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ABSTRACT. The widespread interest on the hereditary behavior of biological
and bioinspired materials motivates deeper studies on their macroscopic “min-
imal” state. The resulting integral equations for the detected relaxation and
creep power-laws, of exponent [, are characterized by fractional operators.
Here strains in SBV],. are considered to account for time-like jumps. Consis-
tently, starting from stresses in L] _, r € [1,871], B € (0,1) we reconstruct
the corresponding strain by extending a result in [38]. The “minimal” state is
explored by showing that different histories delivering the same response are
such that the fractional derivative of their difference is zero for all times. This
equation is solved through a one-parameter family of strains whose related
stresses converge to the response characterizing the original problem. This
provides an approximation formula for the state variable, namely the resid-
ual stress associated to the difference of the histories above. Very little is
known about the microstructural origins of the detected power-laws. Recent
rheological models, based on a top-plate adhering and moving on functionally
graded microstructures, allow for showing that the resultant of the underlying
“microstresses” matches the action recorded at the top-plate of such models,
yielding a relationship between the macroscopic state and the “microstresses”.

1. Introduction. The occurrence of time-dependent power law mechanical prop-
erties has been noticed in many materials since the first half of the twentieth century
[1, 2]. Macroscopic hereditariness has indeed been detected through stress relax-
ation and creep mechanical tests.
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More recently the subject has been revitalized in connection with the develop-
ment of novel bioinspired materials and biological structures exhibiting complex
rheological properties (see e.g. [3, 4, 5, 6, 7]).

Indeed, as noticed in [3], the response of such time-dependent systems exhibiting
long tail memories would entail a very large number of approximating conventional
modes, namely e.g. of exponentials, that are identifiable through classical rheo-
logical models. A more appropriate and yet precise way to handle the exhibited
behavior is to account for power laws, both for creep and relaxation, leading to the
occurrence of fractional hereditariness. Furthermore, the same feature is observed
while monitoring complex interfaces observed experimentally in thin films formed
by solutions containing surface active molecules. For instance, this is the case of
lipid membranes where, often times, elasticity is taken as the only feature of the
effective response (see e.g. [8, 9]). The underlying nano-structure (lipids are a few
nanometers long) determines the physical properties of such membranes, which are
key constituents for cells.

Another example encountered in natural materials are mineralized bone tissues.
They must provide load carrying capabilities and they exhibit a marked power-law
time-dependent behavior under applied loads (see e.g. [10]). This arises also in
mineralized tissues as ligaments and tendons. Indeed the high stiffness of the hy-
droxyapatite crystals encountered in such tissues is combined with the exceptional
hereditariness of the collagen proteic matrix. Mineralized biological tissues exhibit a
hierarchic self-organization of collagen matrix and mineral crystals that is detected
at various observation scales. The presence of hierarchies in the self-assembled con-
stituents allows for the exceptional features at the macroscale in terms of strength,
stiffness and toughness. From the point of view of viscoelasticity it is even more
interesting the fact that such structure assembly motivates the presence of multi-
ple relaxation times observed in creep/relaxation tests. In this regard it has been
observed with dynamical tests that continuous relaxation time spectra are in good
agreement with experimental results on trabecular, as well as compact, bones (see
e.g. [11], [12]).

A part from situations in which the experienced strains become very large and,
hence, appropriate strain measures are required (see e.g. [13]), it is known that ac-
curate descriptions of the results of experimental tests are reproduced by power-laws
with real order exponents [14, 15, 16]. This elucidates the reason why linear hered-
itary equations are applicable to the analysis of complex materials whose behavior
is time dependent, and it clarifies the confusion that sometimes is made between
apparent material nonlinearity and power law behavior (see e.g. [17]). The mo-
tivations above regarding bone as an example explain why multiple scales present
in many materials entail several multiple relaxation times, ultimately producing a
macroscopic power-law hereditariness.

Although strong motivations for looking at such power laws have been discussed,
neither they have been explicitly incorporated in general mathematical frameworks
(see e.g. the ones developed in [18, 19, 20, 21, 22, 23, 24] among others) nor it has
been shown a direct mechanical and mathematical connection between the material
properties at the submacroscopic level and the observed macroscopic power law.
The latter are known to yield the Boltzmann-Volterra constitutive equations, both
for creep and relaxation, in terms of fractional operators (see [3, 15, 16, 25, 26, 27,
28, 29] for their applications to viscoelasticity and [30, 31, 32, 33] for applications
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to other mechanical contexts). This leads to refer to the constitutive properties of
such media as “Fractional Hereditary Materials” (FHM).

In this paper, we focus on the characterization of the state for such materials.
The particularization of the notion of state introduced by Noll in [34] to viscoelastic
materials (see [22, 35, 36, 37]), one can state that if two states are different then there
must be some continuation (of arbitrary duration) of such state which produces
different responses with the two states as initial ones. For viscoelastic materials the
conclusion that can be drawn is that two past histories verifying this condition must
correspond to the same state. Whenever the strain is taken to be the independent
variable of the analysis, the material response can be described either in terms of
the resulting stress (through the Boltzmann-Volterra integral (27a)) or in terms of
the work done by the stress on any continuation (see [37]). On the other hand, for
this case a notion of state has been introduced in [36] as a pair where one of the
entries is an equivalence class of strain histories and the other one is the current
value of the strain. The equivalence class is established through the right-hand side
of (33) (which involves a generic relaxation function), whose solution for all non
negative times characterizes equivalent histories. This notion of state, eventually
called “minimal state” in [22], entails the fact that a state variable can be singled out
as the residual stress measurable at any further time (¢+7 in (33)) after freezing and
keeping the current value of the strain to zero for any arbitrary duration 7. “Long
tail” memory materials may allow for detecting such a stress for long times and
this is the case for power law hereditariness. The notion of “minimality” recalled
above has to do with the fact that the knowledge of such a stress is the minimum
necessary information required to fully characterize the response of the material to
further loadings. Obviously, the specific knowledge of the solutions of (33) are very
useful, although very rarely they can be found explicitly.

In this paper, we first examine “virgin” materials characterized by power law
relaxation (and hence creep) functions and we start from considering absolutely
continuous strain functions in time, for which the Boltzmann-Volterra integral rela-
tion can be recast in terms of a Caputo fractional derivative, whose order matches
the power encountered in the relaxation function (besides its sign). Such deriva-
tive is characterized by a hyper-singular integral, whose convergence is guaranteed
whenever the strain is absolutely continuous in time (see [38], Lemma 2.2, p.35).
In this case, the resulting stress is at least locally integrable and its representation
formula enjoys its inverse in terms of the Riemann-Liouville integral of the same
order of the derivative above. This result is generalized here to strains which are
locally of Special Bounded Variations (SBV],.) in time. This is done by first eval-
uating the contribution to the stress of the jump part of the strain, which can be
represented through its Lebesgue decomposition (see e.g. [39]). In this section it is
proved, both through the use of Theorem 2.4 in [38] and also by direct calculation,
that the corresponding stress turns out to be invertible as well as the one associated
with the absolutely continuous part of the strain. This allows for reconstructing any
strain in SBV),. starting from the associated stress.

The state for a “non-virgin”, namely prestressed (or prestrained), FHM is treated
in Sect. 3. Whenever the strain is assumed as the independent variable, the equiv-
alence of two past histories is recast in terms of the Caputo fractional derivative
of their difference £* (see eqn (33)). An approximation of this equation is con-
sidered and its solution generates a one parameter family of strains producing a
corresponding family of stresses converging in L™ to the response related to €*. In
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turn, it is shown that this procedure permits to single out the explicit expression of
the residual stress obtained by freezing the strain to zero for any arbitrary duration
starting from a conventional observation time, ¢, before which the experienced past
history is not known. For such a variable an approximation formula is provided in
analogy with the one discussed above.

Two rheological models derived in [16] yielding power law creep and relaxation are
discussed in Sect. 4. The first one conveys the idea of having a functionally graded
submacroscopic structure, labelled with the letter (V), formed by a continuous
elastic layer supported on one of its sides by a continuous sequence of dashpots
whose stiffness and viscosity both decrease with depth. The second model, labelled
with (E), is somehow the dual of the previous one, since it is obtained by considering
a viscous layer supported on continuous springs both characterized by viscosity and
stiffness decreasing with depth, respectively. In both cases the two systems are
driven by an indefinite massless rigid plate on which a displacement time history
is prescribed. The initial boundary value problems corresponding to both systems
are summarized in Sect. 4, whose solutions (61) arise in terms of the fractional
derivative of the imposed time history, leading to the force (stress) arising at the
rigid plate.

On the other hand, Sect. 5 provides newer insights on the models introduced
above. Indeed, the “microstresses”, namely the “forces” arising in the continuous
distributions of dashpots (model (V)) and springs (model (E)) are evaluated.The
overall responses of both systems are shown to match the force arising at the rigid
plate. This is motivated a-posteriori by exploring the balance of forces in both
rheological models and it also shown how the knowledge of the state of the top
plate determines the microstresses in both systems.

2. Fractional hereditary virgin materials. We recall that two hypotheses are
considered while analyzing viscoelastic materials (see e.g. [26]): 1) invariance under
time translation and 2) causality. With the first requirement we mean that time shift
in the input is reflected as a same shift in the output; with the second we mean that
the material response depends on previous histories only, reflecting hereditariness
of such materials. In this section we shall refer to “virgin” materials, namely either
the strain or the stress are known from the very beginning of the observation of
their behavior, conventionally set at ¢ = 0, and hence no past histories with respect
to such a time need to be taken into account. From Sect. 3 on, this requirement will
be relaxed and the notion of state introduced in [22, 36] will allow for characterizing
the residual stress due to unknown past histories. For the sake of illustration, the
whole paper is focused on one dimensional problems.

Creep and relaxation tests are performed to detect material hereditariness [40]:
in the first case, the stress is held constant and the strain is measured, whereas in the
second one the strain is held constant and the stress is measured. Whenever either
a unit stress or a unit strain is utilized, the creep compliance J(o) and relaxation
modulus G(o) are found as the strain and stress response to the imposed unit stress
and strain respectively, i.e.

e(t) = U(t) — o(t) = G(t) (1a)
o(t) = U(t) — e(t) = J(1), (1b)

where U (o) is the unit Heaviside step function. When either the creep or the relax-
ation function is known, the Boltzmann superposition principle allows for writing
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convolution-type Riemann-Stieltjies integrals to express the relationships between
o and €. Whenever either the strain or the stress are prescribed, the constitutive
relations for the corresponding derived quantities read as follows:

t

o(t) = G(t — )de(7), (2a)

o+

et) = /0 J(t — )do (). (2b)

"
Smoothness assumptions on £(t) and o(t) will be discussed in the sequel.

Creep compliance and relaxation modulus are not independent. Indeed they are
linked to each other by the relationship

Je @) () = ——. 3)
(iw)
where the symbol ~ denotes the right-sided Fourier transform (see Appendix A,
equation (A7)).

Experiments on polymeric materials performed by Nutting [1] at beginning of the
twentieth century showed that their relaxation function is well fitted by power-laws,
i.e.

_ GO 5
Gt =gt ()
where I'(0) is the Euler-Gamma function, Cp and /5 are characteristic constants of
the material. The exponent S must be enclosed in the range 0 < 8 < 1 because
of thermodynamics restrictions [16, 28, 29]. At the extrema of the range, asymp-
totic behaviors are obtained: S — 0 corresponds to purely elastic solid whereas
B — 1 to purely viscous fluid. The values of 0 < § < 1 correspond to an interme-
diate behavior between elastic solid and viscous fluid, allowing for describing both
complex-structured materials and soft matter. As we expect, the creep compliance
of the given material can be determined through (3) from the relaxation modulus
assumed in (4). Furthermore, the right Fourier transform of the relaxation function
(4) yields

Gy (w) = Cpiw) 1, (5)
and by substituting this expression in (3) we then obtain

. 1

Ji(w) = Wa (6)

whose anti-transform reads as follows:
1
Jt) = ——— 7. 7
©= g g
It is worth analyzing the material behavior with the aid of normalized functions,
G(t) and J(t) defined as follows:

G(t):=G(t)(Cp) ' T -p)=t" (8a)
J(t) := J(t)CsT (14 ) = t° (8b)
and showed in Figure 1. A careful observer will notice immediately that all the
curves share the common point (1,1), which represents a key value. Indeed, the
blue curves (0 < 5 < 1/2) show that the elastic phase prevails on viscous one with

decreasing 3, whereas the red ones (1/2 < < 1) show that the viscous phase
prevails on elastic one as increases as 3. This consideration allows for identifying
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the former as elastoviscous (E) materials while the latter as wviscoelastic (V) ones;
the value = 1/2 is clearly common to both kinds of materials, thus it may be
obtained as a limiting case of both models described above. The corresponding
rheological models, formed by proper arrangements of springs and dashpots, will be
discussed in the sequel.
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FIGURE 1. Normalized (a) relaxation and (b) creep functions.

In order to introduce the appropriate functional setting characterizing stress and
strain we start from (2a), i.e. when ¢ is assumed to be the control variable. Lemma
2.2 in [38] (p.35) assures that if &€ € AC)o., where AC),. denotes the set of locally
absolutely continuous functions, then the integral (2a) exists almost everywhere for
0 < B < 1 and takes the following form®:

_C bog(r)
o) = 512 /w e (9)

Lemma 2.2 also guarantees that o € LI, where 1 < r < 7!, Nevertheless, in
reality, the strain may exhibit localized jumps, i.e. strain discontinuities could be
present and localized in sets of measure zero, namely in specific locations in time.
Estimates regarding the properties of the generalization of (2a) to the tensor valued
case and to a — —oo have been provided in [22, 36]. There strains were taken

in BV, and SBV,,. U leoc respectively?. Obviously, any absolutely continuous

IHere £(0) = 0
2Here BV, and SBV . denote the sets of functions of bounded and special bounded variations
on bounded sets, respectively



STATE OF FHM 7

function has bounded total variation®, since the following chain of inclusion holds:
ACpc C SBVioe € BVioe. In particular any g5, € SBVj,. is such that

€SBV(t):/O Eac(T)dT +€4(t), (10)

+

where g, is the absolutely continuous part of € and the second term e, represents
the so called jump part of ¢, i.e.

es(t) =Y [E)t)U(E - t), (11)

t>t; €T (g)

where J(g) is the jump set of ¢, ¢; are the locations of the jumps, U(o — t;) are
unit step Heaviside functions located at t; and [e](t;) := e(t;") — e(¢;") is the jump
experienced by € at t;. It is worth remarking that any €,. € Llloc. It is well known
that €5, € BV, can be decomposed in the following way:

epv(t) = espv (t) + C(e(1)), (12)

where C represents the so called Cantor part of € at t. Relation (12) is the Lebesgue
decomposition of ¢ for BVj,. functions and (10) is its particularization to the case
of € € SBV,. (see e.g. [39]). Henceforth, by considering strains in such space, the
stress can still be computed by means of (9), by understanding that the following
representation holds for the strain rate:

E(7) = aclr) + ) [l (t:)5(t — 1), (13)

t>t; €T ()
where 0(o — ¢;) are Dirac delta masses located at ¢t; € J(¢). Because € € SBV],.
its total variation \lfar(s) is finite, and hence the strain measure* de = &(t)dt, with

g(t) as in (13), is bounded from above by \l/ar(s). It is worth noting that the power

law relaxation function (4) is such that G € L. /{0y and that G(0) is unbounded
(for thermodynamic restriction about such function see [41]). Henceforth, as long
as t = 0 is excluded, estimates of the stress (see Sec. 3 in the sequel) can be done
by using the fact that (2a) is a Riemann-Stieltjies integral and hence (see Theorem

2 in [39] p. 368) the following inequality holds, i.e.

/:G(t — 1)de(r)

< sup |G(t —r)|Var(e(r)) Va#0,Vt<b. (14)
r€(a,b) re(a,b)

Finally, we recognize that relation (9) may be recast in terms of the Caputo frac-
tional derivative of order 3 of £ (see Appendix A). i.e

o(t) = Cs (CD§+5) (t). (15)

This notation must be interpreted bearing in mind that every straining € appearing
in (9) has the representation (13); in the sequel of this section the contribution of
the Dirac delta masses to the stress will be singled out. Whenever o is assumed as

3The total variation Var of a function ¢ is defined as:

Var(e) := Var (¢(r)) = sup {Z le(ri) —e(ri—1)| : {ro,m1,...,mn} € (a, b)}

loc r€(a,b) i=1

41t is worth noting that de can be seen as a Radon measure and, hence, (13) represents the
Radon-Nykodim derivative of e(t) with respect to the one-dimensional Lebesgue measure dt.
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control variable (2b) must be considered. By substituting relation (7) in (2b) we

get:
t

e(t) = (CsT(1+ )" / (t —7)Po(r)dr. (16)

0+
A simple integration by parts yields the following representation formula:

e(t) = c%g (Fﬁofg) +(1.0) (t)) (17)

after setting

(6e0) (1) = m /oi (t — 7)o (r)dr: (18)

this defines the Riemann-Liouville fractional integral of order 3 of the stress. It is
worth noting that this is well defined since 0 € L7 , 1 <r < 371, 0< 3 < 1.
Furthermore, the fact that o is at least Lllo . is a necessary and sufficient condition
for the resulting € to be ACj,. (see Theorem 2.3 in [38] p. 43).

Moreover, Theorem 2.4 in [38] (p.44) ensures that if o is represented through

(15), where ¢ is replaced by £, because &,. € L}, then

12, (Dg+eac) (1) = eac(t). (19)

The jump part €, defined in (11) of € must then be treated separately. By denoting
with o, (t) the contribution to the stress o(t) of €,(¢), the direct evaluation of (9)
(or (15)) can be done bearing in mind that

()= [el(t)s(t —t). (20)

t>t; €T (g)

Such a contribution to the total stress reads as follows

¢ [el(t:)
oy (t) = F(lifﬁ) > (:_7”6 (21)

t>t; €T (¢€)

We are now in the position to check whether or not the analog result for €,., granted
by Theorem 2.4 in [38], holds also for ;. In other words, we conjecture that the
relationship (19) above holds in the form

(15:05) (1) = 25 (0). (22)

Actually, the fact that this may be the case follows from the property of o, in (21)
which is certainly Llloc. Henceforth, Theorem 2.4 in [38] applies. Nevertheless, a
direct proof of the validity of relation (22) can be obtained by substitution of (21)
into (18). Indeed, a direct inspection shows that the fractional integral at the left

hand side of (22) can be written as follows:

bo :7(0@ € i t — 7)Y —t)Pdr
(6.7:) = wri 55, 3 oA A S SR

Each integral on the right hand side may be easily evaluated by setting o :=1—f
and by making use of procedure highlighted in [38] (p.29) namely:

/t (t—7)"%1—t;)* 'dr = B(a,1 — a), (24)

i
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where B(z,w) is the Euler Beta function defined as follows:

1
B(z,w) = /0 2*7H(1 - x) . (25)

By noting that T'(8)['(1 — 8) = B(8,1 — ) and B(B8,1 — §) = B(1 — 3,0), the
solution of (23) may be recast in the following form:

(o) 0= Cs Yl — 1) (26)

t>t; €7 (¢)

This result shows that (19) holds true even when jumps are present in the strain e
as long as € € SBV,e.

3. The state of pre-stressed fractional hereditary materials. In [22, 36, 24]
a definition of state introduced by Noll [34] has been established for viscoelastic
materials whenever the strain is the control variable. This allows for defining equiv-
alence classes of past-strain histories which, together with the current value of the
strain, characterize the state in such context. Two histories are equivalent if any
arbitrary continuation (often called either process or segment) of finite arbitrary
duration yields to the same response. The latter can be either measured in terms
of the stress or through the work done on processes [24].

On the other hand, whenever the stress is assumed to be the control variable,
then the response is measured in terms of the strain. Here an equivalence class of
stress histories could be singled out for the given material so that its state can be
expressed in terms of any representative of such a class and of the current value
of the stress (this belongs to a work in progress [42], although the logic followed
in [22, 36, 24] applies with appropriate substitutions and considerations). In either
case, here we completely characterize the state of FHM by making use of the analog
of (2a) and (2b), both extended to (—oo, 1), i.e.

o(t) = /t Gt — 7)de(r) = —C8 /t e'(TT))Bchﬂ (cDle) (), (27)

—o0 F(l - 5) —o0 (t -
t -1 t
e(t) = [ (= r)do(r) = r((cfi % [ (=) o(r)r = 015 (120) ), (270)

where € in (27a) and & in (27b) make sense because of the smoothness assumptions
listed above. We bear in mind that o(—o0) = 0 and, hence, by extending (16), (17)
and (18) when 0% is replaced by —oo we get (27b). We start by considering (27a)
and two functions €;), ¢ = 1,2 to be defined as follows:

Eiy(r) =€0(r) +U(r —1)éP(r) i=1,2and r € (—o0,1) (28)
where: B -
el (r) = { E@W) : i (ﬁ‘t"i tT)) i=1,2 (29)
represents the null extension of éz) (o) and where
ely(r) =énE-r) i=12 (30)

The latter represent two past straining histories with respect to the initial observa-
tion time (conventionally labeled with ), namely the instant in which the common
straining continuation €P is applied. In the sequel we shall refer to 5?1)’ i =1,2,
as extended histories, namely the null extensions of finite duration, 7, of the given
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t
V

t
0))

FIGURE 2. Past histories 6%1), 5%2) and deformation process P.

histories 5@.). Henceforth, by substituting (30) in (29) and the result in (28) and,
finally, by evaluating the stress response through (27a) of both £(;y i = 1,2 we have:

T _ T
op(t+T):= / G(r+t— r)éfi) (r)dr + /0 Gt —r")eP(r")dr’

= /t: G(r+1T—1)éf (r)dr + Cy (CD{; 6p> (7) (31)

= Cp ((eDlefy) (F+7) + (eDfie?) (1) i=1.2

where P represents the prescribed strain during the interval [0,7]. Following the
definition of state given above, we say that ézl) and 5"(*2) are equivalent if

oy(t+7)=0@)t+7) Vr>0 (32)

on any process eP. In other words, this condition implies that

t+7
/ Gt +71—r)E"(r)dr=Cg (CDiE*) (t+7)=0 vVr>0 (33)

where * = 52‘2) — 52‘1). Henceforth, an equivalence class on the set of extended

histories may be considered. The state of the material at the time ¢ + 7 may be
determined by any of such extended histories, say e.g. €*, in the equivalence class
characterized by (33) together with the current value of the strain (¢ + 7).

It is worth noting that a more realistic condition for (33) is when we impose that
such a relationship holds for all 7 > 0 which, in practice, would imply that there
is always a nonzero unloading time. In order to show that the equivalence class
of extended histories does not contain the zero strain only we need to study the
solutions of (33). This may not be done directly, but rather by constructing a one
parameter family of strains approximating such a solutions. For this purpose, it
may also be considered the function ,£*(o) as the restriction of £*(o) to the domain
[a,t + 7) namely (see Figure 3):

W (r)=<e(r) asr<t (34)
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where @ is finite time. In this case relation (33) yields:
(eDfie?) (F+7) =0 vr >0, (35)

where

N B 1 t4+7 é(?‘)
IR e TN e TR

The result 2.27 in [38] (p.36) may be useful; its translation to the current notation
allows for stating that solution of (35) are such that

€o

) e+ = G

(37)

It is worth noting that whenever (A3Db) (see Appendix A) is considered, the rela-

— 4

|
+ L
3

t+T1 151, }; t
FIGURE 3. Restriction ,&* to a prescribed domain of the strain £*.
tionship (36) may be rewritten in the form

(P22 G = (D) 47 - i O

where (Df +6*) (t+ 7) is the Riemann-Lioville fractional integral defined in (A2b)
(see Appendix A).

In order to show that the left-hand side of (35) approximates (33) we first show
that the stress response associated with ,e* approximates the stress caused by €*.
To this end we consider relations (27a) and (29) yielding the following expression
for the stress at ¢ + 7:

+7) = =G0+ | G +E- (r)dr + / Gl + T r)e(r)ars

ot
o (39)
+ G(t +t —r)é(r)dr,

where b is such that @ < b < ¢ is a fixed arbitrary time. The stress ,o(f + 7)

corresponding to ,&* defined by (34) is obtained from (39) by neglecting the last
integral, i.e.

a0(t+7)=G(T+1t—a)e(a) — G(1)e(t) + / G(1T+t—r)de(r)+
3 (40)
+ / G(t +t—r)de(r).
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By computing the difference between (39) and (40) we obtain:
a
ot+r)—qot+r)= / G(r+t—r)de(r) — Gt +t— a)e(a), (41)
—0o0

whose magnitude may be estimated as follows

lo@+7)— ao(t+7)| < |G(r+1T—a)|le(a)| + sup |G(r + T —r)|Var(e(r)). (42)

re(—oo,al re(—oo,a)
The following extension of (14)
‘/ G(t+t—r)de(r)| < sup|G(r +t—r)| Var(e(r)) (43)
—o0 re(—oo,a) re(—oo,a)

holds true since, by inspection of (4), it can be shown that G(7+1 — o) is absolutely
continuous and, hence, bounded in (—o0,a). Indeed, because of relation (4), if we
let & > 0 there exists at least an ag for which if we chose an a < as we have that
G(T+f—a)05_1 =T(1-p)"Y(r+t—a)"? < 4. Finally, by extending ¢ € SBV{_oo 4
we can find an M > 0 such that Var(e(r)) < M, so that |o(f+ 1) — 0T +7)| <

re(—oo,a)

Mé. Hence
lim ,o(t+7)=0(t+71), (44)

a—r o0
in other words the stress ,o converges to o in L>°. Obviously the same conclusions
could have been drawn starting from (31) written for e* and for its restriction ,&*
instead of 5% and by setting P = 0.
It is worth noting that the integral appearing in (41) represents the residual stress
at time ¢ + 7 caused by past strain histories truncated at the time a

a

It +1) := / G(r +t—r)de(r). (45)

— 00

If one considers the difference
gri=e" — Lt (46)
then (45) can be expressed as follows:

Tr +1) = Cp (CDﬁe;) (r+7). (47)

Upon considering the intermediate arbitrary time b € (a,t) introduced in (39) and
the equality:

IOT +1) = /b G(r+t—r)de(r)+ Gt +t—b)e(b) — G(t +t —a)e(a), (48)

the reasoning leading to (44) allows for proving that (48) approximates the state
variable (45), i.e.
lim ,Z%(7 +%) = Z°(r + 7). (49)
a——00
As a first step, we may consider the stresses ,o(t 4+ 7) and ,0(f + 7) whenever e
and ,e defined by (34) are assumed to be experienced at the material point; the
difference between such stresses reads as follows:

po(t+7) — qo(t+7) = G(T—!—t—b)a(b)—G(T—l—t—a)s(a)—/b G(t+t—r)de(r). (50)
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An estimate of the magnitude of such a difference may be delivered by noting that:
lbo@+7) — ao(@+7)| <|G(r+T—0b)e(b) — G(T + T — a)e(a)| +

N (51)

/b G(t +t—r)de(r)

Henceforth, we also note that whenever § > 0 is given such that there exists at least a
As > 0for which if [b—a| < As wehave |G(1+1—b) — G(T + T —a)| < w%Ag,

with w > 0 and Var(e(r)) < J, hence we obtain
re(a,b)

Gl + 7= D)(b) ~ Gl T~ )e(a)| < el (7 4175 +wle(a)| As) (52)

r1-p)
and
/bG(T—i-t—r)ds(r) <|G(T+f—a)|6<#6. (53)
a - L(1=pB)(r+1)°
Therefore it turns out that the following result holds
lim po(t+7)= 40(t+ 7). (54)
b—a

Of course the stress ,o(f + 7) may be expressed in terms of a fractional derivative,
simply by recalling relation (34) for ,&*, which allows for writing

- Cs e(a) e(t) 3 -
W0l - _ _ 2 D%, &) (i . 55

ot+) F(l—ﬁ)((t—f—r—a)ﬁ 7+ (0D ) (4 7) (55)
On the other hand the stress response evaluated for e* (see (31) with ea) replaced
by ¢* and £ = 0) reads as follows

_ e
N

By comparing the procedures used for showing that (44) and (54) hold, it is not
difficult to show that the approximation formula (49) for the state variable holds.
Hence (37) allows for providing an approximation to equivalent histories for FHMs.
Physically, if ¢ in (37) is interpreted as the instant in which the virgin material can
bear loading, then (37) gives the exact characterization of the state of the material,
in terms of histories that can equivalently bring the material to the same stress.

o(E+7)=Cp (CD&*) (F+7) - (56)

4. Rheological models for fractional hereditariness. The design of novel ma-
terials is strictly related to the capability to obtain the desired behavior at the
macroscale starting from both the knowledge of mechanical properties of basic con-
stituents and their proper arrangement at the nano-to-microscale. Often times real
materials have intermediate behavior between elastic materials and viscous fluids,
showing hereditary features. Micromechanics provides a way, to deliver macroscopic
properties starting from basic elements at the submacroscopic level. For this reason,
a rheological model explaining fractional hereditariness is required.

In this regard, the exact mechanical model of fractional hereditary materials was
recently proposed in [16]. The authors separated the behavior of elasto-viscous
material from visco-elastic one: both are ruled by S-order differential equation, but
in the former case 0 < 8 < 1/2 while in the latter 1/2 < 8 < 1. The different
range of fractional-order involved in constitutive equations is linked to a different
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mechanical model. In this section we show two different mechanical arrangements
to describe the material behavior.

e o o o o A, e o o o o

(a) (0)

FIGURE 4. Rheological continuum models: (a) elastoviscous (E)
and (b) viscoelastic (V).

The rheological scheme of Elasto- Viscous material (E) is represented by an indef-
inite massless plate resting on a column of Newtonian fluid supported on a side by
a “bed” by way of independent elastic springs, whereas the model of Visco-Elastic
material (V) is represented by an indefinite massless plate resting on a column of
elastic solid linked to a rigid support through independent viscous dashpots, as
depicted in Figure 4. In both cases, we consider a cross-section with area A; more-
over, we assume that the material elastic modulus k(z) and viscous coefficient ¢(z)
spatially decay with a power-law, resembling a functionally graded microstructure.
Thus, in the case of elastoviscous material, they read as follows:

kp(z) = AGy(2) = A%z_a (57a)
en(2) = Anp(z) = Aﬁz’“ , (57b)
whereas in the case of viscoelastic material they become:
kv(z) = AGy (2) = A%z_a (58a)
ev(2) = Any(z) = Aﬁz‘a. (58b)

In equations (57), (58) the subscripts E and V indicate Elastoviscous and Viscoelas-
tic case, respectively, and 0 < a < 1 is the decay parameter. In these models the
equilibrium is governed by a differential equation in the following form:

(EV): % [CE(Z)%} =kg(2)v(z,t) (59a)
ve): 2 [mz)%] = ev(2)i(at), (50b)

where (z,t) represent the transverse displacement imposed to the shear layer at
depth z and 4(z,t) :== 2~(z,t) is its time rate of change. In order to solve the
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problems above, we make use of the boundary conditions related to mechanical
schemes in Figure 4, expressed in the form of limits as follows:

lim (2, 1) = (¢)
{ :lzrgo ~(z,t) = 0. (60)

By using such boundary conditions in [16] it is shown that (59a) (or (59a))
delivers a relationship between the force o arising in the top layer in both models
and the Caputo fractional derivative of displacement v, i.e.

o(t) = C3 (0DF,7) (1) (61)
where we assumed the parameters as:

Gol'(B)

—E _ B\ B
Cp:=Cj = T2 = 25)T(1 — )22 () (62a)
I'l+a)
@ _ Mo
To T Gy T(1—a) (670)
and a = 1 — 24 for the EV material, whereas:
GoI'(1 - B)

v _ 0 )8
Cp:=Cg = T(2 = 2B)0(3) 251 () (63a)
s — 1o Ld-a) (63b)

“ T GoI(1+a)

and a = 26 — 1 for the VE material. The terms 7g(a), Tv («) are relaxation times.
The result expressed by (61) highlights that these rheological models are capable to
yield a force on the top layer relaxing with a power-law, ultimately resembling the
macroscopic material behavior. In this respect, the boundary of such rheological
models reproduces the material response.

5. Overall response from the rheological model: “micro” and “macro”
state. The forces 0% (z,t) exerted either on the springs (E model) or o}’ (z,t) on
the dashpots (V model) at z may be computed as follows:

o (2,t) = k(2) v (2,1), (64a)
ol (z,t) = c(z) ¥V (z,t). (64Db)
By denoting by v and v the solution of the field equations (59a) and (59b),

the knowledge of transfer functions H* (z,0) and H"(z, o), relative to (59a) and
(59Db) yield the following representation formulas:

v (z,t) = /_ HE) (2.t —r)y(r)dr, (65a)
v (z,t) = /t HY) (2t —r)y(r)dr, (65b)

where
H® (z,) = F* [HE)(z,0)] (1 (662)

HY (z,t) = Fi [I:I(E)(z, o)} (t) (66b)
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and

Go 5w 7 P i a
T(1-p3)Ir(2-28)27 (raiw)* 27 Ky (\/TE’L'OJ) (67a)
HY (z,w) = F(ﬂ)F(?G—OQﬁ)Qﬁl (o u,u) 3 16 Ki_p ( \/T&/iw) . (67b)

Let us assume that the displacement of the rigid top plate of both models (E) and

H® (z,0) =

Yoty i Ut — o)

Y

B e
-
_|_
\]

FIGURE 5. Displacement at the rigid top plate.

(V) is prescribed up to the time ¢ and it is held constant to zero (Figure 5), i.e

Y(r;t) =y (r)UE —7). (68)

In other words, the prescribed displacement history for the top plate is continued
by the null process (see Figure 5). The displacement recorded at z in the rheological
model at time 7+¢ (7 > 0) is simply calculated through (65a) and (65b) respectively
by setting t = 7 + ¢:

By substituting the resulting expressions in (64a) and (64b) respectively, the
“micro” stresses o), ol are recovered. In both cases the resultants of those forces
can be evaluated by integrating the equation across the semi-infinite sequence of
springs and dashpots respectively. Such resultants read as follows:

o0 T+t o0
/ ol (z, 7+ t)dz = / / k(z)H® (z,7 +t—71) v(r) dz dr (69a)
0

/ U(V)(z T—I—t dz_/ / H(V) (2 T+t_7”) F(r )dZ dr, (69b)
0

where the order of integration has been interchanged thanks to Fubini’s Theorem.
The upper limit on the integrals in r can be truncated at ¢ because of (68), although
it is kept as it is for the sake of convenience. For the purpose of obtaining the overall
response of the two rheological models there is no need to produce (66a) and (66b).
We may indeed evaluate the right Fourier transforms of (69a) and (69b), and make
use of (67a) and (67b) respectively in order to perform the explicit calculations.
Upon introducing

G (2,w) = Fy {0} (2,0)} (w) (70a)

b (2,w) 1= Fy {0 (2,0)} (w), (70b)
and

Y (2,w) = Fr {7 (2,0)} (w) (T1a)

Y (z,w) = Fo {7V (2,0)} (w), (71b)
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(692a) and (69b) yield

+oo —+oo
/ 6\ (z,w)dz :/ ke ()4 (z,w)dz

0 0

ko (77 dw) = +oo 5 z R
- o Kip |~
), e a0

+o0 +oo
/ e (zw)dz = iw/ ey ()Y (2, w)dz

0 0

B+2
ko (70V) ) 2 +00
= 0 (7" iw) / zl_ﬁKg (Z\/ T&V)iw) dz A(w).
0

- T(2-28)r(8)2°-!

It is not difficult to show (see Appendix B for the explicit calculations of the integrals
in (72a) and (72b)) that the relationships above read as follows

L ko (707)” T (8) e
/0 6 (2,w)dz = 021_23 11(2_2/8)11(1_ﬁ)(w})/3 LiwA (w)

(72b)

_ (73a)
oo _ T+r
= / e~ w(t+T) / GP(E+71—r)y(r)dr dr
0 —oo
i ho (r80)"  T(L=B) o s
G\ (z,w)dz = o (iw)P~Liwd(w)
/ 21 T(HIE - 20) o

+oo o t+7 B
= / e () / GV (t+71—r)y(r)dr dr
0

— 00

Henceforth, the inverse right Fourier transform of the relations above yield that
(69a) and (69b) read as follows:

+oo t+7
/ o (2, 0+ 1)dz = / GO +1—7)y(r)dr (74a)
0 —00
“+o0o B 47 B
/ ol (z,t+7)dz = GVt +71—r)y(r)dr (74b)
0 —00

From the latter relations, we can conclude that no matter what rheological model is
considered, their overall response, i.e. the resultant of the “microforces”, namely of
the forces on the lateral springs (for the (E)-model) or dashpots (for the (V)-model),
match exactly the force arising at the “macrolevel”, i.e. the force acting on the top
plate.

Once more this is a confirmation of the fact that the detected “macroscopic”
stress response, governed by a power-law relaxation function, is completely deter-
mined by constitutive properties of the submacroscopic structure which, in this
case, is resembled by the rheological models (E) and (V).

The achieved result is consistent with what is encountered in micromechanics,
where a displacement (in this case ) is prescribed on the boundary (namely the top
plate) of a representative volume element of heterogeneous material and a boundary
value problem is solved in the interior of such an element. The latter is essentially
provided by the procedure followed in [16]: there it was found that the response of
the top plate, upon which a time varying displacement was prescribed, was precisely
given by the convolution between the rate of change pf the imposed displacement
and the relaxation function G* (o) or G (o) for (E) or (V) respectively.
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Nevertheless, (74a) and (74b) from (E) and (V), respectively, can be interpreted
by invoking the balance of forces arising on each system. In particular, the free
body diagrams displayed in Figure 6 are self explanatory about the fact that for
each if the two models balance of forces yields that the following relation must hold

doz/’aﬂnow (75)
0
where o(t) is given by (61) and o,,(z,t) represents either (64a) and (64b). Since

() (1)
— a —> 1 J(t)
-

a(t) _
—>

(a) (b)

FIGURE 6. Elastoviscous (E) and Viscoelastic (V) deformed mod-
els and related external microstresses.

(61) is nothing but the representation in terms of (Caputo) fractional derivative of
either G (o) or G (o), (75) reproduces exactly (74a) and (74b). Evidently, a
third way to achieve the same result provided by the latter equation is that (59a)
and (59b) deliver the balance of linear momentum of an arbitrary slab (of unitary
width) in between the depths z and z + dz, i.e.

t
% — Oz, 1) (76)
where 7 is the shear stress inside the column and the pair (7, 0,,) for (E) and (V)

agrees with c(E)(z)%, olBr) (k(v)(z)%, aﬁ)[)) respectively. Henceforth,

the simple integration of (76) across the depth of the column yields

Tmo:—Am%@ﬁw. (77)

It is not difficult to check that a direct evaluation of the left-hand side for each of
the two rheological models yield (74a) and (74b) back again.

Ultimately, the knowledge of the time history of the displacement of the top
plates determines:

(i) the overall response of the system, no matter what rheological model is used;
(ii) the values of the displacement “at the microlevel” ~® (z,t), v (z,t) for
(E) and (V) respectively (e.g. (65a) and (65b)) ultimately leading to the
“microstresses” o (z,t) and o{¥’(z,t) through (64a) and (64b) respectively.
Physically it is unlikely to know the whole past strain history of a viscoelastic
material, whereas residual stresses may be detectable. As remarked in Sect. 3
before defining Z* (t2) with (45) (here ¢; and ¢, denote two arbitrary times), this
variable represents such a stress at time ¢y for not necessarily known strain histories
acting from the far past up to the initial observation time t; < to.
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The approximation formulas (49) and (37) allow us to state that although (ap-
proximately) equivalent histories differ by a power-law strain, the knowledge of
T' (ty) at any t; < to allows for uniquely determining (i) and (ii).

Unlike (i), which has been treated in [16], (ii) needs to be clarified. If we set

wrn . oag(r) a<r<b
ag (7) '_{ 0 b<r<t4+r (78)

then relation (48) delivering the corresponding residual stress at ¢ + 7 reads as
follows

_ - e(b) e(a)
T +7) = (DL ash) (r+7) + - (79
(r+1) CFat a%b (T ) (t+7-0)PF (F+7—a)F (79)
This allows for obtaining representatives of the equivalence class of histories by
computing the fractional integrals If + of order S of both sides of such a relationship.
As far as the rheological models are concerned, we can state that, instead of pre-
scribing the displacement history of the top plate, the knowledge of the associated

residual stress ,Z°(7 + 1) allows for evaluating

B 1 T+t

(If+ azb) (r+7) = 5 / I ) (80)
This (besides the terms depending on £(b) and &(a), where the latter vanishes in the
limit for @ — —o0) divided by Cj permits to replace v in (74a) and (74b) and hence
allows for determining the overall response of the rheological models. In this sense,
we may state that the “state at the microlevel”, namely the knowledge of o{¥ (z, )
(or v#)(z,t)), 0 (2,t) (or v (z,t)) is fully determined through the knowledge of
the “macroscopic” state.

6. Conclusions. The present study is strongly motivated by the revitalized in-
terest on the hereditariness of biological and bioinspired substructured materials
exhibiting macroscopic power law behavior. In this paper, we first provide a math-
ematical characterization of stress and strain response for such materials in the
broader functional setting of strains in SBV,.. In particular, we account for time
jumps of such quantities by extending a result of fractional analysis dealing with
the reconstruction of the strain for a given stress (see e.g. [38]). Prestressed FHM
are then studied, given that power law hereditariness entails very “long tail” mem-
ory. This is done in this paper by exploring the notion of state based on [34] and
taylored in [36, 37] for general linear viscoelastic materials. This leads to establish
an equivalence class of past strain histories based on an integral equation, which
here is recast in terms of Caputo fractional derivative. An approximation of this
equation is considered and its solution is shown to generate a one parameter family
of strains whose stresses converge in L°° to the original stress. In turn, the explicit
expression of the state variable is singled out, namely the residual stress obtained
by freezing the strain to zero for any arbitrary duration starting from a conventional
observation time before which the past strain history is not known.

Finally the overall response of two new rheological models describing ” function-
ally graded” viscoelastic submacroscopic structures and introduced in [16] is eval-
uated. The models are formed by an elastic/viscous continuum layer supported
on a side by a bed of discrete viscous/elastic units and driven by an indefinite
massless rigid plate adhering to the layer. The resultants of the associated ”mi-
crostresses” are expliticly evaluated in this paper and they are shown to produce
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the same ”"macrostress” arising at the plate. This is expressed in terms of a Caputo
fractional derivative of the imposed macroscopic time history which, in reality, is
unlikely to be known. While the equality between the two macro-stresses is jus-
tified a-posteriori through the balance of linear momentum for each model, it is
remarked that the unknown macroscopic past history can be replaced by the frac-
tional integral of the state variable, ultimately owing to a relationship between the
”macro-state” to the submacroscopic stresses.

Besides exploring the same issues from the point of view of creep [42], instead of
just relaxation, further developments suggested by this new study address the issue
of how hereditariness of the submacroscopic structure of more complex (possibly
hierarchical) bioinspired or biological materials may determine their overall, and
yet effective, state.
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Appendix A. Notes on fractional calculus and Fourier transforms. In this
Appendix we address some basic notions about fractional calculus. The Euler-
Gamma function z — I'(z) may be considered as the generalization of the factorial
function since, as z assumes integer values as I'(z 4+ 1) = z! and it is defined as the
result of the integral

I'(z) = /000 e x* tda. (A1)

Riemann-Liouville fractional integrals and derivatives with 0 < 8 < 1 of functions
defined on the entire real axis R have the following forms:

1 ¢ T
(5) ()= 5 /_ a J (T))l dr (A2a)
1 d [? f()
(D) 0= rr=5 3 / G (A2b)

whereas their counterparts defined over the whole real axis take the following forms:

(Igf) (t) = F(lﬁ) /at (t fs_g)lﬁ dr (A3a)

OF) () = f(a) L A (R
O O-rha T e W
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The relation (A3b) is a direct consequence of Corollary of Lemma 2.1 in [38] (p.32).
Besides Riemann-Liouville fractional operators defined above, another class of frac-
tional derivatives that is often used in the context of fractional viscoelasticity is
represented by Caputo fractional derivatives defined as:

(eDief) (1) =T (D) () m—1<B<m (A4)

and whenever 0 < 8 < 1 it reads as follows:

(cD2f) 0= 575 | t (tf_(?)ﬂch (45)

A closer analysis of (A3b) and (A5) shows that Caputo fractional derivative co-
incides with the integral part of the Riemann-Liouville fractional derivative in
bounded domain. Moreover, the definition in (A4) implies that the function f(¢)
has to be absolutely integrable of order m (in (A5) m = 1). Whenever f(a) =0
Caputo and Riemann-Liouville fractional derivatives coalesce.

Similar considerations hold true also for Caputo and Riemann-Liouville frac-
tional derivatives defined on the entire real axis. Caputo fractional derivatives may
be considered as the interpolation among the well-known, integer-order derivatives,
operating over functions f(o) that belong to the class of Lebesgue integrable func-
tions. As a consequence, they are very useful in the mathematical description of
complex systems evolution.

The right-Fourier Transform of Caputo fractional derivative and Riemann-Liouville
fractional integral read as follows:

FA(Rf) @} @) = (iw) 7 fr (@) (A6a)

FA(eDf) (@} @) = (—iw) fi (@) (A6b)

where

Fo{f0)} @) = fow) = [ fetar. (A7)

0

Appendix B. Direct evaluation of the microstresses in models (E) and
(V). The displacement functions along the depth of the continuum column of the
mechanical models displayed in Figure 4 (see [16] for more details) analyzed in the
right Fourier domain assume the following forms

59 (2,) = 3(w) L) Ay () (B1a)

L(B)20-1 g Vriw
4V (z,w) = A( )g(%;;;)j PKp (z T&V>iw) ; (B1b)

for the (E) and (V) case respectively, where 4(w) is the right Fourier transform
of the imposed displacement at the top plate, K, (o) is the modified Bessel func-
tion of the second kind of order v, 7{” and 7 have been defined in (62b) and
(63b) respectively and 3 = 1 — . The relationships above are preparatory to en-
able us evaluating 6% and {7, namely the time-(right)-Fourier transforms of the
microstress, arising in the external devices for both models.
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Bearing in mind that @ = 2 — 1, the right-Fourier Transform of the microstress
related to the external springs for the (E) case may be written as follows:

1

O (2,0) = Zku(2)7 (2,0)
B Gy . (7'O<£E)icu)_g B z
= mz ’Y(w)WzﬁKﬁ (\/7%) (B2)

B—1
Go (7{Piw) 2

~ WG s p K (Wmiw) |

The resultant of such quantities can be computed as the integral across the external
devices (the springs for the (E) case). In order to evaluate this quantity, we recall
that following result holds for a modified Bessel function of second kind integral
[43]:

/0 K, (Az) dz = 292 AT <“ 3 ”) T <“ ; ”) : (B3)

By assuming p — 1 = 8 and v = 1 — § in (B3) and with the aid of (B2), the
resultant of the right-Fourier Transform of the microstress for the (E) case arises in
the following form:

B—1
>~ ) Go (r{Piw) = /°° 2

®) (5 W)dz = a Ky g | ——— | d
/0 o' 2l = s g r g ), T N e |

(B+1)
Go (7{Piw) 2 3 1 e
et (ww
Go (™)’ T(B) . 5 (iw
e e O )
%

= (W)3(w) CF (i),

=l

2>

I
2

Hence, by taking the inverse right-Fourier transform of both sides and by using
Fubini’s Theorem on the left-hand side, we have:

OOU(E)Z z = t — )y(7)dT
| o= [ at-ran (B5)

since the right Fourier transform of the assumed relaxation function in (4) takes
the form:

Fi {m_ﬁ)t—ﬁ} (w) = Cg(iw)? 1. (B6)
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Similarly, whenever it is assumed that o = 25 —1 the microstress for the external
dashpots for the (V) case can be evaluated as follows:

5, (V)

540 (2,) = e (2) )Y (2,0)

NG Dk o
- T () ke K (Vi)

8
Gor™  T(1 Vi) 2
= Gora” TUED (i)l i)
I'l+4 o) I'(2—-2p) r(p)2s-1
B+2
Go(187w) = 1 4 /.
(w)I‘(ﬂ)I‘(Q — 25)23712 Kz (z To zw)
where equation (63b) has been used in the following form:
o0 = o 1= a) T+ao)
@ GoT(1+ a) re-28)"
The use of (B7) and the assumptions 4 — 1 =1— 8 and v = § in (B3) allow for
writing the overall microstress for the (V) case in the following form:
B+2
. ) Go (T\Viw) = < -
(V) dz = a 1=K (B) d
/0 657 (z,w)dz V(W)F(ﬂ)l"(?—Qﬁ)ZB*l/o z 5(2 T, zw) z
B+2
() Go (T8 Viw) 2
I(B)T(2 —28)20~1
Go (") T =) s (0
T(B)I(2 — 28)2281 iw
=
— (iw)i(w) CF ()",

Now, proceeding like in (B5) we get:

/O T oW (2, 4)dz — /_ :o Gt — 7)4(r)dr (B10)

The results addressed by (B4)-(B5) and (B9)-(B10) show that it is possible to
compute the resultant of the microstresses in both models without knowing explic-
itly the transfer function H(z,t) in the time domain.

(B7)

27PK, (z Tév)iw)

>

no =13 Go (B8)

. 2-8 (") T (1 - )
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