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Abstract. We present a variational framework for studying screw dislocations subject to antiplane

shear. Using a classical model developed by Cermelli & Gurtin [5], methods of Calculus of Variations

are exploited to prove existence of solutions, and to derive a useful expression of the Peach-Köhler

forces acting on a system of dislocation. This provides a setting for studying the dynamics of the

dislocations, which is done in [4].
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1. Introduction

Dislocations are one-dimensional defects in crystalline materials [13]. Their modeling is of great

interest in materials science since important material properties, such as rigidity and conductivity,

can be strongly affected by the presence of dislocations. For example, large collections of dislocations

can result in plastic deformations in solids under applied loads.

In this paper we derive an expression for the renormalized energy associated to a system screw

dislocations in cylindrical crystalline materials using a continuum model introduced by Cermelli

and Gurtin [5]. We use the renormalized energy to derive a characterization for the forces on the

dislocations, called Peach-Köhler forces. These forces drive the dynamics of the system, which is

studied in [4]. The proofs of some results that are used in [4] are contained in this paper.

Following [5], we consider an elastic body B ⊂ R3, B := Ω × R, where Ω ⊂ R2 is a bounded

simply connected open set with Lipschitz boundary. B undergoes antiplane shear deformations

Φ : B → B of the form

Φ(x1, x2, x3) := (x1, x2, x3 + u(x1, x2)),

with u : Ω→ R. The deformation gradient F is given by

F := ∇Φ =


1 0 0

0 1 0

∂
∂x1

u ∂
∂x2

u 1

 = I + e3⊗

 ∇u
0

 . (1.1)
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The assumption of antiplane shear allows us to reduce the three-dimensional problem to a two-

dimensional problem. We will consider strain fields h that are defined on the cross-section Ω, taking

values in R2. In the absence of dislocations, h = ∇u. If dislocations are present, then the strain

field is singular at the sites of the dislocations, and in the case of screw dislocations this will be a

line singularity.

A screw dislocation is a lattice defect at the atomic scale of the material, and is represented at

the continuum level by a line singularity in the strain field for the body B. In the antiplane shear

setting, this line is parallel to the x3 axis; in the cross-section Ω a screw dislocation is represented as

a point singularity. A screw dislocation is characterized by a position z ∈ Ω and a vector b ∈ R3,

called the Burgers vector. The position z ∈ Ω is a point where the strain field fails to be the

gradient of a smooth function, and the Burgers vector measures the severity of this failure. To be

precise, a strain field, h, associated with a system of N screw dislocations at positions

Z := {z1, . . . , zN}

with corresponding Burgers vectors

B := {b1, . . . ,bN}

satisfies the relation

curl h =

N∑
i=1

biδzi in Ω (1.2)

in the sense of distributions, with bi := |bi|. The notation curl h denotes the scalar curl, ∂
∂x1

h2 −
∂
∂x2

h1. Thus, in the antiplane shear setting, the Burgers vectors can be written as bi = bie3. The

scalar bi is called the Burgers modulus for the dislocation at zi, and in view of (1.2) it is given by

bi =

ˆ
`i

h · t ds,

where `i is any counterclockwise loop surrounding the dislocation point zi and no other dislocation

points, t is the tangent to `i, and ds is the line element. Since bi = bie3 for all i ∈ {1, . . . , N}, by

abuse of notation from now on we will use the symbol B both for the set of Burgers vectors and

for the set of Burgers moduli. When dislocations are present, the deformation gradient F can no

longer be represented by the last expression in (1.1), which needs to be replaced with

F = I + e3⊗

 h

0

 .

2



Our goal is to derive an energy associated to systems of screw dislocation and obtain the charac-

terization of the Peach-Köhler forces on the dislocations. This, together with the energy dissipation

criterion described in [5], will lead to an evolution equation for the system of dislocations.

Our investigation of the energy associated to a system of dislocations will be undertaken in the

context of linear elasticity for singular strains h. The energy density W is given by

W (h) :=
1

2
h · Lh

where the elasticity tensor L is a symmetric, positive-definite matrix and, in suitable coordinates,

L is written in terms of the Lamé moduli λ, µ of the material as

L :=

 µ 0

0 µλ2

 . (1.3)

We require λ, µ > 0, and the energy is isotropic if and only if λ = 1. The energy of a strain field

h is given by

J(h) :=

ˆ
Ω
W (h(x)) dx,

and the equilibrium equation is

div Lh = 0 in Ω. (1.4)

Equations (1.2) and (1.4) provide a characterization of strain fields describing screw dislocation

systems in linearly elastic materials. To be precise, we say that a strain field h ∈ L2(Ω;R2)

corresponds to a system of dislocations at the positions Z with Burgers vectors B if h satisfies curl h =
∑N

i=1 biδzi

div Lh = 0
in Ω, (1.5)

in the sense of distributions.

In analogy to the theory of Ginzburg-Landau vortices [3], no variational principle can be associ-

ated with (1.5) because the elastic energy of a system of screw dislocations is not finite (see, e.g.,

[6, 5, 13]), therefore the study of (1.5) cannot be undertaken directly in terms of energy minimiza-

tion. Indeed, the simultaneous requirements of finite energy and (1.2) are incompatible, since if

curl h = δz0 , z0 ∈ Ω, and if Bε(z0) ⊂⊂ Ω, then
ˆ

Ω\Bε(z0)
W (h) dx = O(| log ε|).

In the engineering literature (see, e.g., [5, 13]), this problem is usually overcome by regularizing the

energy. By removing small cores of size ε > 0 centered at the dislocations, we will replace J by Jε

(see (2.2)) and obtain finite-energy strains hε, as minimizers of Jε. Letting ε → 0 we will recover
3



a unique limiting strain h0 = limε→0 hε, satisfying (1.5). From this, we can derive a renormalized

energy U associated with the limiting strain, see (3.1) and (3.2). The energy of a minimizing strain

takes the form

Jε(hε) = C log
1

ε
+ U(z1, . . . , zN ) +O(ε), (1.6)

where the first term, C log(1/ε), is the core energy, and the renormalized energy, U , is the physically

meaningful quantity. This type of asymptotic expansion was first proved by Bethuel, Brezis, and

Hélein in [2] for Ginzburg-Landau vortices. The case of edge dislocations was studied in [6], and also

using Γ-convergence techniques (see, e.g., [1, 14] and the references therein for Ginzburg-Landau

vortices, [7, 11, 10]). Finally, it is important to mention that we ignore here the core energy. We

refer to [13, 15, 16] for more details.

The renormalized energy U is a function only of the positions {z1, . . . , zN}, and its gradient with

respect to zi gives the negative of the Peach-Köhler force on zi, denoted ji. In Theorem. 4.1 we

show that

ji = −∇ziU =

ˆ
`i

{W (h0)I− h0⊗(Lh0)}n ds,

where `i is a suitably chosen loop around zi and n is the outer unit normal to the set bounded by

`i and containing zi. The quantity W (h0)I− h0⊗(Lh0) is the Eshelby stress tensor, see [8, 12].

The expression for ji given below contains two contributions accounting for the two different

kinds of forces acting on a dislocation when other dislocations are present: the interactions with

the other dislocations and the interactions with ∂Ω. The latter balances the tractions of the forces

generated by all the dislocations, and it is the (rotated) gradient of the solution u0 to an elliptic

problem with Neumann boundary conditions (2.21). Precisely (see (4.5)) we show that ji has the

form

ji(z1, . . . , zN ) = biJL
[
∇u0(zi; z1, . . . , zN ) +

∑
j 6=i

kj(zi; zj)
]
,

where J is the rotation matrix of an angle π/2, and kj(·; zj) is the fundamental singular strain

generated by the dislocation zj (see (2.5)). It is important to notice that the force on the i-th

dislocation is a function of the positions all the dislocations. This explicit formula is useful for

calculating ji, and is employed in [4] to study the motion of the dislocations.

In Section 2 we show how to regularize the energy to use variational techniques to study the

problem. In Section 3 we derive the renormalized energy, which we use in Section 4 to derive the

Peach-Köhler force.
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2. Regularized Energies and Singular Strains

Consider a system of dislocations at the positions Z = {z1, . . . , zN} with Burgers vectors B =

{b1, . . . ,bN}. Regularize the energy J by removing the singular points from the domain Ω, and

define the sets

Ωε := Ω \

(
N⋃
i=1

Eε,i

)
for ε ∈ (0, ε0), (2.1)

where, for every i ∈ {1, . . . , N}, Eε,i := Eε(zi), and

Er(z) :=

{
(x1, x2) ∈ R2 : (x1 − z1)2 +

(
x2 − z2

λ

)2

< r2

}

is an ellipse centered at z for r > 0; the parameter λ is one of the the Lamé moduli of the material

(cf. (1.3)). Let ε0 > 0 be fixed (depending on Ω, Z, and λ) such that for all ε ∈ (0, ε0) we have

Eε,i ⊂⊂ Ω, and Eε,i ∩Eε,j = ∅ for all i 6= j. (The shape of the cores Eε,i is not crucial, but ellipses

Eε,i centered at zi will be convenient in the sequel.)

We define

Jε(h) :=

ˆ
Ωε

W (h) dx. (2.2)

Note that by removing cores around the singular set Z, we have regularized the energy in the sense

that it will not necessarily be infinite on strains satisfying (1.5). However, since we have effectively

removed the dislocations from the problem, we account for their presence by a judicious choice of

function space. We define

Hcurl(Ωε) := {h ∈ L2(Ωε,R2) : curl h ∈ L2(Ωε)}

and

Hcurl
0 (Ωε,Z,B) :=

{
h ∈ Hcurl(Ωε), curl h = 0,

ˆ
∂Eε,i

h·t ds = bi, i = 1, . . . , N

}
, (2.3)

where t is the unit tangent vector to ∂Eε,i. The condition on h involving the Burgers moduli bi in

(2.3) reintroduces the dislocations into the regularized problem, and it prevents the minimizers of

Jε from being gradients of H1 functions. In order to abbreviate the notation, we will write only

Hcurl
0 (Ωε) in place of Hcurl

0 (Ωε,Z,B) whenever it is possible to do so without confusion. We will

denote by n the unit outward normal to ∂Ωε.

The following lemma concerns the properties of minimizers of Jε, the existence of which is proved

in Lemma 2.3. See also Remark 2.4.
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Lemma 2.1. Assume that hε is a minimizer of Jε in Hcurl
0 (Ωε). Then it satisfies the Euler

equations  div(Lhε) = 0 in Ωε ,

Lhε · n = 0 on ∂Ωε .
(2.4)

Moreover, the solution to (2.4) is unique.

Proof. Given that the functional Jε is quadratic, the result is achieved by calculating the vanishing

of its first variation. Let w ∈ H1(Ωε); then

δJε(hε)[w] = lim
t→0

Jε(hε + t∇w)− Jε(hε)
t

= lim
t→0

1

t

(ˆ
Ωε

t∇w · Lhε +
1

2
t2∇w · L∇w dx

)
=

ˆ
Ωε

∇w · Lhε dx = −
ˆ

Ωε

w div(Lhε) dx +

ˆ
∂Ωε

wLhε · n ds(x).

By setting δJε(hε)[w] = 0 for all w ∈ H1(Ωε), we get (2.4).

To prove uniqueness, assume that hε and h̃ε both solve system (2.4). Then the path integral of

the difference hε − h̃ε over any loop in Ωε must vanish, and so hε − h̃ε = ∇u for some function

u ∈ H1(Ωε). Since u solves the weak Euler equationˆ
Ωε

∇w · L∇udx = 0, for all w ∈ H1(Ωε),

taking w = u we obtain Jε(∇u) = 0, and as L is positive definite, we conclude that ∇u = 0. �

2.1. Singular Strains and the Limit ε → 0. We introduce the singular strains ki which will

be the building blocks of the singular part of the strain field h that represents the system of

dislocations. Define ki(·; zi) : R2 \ {zi} → R2, i = 1, . . . , N , as

ki(x; zi) =
biλ

2π(λ2(x1 − zi,1)2 + (x2 − zi,2)2)

 −(x2 − zi,2)

x1 − zi,1

 . (2.5)

We will often abbreviate ki(·; zi) as ki. Each ki can be written as the gradient of a multi-valued

function, precisely

ki(x; zi) =
bi
2π
∇x arctan

(
x2 − zi,2

λ(x1 − zi,1)

)
,

and it is straightforward to calculate directly that

curlx ki(x; zi) = biδzi(x) in R2, (2.6a)

divx (Lki(x; zi)) = 0 in R2 \ {zi}, (2.6b)

Lki(x; zi) · n = 0 on ∂Eε,i. (2.6c)
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In particular, by (2.6c) and (2.6b),

ˆ
∂Ω

L
N∑
i=1

ki(y; zi) · n(y) ds(y) =

ˆ
∂Ωε

L
N∑
i=1

ki(y; zi) · n(y) ds(y) = 0. (2.7)

Note that the integral in (2.7) is only well-defined when the dislocations are away from the boundary

(ε0 > 0).

Lemma 2.2. Let ε0 > 0 be fixed as in (2.1). For every ε ∈ (0, ε0), let h ∈ Hcurl
0 (Ωε, Z, B). Then

h =
N∑
i=1

ki +∇u (2.8)

for some u ∈ H1(Ωε). Moreover, the minimization problem

min
{
Jε(h)

∣∣∣ h ∈ Hcurl
0 (Ωε, Z, B)

}
(2.9)

is equivalent to the minimization problem

min

{
Iε(u)

∣∣∣ u ∈ H1(Ωε),

ˆ
Ωε0

u(x)dx = 0

}
, (2.10)

where

Iε(u) =

ˆ
Ωε

W (∇u)dx +
N∑
i=1

ˆ
∂Ω
uLki · n ds−

N∑
i=1

∑
j 6=i

ˆ
∂Eε,i

uLkj · n ds (2.11)

Minimizers uε of (2.10) are solutions of the Neumann problem
div (L∇u) = 0 in Ωε,

L
(
∇u+

∑N
i=1 ki

)
· n = 0 on ∂Ω,

L
(
∇u+

∑
j 6=i kj

)
· n = 0 on ∂Eε,i, i = 1, 2, . . . , N.

(2.12)

Proof. Let h ∈ Hcurl
0 (Ωε,Z,B). By (2.6a),

´
`(h−

∑N
i=1 ki) · dx = 0 for any loop ` ⊂ Ωε and thus,

h−
∑N

i=1 ki = ∇u for some u ∈ H1(Ωε). In turn

Jε(h) =
N∑
i=1

Jε(ki) +
N−1∑
i=1

N∑
j=i+1

ˆ
Ωε

Lki · kjdx + Iε(u) (2.13)

where Iε(u) is given by (2.11) and where in the last sum in the expression for Iε we omit the

terms with i = j because Lki · n = 0 on each ∂Eε,i (see (2.6c)). (Note that the last integral in

(2.11) has a minus sign because n points outside Eε,i, by definition of outer normal). Hence, the

minimization of Jε over h ∈ Hcurl
0 (Ωε, Z, B) is achieved by minimizing Iε over u ∈ H1(Ωε). The

normalization condition in (2.10) is introduced in order to make the problem coercive, and has the

effect of changing u in (2.8) by an additive constant. Since ∇u is the relevant quantity, this does

not affect the minimization problem.
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To show that minimizers solve the Neumann problem (2.12), we calculate the first variation of

Iε and apply Stokes’s theorem to find that, given ϕ ∈ H1(Ωε),

δIε(u)[ϕ] =−
ˆ

Ωε

ϕdiv(L∇u) dx+

ˆ
∂Ω
ϕL

(
∇u+

N∑
i=1

ki

)
· n ds−

N∑
i=1

ˆ
∂Eε,i

ϕL

∇u+
∑
j 6=i

kj

 · n ds.

By requiring that δIε(u)[ϕ] = 0 for all ϕ ∈ H1(Ωε), we obtain that (2.12) is satisfied. �

The following two lemmas are slight adaptations of [6, Lemmas 4.2, 4.3], so we do not present

the full proofs here. The key tool is an ε-independent Poincaré inequality for Ωε, [6, Proposition

A.2].

Lemma 2.3. Let ε0 > 0 be fixed as in (2.1). Assume that L is positive definite. Then there exist

positive constants c1 and c2, depending only on L and ε0 (in particular, independent of ε), such

that

Iε(u) > c1‖u‖2H1(Ωε)
− c2‖u‖H1(Ωε). (2.14)

for all u ∈ H1(Ωε) subject to the constraint

ˆ
Ωε0

u(x) dx = 0. (2.15)

Moreover, for every ε ∈ (0, ε0) the minimization problem (2.10) admits a unique solution uε ∈

H1(Ωε) satisfying (2.15). Each uε satisfies

‖u‖H1(Ωε) 6M, (2.16)

where M > 0 is a constant independent of ε.

Sketch of Proof. Since L is positive definite, we have

Iε(u) > C
ˆ

Ωε

|∇u|2 dx−
N∑
i=1

sup
x∈∂Ω

|Lki(x, zi)|
ˆ
∂Ω
|uε| ds−

N∑
i=1

∑
j 6=i

sup
x∈∂Eε,i

|Lkj(x, zj)|
ˆ
∂Eε,i

|uε| ds

Adapting the proof of [6, Proposition A.2], for which (2.15) is crucial, we can find a constant

c1 = c1(λ, ε0) such that ˆ
Ωε

|∇u|2 dx > c1‖u‖2H1(Ωε)
. (2.17)

Moreover, in [6] it is proved that there exist constants C1, C2 independent of ε such that

ˆ
∂Ω
|uε|ds 6 C1‖uε‖H1(Ωε), and

ˆ
∂Eε,i

|uε|ds 6 C2‖uε‖H1(Ωε). (2.18)
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From the definition of ki(x, zi) (see (2.5)), it is easy to see that there exist constants c′ = c′(λ, ε0)

and c′′ = c′′(λ, ε0) such that

sup
x∈∂Ω

|Lki(x, zi)| < c′, and sup
x∈∂Eε,i

|Lkj(x, zj)| < c′′, i 6= j. (2.19)

Estimates (2.17), (2.18), and (2.19) prove (2.14). The existence and uniqueness of the solution, and

the bound (2.16) are straightforward conclusions from the convexity and coercivity of the functional

Iε and the fact that Iε(0) = 0. �

Remark 2.4. Lemma 2.2 guarantees the equivalence of the minimization problems (2.9) and (2.10),

and Lemma 2.3 gives the existence of minimizers for (2.10), thus establishing the existence of

minimizers for (2.9).

Lemma 2.5. Assume that L is positive definite, and let uε be the unique solution to (2.10) that

satisfies (2.15). Then, as ε→ 0, the sequence {uε} converges strongly in H1
loc(Ω \ Z) to a solution

u0 of the problem

min

{
I0(u)

∣∣∣ u ∈ H1(Ω),

ˆ
Ωε0

u(x)dx = 0

}
, (2.20)

where

I0(u) :=

ˆ
Ω
W (∇u) dx +

N∑
i=1

ˆ
∂Ω
uLki · n ds.

Moreover, Iε(uε)→ I0(u0).

Sketch of Proof. One can extend uε to Ω and obtain an inequality ‖uε‖H1(Ω) 6 cM , with M as in

(2.16) [6, Prop. A.7], which leads to
´
∂Eε,i

uεLkk · n ds → 0 as ε → 0. Also, a subsequence (not

relabeled) of {uε} converges uε ⇀ u0 weakly in H1(Ω). Now, if we fix δ ∈ (0, ε0) and consider

ε < δ, from (2.11) we have

Iε(uε) >
ˆ

Ωδ

W (∇uε)dx +
N∑
i=1

ˆ
∂Ω
uεLki · n ds−

N∑
i=1

∑
j 6=i

ˆ
∂Eε,i

uεLkj · n ds.

Taking ε→ 0 gives lim infε→0 Iε(uε) >
´

Ωδ
W (∇u0)dx +

∑N
i=1

´
∂Ω u0Lki ·n ds. Taking δ → 0 gives

lim infε→0 Iε(uε) > I0(u0). But Iε(uε) 6 Iε(u0), so lim supε→0 Iε(uε) 6 I0(u0), and Iε(uε)→ I0(u0).

Strong convergence of uε → u0 in H1(Ω \ Z) follows from convergence of the energies, see [9]. �

Remark 2.6. The solutions u0 to (2.20) are also solutions of the Neumann problem div (L∇u) = 0 in Ω,

L
(
∇u+

∑N
i=1 ki

)
· n = 0 on ∂Ω,

(2.21)
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and therefore u0 can be represented in terms of a Green’s function

u0(x; z1, . . . , zN ) =

ˆ
∂Ω
G(x,y)L

N∑
i=1

ki(y; zi) · n(y) ds(y), (2.22)

exhibiting the explicit dependence on the parameters z1, . . . , zN . The function ∇u0(x; z1, . . . , zN )

represents the elastic strain at the point x ∈ Ω due to the presence of ∂Ω and the dislocations at zi

with Burgers moduli bi. For this reason, we refer to ∇u0(x; z1, . . . , zN ) as the boundary-response

strain at x due to Z.

Combining the results of Lemmas 2.2, 2.3, and 2.5, we conclude the following theorem, which

characterizes the strain field associated to a system of dislocations.

Theorem 2.7. Let Z and B be given, and let Ω ∈ R2 be a bounded domain with Lipschitz boundary

∂Ω. Then the minimization problem

min
h∈Hcurl

0 (Ωε,Z,B)

ˆ
Ωε

W (h)dx

admits a unique solution, hε. Moreover, hε → h0 strongly in L2
loc(Ω \ Z), where

h0(x) =
N∑
i=1

ki(x; zi) +∇u0(x; z1, . . . , zN ) (2.23)

is a solution of  curl h =
∑N

i=1 biδzi

div Lh = 0
in Ω,

in the sense of distributions, and u0 is a minimizer of (2.20) and solves the Neumann problem

(2.21).

2.2. Alternative form of the fundamental singular strains. In the isotropic case, λ = 1, it

can be convenient to use polar coordinates (ri, θi) centered at zi, rather than Cartesian coordinates.

In the anisotropic case, when calculating integrals over the cores ER,i, we find some calculations

are simplified by using eccentric anomaly, τi, centered at zi, which is defined as

τi := arctan

(
tan θi
λ

)
.

Using τ , the ellipse ∂ER,i is parametrized by the curve ρ(τi) = zi + (R cos τi, λR sin τi), so

n =
1√

λ2 cos2 τi + sin2 τi

 λ cos τi

sin τi

 .
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For any x ∈ Ω, we can find r > 0 and τi such that x = zi + (r cos τi, λr sin τi). Substituting the

form of x into (2.5) yields

ki(x; zi) =
bi

2πλr

 −λ sin τi

cos τi

 . (2.24)

3. The Renormalized Energy

Theorem 3.1. Let 0 < ε < ε0 be as in (2.1) and let hε be a solution of (2.9). Then

Jε(hε) =

ˆ
Ωε

1

2
hε · Lhε dx =

N∑
i=1

µλb2i
4π

log
1

ε
+ U(z1, . . . , zN ) +O(ε), (3.1)

where

U(z1, . . . , zN ) := US(z1, . . . , zN ) + UI(z1, . . . , zN ) + UE(z1, . . . , zN ) (3.2)

and, using (2.23), for any ε < R < ε0

US(z1, . . . , zN ) :=
N∑
i=1

µλb2i
4π

logR+
N∑
i=1

ˆ
Ω\ER,i

W (ki) dx, (3.3)

UI(z1, . . . , zN ) :=

N−1∑
i=1

N∑
j=i+1

ˆ
Ω

kj · Lki dx,

UE(z1, . . . , zN ) :=

ˆ
Ω
W (∇u0) dx +

N∑
i=1

ˆ
∂Ω
u0Lki · n ds. (3.4)

Remark 3.2. We refer to the energy U in (3.2) as the renormalized energy. US is the “self” energy

associated to the presence of a dislocation, UI is the energy associated to the interaction between

dislocations, and UE is the energy associated to the elastic medium. Note that Theorem 3.1 asserts

that the renormalized energy is independent of ε, and we will show that it can be written in terms of

the limit shear h0 as in Theorem 2.7. This fact will be used in identifying the force on a dislocation

in Section 4.

Proof. If we expand Jε(hε) as in (2.13), we see that the three terms on the right side of (2.13)

correspond to the terms US , UI , UE . We begin with
∑N

i=1 Jε(ki) and fix R ∈ (ε, ε0). Each term in

this sum can be written as

Jε(ki) =

ˆ
Ωε\ER,i

W (ki) dx +

ˆ
Ai,R,ε

W (ki) dx,

where Ai,R,ε := ER,i \ Eε,i. Using the representation for ki in (2.24), we have

ˆ
Ai,R,ε

1

2
ki · Lki dx =

µλb2i
4π

log

(
R

ε

)
, (3.5)
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and this accounts for the log 1
ε term in the energy (3.1) and the logR term in (3.3).

To show that

N−1∑
i=1

N∑
j=i+1

ˆ
Ωε

kj · Lki dx −→
N−1∑
i=1

N∑
j=i+1

ˆ
Ω

kj · Lki dx as ε→ 0, (3.6)

we note that ki is integrable in ER,i (it grows like r−1
i ) and Lkj is bounded on ER,i for j 6= i,

hence (3.6) holds by Lebesgue Dominated Convergence Theorem. From Lemma 2.5, we have that

Iε(uε)→ I0(u0) as ε→ 0, whence (3.4) follows.

To show that U is independent of R, we need only show that US is independent of R. If we take

R′ 6= R, without loss of generality we can assume R′ < R, then by (3.5)

ˆ
Ω\ER′,i

W (ki) dx−
ˆ

Ω\ER,i
W (ki) dx =

ˆ
Ai,R,R′

W (ki) dx =
µλb2i
4π

log
R

R′
,

so that ˆ
Ω\ER′,i

W (ki) dx +
µλb2i
4π

logR′ =

ˆ
Ω\ER,i

W (ki) dx +
µλb2i
4π

logR,

which shows that (3.3) is independent of the choice of R < ε0. �

The renormalized energy U will blow up like the log of the distance between dislocations, i.e.

U ∼ − log |zi − zj |. This is made precise in [4].

4. The Force on a Dislocation

In this section we determine the force ji on the dislocation at zi for a given a system of dislocations

Z with Burgers vectors B, and show that ji = −∇ziU . Following [5], the Peach-Köhler force on

the dislocation at zi (also called the net configurational traction) is given by

ji := lim
R→0

ˆ
∂ER,i

Cn ds, (4.1)

where the stress tensor is the Eshelby stress ([8, 12])

C := W (h0)I− h0⊗(Lh0). (4.2)

Here I is the identity matrix and h0 is defined in (2.23).

Theorem 4.1. Let h0 be the limiting singular strain defined by (2.23) and let U the associated

renormalized energy given in (3.2). Then for ` ∈ {1, . . . , N} and any R ∈ (0, ε0)

∇z`U(z1, . . . , zN ) = −
ˆ
∂ER,`

{W (h0)I− h0⊗(Lh0)}n ds, (4.3)

12



and so the force on the dislocation at z` is given by

j` = −∇z`U. (4.4)

Moreover,

j`(z1, . . . , zN ) = b`JL

∇u0(z`; z1, . . . , zN ) +
∑
i 6=`

ki(z`; zi)

 , where J =

 0 1

−1 0

 , (4.5)

and u0 is the solution to (2.21).

Proof. Formula (4.3) is proved in the Appendix. From (4.3), we show (4.4) and (4.5) as follows.

Recall that the renormalized energy is independent of R < ε0 (see the proof of Theorem 3.1), so

−∇z`U =

ˆ
∂ER,`

Cn ds = lim
R→0

ˆ
∂ER,`

Cn ds = j`, (4.6)

establishing (4.4) in view of (4.1).

The field h0 has a singularity at z` which comes from the term k` (see (2.23)), and we decompose

h0 into the singular part at z` and the regular part at z`,

h0(x) = k`(x; z`) + h̃(x), where h̃(x) := ∇u0(x) +
∑
i 6=`

ki(x; zi). (4.7)

Using (4.7), we write the Eshelby stress C from (4.2) as

C =

(
1

2
k`·Lk` + k`·Lh̃ +

1

2
h̃·Lh̃

)
I− k`⊗(Lk`)− k`⊗(Lh̃)− h̃⊗(Lk`)− h̃⊗(Lh̃).

Since h̃ is smooth and bounded on ER,` we have

lim
R→0

ˆ
∂ER,`

(
1

2
h̃ · Lh̃

)
n ds = 0 and lim

R→0

ˆ
∂ER,`

h̃⊗(Lh̃)n ds = 0.

Using the fact that Lk` · n = 0 on ∂ER,` (see (2.6c)) we have

ˆ
∂ER,`

h̃⊗ (Lk`) n ds = 0, and

ˆ
∂ER,`

k`⊗ (Lk`) n ds = 0, ∀R < R̄.

Using (2.24) we have k` · Lk` = µb2`/(4π
2R2) on ∂ER,`, and so

ˆ
∂ER,`

1

2
(k` · Lk`)n ds =

µb2`
8π2R2

ˆ
∂ER,`

n ds = 0,

for all R < ε0. Therefore the only contribution in (4.6) will come from((
k` · Lh̃

)
I− k`⊗(Lh̃)

)
n = (n⊗k`) Lh̃− (k`⊗n) Lh̃.
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Now, using (2.24), it is easy to see that

n⊗k` − k`⊗n =
b`

2πλR
√
λ2 cos2 τ + sin2 τ

 0 λ

−λ 0


and, since ds = R

√
λ2 cos2 τ + sin2 τ dτ ,

ˆ
∂ER,`

(n⊗k` − k`⊗n) Lh̃ ds =
b`
2π

ˆ 2π

0
JLh̃ dτ.

Since the integrand is smooth on ER,`, we conclude that

lim
R→0

ˆ
∂ER,`

(n⊗k` − k`⊗n) Lh̃ ds =
b`
2π

ˆ 2π

0
JLh̃(z`) dτ = b`JLh̃(z`),

which, in view of (4.6), establishes (4.5). �

Remark 4.2. The formula (4.5) gives the force on the dislocation at z`, and it shows that, as a

function of z`, the force j` is smooth in the interior of Ω \ {z1, . . . , z`−1, z`+1, . . . , zN}. That is,

provided z` is not colliding with another dislocation or with ∂Ω, then the force is given by a smooth

function. Of course, j` depends on the positions of all the dislocations, and the same reasoning

applies to j` as a function of any zi.

Remark 4.3. We find agreement between (4.5) and equation (8.18) from [5], where the force on

z` is given by b` times a π/2-rotation of the regular part of the strain at z` (i.e., h̃). Since we

have a formula for the regular part, we are able to write the Peach-Köhler force more explicitly (in

terms of the solution to (2.21)). We have also shown that assumption (A3) from [5] holds for screw

dislocations, validating the derivation of (8.18) in [5].
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5. Appendix

We present the proof of (4.3) along with some necessary lemmas. We begin by noting that

U(z1, . . . , zN ) = Û(z1, . . . , zN ) + U(z1, . . . , zN ) where

Û(z1, . . . , zN ) =

ˆ
Ωε

W (h0) dx,

U(z1, . . . , zN ) =
N∑
i=1

∑
m 6=i

ˆ
Eε,m

W (ki) dx +
N∑
m=1

N−1∑
i=1

N∑
j=i+1

ˆ
Eε,m

kj · Lki dx +

+

N∑
m=1

ˆ
Eε,m

W (∇u0) dx +

N∑
m=1

N∑
i=1

ˆ
∂Eε,m

u0Lki · n ds, (5.1)

which follows from a direct calculation and integration by parts to eliminate the integral over ∂Ω

from UE .

We introduce the notation Dv
` u for the derivative of a function u = u(x; z1, . . . , zN ) with respect

to the `-th dislocation location in the direction v,

Dv
` u(x) :=

d

dξ
u(x; z1, . . . , z` + ξv, . . . , zN )

∣∣∣
ξ=0

.

Lemma 5.1. The fields ki(x; zi), u0(x; z1, . . . , zN ), and h0(x; z1, . . . , zN ) are smooth with respect

to z` for every ` ∈ {1, . . . , N}. Moreover, Dv
` ki(x) = 0 if ` 6= i,

Dv
` k`(x) = −Dk`(x)v = −∇ (k`(x) · v) (5.2)

Dv
` h0(x) = ∇w(x), where w(x) = Dv

` u0(x)− k`(x) · v (5.3)

Proof. The form of k in (2.5) shows that ki is smooth with respect to z` for all i, ` = 1, . . . , N ,

and in particular that ki(x) = k(x; zi) is independent of z` if ` 6= i so Dv
` ki = 0. That form also

shows that k(x; z` + ξv) = k(x− ξv; z`) = k`(x− ξv) so that Dv
` k`(x) = −(Dk`)v, where Dk` is

the derivative of k` with respect to x. Now because curl k` = 0, we have Dk`(x)v = ∇ (k`(x) · v),

which establishes (5.2).

Since u0 solves the elliptic problem (2.21), it can be represented as in (2.22), in terms of the

Green’s function G(x,y). The smoothness of u0 in z` follows from the smoothness of ki for each

i, ` = 1, . . . , N . Hence, h0 is smooth in z` and Dv
` h0 = Dv

`∇u0 +Dv
` k` = ∇(Dv

` u0 − k` · v), which

establishes (5.3). �

We will take derivatives of the energy with respect to the dislocations positions. This will involve

integrals over cores that are centered at z` + ξv whose integrands are evaluated on these shifted

cores or on their complements in Ω. Thus, we will need to be able to take derivatives of integrals

over sets that depend on ξ and whose integrands are functions that depend on ξ.
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Lemma 5.2. Let f = f(x, ξ), g = g(x, ξ), and r = r(x, ξ) be defined on Eε(x0 +ξv), ∂Eε(x0 +ξv),

and Ω \ Eε(x0 + ξv), respectively, for ξ a real parameter, ε > 0, v ∈ R2. Then

d

dξ

ˆ
Eε(x0+ξv)

f(x, ξ) dx

∣∣∣∣∣
ξ=0

=

ˆ
Eε(x0)

Dξf(x, 0) dx

=

ˆ
Eε(x0)

∂ξf(x, 0) dx +

ˆ
∂Eε(x0)

f(x, 0)v · n ds, (5.4)

d

dξ

ˆ
∂Eε(x0+ξv)

g(x, ξ) ds

∣∣∣∣∣
ξ=0

=

ˆ
∂Eε(x0)

Dξg(x, 0) ds, (5.5)

d

dξ

ˆ
Ω\Eε(x0+ξv)

r(x, ξ) dx

∣∣∣∣∣
ξ=0

=

ˆ
Ω\Eε(x0)

∂ξr(x, 0) dx−
ˆ
∂Eε(x0)

r(x, 0)v · n ds, (5.6)

where Dξf := ∂ξf +∇f · v.

Proof. We calculate

d

dξ

ˆ
Eε(x0+ξv)

f(x, ξ)dx =
d

dξ

ˆ
Eε(x0)

f(x + ξv, ξ)dx =

ˆ
Eε(x0)

(∂ξf(x + ξv, ξ) +∇f(x + ξv, ξ) · v)dx.

If we send ξ → 0 and apply the divergence theorem we obtain (5.4). A similar calculation gives

(5.5) but the divergence theorem is not applied. If r̂ is a smooth extension of r to Ω then

d

dξ

ˆ
Ω\Eε(x0+ξv)

r(x, ξ)dx =
d

dξ

ˆ
Ω
r̂(x, ξ)dx− d

dξ

ˆ
Eε(x0+ξv)

r̂(x, ξ)dx

=

ˆ
Ω
∂ξ r̂(x, ξ)dx−

ˆ
Eε(x0)

∂ξ r̂(x + ξv, ξ)dx−
ˆ
∂Eε(x0)

r̂(x + ξv, ξ)v · n ds.

Setting ξ = 0 and combining the first two integrals on the right side yields (5.6). �

Remark 5.3. Lemma 5.2 applies to the vector-valued ki. When applying Lemma 5.2 to integrals of

k(x; z` + ξv) over Eε(z` + ξv) we will get cancellations from

Dξk(x; z` + ξv) = ∂ξk(x; z` + ξv) +Dk(x; z` + ξv)v = Dv
` k`(x) +Dk`v = 0. (5.7)

The last equality follows from (5.2).

Proof of Equation (4.3). The − log ε term in the energy is independent of the positions of the

dislocations so it vanishes upon taking the derivative of the energy with respect to z`. To calculate

the derivative of U with respect to z` will split ∇z`U into ∇z`Û + ∇z`U . To calculate ∇z`Û we

apply (5.6) to get

∇z`Û = Dv
`

(ˆ
Ωε

W (h0)dx

)
=

ˆ
Ωε

Dv
` h0 · Lh0 dx−

ˆ
∂Eε,`

W (h0)v · n ds (5.8)
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Using (5.3), div(Lh0) = 0 in Ω, and Lh0 · n = 0 on ∂Ω, we have

ˆ
Ωε

Dv
` h0 · Lh0 dx =

ˆ
Ωε

∇(Dv
` u0 − k` · v) · Lh0 dx =

ˆ
∂Ωε

(Dv
` u0 − k` · v)Lh0 · n ds

= −
N∑
j=1

ˆ
∂Eε,j

(Dv
` u0 − k` · v)Lh0 · n ds = −

N∑
j=1

ˆ
∂Eε,j

wLh0 · n ds

(5.9)

using the notation w = Dv
` u0 − k` · v from (5.3). Combining (5.8) and (5.9), and adding and

subtracting h0 ⊗ (Lh0)n · v from the integrand, we have

∇z`Û = −
N∑
j=1

ˆ
∂Eε,j

(Dv
` u0 − k` · v)Lh0 · n ds−

ˆ
∂Eε,`

W (h0)v · n ds

= −
ˆ
∂Eε,`

{W (h0)I− h0 ⊗ (Lh0)}n · v ds−
∑
j 6=`

ˆ
∂Eε,j

(Dv
` u0 − k` · v)Lh0 · n ds +

−
ˆ
∂Eε,`

[(Dv
` u0 − k` · v)Lh0 · n + h0 ⊗ (Lh0)n · v] ds;

also, h0 ⊗ (Lh0)n · v = (h0 · v)(Lh0 · n) = (∇u0 · v +
∑N

i=1 ki · v)(Lh0 · n), so

(Dv
` u0 − k` · v)Lh0 · n + h0 ⊗ (Lh0)n · v =

(
Dv
` u0 − k` · v +∇u0 · v +

N∑
i=1

ki · v

)
Lh0 · n

=

Dξu0 +
∑
i 6=`

ki · v

Lh0 · n

where Dξu0 = Dv
` u0 +∇u0 · v. Hence,

∇z`Û = −
ˆ
∂Eε,`

{W (h0)I− h0 ⊗ (Lh0)}n · v ds

−
∑
j 6=`

ˆ
∂Eε,j

(Dv
` u0 − k` · v)Lh0 · n ds−

ˆ
∂Eε,`

Dξu0 +
∑
i 6=`

ki · v

Lh0 · n ds

(5.10)

We calculate ∇z`U in several steps. We split the first sum in the right side of (5.1) into the

integral over Eε,` and the rest of the terms

N∑
i=1

∑
m 6=i

ˆ
Eε,m

W (ki)dx =

ˆ
Eε,`

∑
m 6=`

W (km)dx +
∑
m6=`

ˆ
Eε,m

∑
i 6=m

W (ki)dx. (5.11)
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In the first of these, each km does not vary as z` → z` + ξv because m 6= `. Hence we apply (5.4)

directly with Dξkm = ∂ξkm +Dv
` km = ∇(km · v) because ∂ξkm = 0. We have

Dv
`

∑
m6=`

ˆ
Eε,`

W (km) dx

 =
∑
m 6=`

ˆ
Eε,`

Dξkm · Lkm dx =
∑
m 6=`

ˆ
Eε,`

∇(km · v) · Lkm dx

=

ˆ
∂Eε,`

∑
m6=`

(km · v)Lkm · n ds,

(5.12)

where we used div(Lkm) = 0.

The second term from (5.11) involves integrals over Eε,m for m 6= `, so these domains do not

move as z` → z` + ξv. Also, the terms W (ki) for i 6= ` vanish when we apply Dv
` , so

Dv
`

∑
m 6=`

ˆ
Eε,m

∑
i 6=m

W (ki) dx

 =
∑
m6=`

ˆ
Eε,m

Dv
` k` · Lk` dx =

∑
m 6=`

ˆ
Eε,m

−∇(k` · v) · Lk` dx

= −
∑
m6=`

ˆ
∂Eε,m

(k` · v)Lk` · n ds,

(5.13)

where we used (5.2) and div(Lk`) = 0.

The second sum from (5.1) is split into the integral over Eε,` and the rest of the terms

N∑
m=1

N−1∑
i=1

N∑
j=i+1

ˆ
Eε,m

kj · Lki dx =

ˆ
Eε,`

∑
i<j

kj · Lki dx +
∑
m 6=`

ˆ
Eε,m

∑
i<j

kj · Lki dx. (5.14)

Applying (5.4) to the first term on the right side yields

Dv
`

ˆ
Eε,`

∑
i<j

kj · Lki dx

 =

ˆ
Eε,`

∑
i<j

Dξkj · Lki +Dξki · Lkj dx

=

ˆ
Eε,`

∑
i,j 6=`,i<j

∇(kj · v) · Lki +∇(ki · v) · Lkj dx

=
∑
i 6=`

∑
j 6=i

ˆ
Eε,`

∇(kj · v) · Lki dx =
∑
i 6=`

∑
j 6=i

ˆ
∂Eε,`

(kj · v) · Lki · n ds

(5.15)

Between the first and second lines we used Dξki = ∇(ki · v) for i 6= ` and Dξk` = 0 by (5.7), and

in the third line we used div(Lki) = 0.
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For the second sum of (5.14), using (5.2) from Lemma 5.1, we have

Dv
`

∑
m 6=`

ˆ
Eε,m

∑
i<j

kj · Lki dx

 =
∑
m 6=`

∑
i 6=`

ˆ
Eε,m

Dv
` k` · Lki dx = −

∑
m6=`

∑
i 6=`

ˆ
Eε,m

∇(k` · v) · Lki dx

= −
∑
m 6=`

∑
i 6=`

ˆ
∂Eε,m

(k` · v)Lki · n ds

(5.16)

The third term comprising U in (5.1) is split as

N∑
m=1

ˆ
Eε,m

W (∇u0) dx =

ˆ
Eε,`

W (∇u0) dx +
∑
m6=`

ˆ
Eε,m

W (∇u0) dx. (5.17)

To calculate the derivative of the first term on the right side of (5.17), we use (5.4), but integrate

the Dξ term by parts directly. Using Dξu0 = Dv
` u0 +∇u0 · v and div(L∇u0) = 0 we have

Dv
`

(ˆ
Eε,`

W (∇u0) dx

)
=

ˆ
Eε,`

∇(Dξu0)L∇u0 dx =

ˆ
∂Eε,`

(Dξu0)L∇u0 · n ds

=

ˆ
∂Eε,`

(Dv
` u0 +∇u0 · v)L∇u0 · n ds.

(5.18)

Calculating the derivative of the second term on the right side of (5.17) is almost the same as in

(5.18) except the domains Eε,m do not depend on z` because m 6= `. Hence

Dv
`

∑
m6=`

ˆ
Eε,m

W (∇u0) dx

 =
∑
m6=`

ˆ
Eε,m

∇(Dv
` u0) · L∇u0 dx =

∑
m 6=`

ˆ
∂Eε,m

Dv
` u0 · L∇u0 · n ds.

(5.19)

Turning to the the final term in (5.1), which we split as

N∑
m=1

N∑
i=1

ˆ
∂Eε,m

u0Lki · n ds =

N∑
i=1

ˆ
∂Eε,`

u0Lki · n ds+
∑
m6=`

ˆ
∂Eε,m

N∑
i=1

u0Lki · n ds, (5.20)

we calculate the derivative of the first term using (5.5) to get

Dv
`

(
N∑
i=1

ˆ
∂Eε,`

u0Lki · n ds

)
=

N∑
i=1

ˆ
∂Eε,`

(Dξu0)Lki · n ds+

N∑
i=1

ˆ
∂Eε,`

u0L(Dξki) · n ds. (5.21)
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From (5.7) we have Dξk` = 0 and from (5.2) we have Dξki = ∇(ki · v) for i 6= `. Hence, for i 6= `

we have

ˆ
∂Eε,`

u0L(Dξki) · n ds =

ˆ
∂Eε,`

u0L∇(ki · v) · n ds =

ˆ
Eε,`

div (u0L∇(ki · v)) dx

=

ˆ
Eε,`

∇u0 · L∇(ki · v) dx +

ˆ
Eε,`

u0 div (L∇(ki · v)) dx

=

ˆ
Eε,`

∇(ki · v) · L∇u0 dx =

ˆ
Eε,`

(ki · v) · L∇u0 · n ds.

(5.22)

We used div (L∇(ki · v)) = (v ·∇)(div(Lki)) = 0, which follows from curl ki = 0 and div(Lki) = 0.

Combining (5.21) and (5.22) we get

Dv
`

(
N∑
i=1

ˆ
∂Eε,`

u0Lki · n ds

)
=

N∑
i=1

ˆ
∂Eε,`

(Dξu0)Lki · n ds+
∑
i 6=`

ˆ
∂Eε,`

(ki · v)L∇u0 · n ds (5.23)

Finally, the derivative of the second term in (5.20) is calculated similarly to the first, but is simpler

because the domains of integration are independent of z`. Hence,

Dv
`

∑
m 6=`

ˆ
∂Eε,m

N∑
i=1

u0Lki · n ds

 =
∑
m6=`

ˆ
∂Eε,m

u0L(Dv
` k`) · n ds+

∑
m 6=`

N∑
i=1

ˆ
∂Eε,m

(Dv
` u0)Lki · n ds

(5.24)

because Dv
` ki = 0 when i 6= `. Using div (L∇(ki · v)) = 0, as we did to get (5.22), we have

ˆ
∂Eε,m

u0L(Dv
` k`) · n ds = −

ˆ
∂Eε,m

u0L∇(k` · v) · n ds = −
ˆ
Eε,m

div(u0L∇(k` · v)) dx

= −
ˆ
Eε,m

∇u0L∇(k` · v) dx = −
ˆ
∂Eε,m

(k` · v)L∇u0 · n ds

(5.25)

Then (5.24) and (5.25) give

Dv
`

(
N∑
m=1

N∑
i=1

ˆ
∂Eε,m

u0Lki · n ds

)
=
∑
m 6=`

ˆ
∂Eε,m

(
N∑
i=1

Dv
` u0 · Lki · n− (k` · v)L∇u0 · n

)
ds

(5.26)
20



Combining (5.12), (5.15), (5.18), and (5.23) we have

ˆ
∂Eε,`

∑
i 6=`

(ki · v)Lki · n +
∑
i 6=`

∑
j 6=i

(kj · v) · Lki · n +

+ (Dξu0)L∇u0 · n +

N∑
i=1

(Dξu0)Lki · n +
∑
i 6=`

(ki · v)L∇u0 · n

ds

=

ˆ
∂Eε,`

∑
i 6=`

(ki · v)

L∇u0 +
N∑
j=1

Lkj

+Dξu0

L∇u0 +
N∑
j=1

Lkj

 · n ds

=

ˆ
∂Eε,`

Dξu0 +
∑
i 6=`

ki · v

Lh0 · n ds

(5.27)

Combining (5.13), (5.16), (5.19), and (5.26) we have

∑
m6=`

ˆ
∂Eε,m

−(k` · v)Lk` −
∑
i 6=`

(k` · v)Lki +Dv
` u0 · L∇u0 +

N∑
i=1

Dv
` u0 · Lki − (k` · v)L∇u0

 · n ds

=
∑
m 6=`

ˆ
∂Eε,m

(Dv
` u0 − k` · v) Lh0 · n ds. (5.28)

Thus, (5.10), (5.27), and (5.28) together give

Dz`U(v) = ∇z`U · v =
(
∇z`Û +∇z`U

)
· v = −

ˆ
∂Eε,`

{W (h0)I− h0 ⊗ (Lh0)}n ds · v,

which establishes (4.3). �
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