MOTION OF THREE-DIMENSIONAL ELASTIC FILMS BY ANISOTROPIC
SURFACE DIFFUSION WITH CURVATURE REGULARIZATION
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ABSTRACT. Short time existence for a surface diffusion evolution equation with curvature regu-
larization is proved in the context of epitaxially strained three-dimensional films. This is achieved
by implementing a minimizing movement scheme, which is hinged on the H~!-gradient flow
structure underpinning the evolution law. Long-time behavior and Liapunov stability in the
case of initial data close to a flat configuration are also addressed.

Keywords: minimizing movements, surface diffusion, gradient flows, higher order geometric flows, elasti-

cally stressed epitaxial films, volume preserving evolution, long-time behavior, Liapunov stability

CONTENTS
1. Introduction 1
2. Setting of the problem 5
2.1. The incremental minimum problem 6
3. [Existence of the evolution 7
4. Liapunov stability of the flat configuration 28
4.1. The case of a non-convex surface density. 31
4.2. The case of a convex surface density. 32
4.3. The two-dimensional case. 38
5. Appendix 39
5.1. Regularity results 39
5.2. Interpolation results 41
Acknowledgements 43
References 43

1. INTRODUCTION

In this paper we study the morphologic evolution of anisotropic epitaxially strained films,
driven by stress and surface mass transport in three dimensions. This can be viewed as the evolu-
tionary counterpart of the static theory developed in [11, 23, 25, 22, 9, 15] in the two-dimensional
case and in [10] in three dimensions. The two dimensional formulation of the same evolution prob-
lem has been addressed in [24] (see also [32] for the case of motion by evaporation-condensation).

The physical setting behind the evolution equation is the following. The free interface is
allowed to evolve via surface diffusion under the influence of a chemical potential . Assuming
that mass transport in the bulk occurs at a much faster time scale, and thus can be neglected (see
[31]), we have, according to the Einstein-Nernst relation, that the evolution is governed by the
volume preserving equation

V=CA.p, (1.1)



2 I. FONSECA, N. FUSCO, G. LEONI, M. MORINI

where C' > 0, V' denotes the normal velocity of the evolving interface I'; A, stands for the tangential
laplacian, and the chemical potential p is given by the first variation of the underlying free-energy
functional.

In our case, the free energy functional associated with the physical system is given by

W(E(u))dz + (v)dH?, (1.2)
Qp In

where A is the function whose graph I';, describes the evolving profile of the film, ), is the region
occupied by the film, u is displacement of the material, which is assumed to be in (quasistatic)
elastic equilibrium at each time, E(u) is the symmetric part of Du, W is a positive definite quadratic
form, and H? denotes the two-dimensional Hausdorff measure. Finally, v is an anisotropic surface
energy density, evaluated at the unit normal v to I',. The first variation of (1.2) can be written as
the sum of three contributions: A constant Lagrange multiplier related to mass conservation, the
(anisotropic) curvature of the surface, and the elastic energy density evaluated at the displacement
of the solid on the profile of the film. Hence, (1.1) takes the form (assuming C = 1)

V = Ar[dive(Dy(v)) + W(E(u))], (1.3)

where divr stands for the tangential divergence along I'y(. ), and u(-, %) is the elastic equilibrium
in Q. 4, i.e., the minimizer of the elastic energy under the prescribed periodicity and boundary
conditions (see (1.6) below).

In the physically relevant case of a highly anisotropic non-convex interfacial energy there may
exist certain directions v at which the ellipticity condition

D2p(v)[r, 7] > 0 forallT Ly, 7#0

fails, see for instance [18, 34]. Correspondingly, the above evolution equation becomes backward
parabolic and thus ill-posed. To overcome this ill-posedness, and following the work of Herring
([29]), an additive curvature regularization to surface energy has been proposed, see [18, 28]. Here
we consider the following regularized surface energy:

[ (v + Sy ant,

where p > 2, H stands for the sum k1 + k2 of the principal curvatures of T'p,, and ¢ is a (small)
positive constant. The restriction on the range of exponents p > 2 is of technical nature and it is
motivated by the fact that in two-dimensions the Sobolev space W?2P embeds into C LEGE i p> 2.
The extension of our analysis to the case p = 2 seems to require different ideas.

The regularized free-energy functional then reads

W(E(u))dz+/ (w(u)+§|H\p> dH?, (1.4)

Qp, Ty

and (1.1) becomes
V =Ar [divr(sz(u)) +W(E®)) - E(AF(|H\p_2H) - \H|P—2H(n§ K2 - ;m)ﬂ . (15)

Sixth-order evolution equations of this type have already been considered in [28] for the case
without elasticity. Its two-dimensional version was studied numerically in [34] for the evolution
of voids in elastically stressed materials, and analytically in [24] in the context of evolving one-
dimensional graphs. We also refer to [33, 12] and references therein for some numerical results
in the three-dimensional case. However, to the best of our knowledge no analytical results were
available in the literature prior to ours.
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As in [24], in this paper we focus on evolving graphs, and to be precise on the case where (1.5)
models the evolution toward equilibrium of epitaxially strained elastic films deposited over a rigid
substrate. Given @ := (0,b)%, b > 0, we look for a spatially Q-periodic solution to the following
Cauchy problem:

1 9h
25 = Ar [ave(Du() + W(EW)

—5<Ap(\H|p‘2H) - |H|P—2H<n§ +R2 ;m))} . inR? x (0,T)),
divCE(u) =0 in Qp, (1.6)

CE(u)[v]=0 onTy, u(z,0,t) = (ejx1, edxa,0),
h(-,t) and Du(-,t) are Q-periodic,
h(-,0) = ho,

where, we recall, h : R? x [0,Tp] — (0, +0c) denotes the function describing the two-dimensional

profile T'y, of the film,
J:=+/14|D,h|?,

W(A) := $CA: Afor all A € MZ:2 with C a positive definite fourth order tensor, eo := (e, €3),
with e}, €3 > 0, is a vector that embodies the mismatch between the crystalline lattices of the film
and the substrate, and ho € HZ (R?) is a Q-periodic function. Note that in (1.6) the sixth-order
(geometric) parabolic equation for the film profile is coupled with the elliptic system of elastic
equilibrium equations in the bulk.

It was observed by Cahn and Taylor in [14] that the surface diffusion equation can be regarded
as a gradient flow of the free-energy functional with respect to a suitable H ~!-Riemannian struc-
ture. To formally illustrate this point, consider the manifold of subsets of @ x (0,+00) of fixed

volume d, which are subgraphs of a Q-periodic function, that is,
M = {Qh . h @Q-periodic, / hdx = d},
Q

where Qp, = {(z,y) : © € Q,0 < y < h(z)}. The tangent space Tg, M at an element 2, is
described by the kinematically admissible normal velocities

To, M = {V :I'p, = R : Vis Q-periodic, /

Tn

VdH2=0},

where I'j, is the graph of h over the periodicity cell @, and it is endowed with the H ! metric
tensor

ga, Vi,Va) := [ Vrp,u Vp,wsdH?>  forall Vi, Vi € To, M,

Tn
where w;, i = 1, 2, is the solution to

—Ar,w; = V; on I'y,

w; is Q-periodic,

/ w; dH?* = 0.
IS
Consider now the following reduced free-energy functional
€
Gom) = [ WiB@)dz+ [ (v0)+ S jp) ant,
Qh F;L p

where uy, is the minimizer of the elastic energy in €2;, under the boundary and periodicity conditions
described above. Then, the evolution described by (1.6) is such that at each time the normal
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velocity V' of the evolving profile h(t) is the element of the tangent space Tq,,,M corresponding
to the steepest descent of G, i.e., (1.6) may be formally rewritten as

9w, (Vi V) = —0G () [V]  for all V € T, , M,

where dG(h(t))[V] stands for the first variation of G at Q1) in the direction V.

In order to solve (1.6), we take advantage of this gradient flow structure and we implement
a minimizing movements scheme (see [5]), which consists in constructing discrete time evolutions
by solving iteratively suitable minimum incremental problems.

It is interesting to observe that the gradient flow of the free-energy functional G with respect
to an L?-Riemannian structure, (instead of H ') leads to a fourth order evolution equation, which
describes motion by evaporation-condensation (see [14, 28] and [32], where the two-dimensional
case was studied analytically).

This paper is organized as follows. In Section 2 we set up the problem and introduce the
discrete time evolutions. In Section 3 we prove our main local-in-time existence result for (1.6),
by showing that (up to subsequences) the discrete time evolutions converge to a weak solution of
(1.6) in [0,Tp] for some Ty > 0 (see Theorem 3.16). By a Q-periodic weak solution we mean a
function h € H'(0,To; H,'(Q)) N L>=(0,Ty; HL(Q)), such that (h,up) satisfies the system (1.6)
in the distributional sense (see Definition 3.1). To the best of our knowledge, Theorem 3.16 is
the first (short time) existence result for a surface diffusion type geometric evolution equation in
the presence of elasticity in three-dimensions. Moreover, also the use of minimizing movements
appears to be new in the context of higher order geometric flows (the only other papers we are
aware of in which a similar approach is adopted, but in two-dimensions, are [24] and [32]).

Compared to mean curvature flows, where the minimizing movements algorithm is nowadays
classical after the pioneering work of [3] (see also [17, 7, 16]), a major technical difference lies in
the fact that no comparison principle is available in this higher order framework. The convergence
analysis is instead based on subtle interpolation and regularity estimates. It is worth mentioning
that for geometric surface diffusion equation without elasticity and without curvature regularization

V=ArH

(corresponding to the case W = 0, ¢» = 1, and ¢ = 0) short time existence of a smooth solution was
proved in [20], using semigroup techniques. See also [8, 30]. It is still an open question whether
the solution constructed via the minimizing movement scheme is unique, and thus independent of
the subsequence.

In Section 4 we address the Liapunov stability of the flat configuration, corresponding to an
horizontal (flat) profile. Roughly speaking, we show that if the surface energy density is strictly
convex and the second variation of the functional (1.2) at a given flat configuration is positive def-
inite, then such a configuration is asymptotically stable, that is, for all initial data hg sufficiently
close to it the corresponding evolutions constructed via minimizing movements exist for all times,
and converge asymptotically to the flat configuration as ¢ — 400 (see Theorem 4.8). We remark
that Theorem 4.8 may be regarded as an evolutionary counterpart of the static stability analysis
of the flat configuration performed in [25, 9, 10]. In Theorem 4.7 we address also the case of a
non-convex anisotropy and we show that if the corresponding Wulff shape contains an horizontal
facet, then the Asaro-Grinfeld-Tiller instability does not occur and the flat configuration is always
Liapunov stable (see [9, 10] for the corresponding result in the static case). Both results are com-
pletely new even in the two-dimensional case, to which they obviously apply (see Subsection 4.3).
We remark that our treatment is purely variational and it is hinged on the fact that (1.4) is a
Liapunov functional for the evolution.

Finally, in the Appendix, we collect several auxiliary results that are used troughout the paper.



MOTION OF FILMS

ut

2. SETTING OF THE PROBLEM

Let Q := (0,0)2 CR%, b>0,p > 2, and let hy € Wi’p(Q) be a positive function, describing
the initial profile of the film. We recall that W;’p (Q) stands for the subspace of W2?(Q) of all
functions whose @Q-periodic extension belong to Wf’p (R?). Given h € Wi’p (Q), with h > 0, we set

Qni={(z,y) eQ@xR: 0<y<h(z)}

and we denote by T'j, the graph of h over Q. We will identify a function h € Wi’p (Q) with its
periodic extension to R?, and denote by Q# and 1"# the open subgraph and the graph of such
extension, respectively. Note that Qh# is the periodic extension of ;. Set

LDy (Qn;R?):={u € LIQOC(Q#;R?’) s u(x,y) = u(x+bk,y) for (z,y) € Q# and k € Z?,
E(u)la, € L* (R},

where E(u) := £(Du+ D"u), with Du the distributional gradient of uw and D" u its transpose, is
the strain of the displacement u. We prescribe the Dirichlet boundary condition u(x,0) = wo(z,0)
for x € Q, with wy € HY (U x (0,+00)) for every bounded open subset U C R? and such that
Duwy(-,y) is Q-periodic for a.e. y > 0. A typical choice is given by wo(z,y) := (e}x1,edxa,0),
where the vector eg := (ef,e3), with e}, e2 > 0, embodies the mismatch between the crystalline
lattices of film and substrate. Define

X = {(h,u) Che W2P(Q), h >0, u: Qf = R s.t. u—wy € LDy(Q;R?),
and u(z,0) = wp for all z € RQ} )

The elastic energy density W : M3X3 — [0, +00) takes the form

Sym
W(A) = %(CA CA,

with C a positive definite fourth-order tensor, so that W(A) > 0 for all A € M2x3\ {0}. Given
h e Wféﬁ’p(Q)7 h > 0, we denote by uy the corresponding elastic equilibrium in Qp, i.e.,

up, = argmin{ W(E(u))dz : u € wy + LDy (Q; R?), u(x,0) = wo(w, 0)} .

Qp
Let ¢ : R? — [0, +00) be a positively one-homogeneous function of class C? away from the origin.
Note that, in particular,

1

JlEl=v(§) =gl forall £ € R®, (2.1)

for some ¢ > 0.
We now introduce the energy functional

F(h,u) := W(E(u))dz+/

v Sigp 2
5 (v P )@ (2:2)

defined for all (h,u) € X, where v is the outer unit normal to Q;,, H = divp, v denotes the sum
of the principal curvatures of I'y, and ¢ is a positive constant. In the sequel we will often use the

fact that
Dh
—div| —/— | = H in Q, 2.3
(75) Q @9

which, in turn, implies

/Qdeo. (2.4)
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Remark 2.1. Notation: In the sequel we denote by z a generic point in @ x R and we write
z = (z,y) with x € Q and y € R. Moreover, given g : I';, — R, where T';, is the graph of some
function h defined in @, we denote by the same symbol g the function from @ to R given by
x +— g(x,h(z)). Consistently, Dg will stand for the gradient of the function from @ to R just
defined.

2.1. The incremental minimum problem. In this subsection we introduce the incremental
minimum problems that will be used to define the discrete time evolutions. As standing assumption
throughout this paper, we start from an initial configuration (hg,uo) € X, such that

ho €WZP(Q),  he>0, (2.5)

and uo minimizes the elastic energy in Qj, among all u with (ho,u) € X.
Fix a sequence 7,, \, 0 representing the discrete time increments. For i € N we define
inductively (h; ., u; ) as the solution of the minimum problem

1
mln{F(h,u) + T/ |DFi—1_nvh|2 dHZ : (h7u) € X,
Tn Ticin '

||DhHLoo(Q) < Ag ,/ hdx = / ho dm} , (2.6)
Q Q
where I';_1 , stands for I'y,,_, ., Ao is a positive constant such that
Ao > [lholley, @) » (2.7)
and vy, is the unique solution in H#(Fhifm) to the following problem:

h—hi_1n

07'['7
V14 |Dhi—q|?

/ ’Uhd’HQZO7
T

hi—1,n

Arp Up =

i—1,n

(2.8)

where 7 is the canonical projection 7(z,y) = . For z € Q and (i — 1)1, <t < i1y, i € N, we
define the linear interpolation
1 .
hin(x,t) == hi—1n(z) + T—(t —(i— 1)7‘n) (hzn(x) — hi,l’n(m)) , (2.9)
and we let u,(-,t) be the elastic equilibrium corresponding to h,(-,t), i.e.,

F(hn (1), un (1)) = i F(hn(-,t),u). 2.1
(a8 un (1) = | min  F(ha(-8).0) (210)

The remaining of this subsection is devoted to the proof of the existence of a minimizer for
the minimum incremental problem (2.6).

Theorem 2.2. The minimum problem (2.6) admits a solution (hin,u;n) € X.

Proof. Let {(hg,ur)} C X be a minimizing sequence for (2.6). Let Hj denote the sum of principal
curvatures of I'y, . Since the sequence {Hy} is bounded in LP(Q) and HthHL;g(Q) < Ay, it follows
from (2.3) and Lemma 5.3 that ||hkllwi,p(Q) < C. Then, up to a subsequence (not relabelled), we

may assume that h; — h weakly in WiP(Q), and thus strongly in C;ga (Q) for some a > 0. As a
consequence, Hy, — H in LP(Q), where H is the sum of the principal curvatures of T'y. In turn,
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the LP-weak convergence of {H}} and the Cl-convergence of {hy} imply by lower semicontinuity
that

/ (w) + S jmP) awe < liminf/ () + ) an. (2.11)
Ty D ko Jry, D
Moreover, we also have that vy, — v, strongly in H'(I';_1 ,,), and thus
hmi/ |D vp, [P dH? = i/ |D vp|? dH? (2.12)
L 27—n I“i_lﬁn Fi—l,n hk 27_n I‘i_lvn Fi*l,n h : *

Finally, since supy th |Fug|? dz < 400, reasoning as in [23, Proposition 2.2], from the uniform
k

convergence of {hx} to h and Korn’s inequality we conclude that there exists u € H} (QF;R?)
such that (h,u) € X and, up to a subsequence, ur — u weakly in HlloC(Q#;R3). Therefore, we
have that

W(E(u))dz < liminf W (E(uy)) dz,
Qn k Qn,,

which, together with (2.11) and (2.12), allows us to conclude that (h,u) is a minimizer. O

3. EXISTENCE OF THE EVOLUTION

In this section we prove short time existence of a solution of the geometric evolution equation
1
V = Ap[dive(DY () + W (E(u)) - = (Ar(|H[P72H) ~ IHIH + =P HIBR), (3.)

where V' denotes the outer normal velocity of I'y. 4, |B |2 is the sum of the squares of the prin-
cipal curvatures of I'(. 4, u(-,t) is the elastic equilbrium in Q. 4, and W(E(u)) is the trace of
W(E(u(-,t))) on I'y(. 4. In the sequel we denote by H#;l(Q) the dual space of H(Q). Note that
if fe H#(Q), then Af can be identified with the element of H;I(Q) defined by

(Af,g) = —/ DfDgdx  forall g € Hy(Q).
Q
Moreover, a function f € L?(Q) can be identified with the element of Hq;l(Q) defined by

(f,q) ::/Qfgda; for allgEH#(Q).

Definition 3.1. Let Ty > 0. We say that h € L>°(0,Tp; W;’p(Q))ﬂHl(O, To; H;l(Q)) is a solution
of (3.1) in [0, Ty if
() dive(Dub(v) + W (E(w) ~e(Ar([H|"2H) ~ L H?H + [H-2H|B[2) € L2(0,To: HY(Q)).
(ii) for a.e. t € (0,Tp)

1 0h 1

—— = i _ p—2 _ = P p—2 2 . -1

~ 5 = Ar|dive (DY) + W (E(w) — (Ac(|H"2H) JVHIH | H|P2 | B )| mE©),
where J := /1 + |Dh|?, u(-,t) is the elastic equilbrium in €.+, and where we wrote I' in place

of Fh(-}t)-

Remark 3.2. An immediate consequence of the above definition is that the evolution is volume
preserving, that is, fQ h(z,t)de = fQ ho(x) dz for all t € [0,Tp]. Indeed, for all ¢1,ts € [0,T] and
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for ¢ € Hy(Q) we have

/Q[h(x,tQ)hx t1)] @dx/tltz % dt
- [ [dIVr(Dw( )+ W(EW)

s(Ap \H|P~2H) — |H|”H+|H|p’2H\B\2)},<p> dt

/ [ P [ae (D) + wEw)

r

6<AF(|H|p 21 —7|H|pH+|H|” 2H|B|? )}Dp((pow) dH2dt .
Choosing ¢ = 1, we conclude that

/ [h(z,t2) — h(x,t1)]dx = 0.
Q

Remark 3.3. In the sequel, we consider the following equivalent norm on H%l(Q). Given p €
H;él(Q), we set
”/J‘HH;l(Q) = sup{{p,9): g € H;};&(Q) s.t. |ngdx| +11Dgllz2q) <1}
Note that if f € L?(Q), with fQ fdz =0, we have
171y = 1Dl 22y

where w € H #(Q) is the unique periodic solution to the problem

Aw = f in Q,

/dex:O. (32

To see this, first observe that since fQ fdx =0 we have

1 220y = Sup{/ fgdx: g€ H#(Q) s.t. ngdm =0 and || Dgl|12(q) < 1} .
# Q
Thus, since by (3.2)
[ f9do =~ [ Dubgds < |Dulseq).
Q Q
we have ||f||H;1(Q) < ||Dwl|z2(@)- The opposite inequality follows by taking g = —w/||Dwl|2(q)-

Theorem 3.4. For all n, i € N we have

t < CF(hg,ug), 3.3
|15 s o < CF 0, 0) (33)
F(hipn,win) < F(hi—1,n,ui—1,n) < F(ho, uo), (3.4)

and
sup  ||hn(-,t 2, < 400 3.5
Dl (35)

for some C' = C(Ag) > 0. Moreover, up to a subsequence,

ha = hoin C¥(0,T); L*(Q)) for all a € (0, %), hn — h weakly in H'(0,T; H;'(Q))  (3.6)
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for all T > 0 and for some function h such that h(-,t) € W;’p(Q) for every t € [0,+00) and
F(h(-,t),un(.ty) < F(ho,uo) for allt € [0,+00). (3.7)

Proof. By the minimality of (h; n,u;n) (see (2.6)) we have that

2dH? < F(hi—1mytio1n) (3.8)

1
F<h’i,n’ui,n) + E /1“,-1,” ‘Drifl,nvhi,n

for all ¢ € N, which yields in particular (3.4). Hence,

1

— D
2 Tn JT | r

i—1,n

Uh,.,,n|2 dH? < F(hi—1n,ti—1n) — F (i, tin),

i—1,n

and summing over i, we obtain
o 1 2 77/2
ZT |DFi—1,nvhi,n| dH* < F(hOaUO)' (39)
=1 Tn Fi*l,n

Let wy, ,, € H# (Q) denote the unique periodic solution to the problem

Awhi,n = hi,n - hifl,n in Q>

/ W, , dz =0.
Q

Note that
him — hicim

Dwy, [*dz= [ Awp,, wp, de= o
Q Y Q 1 Y Ticin V 1+ ‘Dhifl,n|2

2 2
= / Arifl,nvhi,nwhi.n dH* = — / DFifl,nUhi,nDFifl,nwhi,n dH
Ticin r

i—1,n

Twp, ,, dH?

< ||DF1'71,nvhi,n ||L2(Fi—1,n) ||DFi—1,nwhi,n ||L2(Fi—1,n)

< C(Ao)||Dr,_, ,vn, L2y ) [ Dwn, 2 @) -

Combining this inequality with (3.9) and recalling (2.9) and Remark 3.3, we get (3.3).
Note from (3.4) it follows that

spp/ |H|P dH? < +00.
1,Mm F'i,n

Hence, (3.5) follows immediately by Lemma 5.3, taking into account that ||Dh;n|[z~q@) < Ao.
Using a diagonalizing argument, it can be shown that there exist h such that h,, — h weakly in
HY0,T; H%l(Q)) for all T'> 0. Note also that, by (3.3) and using Holder Inequality, we have for
to > tq,

Ohyn (- 1)

dt < C(tyg —t1)? . 3.10
ot HH—l(Q) s Cltz—h) ( )

2
Int2) = ot < |

Therefore, applying Theorem 5.4 to the solution w € H# (Q) of the problem

Aw = hy (- t2) — hy(-,t1) in Q,

/wdxzo,
Q
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we get
ln (s t2) = b, ) z2(@) = |Awlla@) < CID* 0l Faigy 1DW] 32 gy
< CIIDh(- t2) = Dh(e,t1) |22 1+ 12) = ) 51
< O(Ao)(t2 —t1)7, (3.11)
where the last inequality follows from (3.10). By the Ascoli-Arzela theorem (see e.g. [6, Proposition

3.3.1]), we get (3.6). Finally, inequality (3.7) follows from (3.4) by lower semicontinuity, using (3.6)
and (3.5). O

In what follows, {h,} and h are the subsequence and the function found in Theorem 3.4,
respectively. The next result shows that the convergence of {h,} to h can be significantly improved
for short time.

Theorem 3.5. There exist Ty > 0 and C > 0 depending only (ho,uo) such that
(i) i = h in COP([0, Tol; C*(Q)) for every o € (0,252) and 8 € (0, L=220)@+2)),
(ii) sup ||[Dun(-t) <,
t€[0,To)
(iii) E(un(-, hn)) = E(u(-,h)) in 00’5([0,T0];C;’a(@)) for every a € (0,%) and 0 < B <

%, where u(-,t) is the elastic equilibrium in Q. 4).

HCO’% Q1)

Moreover, h(-,t) — hg in C’#a(Q) ast— 0%, hy,, h > Cy > 0 for some positive constant Cy, and

sup |[[Dha (- 1)z (@) < Ao (3.12)
t€[0,To]

for all n.

Proof. To prove assertion (i), we start by observing that by Theorem 5.6, (3.5), Theorem 5.6 again,
and (3.11) we have

pt2 p=2
[P t2) = D)< D212 = D t)|| 7 W 2) = n )| 7
L Lp Lp
pT;Z
S C”hn(th) - hn(7t1) Ip
< C<||D2hn(';t2) — D?h (-, 1) L: [An(st2) — hn(-t1) L: )
p2-4
< Olts — 1] 557 (3.13)
for all ¢, ty € [0,Tp]. Notice that from (3.5) we have
sup  [hn ()] ez < 400, (3.14)
n,t€[0,To] c, ’ (Q
Take a € (0, I’P%Q) and observe that
p—2—ap

[Dht2) = Dh12)] < [Dhalcota) — Dha(o1)] [[(gfbc] (Dha(-st2) = D, m)] ,

where [-]g denotes the S-Hoélder seminorm. From this inequality, (3.13), (3.14), and the Ascoli-
Arzela theorem [6, Proposition 3.3.1], assertion (i) follows.

Standard elliptic estimates ensure that if h,(-,t) € C;g“ (Q) for some a € (0, 1), then Duy,(-,t)
can be estimated in C% (ﬁhn(i)t)) with a constant depending only on the Ct**-norm of h,,(-,t), see,
for instance, [25, Proposition 8.9], where this property is proved in two dimensions but an entirely
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similar argument works in all dimensions. Hence, assertion (ii) follows from (3.14). Assertion (iii)
is an immediate consequence of (i) and Lemma 5.1. Finally, (3.12) follows from (2.7) and (i). O

Remark 3.6. Note that in the previous theorem we can take
Ty :=sup{t > 0: ||Dhy(-,8)||L>=(q) < Ao for all s € [0,%)}.
In Theorem 3.16 we will show that h is a solution to (3.1) in [0,Tp), in the sense of Definition 3.1.
We begin with some auxiliary results.

Proposition 3.7. Let h € Wz’q(Q) for some q > 2 and let T be its graph. Let ® : QxRx(—1,1) —
Q X R be the flow

0P

= X(® d(-.0)=Id

= x@),  a(0)=1d,
where X is a smooth vector field Q-periodic in the first two variables. Set 'y := ®(-,t)(T"), denote
by vy the normal to T'y, let Hy be the sum of principal curvatures of Ty, and let | By|?

squares of the principal curvatures of I'y. Then

be the sum of

il

7/ |[H P dH? :/ Dr, (|H¢[P~?Hy)Dr, (X - v;) dH?
dtp I Iy

1
— [ PR (B - S HE) (X v an? . (3.15)
T p

Proof. Set ®4(-) := ®(-,t). We can extend v; to a tubular neighborhood of T'; as the gradient of
the signed distance from I';. We have

d1 d (1 d (1
= / | Hy|? dH? = ( / |Ht+s|f’d%2) = ( / |Hyps 0 ®y[P 120, W) :
dtp Jr, ds \ p it ds\p Jr, |

s=0 s=

where Jy denotes the two-dimensional Jacobian of ®, on I';. Then we have
d1

1 d
- H,|PdH? = - H,|Pdivp, X dH? /HP_QH—HS D,
iy L e = 0 [ e X e [ (o)

s=0

Concerning the last integral, we observe that

+DH,; - X.

s=0

d ..
= % (le]“t+th+s)

d
%(Hﬂrs o (bs) )

Set
d

Vg 1= %Vt-‘,-s

s5=0
By differentiating with respect to s the identity Dvyys[vits] = 0, we get Dvi[vy] + Digfvy] = 0.
Multiplying this identity by v; and recalling that Dv is symmetric matrix we get

DV't[Vt] sV = —Dl/t[Vt] . V.t =0.

In turn, this implies that divr,v; = divyy, and so

% (diVFHS I/H_s)

= diVFtl)t .

s5=0

In turn, see [13, Lemma 3.8-(f)],

Ve = —(Dr, X)"[v] = Dr,w[X] = —=Dr (X - ).
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Collecting the above identities, integrating by parts, and using the identity 9,, H; = —trace((Dut)Q)
—|By|? proved in [13, Lemma 3.8-(d)], we have

d1 1
77/ |Hy|PdH® = = | |H|Pdive, X dH* + | |[Hy|P ?Hy(—Ar, (X - ) + DHy - X) dH?
dtp Ft p F{, Ft,

1
=— [ |HP"?H;Dr,H; - X dH* + ’ |H P Hy(X - vy) dH?
Iy Iy

+ / |H[P2Hy(—Ar,(X -1») + DH, - X) dH?
Iy

1
- \Ht|p_2Ht<—AFt (X 1) + Oy, Hy(X - 1) + ISHE(X : yt)) A2
I

= [ Dr,(|H|P"2H,)Dr,(X - v;) dH?
Iy

1
_ p—2 2 Lo ) 2
AL Ht{(|Bt| th>(X Vt)}dH . (3.16)
Thus (3.15) follows. O

Proposition 3.7 motivates the following definition.

Definition 3.8. We say that (h,u,) € X is a critical pair for the functional F' defined in (2.2) if
|H|P~2H € H'(T';) and

e | Dr,(|H[P"2H)Dr, ¢ dH> +s/

1
(f\HV’H - |H|p*2H|B|2)¢>d’H2
Fh Fh p

+ [ [aive, (Do) + W (B ke = 0
'y

for all ¢ € H;(Fh) with th ¢dH? = 0. We will also say that h is a critical profile if (h,uy) is a
critical pair.

Lemma 3.9. Let h € Wi’p(Q) such that |[H|P~2H € W#q(Q), for some q > 2. Then, there exist
a sequence {h;} C Wiq(Q) such that h; — h in Wi’p(Q) and |H;[P=2H; — |H|P"2H in W;q(Q),

where Hj stands for the sum of the principal curvatures of T',;.

Proof. We may assume without loss of generality that H # 0, otherwise h would have already
the required regularity (see (2.3)). By the Sobolev embedding theorem it follows that |H|P~2H €
C’;’li% (Q) and, in turn, using the p%l Holder’s continuity of the function ¢ tp%l, He C’i’a(Q)
for o := q(qp;_i). Standard Schauder’s estimates yield h € C’;go‘(Q).
For § > 0 set
H-§ ifH>S,
Hs:=qH+¢§ if H<-Y,

0 otherwise ,
where ¢’ is chosen in such a way that [ 0 Hsdr = 0. Observe that this choice of ¢’ is always possible,
although not necessarily unique. Indeed, by (2.4) and the fact that H # 0, if ¢ is sufficiently small

/ (Hfé)dz+/ Hdx <0 and / (H—-6)dz>0.
{H>6§} {H<0} {H>6}

By continuity it is then clear that we may find ¢’ > 0 such that

/ (Hfé)der/ (H+8)de =0, (3.17)
{H>d} {H<—=46"}
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We now show that, independently of the choice of §’ satisfying (3.17), 8’ — 0 as § — 0. Indeed,
if not, there would exist a sequence ¢, — 0 and a corresponding sequence 4, — ¢’ > 0, such that
(3.17) holds with ¢ and ¢’ replaced by d,, and 4/, respectively. But then, passing to the limit as
n — oo, we would get

/ de—i—/ (H+46)dz =0,
{H>0} {H<=06"}
which contradicts (2.4).

Note that Hs — H in nga(Q) as 6 — 0. Moreover, we claim that |Hs[P~2Hs; — |H|P~2H in
W;Eq(Q) Indeed, observe that H € W14(As) where As :== {H > 6} U{H < —§'} for all § > 0.
Hence,

(p—1)|H|P"2DH if H #0,
0 elsewhere,

DWWQM—{

and

_ p—1)|Hs|P"2DH in As;,
D(|H;|P~*Hs) = ( Il
0 elsewhere.

The claim follows by observing that D(|Hs|P~2Hs) — D(|H|P~2H) a.e. and that |D(|Hs[P=2H;)| <
|D(|H|P~2H)|. Observe now that H € W14(As) implies Hs € W;‘I(Q). In order to conclude the
proof it is enough to show that for § sufficiently small there exist a unique periodic solution hg to
the problem

D
~aiv( 2 ) = i
/1 + |Dhs|?

/h(;darz/hdm.
Q Q

This follows from Lemma 3.10 below. O

(3.18)

Lemma 3.10. Let h € C';go‘ (Q) and let H denote the sum of the principal curvatures of T'y,. Then
there exist o, C > 0 with the following property: for all K € C’i’a(Q), with fQde = 0 and
|IK — H||C%0(Q) < o, there exists a unique periodic solution k € C’i’o‘(Q) to

. < Dk )
—div| — | =
1+ |DE|?

/kdx:/hdz,
Q Q

Ik — h”ci”(Q) <C|K - H”c%“(Q) : (3.19)

and

Proof. Without loss of generality we may assume that |, 0 hdx = 0.
Set X :={k € Ci’a(Q) i Jokdr =0} and YV :={K € nga(Q) : Jo K dz =0}, and consider
the operator T: X — Y defined by

Dk
70 = —div ().
1+ |DEk|?
By assumption we have that T (h) = H. We now use the inverse function theorem (see e.g. [4,
Theorem 1.2, Chap. 2]) to prove that T is invertible in a C*“-neighborhood of h with a C*-inverse.
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To see this, note that for any k € X we have that 7"(k) : X — Y is the continuous linear operator
defined by

/ . 1 Dh ® Dh
T'(h)[e] := dlv{\/m(.f 1+|Dh2>D(p] .
It is easily checked that 7" is continuous map from X to the space L£(X,Y") of linear bounded
operators from X to Y, so that T € C'(X,Y). Finally, standard existence arguments for elliptic
equations imply that for any k € X the operator T”(k) is invertible. Thus we may apply the
inverse function theorem to conclude that there exist o > 0 such that for all K € C’;’a(Q), with
Jo K dr=0and HK*HHC;;’Q(Q) < 0, there exists a unique periodic function k = T7'K € C;go‘(Q).
Moreover, the continuity of 7!, together with standard Schauder’s estimates, implies that (3.19)
holds for o sufficiently small. d

Ji,n =/ 1+ |Dhi,n‘2a

H; , is the sum of the principal curvatures of I'; ,,, |B;.»|? denotes the sum of the squares of the
principal curvatures of I'; ,,, and Hj,: @ x [0,Tp] — R is the function defined as

H,(z,t) := H; (2, hin(2),1) ift e(i—1)1n,im). (3.20)

In what follows J; ,, stands for

Theorem 3.11. Let Ty be as in Theorem 3.5 and let H, be given in (3.20). Then there ewists
C > 0 such that

TO - ~
/ / |D?(|H,|P~2H,)|? dedt < C (3.21)
o Jg
forn € N.

Proof. Step 1. We claim that |H; ,|P72H;, € W;q(f‘wb) for all ¢ > 1 and that h;, € C’i’”(@)
for all o € (0, p%l)

We recall that h; , is the solution to the incremental minimum problem (2.6). We are going
to show that h; , € Wi’q(Q) for all ¢ > 2. Fix a function ¢ € C’i(Q) such that fQ @dz =0. Then

by minimality and by (3.12) we have

d

1
- Fhln s Win a_ Dr. ) s 2d 2 :O7
(PO s g [ Do)

s=0

where, we recall, vy, , +s, solves (2.8) with h replaced by h; , + sp. It can be shown that

Dh; ., - D
/W(E(ui,n(x,hi,n<x))))<pdx+/ D(—Dhin, 1) - (=D, 0) dar + 5/ 1 o Dhin - D
Q Q PJq Ji,n

D2@[Dhi}n, Dhl’n]
J?

— E/ |Hi’n|p_2HZ"n |:Ag0 —
Q

Ahz,nth,n . DQO DQth[Dh,JL, Dg&]

Dth,n [thn; Dhl,n]th,n : DSD
J? -2 J2 +3 JA dzx
1
—— | v, ,pdx =0, (3.22)
Tn JQ ’
where the last integral is obtained by observing that vp, , ysp = vp, ,, + sv,, With v, solving
AFi71,7LU4P = d

o,
1+ |Dhi_1.|?

/ v, dH? =0.
Ch,_

1,n
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Setting w := |H; ,[P7?H; ,,,

Dhi,n ® Dh”L,TL
€ Dh;
b= 1(DY(—Dhy p, 1)) — —|H; [P =22
(D ( ni 1)) pl nl T
Ahi,nDhi,n DZhi,n[Dhi,n] D2hi7n[Dhi,na th,n]Dhl,n
+ew|— 72 -2 72 +3 5z ,

c:=-W(E(u(z, hin(z)))) + ifuh

Tn

in )

we have by (3.5) and Theorem 3.5 that A € W;’p(Q;ME}ﬁ), be LY(Q;R?), ce C’gf(Q) for some
a, and we may rewrite (3.22) as

/wAngad:ch/boDaer/capdx:O for all p € O3 (Q) with/gpdaz:O. (3.24)
Q Q Q Q

By Lemma 5.2 we get that w € L9(Q) for q € (ﬁ,Q). Therefore, for any such g we have

H;,, € L1?~1(Q) and thus, by Lemma 5.3, h; ,, € Wi’q(pfl) (Q). In turn, using Holder’s inequality,

this implies that b, wdivA € L™ (Q;R?) where 7o := @. Observe that ro € (1,2). By applying
27

Lemma 5.2 again, we deduce that w € W;&’TO (Q) and thus w € Lﬁ(Q) In turn, arguing

as before, this implies that b, wdivA € L™ (Q;R?), where r| := 2(7”20_(1;07);) > rg. Ifrp > 2

then using again Lemma 5.2 we conclude that w € W;”(Q), which implies the claim, since
D?h;,, € LY(Q;M2X2) and, in turn, b, wdivA € L9(Q;R?) for all g. Then the conclusion follows

sym

by Lemma 5.2. Otherwise, we proceed by induction. Assume that w € W;’ri_l(Q). Ifri_1 >2

then the claim follows. Otherwise, a further application of Lemma 5.2 implies that w € W;&T(Q)
27‘i_1(p—1)
(2—ri—1)p *
r; > 2. Indeed, if not, the increasing sequence {r;} would converge to some ¢ € (1,2] satisfying

with r; ;= Since r;_1 < 2, we have r; > r;_1. We claim that there exists j such that

B 20(p—1)
= 2-0p -

However, this is impossible since the above identity is equivalent to ¢ = % < 1.

Finally, observe that since |H; ,[P~?H;,, € W#q(Q) for all ¢ > 1, then |H; [P~ € nga(Q)
for every a € (0,1). Hence H;, € C%U(Q) for all o € (0, p%l) and so, by standard Schauder’s
estimates, h; ,, € C’io(Q) for all o € (0, p—il)

Step 2. By Step 1 we may now write the Euler-Lagrange equation for h;, in intrinsic form. To
be precise, we claim that for all p € Cf# (Q), with fQ pdx =0, we have

1
5 / Dr,  (|Hin|P?H;,,)Dr, ¢ dH* — ¢ / |Hi,n\p_2Hi7n<|Bi7n 2 - ];Hin)qdeQ
Tin in
1
+/ [divr, , (DY (vin)) + W(E(uin))] ¢ dH® — —/ Op,, pdH? =0, (3.25)
r F'i,n

Tn

i,m

where ¢ := % o7. To see this, fix h € W;’q(Q) for some ¢ > 2, denote by I' and I'; the graphs of

h and h + tcp',y respectively, and by H and H; the corresponding sums of the principal curvatures.
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Then by Proposition 3.7 and arguing as in the proof of (3.22), we have
1
/DF(|H\P‘2H)Dp¢dH2 = / [HP2H (| B2~ —H?) ¢ dH?
r r p

Q J Q

72
AhDh-Dy _D?h[Dh,Dy| . D2h|Dh, Dh|Dh- Dy
— 2 -2 72 +3 7 dx,

where ¢ stands for %ow and J := /1 + |Dh|?. By the approximation Lemma 3.9, this identity still
holds if h € Ci’a(Q) and thus (3.25) follows from (3.22), recalling that by Step 1, h; ,, € C;g”(Q)
for some o > 0.

In order to show (3.21), observe that Lemma 5.3, together with the bound ||Dh; |1 < Ao,
implies that

I1D?RinllLa(q) < C(g, Ao) | HinllLa(q) - (3.26)

Moreover, since I'; ,, is of class C%7, equation (3.25) yields that |H; ,|[P~?H,,, € H*(I'; ), and in
turn |H; ,[P72H; , € H*(Q) (see Remark 2.1).

As before, setting w := |H; ,|P~2H, ,,, by approximation we may rewrite (3.25) as
¥ o 1.
A(@)DwD (L) J,. dae — Bin? - ~H?)d
/Q (x)Dw (Jm) ndz 5/Qw<p(| nl ) ) i
1
—I—/ [divr, , (DY (vin)) + W(E(uin))] ¢ do — T—/ Vp, pdr =0, (3.27)
Q nJQ

for all p € H;&(Q), with ngodx = 0, where A, defined as in (3.23), is an elliptic matrix with
ellipticity constants depending only on Ag. Recall that w € H?(Q). We now choose ¢ = D7, with
n e H;(Q), and observe that integrating by parts twice yields

)dex_ /ADDw)D<Jm)JMdJ: /D AJ,,L)DwD<Jm)dx
+ /Q ADwD(nZ?]‘};]:’">Jm dx
—/QAD(DSw)D(Jm)dez—/ Dy( AJ,n)DwD<Jm)dx

7/ AD?p1PeTin dxf/ D(AJ; ) D2 in g
Q Q

. 2
;M Ji,n

Therefore, recalling (3.27), and by density we may conclude that for every 7 € H# (@)

/ADDw )dex_ /D AJ”L)DwD( )dx

/AD2 "D Tim 4 /DAJM nDs de:v

ln

— 5/ wDSn<|Bi’n\2 — 7H3n> dx
Q p v

1
+ [ dive,, (Do) + W(E(s )] Dands — = [ o, Dand.
Q nJQ
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Finally, choosing n = DswJ; 5, we obtain
/ AD(Dsw)D(Dsw)dJ; p dz = —/ Dy(AJ; n)DwD(Dsw) dx
Q Q

DSwDSJiﬂ’L

Tim dxr

—/ AD2wDSstJi,nd$—/ D(AJ; ) Dw
Q Q
1
—6/ st(Dsti,n)<|Bi,n‘2 - 7Hz2n) dx
Q P
+ / [diVFi,n (DY(vs ) + W(E(Ui,n))]Ds(Dstim) dx
Q

1
f—/ vp,  Ds(Dswd; ), da
Tn Q :

Summing the resulting equations for s = 1,2, estimating D(AJ;,) by D?h; ., and using
several times Young’s Inequality, we deduce

E/W%VMSC/O&ww%WWMHmmm”
Q Q

+ [Hin P72 D% |* + +1)de (3.28)

Uz,n
(7n)?
for some constant C' depending only on A, D?i, and on the C*® bounds on w; , provided by
Theorem 3.5. Note that by Young’s Inequality and (3.26), we have

/ |H; |72 D?hy |* v < C/ (|H; 0?2 + |D?hy |7 F2) do < C/ |H; P2 da .
Q Q Q

Combining the last estimate with (3.28), we therefore have

P 'U‘2
/ |D*w|? dz < 00/ (|D2hi7n|2|Dw|2 4w ( “3‘2 + 1) de . (3.29)
Q Q Tn

To deal with the first term on the right-hand side, we use Hélder’s inequality, (3.26) and Theo-
rem 5.6 twice to get

CO/ |D2hi,n|2|Dw|2dxgco(/ |D2h2(p‘1)dx) . (/ | Duw| =" dx) B
Q Q

_2 p—2 2
< CllwllF T 1Duly-y < ClullF T (1020377 ull3*7)

_ CID%w|| T Wl < D02 (1102wl w2 )T
= C|ID%wl|3™" [lwll3 ID%wll3™" (I1D%wll % flw] 2
3p—2

< O D*w] 7w IIQ“’ Tl ||D2w||§+0,

where in the last inequality we used the fact that % < 2 and that Hw|| v = ||H; nllB1 s
uniformly bounded with respect to i, n. Using again Theorem 5.6, we also have

2(p+1) 9, EE2 Ptptz 1,
CO/ jw| 7= de < C||[D7wl|__[lw] %27 < Z|[D7w|jz + C,
Q p—1 p—1 4

where as before we used the fact that p% < 2 and ||w\|ﬁ is uniformly bounded. Inserting the
two estimates above in (3.29), we then get

/\D2w|2dx§0/(
Q Q

(3.30)
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Integrating the last inequality with respect to time and using (3.9) we conclude the proof of the
theorem. 0

Remark 3.12. The same argument used in Step 1 of the proof of Theorem 3.11 and in the proof
of (3.25) shows that if (h,us) € X satisfies

Dh-D
| W hw)pds + / DU(-Di, 1) (~Dy, 0o+ 5 [ [P EE
Q Q
@|Dh, Dh
—c [ 12| ap - ZETLDI
AhDh-Dy _D2h[Dh,Dy| . D*h[Dh, Dh|Dh- Dy
— 72 -2 T2 +3 7 dr =0

for all ¢ € C%(Q) such that fQ pdx =0, then (h,uy) is a critical pair for the functional F.

Lemma 3.13. Let Ty and H, be as in Theorem 3.5. Then |P~In|p is a Cauchy sequence in
LY(0,Ty; LY (Q)). Moreover, |H,|P~2H,, is a Cauchy sequence in L*(0,Ty; L*(Q)).

For the proof of the lemma we need the following inequality.
Lemma 3.14. Let p > 1. There ewists ¢, > 0 such that
1 - - 2P — yP| -1 -1
— (@ 4yl < e <@ T P,
p jz—yl =
Proof. By homogeneity it is enough to assume y = 1 and « > 1 and to observe that

. P —1 . P —1 p
lim =1 lim =—,
z—+oo (z — 1)(axP~1 + 1) a—=1 (z —1)(zP~1+1) 2

Proof of Lemma 3.13. We split the proof into two steps.
Step 1. We start by showing that |H,|? is a Cauchy sequence in L'(0,Tp; L*(Q)). Set k := [p],
where [-] denotes the integer part. Note that k > 2 since p > 2. From Lemma 3.14 we get

To - - To - -
[ [ =1 dode= [ [ |1 12| dode
0 Q 0 Q

Ti b
< [V VN0 V) e

To 3 5 N
<o [ (] Vs = ) O
< / (125 - iz, -
0

where M, , = fQ k) dz. Set

monl) (Halloo + || Hinlloc )~ dt, (3.31)

wy, = |H,[P~2H, (3.32)
and observe that H* = (wj{)ﬁ + (—l)k(wg)%. Thus,

IDEF| < |D(w; )77 | + | D(wy ) 71| < | Dwn|[w, |71t = ¢ Duw,,|[H, |[FP+1 . (3.33)
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From Lemma 5.7 and inequalities (3.31), (3.33) we get

TU ~ ~
/ /||Hn|p — |Hyp|P| dadt
o JQ

o - 1 - ~ oL
< [ (M = = Mool | DR — DRSS + Mo
0

) Hlloo + [[Hi | o0)P ™" dt

p—k+1

To _ _ 1 1 ~ B
< C/ 1y, — Hy, = Mol 772 (| Dwnll2 + | Dwm [2)2 ([ Hnlloo + [ Himllo) = dt
0

T() - ~
+/O | Mool (1 Hnlloo + | Himlloo)?~* dt (3.34)

Fix n, m € N. We now estimate the H~'-norm of fI,’f — f[,’jl — My, . Recall that, in view of
Remark 3.3,
|Hy; — Hy, = My

where u is the unique Q-periodic solution of

|1 = || Dul2, (3.35)

—Au = I:Iffb — I:Ifn - My, inQ@, (3.36)
fQ udr =0.
Thus
~ ~ ~ ~ k_l ~ .o~ .
/ |Dul|? dz = / uw(HY — AF — M,, ) dx = / w(H, — Hy) Y HY''H, dx, (3.37)
Q Q Q i=0

where we used also the fact that fQudx = 0. Fix 6 € (0,1) (to be chosen) and let T°(t) :=
(tv —=3)Ad. Then

H, =[(H, - 6% + 0|+ T°(H,) — [(—H, — 8)T + 4] (3.38)
and (see (3.32))

1
p—1 -1
Wn if wy, > 0P ;

(H, —8)T+6=
0 otherwise.
Hence Du,|
~ n W,
[DI(Hn = 0)" +0]| < e 7 (3.39)
and a similar estimates holds for D[(—H,, — 0)* + 6]. We now set
Vs = [(Hp —6)" 4+ 0] — [(—H, — 6" +4]. (3.40)

From (3.37) we have

/Q|Du2dx

<t S S (K7 () v ) )
= /Qu(ﬁn —ﬁm)ZngHV,;,é dx

e fui-igy S (P71 (L) v ) (1)) de

—L+M. (3.41)
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We start by estimating the last term in the previous chain of equalities:

|M\<c/ || Hyy — Ho, |Z S VRV e

i=0 (r,5)7#(0,0)

Sc/Qu|<ffn|+|ﬁm|>Zéf[v,ﬁgl SV de
< b [l + ) (14 VG + V) do

Q

3 . .
<o [ aan) I+ )
Q
1 ~ ~ .

< 6/ |Dul? dz + 6% (1 + || Hp ||oo + [ Hom [|oo)* 1, (3.42)

Q

where we used (3.40) and the Poincaré and Young inequalities. To deal with L, we integrate by

parts and use (2.3) and the periodicity of u, hy,, and Ay, to get

k—1

Dh, D Dh, D o
L:/( hn _ Dhuy )DuZVfél i dm+/( . _ Dhon )UZD (VESTVE §) da,
Q Jn Jm Q Jn i=0 ’
where
B (2, t) := hip(x) ift € [(i— )7, i) and J,(x.t) := /1 +|Dhy(z,1)|2. (3.43)

From the equality above, recalling (3.32), (3.39), and (3.40), and setting

- Dl

En,m ‘= Sup
te[0,To]

we may estimate

|L| < cemm/ |Du|(1 + [Hy, "7t + |Hp |71 da
Q

k—1
+can,m/ [ Y [IDVEs TV 5+ 1DV Vi da
Q i—

1 - -
SYALIES csi,mu [ Flalloo + 1o 20

|Dwa| X2k i [Dwml =X i1 ki
+ CEn,m | ul = V V5 da + cenm Q|u| o2 D Vs Vs da
=0

<5/, IDuP do+ csi,mu [ Flalloo + 1o 2

€nm r r —
St | 10D+ 1Dwnl) 1+l o)

<3 / DU de -+ 22 (14 [l + [ F) 2D
Q

2

8’I’LTI’L
5 2>/Q<|Dwnl+lDwm|> (U [ Hlloo + [ Hon )24 der
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From this estimate, (3.35), (3.36), (3.41), and (3.42), choosing §2(P=2) = ¢,, .., with n,m so large
that €, < 1 (see Theorem 3.5(i)), we obtain

||I:Iﬁ - ffﬁL - JMm,n”%F1 < ng,m [(1 + ”I:In”oo + HI_:rmHOO)Q(k_l)
+ (|1 Dwall2 + |1 Dwm|2)* (1 + | Halloo + [ Hmlloo)** 2], (3.44)

s 1
where o := min{1, =5 }.
We now estimate M,, ,,. Since

S

—1
My, = / (* — b)Y de = / (H, — ) S~ A1 da,
Q Q i

I
o

using the same argument with u = 1 (see (3.44)) gives
Myl < 2 [0+ oo + 1 llo0) = + (1D 2+ 1 Dl l2)(L+ [ Bl + 1 o) 2]

From this inequality, recalling (3.32), (3.34), and (3.44), we deduce

TD nd nd e} TU 1 D
| LMl = | dedt < )t [ (1Dwnll + D) 3+ ol + ) 77
0 Q 0

o

To
o 1
()t / (IDwalz + [ Dewnll2) (1 + [wnloc + llwnloc)? dt
0
a To
+elemm)? / (L4 fnlloo + 0 lo0) dt
o [To p—2
+c(en,m)? /0 ([[Dwp |2 + | Dwim l|2) ([[wn loo + [[wmlloo) »=T dt .

Observe now that by (3.5) and (3.20) there exists C' > 0 such that [, [w,|dz < HﬁnHZj <C
for all n and thus, using the embedding of H?(Q) into C(Q) and Poincaré’s inequality,

[Dwpll2 + [[wallee < C(1+ [ D*wy]l2) - (3.45)

Therefore, from the above inequalities and using also the fact that % + ﬁ < 2 and that

1+ g%f < 2, we conclude

T, ~ R T .
[ [P = (B dedt < clenn)® [ (4 10200l 4 [ D20 o) de < lenm)
o Jo 0

where the last inequality follows from (3.21). This proves that the sequence |H,|? is a Cauchy
sequence in L'(0,Tp; L'(Q)). Note also that using Lemma 3.14 we have

To - - To N - - - 1
/ /]|Hn|—|Hm||pdxdt§c/ /\|Hn\—|Hm||(|Hn\+|Hm|)p dudt
0 Q 0 Q

TO - -
< c/ / |[Hp|P — |Hun|P| dadt . (3.46)
o JQ
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Step 2. We now conclude the proof by showing that w,, is a Cauchy sequence in L' (0, Ty; L?(Q)).
To this purpose, we use Lemma 5.7 to obtain

To To To
/ wn — wpalo dt g/ wn — wn, —Nm,n||2dt+/ Ny dt
0 0 0

To 2 9 9 1 To
sc/ ln — W — Npwall 3, D wn*Dmeé”dtJr/ Ny di
0 0

(3.47)

where Ny, p, := fQ(wnfwm) dz. Asobservedin (3.35) and (3.36) , ||wn—wWm—Nmnllg-1 = ||Dvll2,
where v is the unique Q-periodic solution of

—Av =wy — Wy, — Ny, in Q,
vadxzo.

As in (3.37), using the fact that fQ vdz = 0, we have

/ |Dol? dz = / (Wn — Wy — Ny )V = / (|gn‘p72ﬁn — \Hm|17*2f{m)v dz
Q Q Q
- / ([HolP~2 = |Hpp|P~2) Hyv d:r+/ (H, — Hp)|Hn|P v d
Q Q
=L+M. (3.48)
Now, by Hoélder’s inequality twice and the Sobolev embedding theorem,
~ ~ p—2 ~ =2, ~ ~ ~ p=2
EI< [ 08T = (8P) [ Blolds < [ 17 = | BnP| o] do
Q Q
p—1

~ ~ ~ p—2 P ~ - - p=2
< [[ollplHnlloo (/QHHnI” — [Hp |P|7 dw) < cl|Dvllo|[Hnlloo [ Hn|” = [Hm["[l,"

2(p—2)

1 - - - 2(p=2)
S AL R A A (3.49)

To estimate M, arguing as in the previous step (see (3.38)) and observing that (—|H,,|P~2 —
5t =0), we write

N = / (Hy — Hy) [([Hn?~% = 0)* + 6]v da + / (Hy — Hyn) [T°(|Hinl"™%) = 8]0 da
Q ] ) Q

[ (Dh, Dh, © 2 ot
= [ (5 = ) ettt = 0)* 6

DiLn D]:bm 7op—2 7T 1 S(1FT  |P—2Y) _
+/Q( - )UD[(|Hm| 5)* + 6] dac—&—/Q(Hn Hpp) [T (| Hp[P2) — 8] da.

Similarly to what we proved in (3.39), we have

N D
D P2 = 6 +8)| < el 20ml.

p—2
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Therefore, arguing as in the previous step, we obtain

| )
|M| < f/ |Dv|*dx + g2, (1+ | o loo) @2

Dw
+csnm/| Dl g +ca/ 0l(| Elloo + | Humlloo) de

2
< 5 oI de b (U P72 e Dl 8 o+ e

where in the last line we used the Young and Poincaré inequalities. Choosing § so that § 77 = En,m
and recalling (3.48) and (3.49), we conclude that

~ ~ ~ p=2
llwn = wm = Nenll -1 < el Hullool[[Hn [ = [Hom [P]], 7

8 - 5 =
+elenm)® (L+ [ Halloo + [ Hmlloo + | HillB? + [ Dwinl2) ,  (3.50)

where 8 = min{1,p — 2}.
Since by (3.32),

Noww = [ (o =)o = [ (Fl2=2 = [F ) i+ [ (o= ) i
Q Q Q
the same argument used to estimate the last two integrals in (3.48) (with v = 1) gives

~ ~ ~ p=2
|Nm,n| < cl|Hplloo|l[Hn | — |Hm|p||1p
B ~ ~ ~ _
+c(enm)? (1Hnlloo + [[Hmlloo + [[Hml5 s+ | Dwinll2) -

From this estimate, recalling (3.32), (3.47) and (3.50), we have that

To To N 2(p—2) ) )
/ 15, — 0t < C/ [ Hn P = [Hpl? ]y 7 ||wn||3(" V(| D*wyl2 + [ D*winl|2) dt
0 0

2
3

To 1 1 p—2
B == == ~—F 1
+e(enm)t / (14 a2+ ol ZT + fwmll&" + [Dwmllz)F (1D%wa 2 + | D*wmll2)* di
0
To - p—2
+c/0 | Z7 [ Eal? — |BolP[17 dt

s [To 1 1 p=2
+C(5n,m)7/ (lwnll&™ + llwmllds™ + lwmllss™ + | Dwml2) dt
0
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Using (3.45) and Holder’s inequality, we can bound the right-hand side of this inequality by

To - 2(p—2) 9 9 1y 2
S c/ [ Hn|P = [Hpn[Pll; (14 [D7wnll2 + | D wm|[2) 37 3@ dt
0
s (T 2 2 3 2 2 1
+ C(én,m)g’ (1 +[[D*wy ]2 + || D wm||2) (I1D*wnll2 + | D wp,[|2)* dt
0

To 1 - p=2 s [To
+C/ (L + 1D wnl2) *~* N Hal? — [H [P, dt+c(€n,m)f/ (L + 1 D*wnl2 + [ D*wpll2) dt
0 0

To B ~
<C</ /}|Hn|p—|Hm|p’dxdt>
0 JQ
To (p—2) T R
] 7 _» _»
+ C</ / ||Hn|p — |H7n|p| dxdt) {/ (1 + HD2wn||2) 2(p1):|
0 Q 0

To
telenm)t [0+ D20 o+ [DPwna) dr.
0

2(p—2)

pt4
3p

o __p(p+1)
[/ (|1 D*wn |2 + | D*wy ||2) <p—1><p+4>}
0

Since % < 2 and % < 2, recalling (3.21), we finally have

To To ~ ~
/ lwn — w2 dt < c(/ / |[Hpl? — |Huml|?| dxdt)
0 0 JQ
(p—2)

To 5 N p)
+ c(/ / | f? — |7 dxdt) +elenm)t .
0 Q

The conclusion follows from Step 1. O

2(p—2)
3

Corollary 3.15. Let H,, be the functions defined in (3.20), let h be the limiting function provided
by Theorem 3.5, and set
Dh
e an( 20y
MR
Then,
|H, [P — |H[P in LY0,Ty; L*(Q)) and |H,|P"2H,, — |H|P"2H in L*(0,To; L*(Q)).  (3.51)

Proof. Let h, and J, be as in the proof of Lemma 3.13. From Theorem 3.5(i) we get that for all
t € (0,7p) and for all p € C’#(Q) we have

~ Dh, Dh ~
/Hnapdx:/ = -D(pdx—>/ —~D<pdx:/ngdz,
Q Q JIn Q Q

where J = /1 + [Dh|2. Since for every t, H,(-,t) is bounded in L?(Q), we deduce that for all
te (07 TO)»

H,(-,t) =~ H(-,t)  weakly in L?(Q). (3.52)
On the other hand, from Lemma 3.13 we know that there exist a subsequence n; and two functions
z, w such that for a.e. ¢,

\Hy, (0P — 2(,t) in LYQ)  and  (|Hn, [P 2Ha,)(t) — w(-t) in L*(Q).  (3.53)

Moreover, for any such ¢ there exists a further subsequence, not relabelled, (depending on t)
such that |H,, (z,t)|P, |Hy, (2, t)|P~?H,,(x,t), and thus H,, (z,t) converge for a.c. z. By (3.52)
I:Inj (x,t) — H(-,t) for a.e. x. Thus, we conclude that z = |H|P and w = |H|P~2H. O

We now prove short time existence for (3.1).
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Theorem 3.16. Let hg € Wi’p(Q), let h be the function given in Theorem 3.4, and let Ty > 0
be as in Theorem 8.5. Then h is a solution of (3.1) in [0,To] in the sense of Definition 3.1 with
initial datum hg. Moreover, there exists a non increasing g such that

F(h(-,t),un(-,t)) =g(t) fortel0,To]\ Zo, (3.54)
where Zy is a set of zero measure, and
F(h(-,t),un(-,t)) < g(t+) forte Z,. (3.55)
This result motivates the following definition.

Definition 3.17. We say that a solution to (3.1) is variational if it is the limit of a subsequence
of the minimizing movements scheme as in Theorem 3.5(i).

Proof of Theorem 3.16. Let H,,, hy,, J, be the functions given in (3.20), and (3.43). Set W, (z,t) :=
W(E(uin)(x, hin(x))) and 0, (z,t) := vp, , (x) for t € [(i — 1)7,,17,). Moreover, define 0, := ;—:
Note that for all ¢, 9,,(+,¢) is the unique Q-periodic solution to

1 Ohy (-, 1)
_ w=—=
Fn (st Ju(t—1,) Ot

/ wdH? =0.
FV

hn(t=7n)

Ar
(3.56)

Fix t € (0,7p) and a sequence (ix,ny) such that ty := ix7,, — t. Summing (3.22) from i = 1 to
i =1k, we get

b e Dhy, D
/ /WnkcpdzdtJr/ /D¢ Py s 1) - (—Dcp,())da:dt+§/ /|an|p"57s0do:dt
b Jo Q Jnk

th . . D2p[Dhy,, , Dhy,
75/ / |an‘p72an |:A§0 o 90[ ~2k7 k]
o Jo Ja

_ Ahp, Dhy, - Do D%nk [Dhn,”Dgo] 3D2i~znk[Dﬁnk,Dﬁnk]Di~znk - Dy
Jz Jz J4
ng

/ / Op,pdadt =0. (3.57)
0

We claim that we can pass to the limit in the above equation to get

] dxdt

/ / W (E(u(z, h(z, ), )))npdmds—&-/ot/QDz/J(—Dh,l)~(—D<p,0)da:ds

7//\H|pMd:cds
w[Dh, Dh
o] fralos- e

_ AhDh-Dyp ,D*h[Dh, Dy |, D*h[Dh, DhDh- Dy
J? JA

t
7/ /@godxds:O, (3.58)
0 JQ

dxds
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where 9(-, 1) is the unique periodic solution in H} (T'(t)) to

1 Oh(-t)
J(t) ot

/ wdH? =0
Chiot

for a.e. t € (0,7p). To prove the claim, observe that the convergence of the first two integrals in
(3.57) immediately follows from (i) and (iii) of Theorem 3.5. The convergence of the third integral
(3.57) follows from (3.51) and (i) of Theorem 3.5. Similarly (3.51) and (i) of Theorem 3.5 imply
that
th _ . Dh,,, , Dh,, D2¢[Dh, Dh
/ / |H,, |P~2H,, [Agp— ol 2’“’ "q dxdt—>/ / |H|P~ 2H[A gp[ﬂ’q dxds .
0 JQ

Nk

AFh(~,t>w
(3.59)

Next we show the convergence of

/ /lHn ‘p 2H |: Ahnthnk D(p

Jz
D?hy,, [Dhp,, D] D?hy, [Dhip,, Dhy, | Dhy, - Dy
-2 iz +3 iz dxdt
nE Nk
to the corresponding term in (3.58). To this purpose, we only show that
Ahy, Dhy,, - D AhDh - D
/ / \H,,|P *WM%M dadt — / / \H|P~ QHji‘p dads (3.60)

Nk
since the convergence of the other terms can be shown in a similar way. To prove (3.60), we
first observe that by (3.5) and Theorem 3.5(1) we have Ah,, (-,t) = Ah(-,t) in LP(Q) for all
t € (0,Tp). On the other hand, (3.51) yields that for a.e. t € (0,Tp) we have (H,, |P~2H,,)(-,t) —
(|H|P~2H)(-,t) in L?(Q). Therefore, for a.e. t € (0,Tp)

Ahy,, D D AhDh - D
[, Bl D2 e S

ngk
The conclusion then follows by applying the Lebesgue dominated convergence theorem after ob-
serving that by (2.9) and (3.5),

Ahn Dhn D
\ / LN

Nk

< C||Ahny 22 (@) 1 Ha, [P~ Hay |l 22(0)

< C” |an |p 2an ||L2(Q)

and that ||| H,,, [P~2H,, | 22(q) converges in L'(0,Tp) thanks to (3.51).

Note (3.51) implies that for a.e. ¢ € (0,7p) we have ||ﬂ'nk(',t)HLp(Q) — |H(-,t)||Lr(q)- Since
H,, (-,t) = H(-,t) in L?(Q) (sce (3.52)), we may conclude that H,, (-,t) — H(-,t) in L?(Q) for
a.e. t € (0,Ty). Therefore, by (2.3) and [1, Lemma 7.2], we also have hy, (-,t) = h(-,t) in Wi’p(Q)
for a.e. t € (0,7p). Thus, by (2.9) and (3.5) and the Lebesgue dominated convergence theorem we
infer that

TO -
/ / |D?hy,,, — D*h[P dzdt — 0. (3.61)
0 Q

This, together with the fact that h,, — h weakly in H'(0, Ty; H;l(Q)) (see (3.6)), implies that

1 oh 10h
7 me 2SNy 120, Ty HZH(Q)). 62
TGy o0 ga P OT Q) (3.62)
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Indeed, for any ¢ € L?(0, Tp; ijk(Q))7

T
o Oh,, 10h
i _ dadt
Jnk(.,._Tnk) ot Jat)‘p v ‘
To hn To hn
< ~7— )a ko drdt| + a k—f dmdt
nk Yyt T Thy, ) J
To TO
/ / Hah"k H dedt + ah"’“ & dxdt‘. (3.63)
- 7'k( y T T’"k J

Since Hj(Q) is embedded in L9(Q) for all ¢ > 1, we deduce from (3.61) that ——2—— — %

"k( s _Tnk)

in L2(0, Tp; H;&(Q)) This convergence together with (3.3) shows that the second last integral in
(3.63) vanishes in the limit. On the other hand, also the last integral in (3.63) vanishes in the limit
since hy,, — h weakly in H(0, Tp; H%l(Q)) Thus, (3.62) follows.

Arguing as in the proof of Theorem 3.11 and integrating with respect to t, we have from

(3.56),
Ohn,
Ank Db, - Dpdxds = pdxds (3.64)
nk ) Tnk) ot

for all ¢ € LQ(O,TO, H#(Q))7 where
Dhy, (-, — Tn, ) @ Dhy, ot — Tn ~
Ank(‘r’t) = <I k( T (k_)._T )kz( k)>Jnk(’Tnk)

Note that (3.12) implies that A,, (z,t) is an elliptic matrix with ellipticity constants depending
only on Ag for all (z,t). Therefore, (3.64) immediately implies that

To o Oh 2
/ / | Db, |2 dadt < c/ -
0 Q 0

ot
thanks to (3.3). Since A,, — A = (I — 228Ph) J in 1°°(0, Tp; L=(Q)) by Theorem 3.5(i), from
the estimate above and recalling (3.62) and (3.64), we conclude that

<c

H—l

b, — 0 weakly in L*(0,Ty; H(Q)),

AD?v- D =
// v - Dypdrds = //Jatgodxds

for all ¢ € L?(0,To; Hy(Q)) and for all t € (0,Tp). In turn, letting ¢ vary in a countable dense

subset of H. # (Q) and differentiating the above equation with respect to ¢, we conclude that for a.e.
t € (0,Tp) 9(-,t) is the unique solution in H%&(Fh(',t)) to (3.59) for a.e. ¢t € (0,7p). This shows that
the last integral in (3.57) converges and thus (3.58) holds. Again letting ¢ vary in a countable
dense subset of H(Q) and differentiating (3.58) with respect to t we obtain

where 0 satisfies

/W u(z, bz, b), )))gpdx-i—/ Di(=Dh,1) - (~Dg,0) d“;/Q'H'pwdx

D2p|Dh, Dh]
—< [ - 21| ap - AT
AhDh-Dy _D2h[Dh,Dyg| . D*h[Dh, Dh|Dh - Dy
— 72 -2 72 +3 7i dx

7/ tpdr =0 (3.65)
Q
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for all ¢ € H#(Q) Since, by (3.21), |[H|P72H € LQ(O,TO;H%&(Q))7 arguing as in Step 2 of the
proof of Theorem 3.11, we have that the above equation is equivalent to

e | Dr,(|H|P"?H)Dr, ¢pdH>* — 5/

1
HP=2H (|B = - H?) g dH?
Fh Fh p

+/ [divr, (Dy(v)) + W(E(u))]¢ dH* — / dpdH? =0
Ty T'n
for a.e. t € (0,Tp), where ¢ := %. This equation, together with (3.59), implies that & is a solution
to (3.1) in the sense of Definition 3.1.

Next, to show that the energy decreases during the evolution, we observe first that for every n
the map ¢ — F(hy(-,t),@n(-,t)) is non increasing, as shown in (3.4). Note also that thanks to (3.51)
we may assume, up to extracting a further subsequence, that for a.e. ¢, H, — H in LP(Q). This
fact, together with (i) and (iii) of Theorem 3.5, implies that for all such t, F(hy(-,t), @n(-,t)) —
F(h(-,t),u(-,t)). Thus also (3.54) follows. Let ¢t € Z, and choose t,, — t*, with ¢,, & Z, for every

n. Finally, since h(-,t,) — h(-,t) weakly in Wip (Q) by (3.5), by lower semicontinuity we get that
F(h(-,t),u(-,t)) < liminf F(h(-, t,),u(-, tn)) = limg(t,) = g(t+).

4. LIAPUNOV STABILITY OF THE FLAT CONFIGURATION

In this section we are going to study the Liapunov stability of an admissible flat configuration.
Take h(z) = d > 0 and let uy denote the corresponding elastic equilibrium. Throughout this
section we assume that the Dirichlet datum wy is affine, i.e., of the form wg(z,y) = (A[z],0) for
some A € M?*2. As already mentioned, a tipical choice is given by wo(z,y) = (ejx1,edx2,0),
where the vector eg := (ef,€3), with e}, e2 > 0, embodies the mismatch between the crystalline
lattices of film and substrate.

A detailed analysis of the so-called Asaro-Tiller-Grinfeld morphological stability/instability
was undertaken in [10, 25]. It was shown that if d is sufficiently small, then the flat configuration
(d,uq) is a volume constrained local minimizer for the functional

G(h,u) = | W(EM)dz+ | ¥v)dH>. (4.1)
Qp Tn

To be precise, it was proved that if d is small enough, then the second variation 9%G(d,ug) is
positive definite and that, in turn, this implies the local minimality property. In order to state
the results of this section, we need to introduce some preliminary notation. In the following,
given h € Ci (@), h > 0, v will denote the unit vector field coinciding with the gradient of the
signed distance from Q#, which is well defined in a sufficiently small tubular neighborhood of Ff.
Moreover, for every x € I'j, we set

B(z) := Dv(x). (4.2)
Note that the bilinear form associated with B(z) is symmetric and, when restricted to T,,I'y, X T, Ty,
it coincides with the second fundamental form of T'y, at x. Here T, .I";, denotes the tangent space to
Ty, at x. For z € T}, we also set H(z) := divv(x) = trace B(z), which is the sum of the principal
curvatures of Ty, at x. Given a (sufficiently) smooth and positively 1-homogeneous function w :
RYN \ {0} — R, we consider the anisotropic second fundamental form defined as

BY := D(Dw o v)

and we set
HY := trace B* = div (Dw o v). (4.3)
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We also introduce the following space of periodic displacements
A(Q) == {u € LDx(Qp; R?) : u(z,0) = 0} . (4.4)

Given a regular configuration (h,us) € X with h € C%(Q) and ¢ € IA{T# (@), where

Q)= {o e 13Q): [ edr=0}. (15)

we recall that the second variation of G at (h,up) with respect to the direction ¢ is
d2
G G+ 10, unie) |0,

where, as usual, up 4+, denotes the elastic equilibrium in €, 14,. It turns out (see [10, Theorem 4.1])
that

d2

G+t unpip)li=o = 0*Gh,un) ()
(Dh, |Dh|?)

1+ |Dh?

where 92G(h, up)[¢] is the (non local) quadratic form defined as

—/F (W(E(up)) + H?) divr, l( o7r> ¢21 dH?, (4.6)

9*G(h,up)[p] == — 2 A W(E(vg)) dz + g D*p(v)[Dr, ¢, Dr, ¢] dH?
+ / (0, [W(E(up)] — trace(BYB)) ¢? dH? (4.7)
Tn
6= ——

¥ or.
V/1+ |DhJ2

and vy the unique solution in A(€,) to

CE(vg) : E(w)dz = / divr, (¢ CE(up)) - w dH? for all w € A(2,). (4.8)

Qp Tn

Note that if (h,uy) is a critical pair of G (see Definition 3.8 with e = 0), then the integral in (4.6)

vanishes so that
2

d
EG(h + tp, untip)|i—0 = G (h,un)lg] .

Throughout this section « will denote a fixed number in the interval (0,1 — %) The next result is
a simple consequence of [10, Theorem 6.6].

Theorem 4.1. Assume that the surface density 1 is of class C* away from the origin, it satisfies
(2.1), and the following convexity condition holds: for every & € S2,

D*(&)[w,w] > 0 forallw L& w+#0. (4.9)
If
O*G(d,ug)[g] >0 for all p € Hy(Q) \ {0}, (4.10)
then there exists § > 0 such that
G(d,uq) < G(k,v)
for all (k,v) € X, with |Q| = 4], 0 < ||k — dHc;“(Q) <.
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Proof. By condition (4.10) and [10, Theorem 6.6] there exists dp > 0 such that if 0 < ||k—d||C#(Q) <
0o and ||Dn]jeo < 1+ ||Duglloo, with (k,n) € X, then

G(d,uq) < G(k,m) . (4.11)

Note that we may choose 0 < ¢ < &g such that if ||k_d||ci#‘a(Q) < 6 and wy, is the elastic equilibrium

corresponding to k, by elliptic regularity (see also Lemma 5.1) we have that || Dug||co < 14| Dug||oo-
Therefore, using (4.11) with 7 := uy, we may conclude that

G(d,uq) < G(k,ug) < G(k,v),
where in the last inequality we used the minimality of ug, and the result follows. 0

Remark 4.2. Tt can be shown that Theorem 4.1 continues to hold if (4.9) is replaced by the
weaker condition

D*p(e3)[w,w] > 0 for all w L eg, w # 0. (4.12)
Indeed, (4.12) implies that (4.9) holds for all ¢ belonging to a suitable neighborhood U C S? of
e3. In turn, by choosing § sufficiently small we can ensure that the outer unit normals to 'y lie in
U, provided ||k — d”c«;a(Q) < 0. A careful inspection of the proof of [10, Theorem 6.6] shows that

under these circumstances condition (4.9) is only needed to hold at vectors £ € U.

Remark 4.3. Under assumption (4.9), it can be shown that (4.10) is equivalent to having (see
[10, Corollary 4.8])

inf{0*G(d, ua)[e] : ¢ € HL(Q), Il () = 1} = mo >0, (4.13)
ie.,
0*G(d, ua)le] = moll¢ly ) forall p € HL(Q).

Remark 4.4. Note that if the profile h = d is flat, then the corresponding elastic equilibrium wug
is affine. It immediately follows that (d, ug) is a critical pair in the sense of Definition 3.8.

We now consider the case of a non-convex surface energy density 1, and introduce the “relaxed”
functional defined for all (h,u) € X as

G(h,u) = i W(E(u))dz + : P (v) dH?, (4.14)

where 1** is the convex envelope of 1. It turns out that if the boundary of the Wulff shape Wy,
associated with the nonconvex density v contains a flat horizontal facet, then the flat configuration
is always an isolated volume-constrained local minimizer, irrespectively of the value of d. We recall
that the Wulff shape Wy, is given by (see [21, Definition 3.1])

Wy i={z€R: z.v <y(v) for all v € S?}.

The following result can be easily obtained from [10, Theorem 7.5 and Remark 7.6] arguing as in
the last part of the proof of Theorem 4.1.

Theorem 4.5. Let 1) : R® — [0, 4+00) be a Lipschitz positively one-homogeneous function, satis-
fying (2.1), and let {(z,y) € R® : |z| < a,y = B} C OW,, for some o, B > 0. Then there exists
0 > 0 such that

G(d,ug) < G(k,v)
for all (k,v) € X, with |Q| = |Q4], 0 < ||k — dHC;a(Q) <4é.

In the next two subsections we use the previous theorems to study the Liapunov stability of
the flat configuration both in the convex and nonconvex case.
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Definition 4.6. We say that the flat configuration (d,ug4) is Liapunov stable if for every o > 0,
there exists (o) > 0 such that if (hg,up) € X with |Qp,| = |Q4| and ||ho — d”Wi”’(Q) < (o),
then every variational solution h to (3.1) according to Definition 3.17, with initial datum hg, exists
for all times and ||h(-,t) — dHWi,p(Q) <o for all t > 0.

4.1. The case of a non-convex surface density. In this subsection will show that if the bound-
ary of the Wulff shape W, associated with ¢ contains a flat horizontal facet, then the flat config-
uration is always Liapunov stable.

Theorem 4.7. Let 1) : R3 — [0, +00) be a positively one-homogeneous function of class C* away
from the origin, such that (2.1) holds, and let {(x,y) € R® : |z| < a,y = B} C OW,, for some
a, B > 0. Then for every d > 0 the flat configuration (d,uq) is Liapunov stable (according to
Definition 4.6).

Proof. We start by observing that from the assumptions on %, es is normal to boundary OW,
of the Wulftf shape Wy, associated with . Thus, by [21, Proposition 3.5-(iv)] it follows that
Y(es) = ¥**(ez). In turn, by Theorem 4.5, we may find 6 > 0 such that

F(d,uq) = G(d,uq) < G(k,v) < F(k,v) (4.15)

for all (k,v) € X, with || = |Qq| and 0 < ||k — dHC;a(Q) < 4. Fix ¢ > 0 and choose §y €
(0, min{0, o/2}) so small that

1 =dllgyeq) < 90 == [|Dh]jeo < Ao, (4.16)
where Ag is as in (2.6). For every 7 > 0 set
() = sup{ [k — s }
where the supremum is taken over all (k,v) € X such that
%] = 1], k- dHC;a(Q) <94, and F(k,v)— F(d,uq) <7

Clearly, w(7) > 0 for 7 > 0. We claim that w(7) — 0 as 7 — 07. Indeed, to see this we assume
by contradiction that there exists a sequence (k,, v,) € X, with |Qy, | = [Qq], such that

liminf F(ky,v,) < F(d,uqg) and 0<¢p < ||k, — d”C#a(Q) <4 (4.17)

for some ¢y > 0. By Lemma 5.3, up to a subsequence, we may assume that k, — k in W;&’p Q)
and that v, — v in HL _(Qx;R3) for some (k,v) € X satisfying § > ||k — dHc;“(Q) > ¢, since

loc
Wi’p (Q) is compactly embedded in C’#a(Q). By lower semicontinuity we also have that
F(k,v) < liminf F(k,,v,) < F(d,uq) ,

which contradicts (4.15).
Let §(o) so small that if ||hg — dHWj;”(Q) < 6(0) then

||h0 — d” 1,a <dy and F(ho,Uo) — F(d, Ud) < w_1(50/2),
)

where w™! is the generalized inverse of w defined as w™!(s) := sup{r > 0: w(r) < s} for all s > 0.
Note that since w(7) > 0 for 7 > 0 and w(7) — 0 as 7 — 0+ we have that w=!(s) — 0 as s — 0+.
Let h be a variational solution as in Theorem 3.4 (see Definition 3.17). Let

Ty :=sup{t >0: ||h(-,s) — d”C#a(Q) <y forall se(0,t)}.
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Note that by Theorem 3.5, 73 > 0. We claim that T} = +oco. Indeed, if T} were finite, then,
recalling (3.7), we would get for all s € [0,T}]

F(h(-,Ty),un. 1)) — F(d, ua) < F(ho,uo) — F(d,uq) < w™"(60/2), (4.18)
which implies ||h(-, T} )— d||cl a(g) < 00/2 by the definition of w. Then, equation (4.16), Remark 3.6,
and Theorem 3.5 would 1mply that there exists T > Tj such that ||h(-,t) — dHC;a(Q) < g for all

t € (T1,T), thus giving a contradiction. We conclude that T; = 400 and that ||A(-, t) _d”c;g”(Q) <

dp for all ¢ > 0. Therefore, (4.16) implies that || Dh(-,t)|lcc < Ao for all times, which, together
with Remark 3.6, gives that h is a solution to (3.1) for all times. Moreover, by (4.18) we have also
shown that F(h(-,t),up(.4)) — F(d,uq) < w '(d/2) for all t > 0, which by (4.15) implies that

5/ |HP dH? < w™(80/2).
IS

Using elliptic regularity (see (2.3)), this inequality and the fact that ||h(,t) — d||s < /2 for all

t > 0 imply that ||h(-,t) — d”Wj;p(Q) < ¢ provided that Jp and in turn (o) are chosen sufficiently
small. O

4.2. The case of a convex surface density. In this section we will show that, under the con-
vexity assumption (4.9), the condition 8?G(d, uq) > 0 implies that (d,u,) is asymptotically stable
for the regularized evolution equation (3.1) (see Theorem 4.14 below). We start by addressing the
Liapunov stability (see Definition 4.6).

Theorem 4.8. Assume that the surface density v satisfies the assumptions of Theorem 4.1 and
that the flat configuration (d,uq) satisfies (4.10). Then (d,uq) is Liapunov stable.

Proof. Since (4.15) still holds with G replaced by G in view of Theorem 4.1, we can conclude as
in the proof of Theorem 4.7. U

Remark 4.9 (Stability of the flat configuration for small volumes). If the surface density i satisfies
the assumptions of Theorem 4.1, then there exists dy > 0 (depending only on Dirichlet boundary
datum wy) such that (4.10) holds for all d € (0,dp) (see [10, Proposition 7.3]).

Definition 4.10. We say that flat configuration (d, ug) is asymptotically stable if there exists 6 > 0
such that if (ho,ug) € X, with |Qp,| = |Qa| and ||ho — d”Wi,p(Q) < §, then every variational
solution h to (3.1) according to Definition 3.17, with initial datum hg, exists for all times and
Ih(-,t) — d”Wj;’)(Q) —0ast— +oo.

We start by showing that if a variational solution to (3.1) exists for all times, then there exists
a sequence {t,} C (0,4o00), with ¢, — oo, such that h(-,t,) converges to a critical profile (see
Definition 3.8).

Proposition 4.11. Assume that for a certain initial datum hgy € Wi’p(Q) there exists a global in
time variational solution h. Then there exist a sequence {t,} C (0,+00) \ Zy, where Zy is the set
n (3.54), and a critical profile h for F' such that t,, — oo and h(-,t,) — h strongly in W;’p(Q).

Proof. From equation (3.3), by lower semicontinuity we have that

/ H H 1(Q) t< CF(hO’Uo).

Since the set Zy has measure zero, we may find a sequence {t, } C (0, +00)\ Zo, t, — 00, such that
9 3 oo ) - 3 n

I h( t HH 1) 0 Since h € L (_O,oo;W;p(Q)) N Hl(O,oo;H#l(Q)), setting h"™ = h(-,t,),

we may also assume that there exists h € W;’p (Q) such that h™ — h weakly in Wi’p (Q). In turn,
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denoting by upn the corresponding elastic equilibria, by elliptic regularity (see also Lemma 5.1 )
we have that up. (-, h"(-)) = uz (-, h(-)) in C#Q(Q;H@). Let 9™ be the unique Q-periodic solution

. n . . Oh(-tn "
to (3.59) with ¢ = t,, and note that 0" — 0 in H(Q) since I (8; )HH,I(Q) — 0. Writing the

equation satisfied by A" as in (3.22), we have for all ¢ € Ci (Q), with fQ pdzr =0,

Dh™ - D
/ W (E (unn (2, 1™ (@) )p d + / Dy(~Dh",1) - (~ Dy, 0) da + = / 2l e
Q Q pJo J
D2[Dh", Dh"]

—e | |HMP2H" [A@ el el et

/Q g o

Ah™DR"™ - Dy D2pm [Dh”7 D(p] D2pn [Dh"7 Dh”]Dh" - Dy
— — dx
®RE (772 (7)1

—/ "pdr =0, (4.19)

Q

where H™ stands for the sum of the principal curvatures of A" and J" = /1 + |Dh"|2. Arguing
exactly as in the proof of Theorem 3.11(see (3.30)) we deduce that

/ |D2(|H™ P2 H™)|* dx < C/ (14 (0™)?) dx (4.20)
Q Q

for some constant C' independent of n. Thus, passing to a subsequence, if necessary, we may
also assume that there exists w € H;(Q) such that |[H"|P~2H™ — w weakly in H;;(Q) and
|[H"[P~2H™ — w strongly in H(Q). Since Hy(Q) is continuously embedded in L9(Q) for every
1 < g < oo by the Sobolev embedding theorem, there exists z € L1(Q) such that |[H"|P — 2 in
L'(Q). The same argument used at the end of the proof of Corollary 3.15 shows that z = |H|?
and w = |H|P~2H, where H is the sum of the principal curvatures of h.

Using all the convergences proved above, and arguing as in the proof of Theorem 3.16 we may
pass to the limit in equation (4.19), thus getting that h is a critical profile by Remark 3.12. 0

Lemma 4.12. Assume that (4.9) and (4.10) hold. Then there exist o > 0 and co > 0 such that
PC(hun)lel = collely ) for all o € Hy(Q),
provided ||h — dHCi“(Q) < o, where ﬁ#(@) is defined in (4.5).

Proof. Let mg be the positive constant defined in (4.13). We claim that there exists o > 0 such
that

. =~ m
inf{0G(h,un)le) : ¢ € Hy(Q), el =1} 2 5

whenever ||h — d”Ci"‘(Q) < 0. Indeed, if not, then there exist two sequences {h,,} C Cia(Q)’ with
hy, — din Ci’a(Q), and {¢n} C fNI;E(Q), with ||<pn||H;1%(Q) =1, such that

Mo

0*G(hpyun,)pn] < 5 - (4.21)

Set
On = ¥ T, (4.22)

1+ Dh,J?

where we recall that 7(z,y) = x. Let vy, be the unique solution in A(Qy, ), see (4.4), to

CE(vg,) : E(w)dz = / divr, (o CE(up,)) - wdH? for all w € A(Qy,,,) (4.23)

th I

hn



34 I. FONSECA, N. FUSCO, G. LEONI, M. MORINI
and let v, be the unique solution in A(€q) to
/ CE(vy,) : E(w)dz = / divr, (¢n CE(ug)) - w dH? for all w € A(Qy). (4.24)
Qa Ta

Observe that (see, e.g., Lemma 5.1)

[divr,,, (¢n CE(un,))llz2(rs,) < Cllenllmy @)

for some constant C' > 0 depending only on
sup([|[CE(un, )llcr(r,,,) + 1hnllcz@)

and thus independent of n. Therefore, choosing w = vy, in (4.23), and using Korn’s inequality,
we deduce that

sup [[vg, 1 (q,, ) < +00. (4.25)

The same bound holds for the sequence {v,, }.
Next we show that

W(E(vg,))dz — W(E(vy,))dz — 0 (4.26)
Qh,, Qq
as n — oo. Consider a sequence {®,} of diffeomorphisms ®,, : Q; — Qp, such that &, — Id
is @-periodic with respect to z, ®,(z,y) = (2,y + d — hn(x)) in a neighborhood of T4, and
[®n — Id||c2.0 @, r2) < Cllha — d”ci”(Q) — 0. Set w,, := vy, o ®,,. Changing variables, we get
that w,, € A(§2q) satisfies

A, Dw,, : Dwdz = / (divr, (¢nCE(up,)) o ®y) - w Jo, dH? (4.27)

Qd La

for every w € A()y), where Jg  stands for the (N — 1)-Jacobian of ®,, and the fourth order tensor
valued functions A, satisfy A4, — C in C*%(Qy). We claim that

W(E(wy, —vy,,))dz =0 (4.28)
Qq
as n — 00. Note that this would immediately imply [, W(E(wn))dz — [, W(E(ve,))dz — 0

and in turn, taking also into account that A, — C uniformly and that % de A, Dw,, : Dw, dz =
th W (E(vg,)) dz, claim (4.26) would follow. In order to prove (4.28), we write

CD(vy, —wy) : D(vy, —wy) dz
Qa

= CDw,,, : D(vy,, —wy)dz — / (C—A,)Dw, : D(v,, —wy)dz
Q Qq

7/ A, Dw, : D(v,,, —wy) dz
Qq

= / divr, (pnCE(uq)) - (ve, — wy) dH? — / (C—A,)Dw, : D(vy, —wy)dz
Ty Qa

- / (divr,, (6nCE(up,)) 0 @) - (vy, — wn)Ja, dH>
Tq
=15 —1,—1I3,

where we used (4.24) and (4.27). From (4.25), the analogous bound for the sequence {v,, }, and
the uniform convergence of A,, to C we deduce that I tends to 0.
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Fix n = (n1,m2,m3) € Cu(Ty;R?) ~ CL(Q;R?). Using the fact that @, '(z,y) = (z,y —
hn(x) + d) in a neighborhood of T, we have
Dth (77; © (I);Ll) = (I — Vh, ® th)DI‘de © (I)gl )

. (—Dhn,l) . . . .
where we set v, = ———=2=2. Using this fact, we then have by repeated integrations by parts
n \/1+|Dh,|? ’

and changes of variables,

/ (diVth ((bn(CE(uhn )) ° (bn> n Jé“ dHQ
Ta
N / divr,, ($nCE(un,)) - no ;" dH?
th

=— ¢nCE(un,) : Dr, (no®,")dH?

T'n,

= —/ (I —Up, ® Z/h")cﬁn(CE(uh") :Dpno (I);l dH?
r

hn

= _/ [(I - th ® th)qs'”CE(uhn)] o (I)n : DFdT]JtI)n dH2
Tq

- / divr, [[(1 — vh, @ v, )6nCE(up,)] o @nJén} - dH2.

T
Hence, we may rewrite

I — Iy = / divr, gn - (v,, — wp) dH?, (4.29)

Ta
where by (4.22),
In = pnCE(ug) — [(I —vp, ® l/hn)gbn(CE(uhn)] 0o®,Jp,
Ja,

V1+|Dh, 2|

Since h, — d in Cia(Q), by standard Schauder’s estimates for the elastic displacements uy,, , we
get

= ¢, |CE(uq) — [(I —vp, ® th)(CE(uhn)] od,

B che(Ty).
V' 1+ |Dhy)|?
Therefore, by (4.29) and the equiboundedness of {vy, } and {w,} we have that I; — I3 — 0. This
concludes the proof of (4.28) and, in turn, of (4.26).
Finally, again from the C%%-convergence of {h,} to d and the fact that

Oy [W(E(un,)] o ®, — 0,[W(E(ug))] in c;g“(rd)

CE(ug) — [(I — vn, @ vp,)CE(up,)] o ®,

by standard Schauder’s elliptic estimates, recalling (4.7) we easily infer that

(Gt ol 42 [ W(E ) a2)

Qh,

- <82G(d, wa)[@n] + 2 W(E(U%))dz> 50 (4.30)

Qq
as n — oo. Thus, recalling (4.26), we also have

82G(hm uhn)[‘pn] - 82G(d7 ud)[ﬁpn} =0

and, in turn, by (4.21)
Mo

lim sup 0°G(d, uq)[pn] < 5
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which is a contradiction to (4.13). This concludes the proof of the lemma. O

Next we prove that (d,ug) is an isolated critical pair.

Proposition 4.13. Assume that (4.9) and (4.10) hold. Then there exists o > 0 such that if
(hyup) € X with || = |Qq| and 0 < ||h — dHWi,p(Q) < o, then (h,up) is not a critical pair.

Proof. Assume by contradiction that there exists a sequence h, — d in Wip (Q), with h,, # d
and |y, | = |Q4], such that (hy,up,) is a critical pair. Using the Euler-Lagrange equation and
arguing as in the proof of Theorem 3.11, one can show that

/ |D*(|H,|P~2H,)|* dz < c/ (|D2hn|2|D(|Hn|P*2Hn)|2+|Hn|2<P+1> +1) dz.
Q Q

Indeed, this can obtained as (3.29), taking into account that there is no contribution from the time
derivative. From this inequality, arguing exactly as in the final part of the proof of Theorem 3.11
we deduce that

/ |D?(|H,|P~2H,)|* dz < C
Q

for some C independent of n. In particular, by the Sobolev embedding theorem, {|H,|P~2H,}
is bounded in C;L’B(Q) for every § € (0,1). Hence, {H,} is bounded in C’;L’B(Q) for all g €
(0,1/(p —1)). In turn, by (2.3) and standard elliptic regularity this implies that {h,} is bounded
in C’i’ﬂ(Q) for all 8 € (0,1/(p — 1)) and thus h,, — d in C%#(Q) for all such §. Since (d,uq) is a
critical pair (see Remark 4.4), %F(d + 8(hn — d), Uit s(h,—ay)]s=0 = 0, and so by (4.6) to reach
a contradiction it is enough to show that for n large
2 )
@F(d + 8(hn — d), Ugps(h,—ay)ls=t = O°G(hn 1, Un, ,)[hn — d]
((Dhn,t, |Dhna?) (e = ) ﬂ) g2
(14 [Dha )2

- / (W(E(un, ) + HY )dive,
Fh ! ’

d2
+ €@Wp(d + S(hn - d))‘s:t >0
for all t € (0,1), where hy,; := d + t(hy, — d), H;fn . is defined as in (4.3) with h replaced by hy, 4,

and
W,(h) == / |H|P dH? .
In
To this purpose, note that since h,, — d in C?#, by Lemma 5.1 we have

sup ||W(E(un,,)) +HY = Wallp=r, ) —0
te(0,1) ’

as n — oo, where Wy is the constant value of W(E(ugq)) on I'y (see Remark 4.4). Therefore, also
by Lemma 4.12, we deduce that

O*G(hpt, un, ) [hy — d]

n,t

- [ B0+ B di,

hin t

Dhy 4, | Dhy 4|2 —d)?
( hn,t7 | h’n,tl )(h’ns,t d) o dH2
(1 + |Dhn,t|)§

= 82G(hn,t, Uhn,t)[h'” —d

/r
Co

> colhn — d||fq;(@) — C[W(E(up,,)) + Hy. , = WallLo(r,, A — d||?q;&(Q) 2 5 lhn = d||§1;(@)

2 2
(W(E(un, ) + HY, - Wa)divr, ((Dhn,t,thn,A ) (i — d) M) i

hn t
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for n large and for some constant ¢y > 0 independent of n, where we used the facts that

Dhy, ¢, |Dho t]?) (hpt — d)?
/ dim“(( 4 [ Dhnd2) (e — d) M)

(14 [Dhy)?
and that h, — d in C%%(Q).
Since

dH? < Cllhnllcz (@)llhn — d”i{#(@)

hp it

P
W, (d + t(h /‘ dr =: fo(t),
it IHQ‘DW falt)

in order to conclude it is enough to show that f/(t) > 0 for all ¢ € (0,1). Set

[

Dh,,(x)
1 + t2|Dhy,(z)|?

gn(z,t) == ‘div

so that
" 2 2, ap1 55 2od
fn= /Q[p(p— D298 + p27 7 902 Oygn + B (B = 1)gn® (9rgn)> + gn® attgn)} dr. (4.31)
On the other hand, observe that
AR IDhy[Dha, Db D*hy[Dho, DhylAb,
I = 11 2[Dh,? (1 + 2] Dh,|?)3 (1+ (2] Dhp|?)2

so that for n large

1
gn Z §|Ahn|2 - C|D2hn||Dhn|2 and |6tgn| + |attgn| S ClDthHDhn| .
We then deduce from (4.31) that there exist Cp, Ci > 0 independent of n and ¢ € (0,1) such that
frt) > co/ |Ahy, |P da — Cl||Dhn\|§o/ |D?h,,|P dax .
Q Q
Since ||Dhy|lcoc — 0, by Lemma 5.3 we conclude that the right-hand side in the above inequality
is non-negative for n large, thus concluding the proof of the proposition. O

Finally, we prove the main result of this section, namely, the asymptotic stability of the flat
configuration (see Definition 4.10).

Theorem 4.14. Under the assumptions of Theorem 4.8, (d,uq) is asymptotically stable.

Proof. By Proposition 4.13 there exists ¢ > 0 such that if h is a critical profile, with Q| = [Q4]
and ||h — d”Wi,p(Q) < 0, then h = d. In view of Theorem 4.1 we may take o so small that

F(d,uq) < F(k,ug) for all (k,uy) € X with 0 < ||k — dHWi’p(Q) <o. (4.32)

Since (d,uq) is Liapunov stable by Theorem 4.8, for every fixed (hg,uo) € X with |Qp,| = |Q4]
and ||ho — d”Wi,p(Q) < (o), we have

|h(-t) — d”Wi,p(Q) <o for all ¢ > 0. (4.33)
Here (o) is the number given in Definition 4.6. We claim that
F(h(-,t),un(-,t)) = F(d,uq) as t — 4o0. (4.34)

By Proposition 4.11 there exists a sequence {t,} C (0,400)\ Zy such that ¢,, — 400 and {h(-,t,)}
converges to a critical profile in Wi’p(Q), where Zj is the set in (3.54). In view of the choice of ¢

and by (4.33), we conclude that h(-,t,) — d in Wi’p(Q).
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In particular F/(h(:,tn), up(. t,)) — F(d, uq). Inturn, by (3.54), this implies that F'(h(-, ), ux(-,t)) —

F(d,uq) ast — 400, t € Zy. On the other hand, by (3.55) for t € Zy we have that F(h(-,t), up(-,t)) <
F(h(,7),up(-,7)) for all 7 < t, 7 & Zy. Therefore
Hmsup F(h(at)auh(at)) < F(d7 Ud)-
t—+00,t€Zo

Recalling (4.32), we finally obtain (4.34). In turn, reasoning as in the proof of Theorem 4.7 (see
(4.17)), it follows from (4.32) and (4.33) that for every sequence {s,} C (0, +00), with s, — 400,
there exists a subsequence such that {h(,s,)} converges to d in W;’p (Q). This implies that
h(-,t) = din W;’p(Q) as t — +oo and concludes the proof. O

4.3. The two-dimensional case. As remarked in the introduction, the arguments presented in
the previous subsections apply to the two-dimensional version of (3.1), with p = 2, studied in [24],
with
1
V = ((g00 + 9k + W(B) =& (koo + 5k%)) . (4.35)

Here V' denotes the outer normal velocity of I'y(.4), k is its curvature, W (E(u)) is the trace of
W (E(u(-,t))) on I'p(. 4, with u(-,t) the elastic equilibrium in €. 4, under the conditions that
Du(-,y) is b-periodic and u(z,0) = eg(x,0), for some eg > 0; and (-), stands for tangential
differentiation along I'j(. ;). The constant eg > 0 measures the lattice mismatch between the
elastic film and the (rigid) substrate. Moreover, g : [0, 27] — (0, +00) is defined as

9(0) = 1(cosb,sin ) (4.36)

and is evaluated at arg(v(-,t)), where v(-, ) is the outer normal to I';. ;. The underlying energy
functional is then given by

Flhou) = | W(E@))dz +/ (1/)(,/) + fk?) dH! .
Qh, Fh, 2

In the two-dimensional framework, given b > 0, we search for for b-periodic solutions to (4.35).
A local-in-time b-periodic weak solution to (4.35) is a function h € H* (O,TO;Hgl(O,b)) N

L>(0,To; HZ(0,b)) such that:

. 1
(i) (900 + 9)k + W(E(u)) — &(koo + 5/g?’) € L*(0, To; Hy(0,b)),
(ii) for almost every t € [0, Tp],

O = It + 9k + QUEW) ~ (koo + 5K)) i HZAOD).

Given (ho,uo), with hg € H%(0,b), ho > 0, and ug the corresponding elastic equilibrium,
local-in-time existence of a unique weak solution with initial datum (hg,uo) has been established
in [24]. The Liapunov and asymptotic stability analysis of the flat configuration established in
Subsections 4.1 and 4.2 extends to the two-dimensional case, where, in addition, the range of d’s
under which (4.10) holds can be analytically determined for isotropic elastic energies of the form

A
W(&) = plé]* + 5 (trace ).

In the above formula the Lamé coefficients ;1 and A are chosen to satisfy the ellipticity conditions
w>0and g+ A > 0, see [25, 9]. The stability range of the flat configuration depends on p, A, and
the mismatch constant ey appearing in the Dirichlet condition u(x,0) = eg(x,0). For the reader’s
convenience, we recall the results. Consider the Grinfeld function K defined by

1
K = - > 4.37
(v) r}gggnJ(ny% y >0, (4.37)
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where
y + (3 — 4v,) sinh y cosh y

) = 4(1 — vp)2 4+ 42 + (3 — 4up) sinh® y ’
and v, is the Poisson modulus of the elastic material, i.e.,
v, = A
PN+ )
It turns out that K is strictly increasing and continuous, K(y) < Cy, and yglfoc K(y) = 1, for

(4.38)

some positive constant C. We also set, as in the previous subsections,
G(h,u) = [ W(E(u))dz+ (v)dH".
Qp 'y

Combining [25, Theorem 2.9] and [9, Theorem 2.8] with the results of the previous subsection, we
obtain the 2D asymptotic stability of the flat configuration.

Theorem 4.15. Assume 031(0,1) > 0. Let dipe : (0,+00) — (0, +0c] be defined as dioc(b) :=

2
400, if 0 < b < %%, and as the solution to
(0]

2ndioe (b)Y ™ (2p+ N)0F1p(0,1) 1
K( b )_7 Eulp+r) b’

(4.39)

4
otherwise. Then the second variation of G at (d,uq) is positive definite, i.e.,
b
O*G(d,uq)lg] >0  for all o € H(0,b)\ {0}, with / pdr =0,
0

if and only if 0 < d < dipe(b). In particular, for all d € (0,doc(b)) the flat configuration (d,uq) is
asymptotically stable.

5. APPENDIX

5.1. Regularity results. In this subsection we collect a few regularity results that have been used
in the previous sections. We start with the following elliptic estimate, whose proof is essentially
contained in [24, Lemma 6.10].

Lemma 5.1. Let M >0, co > 0. Let hy, hy € C#a(Q) for some a € (0,1), with ||hiHC;a(Q) <M
and h; > co, =1 =1,2, and let uy and us be the corresponding elastic equilibria in Qp, and Qp,,
respectively. Then,

1B (- () = Blus( oDl gy < Cllba = hallgso g (5.1)
for some constant C > 0 depending only on M, ¢y, and o.

The following lemma is probably well-known to the experts, however for the reader’s conve-
nience we provide a proof.

Lemma 5.2. Letp>2, u € L7 1(Q) such that

/uAD2<pdx—|—/b~Dg0—|—/ctpdz:() for all p € CF(Q) with/gpdm:(),
Q Q Q Q

where A € W#p(Q;ngXrﬁ) satisfies standard uniform ellipticity conditions (see (5.6) below), b€

LY(Q;R?), and ¢ € LY(Q). Then u € LY(Q) for all q € (1,2). Moreover, if b, udivA € L"(Q;R?)
and c € L"(Q) for somer > 1, then u € W;J(Q)
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Proof. We only prove the first assertion, since the other one can be proven using similar arguments.
Denote by Ac, ue, be, and ¢, the standard mollifications of A, u, b, and ¢, and let v. € C’;f (Q) be
the unique solution to the following problem

/ (AEDUE + uedivA, — bg) -Dydr — / cepdr =0 forall p € C#(Q) , / pdr =0,
Q Q Q

/vadwz/udm‘.
Q Q

Denoting by G. the Green’s function associated with the elliptic operator
—div (A:Du)

it is known, [19, equation (3.66)] and [27, equation (1.6)], that for all ¢ € [1,2) and for all z € Q
we have

||DyG5(a:, ')HLG(Q) <C,

with C depending only on the ellipticity constants and ¢ and not on e. Since

ve(x) = /QGE(x,y) [—div(ugdivAE —b.)+ ce} dy

:/Q[(ugdiVAg—bE).Dng(l‘,y)"‘Ge(xay)Ce] dy,

it follows by standard properties of convolution that for all ¢ > 1 there exists C' > 0 depending

only on ¢ and the L'-norms of u.divA., b., c., hence on the L'-norms of b, ¢, the L7°T norm of u,
and the W7 norm of A, such that ||ve]|q(g) < C for € sufficiently small. Thus, we may assume
(up to subsequences) that v, — v weakly in L9(Q), where v solves

/ vAD?p dx + / (vdivA — udivA +b) - Do dz + / codr =0 (5.2)
Q Q Q

for all ¢ € C%(Q), with fQ pdz = 0, and satisfies

/dexz/Qudx. (5.3)

Since by assumption u solves the problem (5.2)-(5.3), it is enough to show that the problem admits
a unique solution. Let v; and vy be two solutions and set w := vo — v1. Then, we have

/ wAD?p dx + / wdivA- Dpdz =0 (5.4)
Q Q

for all ¢ € C%(Q), with ngodx = 0. Let g € CL(Q), with ngdx = 0 and denote by ¢, the
unique solution to the equation div(A[Dy,4|) = g such that fQ @pgdx = 0. Hence, from (5.4) we
deduce that fQ wgdxr = 0 for all g € C# (@), with ngdx = 0. This implies that w is constant
and, in turn, w = 0 since fQ wdzx = 0. g

In the next lemma we denote by Lu an elliptic operator of the form
ij i

where all the coefficients are Q-periodic functions, the a;;’s are continuous, and the b; are bounded.
Moreover, there exist A, A > 0 such that

AEP =) aij(@)€:&; > MEPP forall E€R?, Y [b] <A (5.6)
ij 7
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Lemma 5.3. Let p > 2. Then, there exists C' > 0 such that for all u € W;’p(Q) we have
I1D*u]| v (@) < CllLul o) »

where L is the differential operator defined in (5.5). The constant C' depends only on p, A, A and
the moduli of continuity of the coefficients a;;.

Proof. We argue by contradiction assuming that there exists a sequence {up} C Wip (Q), a mod-
h

ulus of continuity w, and a sequence of operators {L;} as in (5.5), with periodic coefficients a;},

bl satisfying (5.6) and

lal (1) — al}j(2)] < w(|w1 — 22])
for all z1, x5 € @, such that

ID*un| o) = Rl Lnunllrr(g) -

By homogeneity we may assume that
|D*up|lrry =1  forall h € N. (5.7)

Recall that by periodicity

/Duhdz:O.
Q

Moreover, by adding a constant if needed, we may also assume that [, o Uh dx = 0. Therefore, by
Poincaré inequality and up to a subsequence, u;, — u weakly in Wi’p (Q). Moreover, we may also
assume that there exist a;; and b; satisfying (5.6), such that

a?j — a;; uniformly in Q and b b weakly* in L®(Q).

Since ||Lpunl/rr@) — 0, we have that u is a periodic function satisfying Lu = 0, where L is
the operator associated with the coefficients a;; and b;. Thus, by the Maximum Principle ([26,
Theorem 9.6]) w is constant, and thus v = 0. On the other hand, by elliptic regularity (see [26,
Theorem 9.11]) there exists a constant C' > 0 depending on p, A, A, and w such that

HDzuh”LP(Q) < C(Huh”leP(Q) + HLh“h”L"(Q)) :

Since the right-hand side vanishes, we reach a contradiction to (5.7). O
5.2. Interpolation results.

Theorem 5.4. Let Q C R™ be a bounded open set satisfying the cone condition. Let 1 < p < oo
and j, m be two integers such that 0 < j <m and m > 1. Then there exists C > 0 such that

m—j

107 oy < CUD™ Fl o 1 iy + 1 Fllzoen) (5.8)

for all f € W™P(Q). Moreover, if Q is a cube, f € W;l’p(Q), and if either f vanishes at the
boundary or [, fdx =0, then (5.8) holds in the stronger form

1D flli@) < CID™ F11 5o e 1l ey - (5.9)
Proof. Inequality (5.8) follows by combining inequalities (1) and (3) in [2, Theorem 5.2]. If 2 is a
cube, f is periodic and if either f vanishes at the boundary or fQ fdx = 0, then inequality (5.9)
follows by observing that

I fllwme@) < CID™fllLea)

as a straightforward application of the Poincaré inequality. O

The next interpolation result is obtained by combining [2, Theorem 5.8] with (5.8).
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Theorem 5.5. Let Q2 C R™ be a bounded open set satisfying the cone condition. If mp > n, let
1<p<g<oo;ifmp=nletl <p<g<oo;ifmp<nletl<p<q<np/(n—mp). Then there
exists C' > 0 such that

1 £llzacy < CUD™ I Tmy I 1 1atay + 1l Loce)) (5.10)
for all f € WP(Q), where 0 := o — . Moreover, if ) is a cube, f € WP(Q), and if either

f wanishes at the boundary or fQ fdx =0, then (5.10) holds in the stronger form

1£llzac) < CIUD™ £l Ty Il Lo ey - (5.11)

Combining Theorems 5.4 and 5.5, and arguing as in the proof of [24, Theorem 6.4], we have
the following theorem.

Theorem 5.6. Let 2 C R"™ be a bounded open set satisfying the cone condition. Let s, j, and m
be integers such that 0 < s <j<m. Let 1 <p<g<ooif(m—jp>n,andletl <p<g<oo
if (m —34)p>n . Then, there exists C > 0 such that

1D? fllzagay < CUID™ FlI%0 @ 1D Fll Loty + 1D fllze () (5.12)

for all f € W™P(Q), where
1
0:= (n—n+j—5>.
m—s\p q

Moreover, if Q is a cube, f € W;ﬁn’p(ﬂ), and if either f vanishes at the boundary or fQ fdx =0,
then (5.12) holds in the stronger form

1D7 fll agey < CID™ %oy ID° Fll Loery - (5.13)
Finally, we conclude with an interpolation estimate involving the H !-norm, see Remark 3.3.

Lemma 5.7. There exists C' > 0 such that for all f € H;E(Q), with fQ fdx =0, we have

< % % .
1£llz2(@ < CUDAN L2y 11171

Similarly, there exists C' > 0 such that for all f € Hi(Q), with fQ fdxr =0, we have

1 2
||f||L2(Q) < C||D2f||£2(Q)||f||z;1(Q) :
Proof. Let w be the unique Q-periodic solution to

—Aw=f in @,
wid;vzo.

Combining Lemma 5.3 with (5.9) we obtain
1 1
IFlz2@) = Awlza) < ClID*ull @) < CID*wl ba gy IDwllEao,
1 1 1 1
< C”A(Dw)”z?(@||Dw||22(Q) = C”Df”fP(Q)”fH;I;I(Q) :

The second inequality of the statement is proven similarly. O
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