),

1
sup /—f(wg(ac),tEVwE(:E)RT7t5'yE(w))d:E<—|—oo. (3.23)
€€(0,1) JQ ‘e

Notice also that, if 6 = 0, then / Ye(x) dzr < 0, that is, v.(x) = 0 for a.e. € Q. For every n € N,
Q
choose R,, € SO(N) such that R,eny = v, and R, — R as n — +o0, and define v,, . € L' (Q; [0, +oo))

by setting vy, =01if 8 =0 and 7, . := %" v if 6 #£ 0. Clearly,

0
/Q’Yn,a(x) dx < Gn and lim Hr}/n,a — 75||L1(Q) = lim ’1 _ ﬁ

Vel (@) = 0.

n—-+oo n——+oo
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Since (We, Yn,e) € Alen, 8y), in view of (3.21), we have

o(Vn,0n) < / tlf(ws(x),t€Vw5(m)R§,t5’ynys(x)) dz. (3.24)

S

By (H1) and (H3), for a.e. z € Q

lim tlf(ws(x), tEVwE(o:)RZ;, tsfyms(x)) = ﬁif(ws (x), te Vwe (:L')RT7 tsfys(x)),

n—+0o00 Tg e

and
f(wmtavwaRz;atE’Yn,e) S C(h(wa»tz?’yn,a) + t€|vwe|p) S Ll (Q)u

since, by (3.23) and (H3), t?|Vw.|P € L! (Q; [0, +c>o))7 and by the uniform L bounds on w, and ..,
h(we,t-7:) € L*(Q;[0,400)), and so also h(we,teyn,e) € L' (Q;[0,400)). Thus, by the Lebesgue
Dominated Convergence Theorem, we obtain that

1 1
lim — f(we(2), t-Vw. (2)R] , teyn - (2)) do = / — f(we(z),t-Vw.(2) R, t-ve(2)) do
n——+o0o Q te te
so, in view of (3.24) and (3.22), we conclude that

limsup o(vy, 0,) < o(v,0) + .

n—-+4oo

It suffices now to let ¢ — 0. O
In view of the previous proposition, it is possible to extend o to the whole R x [0, +-00) by setting

z 0 N
o(2,0) = |z| o (|z|’ |z> , for every z € R \ {0} and every 6 € [0, +00), (3.25)
0, for z =0 and every 6 € [0, +00).

so that ¢ is upper semicontinuous, positively homogeneous of degree one, and non-increasing with
respect to § on RY x [0, 4+00). Moreover, o(z,0) < C|z| for every (z,0) € RY x [0, +00).

4. PROOF OF THE COMPACTNESS THEOREM 1.1

To prove Theorem 1.1 let €, — 0 and let (un, p,) € [WHP(Q;RE) x L1(Q;[0, 4+00))] NV be such
that

sup F. (tn, pn) < +00.
n

We must see that there exist a subsequence {(wn, , pny )} € {(tn, pn)}n and (u, p) € [BV(Q; {a, 5}) x
MT(Q)] N W such that

(Uers pe) = (u,p)  in X(Q).
In the case p = 1, by (H3) any sequence with bounded energy satisfies

sup/ |V, (z)| de < +o0.
n Jo

Hence, by Poincaré’s inequality, u,, is bounded in W (€; R%), and thus (up to a subsequence) u,, — u
for some u € L*(Q;RY).

For other values of p, we use the coercivity condition in (H3) given by

& (900 +16P) < f.6.0)
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where g(u) = 0 < u € {«, 8} and |i‘n>fL g(u) > 0, for some L > 0. In this case, to achieve the L!

convergence of u,, to some u € L'(;R?) we argue as follows. By (H3), for each n € N, it follows by
Young’s inequality that

o (unopn) > /S © (9un(2)) + &8 | Vun (2)]?) da

1 En
> C/(g(un(x)))alvw(ﬂf)ldmZ C [Vun (z)| dz,
Q {lunl>L}
where % + % = 1. By the argument given in [17, Theorem 1.1], using the volume constraint

/ uy,(2) dz = Vy, we conclude that {u,}, is bounded in L'(€; R%) and equi-integrable. Thus (up to
Q

a subsequence) u, — u for some u € L*({;RY).

For any p > 1, the proof that u € BV (;{«, 8}) and is such that / u(z) dx = Vy relies on the
Q
fact that g(u) = 0 & u € {a, 8} and can be achieved following an argument analogous to the one

used in Lemma 4.3 in [6].
As for the sequence {p,,}, since / pn(x) = V5 for every n € N then it follows (up to a subsequence)
Q

that p, — pu in M*(Q), for some p € M*(Q). Moreover,

u(Q) > limsup/ pn(x)dz =V,

n—+oo JQ

because  is compact. On the other hand, setting p, equal to zero outside of €2, we obtain

() < p(RY) < liminf /RN pn(z) dz = Vg,

n—-+oo

because RY is open. Hence (u, 1) € [BV (€ {a, B}) x MF(Q)] N W.

5. MAIN RESULT

The following lemma addresses the proof of Theorem 1.2 in the case where (u,u) € X () \
[(BV (93 {a, 8}) x MT(Q)) nW].

Lemma 5.1. Let (u,p1) € X(Q)\ [(BV (2 {e, 8}) x MT(Q)) "N W]. Then
r- Elir(l)l+ F.(u,pu) = +o0 (5.1)

Proof. Given (u,p) € X(Q)\ [(BV (2;{a, 8}) x M*(Q)) N W] to show (5.1) it is enough to see that
for every sequence £, — 0% and for every sequence (uy, u,) C X () such that (un, m,) — (u,p) in
X (2) we have that

liminf F. (un, pn) = +00.

n—-+oo

Without loss of generality we can consider the case u € L'(Q;RL) \ BV (Q;{e, 8}), (u,u) € W
and (Un, ptn) — (u, ) in X(Q) with {u,} € WHP(QRL), gy = pu LV (Q, p, € L (Q;]0, +00)) and
(Un, pn) € V (otherwise there is nothing to show).

We proceed by contradiction, assuming that there exist e, — 0% and (uy, ptn,) as above and such
that

1
liminf F, (up, ptn) = lim inf/ — f(un(2),en Vuy (), enpn(2)) do < +o0.
Q

n—-+oo n—-+oo En
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However, in this case, it was shown in Theorem 1.1 that (u, ) € [BV(Q; {a, 8}) x MT(2)]NW thus
yielding the desired contradiction. 0

We note that to complete the proof of Theorem 1.2 it suffices to show that

(a) Lower bound: For every (u,u) € [BV(Q;{a,8}) x MT(Q)] N W and for all &, — 0T and
{(un, pn)} C WEP(Q;RL) x LY (Q;[0,400))] NV with (uy, pr) — (u, ) in X () then

< limi .
Flu,p) < lﬁgl}rrg Fe, (un, pn)

(b) Upper bound: For every (u,u) € [BV(Q; {a,ﬁ}) X MT(Q)] N W and every &, — 0" there
exists a sequence {(un, pun)} C [WHP(QRL) x MT(Q)] N W such that
(Un, pn) = (u, ) in X () and limsup F, (un, ftn) < F(u, p).

n—-4o0o

The proofs of properties i) and ii) can be found in Subsections 5.1 and 5.2 below.

5.1. Lower bound.

Proposition 5.2 (Lower bound). Let §2 be an open and bounded subset of RN with Lipschitz boundary,
and assume that hypotheses (H1)-(H4) hold. Let (u,p) € [BV (% {a,B}) x MT(Q)]NW and let
en — 07 and {(un,ppn)} C [WHP(Q;RL) x L (2[0,400))] NV be such that (un,pn) — (u,p) in
X(Q), then

F(u, po) < liminf F;, (un, pn). (5.2)

Proof. Let (u, ) and {(un, pn)} be as stated. If the right hand side of the inequality in (5.2) is infinite
there is nothing to prove. Otherwise, we can extract subsequences, not relabeled, such that u, — u
LN-a.e. in Q and

1 1
liminf — [ f(up(2),enVup(z),enpn(x))de = lim — [ flun(z),e,Vun(x),enpn(x)) de < 4o0.
Q Q

n—-+4oo En n—-+o0o En

Let E with Perg(E) < 400 be such that u = 8X 5 + a(1 — X ). We must show that

lim if(un(lr),anun(l‘),anpn(x)) dx > /Qma*E U(Vu(x)muO(z)) d,HNil(z)v (53)

n—-+o0o Q En

where v, (x) is the inner unit normal to F at « (in the sense of Definition 2.6), and

.7 dp
pio () = I L@ E)) (z). (5.4)

Set f, = Eif(un(-),anun(-),Enpn(~)). Since the integrands f, form a sequence of nonnegative

functions which are bounded in L! (Q; [0, —&—oo))7 there exists a subsequence (not relabeled) and a
nonnegative bounded Radon measure ¢ such that

f LNLQ B¢ in MT(Q). (5.5)
Consider the nonnegative measure
m(A) :=HN"HANOE)

defined over all Borel subsets A C 2, where 0*F is the reduced boundary of E (see Definition 2.6).
Since Perq(FE) < +o00, we have that

m(Q) = Perq(F) < 400,
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so that 7 is a bounded Radon measure. Hence, using Theorem 2.3, we may decompose ¢ as ( = (,7m+(s,
where (, is a nonnegative m-integrable function and (s is a nonnegative Radon measure with 7 and
(s mutually singular. We claim that

Calz) > o (vul@), po(z)), for HY'-ae. 2 € QNO*E. (5.6)

Assuming that (5.6) holds, we obtain

lim [ f (1), 0 Vun (2), £ pu(@)) di > ()

n—-+4o0o Q €n

> /Q Cala) dHN LN 0" E)(2)
> [ o). @) a1 ),

which asserts (5.3).

It remains to show that (5.6) holds. Recall that, for every x € 9*F, equalities (2.3), (2.4) and
(2.5) hold, where vg is the generalised unit inner normal to E in the sense of Definition 2.6, which
coincides on S, = 9*F with v, by Remark 2.7. Fix any such x and abbreviate v := vg(z) = v, ().
In view of the Besicovitch Derivation Theorem 2.4 we can also assume that

(o) = lim ((Qu(z,1))

r—s0+ HN_l(QV(.T7T) e 8*E) < 400.

Choosing ry — 07 such that ¢(0Q,(z,rt)) = 0 and p(8Q, (z,rx)) = 0, by (5.5), (2.3), we have (see,
e.g., [13, Proposition 1.203]),

. (Qu(z,m))
Ca(x) N rl—lgl‘*' rN-1
. . 1
- kgrfoo r]iv_l nEIJIrloo Q. (z,r1) af(un(Z)’Envun(Z),Enpn(Z)) dz
= lim ka(un (z + 1Y), en Vun (T + T4Y), Enpn(@ + ry)) dy
k,n—+o0 Q. En
. Tk En En
= 1 - n , — Vg s —An d ) 5.7
i [ () S50, ) ) d (5.7

where v, , € WP(Q,;R%) and A, 1 € L'(Q,; [0, +00)) are defined by

Vn k(Y) = Un (T + TRY), Ak (Y) = Trpn(x + TRY).

Since (un, pn) — (u, n) in X (92), we have that

g flvng —uollyg,me) =0 and - lim . Ak () dy = po(), (5.8)

)

where pg is given by (5.4) and

up(y) =

B, ify-v=y-vg(x) >0,
a, if y-v=y- vp(zr) <.
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Indeed,

lim [Un 1 (y) — uo(y)| dy
k,n—+o0 Q

v

= lim / |tn (z + TYy) 76|dy+/ |un(z + rry) — | dy
k,n—+o0 Q.N{y:y-v>0} Q.N{y:y-v<0}

~ | [ e + i)~ Bldy + | fue + ray) — o dy
k=+oo | JQ,n{y:y-v>0} Q.N{y:y-v<0}
) 1
— lim / |a—6|dy+/ Iﬁ—ady]
k=too 13 | JQu (zri)n{y:(y—2) >0\ E Qu(z,re)N{y:(y—2) v<OINE

:07

where in the last equality we used (2.4) and (2.5). Furthermore, since p, — p in MT(Q), we have by
(2.3)

li A dy = 1 d
pm o, nk(y) dy p o, Tepn(T + 1Y) dy
1
—  lim _— d
kn—=400 Jo, (z,rs) Tlivilpn(y) Y
1

Jm Tév,lu(Qu(fmm))
— ].lm #’(QV(x, rk))
k=+o0 HN=1(Q, (z,r) N QN O*E)
where we also used the fact that ,u(@Q,,(ac, rk)) =0.

By (5.7), (5.8), and using a diagonalisation argument, we may find a subsequence {e,,} of {e,}
such that, setting Ay := A, ks

= NO(‘T)’

Eng

ty = — 0, U 1= Up, ky — Ug D Ll(Qy;Ri) , / Ae(y) dy = po(x),

Tk

v

as k — 400, and

. 1
)= tim_ [ () 6T, ) o
k—+o0 Q. tr
Applying Lemma 3.1 to the sequences {tr}, {vr}, and {A;}, with v = vg(x) = v, and 0 = po(x),
we conclude that there exist a subsequence {k'} of {k} and a sequence {(wy, )} € W'P(Q,; RL) x
Lt (QV; [0, —l—oo)) such that wy — ug in Ll(Ql,;]Ri), (wgr, v ) € A(v, po(x)), and

Calw) =, lim _ o tlkf(vk(y), tkvvk(y)atk)\k(y)> dy

(5.9)

. 1
> limsup / £ (wi (9), b Vs (9), by (1)) dy.
K —+oo JQ, k!

Since (wir, yr) € A(v, po(x)) (cf. Remark 3.2), (5.6) follows by (1.8) and (5.9). O

5.2. Upper bound.

Proposition 5.3 (Upper bound). Let Q be an open and bounded subset of RN with Lipschitz boundary.
Assume that hypotheses (H1)-(H6) hold. Let (u, p) € [BV (Q; {a, }) x MFT(Q)]NW and let &, — 0.
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Then there exist {(un, pn)} C [WHP(Q;RL) x L (€2 [0, 400)) NV with (uy, py) — (u, 1) in X(Q) such
that
F(u,p) > limsup F;, (un, pn)- (5.10)
n——+oo
To prove the upper bound in Proposition 5.3 we begin by considering the case where, given a fixed
direction v € SV 1,

Jé; if (x—x) v>0
u(z) = (5.11)
«a if (z—uz.)-v<0,
for some x, € RY, the domain is a rectangle of the form Q, := {x +tv : = € H,, |t| < r} for

some relatively open subset H, of a hyperplane orthogonal to » and some r > 0, and the measure
w € M™(Q,) has the form

wi= 00X HYN T H, + ady, (5.12)

where § > 0 is assumed to be constant, K is a relatively compact subset of H,, a € Rar and xg €
QN\H,.

Lemma 5.4. Assume that (H1)—-(HG) hold. Let u and p be given as in (5.11) and (5.12), respectively,
and satisfy
[ u@de=vy,  u@,)=v.
Q,
Then, for every e, — 0T, there exist sequences {u,} € WP(Q,;R%), {p,} C L'(Q;[0,+00)) such
that

| w@rde =Vio [ puf@)de = Vi () = (o) in X(2,) with [un—ul s 20) = Ofen)
’ ’ (5.13)
and

timsup = [ flua (@), V@), 20pnl@) do < [ (o 0xc@) aH¥ (@) = Flup).

n—+oo €n H,
Proof. Since p is given by (5.12), we must show that, given €, — 01 there exist sequences {u,} C
WP (Q,;RL), {pn} € L'(; [0, +00)) satisfying (5.13) and such that

n—+oo €n

lim sup / Ftun (), 60 Vit (), npn(2) -

< (v, 0N (K) + o, )N (H, \ K) = F(u, ).

For simplicity, we assume that x, = 0, that r = % and that v = ey and we denote 2, by Q, H,
by H, and @, by Q.

We fix > 0 and, by Proposition 3.3 and (1.7), choose t1,t2 > 0, (wy,71) € A(en,6) and
(w2,0) € A(en,0) such that wy,we € L%(Se;RL), v1 € L=(RY; [0, +00)) and

/ tif(wl(x),t1Vw1(x),t1'yl(m)) dx < o(en,0) +n, / v (x) dx = s0,
@™ @ (5.15)

/ lf(wg(a?)7152Vw2(917)70) dx < o(en,0) +n.
Q2

for some s € [0, 1].

We extend w; and wy to the whole space R by setting w;(z) = a if z-v = x5 < —1/2 and
wi(x)=pifrv=ay>1/2 fori=1,2. Werecall that w;(-,zn) and 71 (-, z 5 ) are periodic functions
with period one.
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For every fixed § > 0, let K5 C H be such that K C Ks, HN"}(K; \ K) = O(J) and choose a
cut-off function ¢ € C§°(H;[0,1]) such that ¢ =1 in K, ¢ =0 in H \ K5, and |[Ve|ls < § with C
independent of 6. Setting to := min{t,t2}, we now define v, € WHP(Q;R%) and A, € L(£2; [0, +00))
by

En  En

(2 ywn (m) + (1= () we <t;:> if o= (2", 2y) € H x (2150 %o

u(x) if z € Qand |zy| >

>(5.16)
2’

where, denoting by wy the measure of the N-dimensional unit ball,

t t1x . En En
(2 fz=(z K
En%(a?n) if x=(a,2y) € K x ( T 2t1>
a a1
if x € B(xg,eaY),
M) = § NV s
t1(1—s)0 . _ En + VEn Ent+/En En En
1(\/5 ifr = (2, 2y) € K x (‘ 5, 2% \ Tt 98, )
0 elsewhere,

with B(zo, 3 ) C {|lzn| > 5} Notice that [[vp|[oc < [[w1]lso + [|w2|ec, for all n € N.
We claim that
lim An(z) dz = p(). (5.17)

n—-+o0o Q

Indeed, by the Riemann-Lebesgue Lemma (see Lemma 2.1) and (5.15),

t t
lim An(x)dz = lim / / ( 12’ 1361\/) de' diy +a+ (1 — )IHN 1K)
1/2
= lim / ge! ( ,yN) dy dyy +a+ (1 — s)IHN 1K)
n—-4o0o —1/2

1/2
= WK / / / () dy dyy +a+ (1 — $)eHY 1 (K)
1/2 /

= sOH"TH(K) + (1= s)0HY TN (K) +a = u(9),

where @' is the projection of @ on RY71 ie., Q' := {2/ € RVN~1 : (2/,0) € Q}. This proves
(5.17). Therefore, it is possible to choose a normalization constant ¢, — 1 in such a way that, setting

Pn ‘= CpAp, We have

/ on(z) de = p(Q), for all n e N.
Q

We also claim that p, — p in M*(Q). Indeed, let 1) € Co(Q) and € > 0. A direct computation
yields

tix' t
/w(x))\n / / — (', xN)y <1x71xN> dx’ dx
Q K€ En | En
Ein

+]é( 1)a1/)(x)dac+/_:n+\/ﬁ (1= 5)6 /wx ry) dz’ dey

N
Z0,En



1/2 ’
/ / [ (w’ EnmN> —1/)(1'/70):| v (tlm 7acN) dx' dz 5
1/2 En

1/2
/ / P(z',0)m (t;x ) dx’ dz + ]é( 2}V)aw(x)da:

1/2

' /—_r (1%:)9 /K [ o) = 9(a’,0)] da’ doy

entvEn

2t tl(l — 5)9 , , ,
+/ @A[w(’:’”)—lﬁ(%m] da’ dxy

T2ty 1 - S
+ 1/) 2',0) da’ dzy
_entVEn
27
entVER

2t tl_
+/ 1¥/wx0dmdm\r

2t

=+ R+ R+ I+ D+ I8+ 17
Choose n. € N such that
’1/}(:6’, inscN> - ’(/J(l‘I,O)’ <e for everyz’ € H, |zy| <7, and every n > n.,
1

and such that

en +En

¢<x’,a:N) —1/)(3:’,0)‘ <e foreveryx' € H, |zy| < BRI and every n > n..
1

1/2 .
|1, <€/ / <1fU xN> dx' dz .
1/2

By the Riemann-Lebesgue Lemma and (5.15) we get
limsup I} < esOHN 1K),

n—-+oo

Then, for every n > n.,

and also, since K C {zy = 0},

Lim 12—59/¢xo x_se/w YAHN ().

Similarly, we conclude that
limsup I} = O(g), limsup I} = O(e),

n—-+oo n—-+oo

and that

25
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Hence, letting ¢ — 07, we obtain
Jim [ 0@ @) de =50 [ @) @i e+ (1= 98 [ o) a7 @) + e
:/wmww
Q

We next prove the convergence in L!(€; R‘i) of v, to u. In fact, we can prove that
l[vn — UHLl(Q;Ri) = O(en). (5.18)

Indeed, using a change of variable in the last coordinate and the periodicity of wy and ws in the first
N — 1 coordinates, we have for n sufficiently large

which, since ¢, — 1, shows that p, = ¢, A, — g in MT(Q).

HUHHLl({zeQ lon|< 52 }iRY)

1/ tly/ tly t ! t
N / 2y 23/]\] l / l
7 _—IIN 1 5
1/2/ ’ ( En ’ t() ) ( (y ))w < En ’ to >‘ y yN (519)

1
N—-1
< et D) (g, + 1 10alsoms +1)

and thus
o = ulls oty < Bonlloscocn i< zppngy + € £ ({2 €2 fawl < 221) = 0t

To meet the first constraint in (5.13), we will modify the sequence {v, }, defined above, to obtain a
new sequence {u,} converging to u in L'(£;R%) such that (5.13) and (5.14) are satisfied. We define

Uy = U, + b, where b, := ][ U(x) - Un(x) dz.
Q

It is clear that b, — 0, u, — u in Ll(Q;Ri) and that the first constraint in (5.13) holds. To prove
(5.14), we first observe that by (5.18)

by < ]{2 ln (@) — u(@)| dz = O(en). (5.20)

It follows that ||u, — u||L1(Q;Ri) = O(epn). We now proceed by estimating E., (un,,). Since, by
construction,

B(w,237) C {Juy| > == 2t

and since, by definition, v,(z) € {a, 8} whenever |zy| > 5, vy (2) = w1 (?—f) € {«, 8} whenever

a' € K and |an| > 57, va(2) = wo (t”) € {a,B} whenever 2’ € H \ K5 and |zn| > 52,

1
An(z) = 0 whenever z ¢ (K x (- EntvEn 6”Jr‘/a)) U B(xo,e2" ), in view of (H2) we can write,

and

2t ? 2t

i f(un( )75nvun($),€n)\n($)) dx

En
21 tix' tiz tix' tix tix' tix
/ 1 / ( ( : ’ 1 N) + b”“tlvwl (1’ 1 N) 7t1,y1 <1’ 1JV>> d:r/ dmN
K€ En En En En En En
3ty 1 tox’ tox tox’ tox
+/ : / —f (wz (2, 2 N) +bn,t2Vw2< 2L 2 N) ,0) dz’ dzy
— 5t JH\Ks En En En En €n
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/ / —f Uy (2,2 ) + b, €0 VU, (2, 2y) ,0) do’ dz
K

s\K En

+/B(IO,EWN) f( (2 ”bmoa\/?n&) dz

/
- 5n+ﬂ/ f +bn70 \/Ttl(l—S)e)dl‘ dl‘N

| ek

+= / Fu(x) + b, 0, /Entr (1 — $)0) da’ davy
En En K

t1

=EV+ED+E® +EWD L E®) L EO), (5.21)

By a change of variable, Corollary 2.2 (hypothesis (H3) and Fatou’s Lemma guarantee that the
sequence f,,(y') = f((w1 + b,)(¥,yn), t1Vwi(y', yn), t171(y', yn)) satisfies the required conditions)
and (5.15) we have

lim sup ET(LD

n—-+00

1/2 1 t) ) ti)
= limsup/ / —f (w1 < LY ,yN> + by, t1 Vo ( LY ,yN> tim < LY yN>> dy' dyy
n—+o0o 1/2 tq En En En (5.22)

1/2
=HNY( / / / ff wi(y',yn), iV (Y yn ), i (' yn)) dy' dyy
1/2 /

< (olen,0) +n) HYTH(K).

Analogously, a similar reasoning yields

@ 1z 1 tay’ tay’ ;
limsup E,” = limsup —f | ws JUN | Fon,t2Vws | ==, yx | ,0) dy' dyy
n——+oo n——4oo 1/2 H\K5 t2 En €n

N1 1/2 , (5.23)
=N EN K [ ) V(). 0) dy oy
1/2J¢Q
< (o(en,0) +n) HVN 1 (H \ K;).
By (H3), the definition of v,, and the triangle inequality, we have
BT 1
E® :/ ’ / — f(vn (&', 2) + bn, 60 Vo (2, 2y) ,0) da’ dz
—za Jro\k En
< — / / h(vp (2, 2N) + by, 0) + €2 |V, (2)[P) do’ da
2{’0 Ks\K (5.24)
o " P ; P
S — ’ / |: Un(m xN) +bna0) +t1 Vun <1l') +tp Vws < 2$)
En Ks\K En En

+enVe(a)” jw

P
}dw'dx;v.

(5)-=(2)
AN o [ 22
En En
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First notice that, since w,ws € WHP(Q; R 1)

limsup Cel~ 1/ / |Vo(z")|P |w da’ dz
n—+00 Ks\K

(2) - ()]
A7) oy [
En En

i m

2 tox! p
= hmsup—sp / V(2P |wy ( ,xN> — ws ( ,xN) da' dzy = 0.
n—+oo O % Ks\K En En
Also, since b, = O(g,,) by (5.20), as v, is uniformly bounded in L™ and h € L;2., we have

5
lim sup —/ ’ / h(vp(z) 4+ bp,0)dx < limsup nglle ((K(;\K) X {—gn,gn})
n—otoo En J_gn JK5\K n—+00 2ty 2ty

< CHNYKs\ K)=0(5).

The two remaining terms on the right hand side of the last equality in (5.24) are also O(¢) since they
can be treated by the usual change of variables and the Riemann-Lebesgue Lemma. For example,

. tll‘/ tlx P
hmsup/ / (, N dx’ dx
n—-+oo st JKG\K 8n En En
e t i’ tiwy \|”
= hmsup/ / Vuwy (, =N
n—+oo _571 Ks\K En En En

1/2 t) p
= limsup /7" / / ’VUH (lyvyN)
n—r+00 1/2 JKs5\K En

= HN (K \ K) ! /Q [Vwi (y)” dy = O(9).

[y

dx' dx

~

dy' dyn

Thus, we obtain
limsup B < CHNY(K5\ K) = O(3), (5.25)

n—-+oo
where C' depends on t1,t2, the L>-norms of wy,ws and the LP-norms of Vw;, Vw,. Using (H5) and
(H6) we conclude that

2\“

lim sup ET(L4) = lim sup /
B xo, 6

n—-4o0o n——+00

1 a

n—-+00 0,672 WN

L S )f( e 5) "

< 11msupw1v\/€n—b +hmsupr\/sn f(u 0, \/sn )

n—-+o0o n—-+o0o

< Hmsup/B ) i {f (u(x)—i—bn,om/acjv) -/ <u(x),0,\/z§a)} o (5.26)

where u = a or u = 3, depending on the location of the ball B(xo, 6727\7 ) By a similar reasoning, we
conclude that
limsup E®) =0 and limsup E(®) = 0. (5.27)

n—-+o0o n—-+oo

Combining (5.21), (5.22), (5.23), (5.25), (5.26) and (5.27), we obtain

hmsup—/f x), &0V (), en A (x)) dx

n—+oco En

(5.28)
< (olen,0) +n) HNHEK) + (o(en,0) +n) HYN"HH \ K) + O(6) < +oc.
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By (H3) and (5.28)

lim PV, (2)|P dr < +oo.
n—+oo Jo

Thus, by (H4), using the fact that ¢,, — 1 and since w,, and €, A, are uniformly bounded in L*> and
A, is bounded in L', we have

lim i/f(un(a:),z€nVun(Jc),esn)\n(x))dx: lim L
Q

n—-+o0o En n—-+oo En

Hence, by (5.29) and (5.28), we obtain

/Q fun(x), e,V (), enpn(x)) de. (5.29)

limsupi/f(un(m),enVun(x),snpn(w))dx
Q

n—+oo En
< (o(en,0) +n) HN 1K) + (o(en,0) + 1) HYN"H(H \ K) + O(6),

and thus, due to the arbitrariness of  and ¢, we finally get (5.14), i.e,

lim sup — / Fun(x), €0 Vtin (), £npn(2)) dz < o(en, O)HN T (K) + o(en, 0K (H \ K)
n—+oo €n JQ
= F(u, ).
O

Remark 5.5. The statement of Lemma 5.4 holds trivially in the case where u and €2, are as before

and
k

pi=OX HYNTTLH, + ) e,
j=1

with z; € Q, \ H, and ¢; € RJ. Following the procedure in [6], this result can be generalised for

u=XgB+(1-Xpa,

where £ = E' NQ with E’ a polyhedral set. The idea is to use an induction argument on the number
of flat interfaces corresponding to S, N €1, taking v, to be a convolution of a convex combination
of @ and S and A, = 0 around the “edges”, and (H2) and (H3). The compliance with the volume
constraints follows from (H3) and (H6).

It is easy to show that the same result holds for u as above and

k
pi=OHN TS, + ) ejda,

=1

with 6 > 0 piecewise constant. In fact, by the assumption on p, there exist a finite collection of
pairwise disjoint relatively compact subsets Ki,...,K; C H,, and positive constants 61,...,6; such

that
l

elKl_:ei and 9:00nHl,\UKZ-.
i=1
Since the sets K; are pairwise disjoint relatively compact sets in H,,, the construction of the recovery
sequence can be localized near each set K; so this case can be reduced to the one where 6 is constant
inaset K C H,.

To complete the proof of the upper bound inequality (5.10) for the general case we will rely on a
lower semicontinuity argument as in [14]. Namely, since X (£2) is not metrisable and it is not clear a
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priori that the functional I'(X (€2)) — limsup FL, is lower semicontinuous with respect to the topology
n—-+o00o

of this space, we introduce a new family of auxiliary functionals as follows. Given M > 0 we consider
X () :=A{(u, ) € X(Q) : u(Q) <M}
endowed with the convergence inherited from X (2) and we define

- I'(X () — limsup F, (u, p) if (u, p) € Xar(82),
F(u,p) := neo (5.30)
+oo (u, ) € X(2)\ X (),

where, for every (u, ) € Xar(Q),

F(XM(Q)) — limsup F; (u, p) := inf {limsup E., (un, in) : (tn, o) = (u, 1) in XM(Q)} .

n—-+oo n——+0o

The advantage of considering this family of functionals is that from the metrisability of X M () (see
Theorem A.56 in [13]) Fjs is sequentially lower semicontinuous with respect to the convergence in
X(Q).

Since it is clear that

F(X(Q)) —limsup F., < Fp, YM >0,

n—+oo

to complete the proof of the upper bound (5.10) it suffices to show that

Far(u,p) < Flu,p), YM > 0, V(u, ) € Xp(2) such that u € BV (Q; {a, 5}). (5.31)

We point out that (5.31) has already been proved for every pair (u, ) satisfying the conditions of
Lemma 5.4 or, more precisely, the conditions in Remark 5.5, and such that u(Q) < M. We now address
the general case.

Proof of Proposition 5.3.
Step 1. We begin by considering the case where u = X8 + (1 — X g)o, with E an open set such
that £ = E’ N where E’ is a polyhedral set, and

k
p=gHN LS+ ¢,

Jj=1

with g : © — R continuous. Let {g,} be a sequence of piecewise constant functions that converge to
g in LP(S,; HN=1), ¥p > 1 and such that

/ gn () dHN " (2) = / g(x)dHN "1 (z), VneN (5.32)
Su Su
and set
k
fin = gnHN TSy 4+ cjda -
j=1

By (5.32) we clearly have that u,(2) = p(f2), Vn € N and pu, 5 op. Let M > pu(Q). By Remark
5.5, the lower semicontinuity of F'p, the upper semicontinuity of o (cf. Proposition 3.3) and Fatou’s
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Lemma, we have that

Far(u,p) < liminf Fay(u, )
< . . N-—1
< ot [ (), gul) 1Y 0
<

/S lim sup o (v (2), g () dHY ()

w n—-+oo

< / o (va(), g(x)) dHY Y () = F(u, p).
Su

Step 2. We consider now the case where u = 8X 4nq + (1 — X 4nq), for an arbitrary set A of finite
perimeter in €2 and with g as in the previous step. By Theorem 2.8 we can consider a sequence {A,,}
of polyhedral sets such that

Xa, = Xain LY(RY), Perq(A,) — Perq(A) and LN (QN A,) =LY (2N A).

Define
k
fn = gHN LI A, + chémj and up, = BX 4 no T (1 = Xa,n0)

Jj=1

where t,, are chosen so that p,(2) = u(Q) and notice that /
Q Q
constraints are satisfied. Then u,, — u in L*({; Ri) and, by Reshetnyak’s Theorem (see [3]), we have

that, for every ¢ € C(9),

up(z) dz = / u(z) dx, so the volume

[ @gte) ¥ 1Loa @)~ [ wlnlgle)dHVILE AG),
Q Q

and so we conclude that p,, — p and ¢, — 1.

As o is upper semicontinuous and satisfies o (z, ) < C|z| for every (z,0) € RY x[0, +00) (cf. (3.25)),
there exists a non increasing sequence {¢,,} of continuous functions ¢, : R x [0, +00) — [0, +00)
such that, for every (z,6) € RN x [0, +00),

0(2,0) < ¢pm(2,0) < Clz| and o(z,0) = iréquSm(z,Q). (5.33)

Thus, from the previous step and again by Reshetnyak’s Theorem, we obtain that

Fuy(u,p) < Hminf Fag (g, )

n—-+4o0o

< liminf [ o(vy, (z),9(z)) dHN L OAZ (2)
n—+oo [o

< liminf / GV, (), g(z)) dHN 1L OAS ()
n—+oo [o

/Q¢m(1/u(a:),g(w))d’HN_ll_a*A(:v).

for any m € N. Passing to the limit in m, by Lebesgue’s Monotone convergence Theorem and (5.33)
we obtain

Partu) < [ oln(a).gla)) MY L0"Als) = Flup).
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Step 3. Finally we consider the general case where u = X 4nq + (1 — X 4nq) for an arbitrary set
A of finite perimeter in Q, and where p € MT(Q) is arbitrary. We define the sequence of measures

kn
Hn = gnHN_l LO"A+ Z c_;l(saL;U
j=1
where g, : Q — R are continuous,

gn — d,}{Nd_iILILI_S in Ll(Su;HNil),

k
- n * dlu’ N-1 *

j=1

and i, (Q) = p(Q). Clearly p,, — p and, extracting a subsequence if necessary, we may assume that
gn(x) = dHNi‘lil;LS(x) for a.e. z € S,. Hence, by Step 2, the upper semicontinuity of o and Fatou’s
Lemma, we conclude that

For(u,p) < liminf F s (u, i)

n——+o00

o N-1
< ot | (e, gu() 1 )
< [ tmsupo(v (), g.(a) W @)

Su n——+oo

dp N-1
< /Su o <Vu($), d’HN—ll_Su) dHY " (z) = F(u, p).
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