
COERCIVITY AND STABILITY RESULTS FOR AN EXTENDED

NAVIER-STOKES SYSTEM

GAUTAM IYER, ROBERT L. PEGO, AND ARGHIR ZARNESCU

Dedicated to Peter Constantin, on the occasion of his 60th birthday.

Abstract. In this article we study a system of equations that is known to ex-

tend Navier-Stokes dynamics in a well-posed manner to velocity fields that are

not necessarily divergence-free. Our aim is to contribute to an understanding
of the role of divergence and pressure in developing energy estimates capable of

controlling the nonlinear terms. We address questions of global existence and

stability in bounded domains with no-slip boundary conditions. Even in two
space dimensions, global existence is open in general, and remains so, primarily

due to the lack of a self-contained L2 energy estimate. However, through use

of new H1 coercivity estimates for the linear equations, we establish a number
of global existence and stability results, including results for small divergence

and a time-discrete scheme. We also prove global existence in 2D for any initial
data, provided sufficient divergence damping is included.

1. Introduction

The zero-divergence constraint and the associated pressure field are the source
of both difficulties and benefits in the study of the Navier-Stokes equations for
the flow of viscous incompressible fluids. On one hand, the divergence constraint
complicates analysis and approximation in a number of ways. For example, it
produces a well-known inf-sup compatibility condition for mixed approximations
that makes it difficult to achieve high accuracy with simple kinds of discretization.
On the other hand, the incompressibility constraint is responsible for the energy
inequality, an estimate which is fundamental to global existence theory.

In this article we study global existence and stability questions for a non-de-
generate parabolic system that is known to extend Navier-Stokes dynamics in a
well-posed manner to velocity fields that are not necessarily divergence-free. This
system appeared recently in [12], and begins to explain the good performance of cer-
tain numerical schemes where the pressure is computed by solving boundary-value
problems [14]. The idea to determine pressure by solving boundary-value problems
was also a feature of an earlier analytical study by Grubb and Solonnikov [6,7], and
the system we consider is equivalent to one of their several ‘reduced’ models.
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Explicitly, we study the initial-boundary value problem

∂tu+ u · ∇u+∇p−∆u = 0 in Ω,(1.1)

∇p = (I − P )(∆u−∇∇ · u− u · ∇u),(1.2)

u = 0 on ∂Ω,(1.3)

u = u0 in Ω, when t = 0.(1.4)

Here u = u(x, t) is the velocity field, p = p(x, t) the pressure, and P is the standard
Leray projection of L2(Ω,Rd) onto the subspace of divergence-free vector fields
which are tangential at the boundary. For simplicity we have taken the kinematic
viscosity to be unity and omitted body forces.

For the system (1.1)–(1.4), neither the initial data nor the solution are required
to be divergence free. Equation (1.2) defines the pressure gradient, and replaces
the incompressibility constraint

(1.5) ∇ · u = 0 in Ω,

that appears in the standard incompressible Navier-Stokes system. However, if
initially ∇ · u0 = 0, then the incompressibility constraint (1.5) holds for all time.
This follows because (1.1)–(1.3) show that ∇ · u satisfies the heat equation with
no-flux boundary conditions:

(1.6)


∂t∇ · u = ∆∇ · u in Ω,

∂

∂ν
∇ · u = 0 for x ∈ ∂Ω, t > 0,

where ∂
∂ν denotes the derivative with respect to the outward unit normal to ∂Ω1.

Thus if ∇·u0 = 0, then the system (1.1)–(1.4) reduces to the standard incompress-
ible Navier-Stokes equations, and in this sense we say that the system (1.1)–(1.4)
extends the dynamics of the standard incompressible Navier-Stokes equations.

Of course, the dynamics of the standard incompressible Navier-Stokes equations
could alternately be extended by completely omitting the ∇∇ · u term from (1.2).
However, the presence of this term is crucial to the theory for two reasons. First,
the ∆∇ · u term in (1.6) is a direct result of the ∇∇ · u term in (1.2), and provides
exponential stability of the divergence free subspace. Thus, from a numerical per-
spective, errors in the divergence will be exponentially damped. The second, and
perhaps deeper reason, is the essential role played by ∇∇ · u in the well-posedness
results of [6, 7, 12]. We elaborate on this below.

Define the Stokes pressure gradient, ∇ps(u), by

(1.7) ∇ps(u) = (I − P )(∆u−∇∇ · u).

In context we often use ps to denote ps(u). Given any u ∈ H2(Ω,Rd), the function
ps(u) is determined as the unique mean-zero solution to the boundary-value problem

(1.8) ∆ps = 0 in Ω, ν · ∇ps = ν · (∆−∇∇·)u on ∂Ω.

Without the ∇∇ · u term, the boundary condition in (1.8) would not make sense
for all u ∈ H2(Ω). With the ∇∇ · u term, however, ∆u − ∇∇ · u is L2 and
divergence-free; hence a standard trace theorem [4, Proposition 1.4] makes sense
of the boundary condition in H−1/2(∂Ω). The Grubb-Solonnikov [6,7] approach is
based on using the boundary-value problem (1.8) to determine the contribution of

1Note that
∫
Ω∇ · u0 =

∫
∂Ω u0 · ν = 0, and so the compatibility condition for (1.6) is satisfied.
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∇ps(u) to ∇p, and proves well-posedness of (1.1)–(1.4) using a theory of parabolic
pseudo-differential initial-boundary value problems in Lp-based Sobolev spaces.

The convergence arguments of Liu et al. [12], on the other hand, result in a
comparatively simple local well-posedness proof for (1.1)–(1.4) for initial velocity
in H1

0 (Ω). This proof is based instead on the expression of the Stokes pressure
gradient as a Laplace-Leray commutator:

(1.9) ∇ps = (∆P − P∆)u.

This follows directly from (1.7) using the fact that

(1.10) ∇∇ · u = ∆(I − P )u.

Even in this approach, the ‘extra’ ∇∇·u term in (1.7) is directly responsible for the
commutator representation (1.9). The key idea used in [12] is to treat the Stokes
pressure gradient as the Laplace-Leray commutator (1.9), and show (Theorem 3.1,
below) that it is dominated by the Laplacian (cf. (3.1)) to leading order.

While the methods of [6, 7, 12] effectively address local well-posedness of (1.1)–
(1.4), they do not address global existence or stability. For the standard incompress-
ible Navier-Stokes equations in three space dimensions, global existence of strong
solutions is a well-known fundamental open problem [3, 5]. However, classical re-
sults establish global existence and regularity if if the flow is two-dimensional [11],
or the initial data is suitably small [4, 11].

In this paper, we establish a few such global existence results for the system (1.1)–
(1.4). The main difficulty in proving a small-data global existence result for (1.1)–
(1.4) is not the nonlinearity. The root of the problem is that the linear terms are
not coercive under the standard L2 inner product. We remedy this difficulty by
using the commutator estimate in [12] to construct an adjusted inner product under
which the linear terms are coercive. This allows us to establish global existence for
small initial data in two or three dimensions, and unconditional global stability
of a time discrete scheme for the linear equations. This leads to an improved
understanding of how the divergence and pressure can be handled to obtain energy
estimates capable of controlling the nonlinear terms.

In 2D, we can extend our small-data global existence results to initial data with
small divergence. For arbitrary initial data, we can add a sufficiently large diver-
gence damping term to (1.1)–(1.4) to obtain global existence. However, presently
we are not able to prove global existence for (1.1)–(1.4) for arbitrary initial data.
The difficulty is that for the energy balance using the standard L2 inner-product,
the non-linear term is skew-symmetric, and does not contribute; however, the linear
terms are not coercive. On the other hand, for the energy balance using the adjusted
inner products we consider, the linear terms are coercive; however, nonlinearity is
no longer skew symmetric, and contributes non-trivially.

Coercivity of the linear terms (albeit under a non-standard inner product) al-
lows one to treat (1.1)–(1.4) as a non-degenerate parabolic system. While this has
helped simplify existence theory and the analysis of certain numerical approxima-
tion schemes, some other questions apparently become more difficult. In particular,
while global existence of the standard incompressible Navier-Stokes equations is well
known in 2D, it remains open for (1.1)–(1.4) for general (2D) initial data.
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2. Main results

2.1. Coercivity of the extended Stokes operator. In the study of parabolic
problems, an extremely useful (and often crucial) property is coercivity of the un-
derlying linear operator. For (1.1), the linear operator in question is the extended
Stokes operator, A, defined by

(2.1) Au
def
= −∆u+∇ps(u) = −P∆u−∇∇ · u.

Note that the last equality follows from the identity (1.10). Under periodic bound-
ary conditions, the extended Stokes operator A is coercive. Indeed, under periodic
boundary conditions, P∆ = ∆P , and so

(2.2) 〈u,Au〉 = ‖∇u‖2L2 ,

where 〈·, ·〉 denotes the standard L2 inner product on the torus.
Under no-slip (0-Dirichlet) boundary conditions, the situation is surprisingly

more complicated. The extended Stokes operator fails to be positive, let alone
coercive, under the standard L2 inner product. To briefly explain why, observe
that for u ∈ H2 ∩H1

0 (Ω,Rd),

(2.3) 〈u,Au〉 =

∫
Ω

u ·Au =

∫
Ω

|∇u|2 +

∫
Ω

u · ∇ps.

Now if ∇ · u 6= 0, the second term on the right need not vanish. In view of the
commutator relation (1.9), one might expect ‖∇ps‖L2 to be dominated by ‖∇u‖L2 .
This, however, is known to be false, and control of the Stokes pressure ps requires
more than one derivative on u. Consequently, if ∇ · u 6= 0, then the second term
on the right of (2.3) can dominate the first, and destroy positivity of A.

Since our primary interest in the extended Stokes operator is to study (1.1)–(1.4),
and the divergence of solutions to (1.1)–(1.4) is well controlled, one may hope to
rectify non-positivity of A by a coercivity estimate of the form

(2.4) 〈u,Au〉 > ε‖∇u‖2L2 − C‖∇ · u‖2L2 .

But again, this turns out to be false.

Proposition 2.1 (Failure of Coercivity). Let Ω ⊂ R2 be a bounded, simply con-
nected C3 domain. For any ε, C > 0, there exists a function u ∈ C2(Ω̄) such
that

(2.5) u = 0 on ∂Ω, and 〈u,Au〉 6 ε‖∇u‖2L2 − C‖∇ · u‖2L2 .

The key idea in the proof is to identify the harmonic conjugate of the Stokes
pressure as the harmonic extension of the vorticity. Since this is independent of
our main focus, we present the proof of Proposition 2.1 in Appendix A, towards
the end of this paper. We remark, however, that if u ∈ H2 ∩H, where

H
def
= {v ∈ L2(Ω)

∣∣ v = Pv} = {v ∈ L2(Ω)
∣∣ ∇ · v = 0, and v · ν = 0 on ∂Ω},

then the second equality in (2.1) shows that the extended Stokes operator A reduces
to the standard Stokes operator −P∆. In the space H2 ∩H1

0 ∩H coercivity of the
standard Stokes operator is well known. Namely (2.2) holds for all u ∈ H2∩H1

0 ∩H
(see for instance [4, Chapter 4]). Unfortunately, when we consider vector fields for
which u /∈ H, Proposition 2.1 shows that coercivity fails for the extended Stokes
operator.
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The key to global existence results for the nonlinear system (1.1)–(1.4) is to
remedy the negative results in Proposition 2.1 in a manner that interacts well with
the nonlinear term. This can be done by introducing a stabilizing higher order
term, and a compensating gradient projection term, as we now describe.

For any u ∈ H1(Ω) define Q(u), the primitive of the gradient projection, to be
the unique mean zero H1 function such that

∇Q(u) = (I − P )u.

Given constants ε, C > 0, we define an H1-equivalent inner product 〈〈·, ·〉〉ε,C by

(2.6) 〈〈u, v〉〉ε,C = 〈u, v〉+ ε〈∇u,∇v〉+ C〈Q(u), Q(v)〉,

where 〈·, ·〉 denotes the standard inner product on L2(Ω). Our main result shows
that for all ε sufficiently small, we can find C large enough to ensure coercivity of
A under the inner product 〈〈·, ·〉〉ε,C .

Proposition 2.2 (H1-equivalent coercivity). Let Ω ⊂ Rd be a C3 domain. There
exists positive constants ε0 = ε0(Ω) and c = c(Ω) such that for any ε ∈ (0, ε0), there
exists a constant Cε = Cε(Ω) > 0, such that for the inner product 〈·, ·〉ε defined by

〈·, ·〉ε
def
= 〈〈·, ·〉〉ε,Cε

,

we have

(2.7) 〈u,Au〉ε >
1

c

(
‖∇u‖2L2 + ε‖∆u‖2L2 + Cε‖∇q‖2L2

)
for all u ∈ H2 ∩H1

0 . Consequently, there exists a constant C ′ε = C ′ε(ε,Ω) such that

(2.8) 〈u,Au〉ε >
1

c
〈u, u〉ε, and 〈u,Au〉ε >

1

C ′ε
〈∇u,∇u〉ε,

for all u ∈ H2 ∩H1
0 .

We prove this Proposition in Section 3. The main ingredient in the proof is an
estimate for the Laplace-Leray commutator (1.9) that is proved in [12] and stated
in Theorem 3.1 below. A couple of further consequences of this Theorem are worth
mentioning here. First, A is invertible on L2 with compact resolvent (Lemma 3.3).
And, due to Theorem 3.1 and the self-adjointness of the Laplacian, an elementary
result about sectorial operators [8, Theorem 1.3.2] directly implies that A is a
sectorial operator on L2 with domain D(A) = D(−∆) = H2 ∩H1

0 .
The result of Proposition 2.2 raises the question of whether coercivity of A can

be obtained in a space with less regularity than H1 by using an equivalent inner
product. In this regard we have two remarks. First, in Proposition 3.5 we will
describe an inner product 〈·, ·〉′ε for which A is coercive that is equivalent to the
usual inner product on the space

Hdiv = {v ∈ L2(Ω)
∣∣ ∇ · v ∈ L2 and v · ν = 0 on ∂Ω}.

Second, we expect that a bilinear form defined by

(2.9) 〈u, v〉′′ε
def
= 〈A−1/2u,A−1/2v〉ε

determines an L2-equivalent inner product under which A is coercive. Coercivity
for u ∈ D(A) would follow from Proposition 2.2, and L2 continuity by well-known

interpolation estimates. However, an L2-coercivity bound 〈u, u〉′′ε > c‖u‖
2
L2 appears
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not to be easy to prove — it may involve proving A has bounded imaginary powers
(see [2]) in order to establish the expected characterization D(A1/2) = H1

0 .
In any case, unfortunately the inner products 〈·, ·〉′ε and 〈·, ·〉′′ε do not seem to in-

teract well with the nonlinearity in (1.1). Thus for questions of global existence and
stability for the nonlinear extended Navier-Stokes equations and their discretiza-
tions, it is more convenient to use the inner product in Proposition 2.2. The rest
of the paper can be read independently of Proposition 3.5 or its proof.

2.2. Energy decay for the extended Stokes equations. A first step to global
existence results for (1.1)–(1.4), is the study of long time behaviour for the under-
lying linear equations. These are the extended Stokes equations:

(2.10)


∂tu−∆u+∇ps(u) = 0 in Ω,

u(x, t) = 0 for x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) for x ∈ Ω.

A direct consequence of Proposition 2.1 is that the energy of solutions to (2.10) can
increase, at least initially.

Corollary 2.3. There exists u0 ∈ C2(Ω) with u0 = 0 on ∂Ω, and t0 > 0 such that
the solution u to (2.10) with initial data u0 satisfies

‖u(t0)‖L2 > ‖u0‖L2 .

The proof of Corollary 2.3 can be found at the end of Appendix A, following the
proof of Proposition 2.2.

In contrast to the extended Stokes equations, solutions to the standard Stokes
equations (with initial data in H) always have monotonically decaying L2 norm.
This follows because if u(t) ∈ H, then multiplication by u and integration by parts
produces the standard energy inequality

(2.11)
1

2
∂t‖u(t)‖2L2 + ‖∇u‖2L2 = 0.

The Poincaré inequality now yields strict exponential decay

(2.12) ‖u(t)‖2L2 6 e−ct‖u0‖2L2 .

for all solutions to the standard Stokes equations with initial data in H.
Despite the counter-intuitive initial energy increase, the extended Stokes system

is a well-posed, non-degenerate parabolic system. This was proved in [6, 12], and
is a direct consequence of Theorem 3.1. Indeed, since A is sectorial it generates
an analytic semigroup e−At, showing well-posedness of the initial-boundary-value
problem (2.10). Because no eigenvalue of A has non-positive real part by Propo-
sition 2.2, one can quickly show that while the L2 energy of solutions to (2.10)
can increase initially, it must eventually decay exponentially. Explicitly, this means
that solutions to (2.10) must satisfy

(2.13) ‖u(t)‖2L2 6 Ce−ct‖u0‖2L2

for some constants C, c > 0.
To digress briefly, we remark that with a little work, one can explicitly charac-

terize the spectrum of A. Indeed, if AS denotes the (standard) Stokes operator



COERCIVITY AND STABILITY FOR EXTENDED NAVIER-STOKES 7

with no-slip boundary conditions, and ∆N denotes the Laplace operator with ho-
mogeneous Neumann boundary conditions, then

σ(A) = σ(AS) ∪ σ(−∆N )− {0}.
Seeing σ(A) is contained in the right hand side above is immediate. The reverse
inclusion requires a little work, and was communicated to us by Kelliher [13].

Unfortunately, an abstract spectral-theoretic proof of (2.13) is not of direct help
for studying the stability of time-discrete schemes, which was a primary motivation
for introducing these equations. Further, (2.13) does not recover (2.11) for solutions
with initial data in H. For this reason, we search for a direct energy-method proof
of (2.13), and for an idea which also allows the study of time discrete schemes.

Observe first that if we multiply (2.10) by u, integrate, use the commutator
estimate (3.1) and Gronwall’s lemma, we obtain exponential growth, not decay, of

‖u‖2L2 . If we involve a higher derivative, coercivity of A in Proposition 2.2 (or
Proposition 3.5) and Gronwall’s lemma guarantee eventual exponential decay of
‖u‖H1 (or ‖u‖Hdiv

). However, for (2.10), we can obtain a more satisfactory decay
estimate by considering non-quadratic form energies.

Proposition 2.4. Let u be a solution to (2.10) with u0 ∈ H1(Ω). Then for any
ε > 0, there exists constants c1 = c1(Ω) and c2 = c2(Ω, ε), such that c1, c2 > 0 and

(2.14) ∂tEc1,c2(u) + E ′ε(u) 6 0

where Ec1,c2 and E ′ε are defined by

Ec1,c2(u)
def
= ‖u‖2L2 + c1‖∇u‖L2‖∇Q(u)‖L2 + c2‖∇Q(u)‖2L2 ,(2.15)

E ′ε(u)
def
= (2− ε)‖∇u‖2L2 + ‖∆u‖L2‖∇Q(u)‖L2 + ‖∆Q(u)‖2L2 .(2.16)

The proof of Proposition 2.4 is in Section 4. While (2.14) does not imply eventual
exponential decay controlled only by the L2 norm as in (2.13), it does provide an
estimate that reduces to the energy inequality for extended Stokes equations (2.11)
when the initial data is in H. To see this, note that if u0 ∈ H, then (I−P )u(t) = 0
for all t > 0 because ∇·u satisfies the heat equation (1.6). Consequently Q(u) ≡ 0,
and equation (2.14) reduces to

∂t‖u‖2L2 + (2− ε)‖∇u‖2L2 6 0.

Thus in the limit ε → 0, we naturally recover the energy decay for the Stokes
equation (equation (2.11)) for initial data in H.

We also notice that the ‘energy’ Ec1,c2 of solutions must in fact decrease expo-
nentially. This is because

∫
Ω
∇u = 0 =

∫
Ω
Q(u), and so the Poincaré inequality

can be applied to both the terms ‖∇u‖L2 and ‖Q(u)‖L2 . Thus equation (2.14)
immediately implies

Ec1,c2(u(t)) 6 e−ctEc1,c2(u0),

for some small constant c = c(c1, c2, ε,Ω). Unfortunately, however, for the ex-
tended Navier-Stokes equations, the ‘energy’ Ec1,c2 does not interact well with the
nonlinearity.

2.3. Uniform stability for a time-discrete scheme. Before moving on to the
non-linear system (1.1)–(1.4), we study stability of a time-discrete scheme for (2.10),
of the type treated in [12]. One main motivation for studying the system (1.1)–(1.4),
or the linear system (2.10), is that this kind of time-discrete scheme is naturally
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implicit only in the viscosity term, and explicit in the pressure. We will show
that the ideas used in the proof of Proposition 2.2 give globally uniform stability
estimates for such time-discrete schemes.

Given an approximation un to the velocity at time n δt, we determine ∇pn from
the weak-form Poisson equation

(2.17) 〈∇pn,∇ϕ〉 = 〈∆un −∇∇ · un + fn,∇ϕ〉 ∀ϕ ∈ H1(Ω).

Now, we determine un+1 by solving the elliptic boundary value problem

(2.18)

 un+1 − un

δt
−∆un+1 +∇pn = fn in Ω,

un+1 = 0 on ∂Ω.

where fn = 1
δt

∫ (n+1)δt

nδt
f(s) ds is a time-discretized forcing term.

Proposition 2.5. Let Ω be a bounded domain in Rd, d = 2, 3, with C3 boundary.
Then there exist positive constants κ0, ε, Cε, C, C

′, depending only on Ω, such that
whenever 0 < δt < κ0, then for all N > 0 we have

(2.19) ‖uN‖2L2 + ε‖∇uN‖2L2 + Cε‖∇qN‖2L2 +

+
1

C

N∑
k=0

(
‖∇uk‖2L2 + ε‖∆uk‖2L2 + Cε‖∆qk+1‖2L2

)
δt

6 ‖u0‖2L2 + ε‖∇u0‖2L2 + Cε‖∇q0‖2L2

+ C δt

(
‖∇u0‖2L2 + ε‖∆u0‖2L2 +

N∑
k=0

‖fk‖2L2

)
.

and

(2.20) ‖uN‖2L2 + ε‖∇uN‖2L2 + Cε‖∇qN‖2L2

6 (1− Cδt)N
(
‖u0‖2L2 + ε‖∇u0‖2L2 + Cε‖∇q0‖2L2

)
+ C ′

N−1∑
k=0

‖fk‖2L2(1− Cδt)N−1−kδt.

The proof of this proposition is in Section 5.

2.4. Global existence results for the extended Navier-Stokes equations.
When one seeks an L2 energy estimate for (1.1)–(1.4), multiplying (1.1) by u, the
nonlinearity produces the term

(2.21)

∫
Ω

u · (u · ∇)u = −1

2

∫
Ω

(∇ · u)|u|2.

In general this is non-zero, but is morally harmless since ∇ · u is a solution of
(1.6) and is well controlled. This is indeed the case in two dimensions, but under
periodic boundary conditions (see Proposition 2.9, and the remark following it).
The key ingredient for proving global existence for periodic boundary conditions
is the coercivity (2.2) of the linear terms. Consequently, despite the extra non-
linear term arising from (2.21), the L2 energy balance closes and the well-known
existence results for the standard incompressible Navier-Stokes equations continue
to hold with minor modifications.
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The situation is more complicated under no-slip boundary conditions, however,
since now coercivity (2.2) fails. To get any mileage from the linear terms, we need
to use an inner-product under which the linear terms are coercive. Using the inner
product in Proposition 2.2, and a ‘brutal’ estimate on the nonlinearity, we can
obtain a two or three dimensional small-data global existence result.

Theorem 2.6 (Small data global existence). Let d = 2 or 3, Ω ⊂ Rd be a bounded
domain with C3 boundary. There exists a small constant V0 = V0(Ω) > 0 such that
if u0 ∈ H1

0 (Ω) with

‖u0‖H1 < V0

then there exists a global strong solution to (1.1)–(1.4) with

u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)).(2.22)

for any T > 0. Consequently u ∈ C([0,∞);H1
0 ) and ∇ · u ∈ C∞((0,∞)× Ω).

The proof of this theorem is in Section 6. Two-dimensional global existence,
however, poses a different problem. A key ingredient in 2D global existence for
the standard incompressible Navier-Stokes equations is the L2 energy balance: the
nonlinearity cancels, and doesn’t contribute! Unfortunately, for (1.1)–(1.4), the
L2-energy balance doesn’t close because of the higher order contribution from the
Stokes pressure gradient.

In the absence of an L2 energy inequality, we are only able to prove a pertur-
bative result. If the initial data is divergence free, then (1.1)–(1.4) reduces to the
standard incompressible Navier-Stokes equations, for which 2D global existence is
well known. Thus for initial data with small divergence, we can prove 2D global
existence for (1.1)–(1.4).

Theorem 2.7 (Small divergence global existence in 2D). Let Ω ⊂ R2 be a bounded
C3 domain, v0 ∈ H1

0 (Ω) with ∇ · v0 = 0 be arbitrary. There exists a small constant
U0 = U0(Ω, ‖v0‖H1

0 (Ω)) > 0 such that if

(2.23) u0 ∈ H1
0 (Ω), P0u0 = v0 and ‖∇ · u0‖L2(Ω) < U0

then there exists a global strong solution to (1.1)–(1.4) with initial data u0 such
that (2.22) holds for all T > 0.

The operator P0 above is the H1
0 -orthogonal projection of H1

0 (Ω) onto the sub-
space of divergence free vector fields, and is described in Section 7 along with the
proof of Theorem 2.7. One strategy to avoid the small divergence assumption is to
further damp the divergence. Namely, for arbitrary initial data (in 2D), if we add
a strong enough divergence-damping term to (1.1)–(1.2), we can guarantee global
existence.

Corollary 2.8 (Divergence-damped global existence in 2D). Let Ω ⊂ R2 be a
C3, bounded domain and u0 ∈ H1

0 (Ω) be arbitrary. There exists a constant α0 =
α0(Ω, ‖∇ · u0‖L2(Ω)) > 0 such that if α > α0 then the system

(2.24)


∂tu+ P ((u · ∇)u) +Au+ α(I − P )u = 0 in Ω

u(x, t) = 0 for x ∈ ∂Ω, t > 0

u(x, 0) = u0(x),

has a global strong solution u such that (2.22) holds for all T > 0.
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The main idea in proving Corollary 2.8 is to verify that the divergence-damped
extended Stokes operator Bα defined by

(2.25) Bα
def
= A+ α(I − P )

is coercive, with coercivity constant independent of α. Consequently, the proofs of
Theorems 2.6 and 2.7 work verbatim for the system (2.24), with constants indepen-
dent of α. Combining these existence theorems, and using the added divergence
damping gives Corollary 2.8, a better existence result as an easy corollary. We
devote Section 8 to the coercivity of Bα (Proposition 8.1), and the proof of Corol-
lary 2.8.

So far, our two-dimensional global existence results under no-slip boundary con-
ditions required either a small initial divergence assumption, or an additional strong
divergence damping term. Such requirements are not needed under periodic bound-
ary conditions, primarily because of (2.2). We observe, then, that the identity (2.2)
will still hold in domains with boundary, provided we consider functions u with
boundary conditions

(2.26) Pu · τ = 0 on ∂Ω and u · ν = 0 on ∂Ω,

where ν and τ are the unit normal and tangential vectors respectively. These
boundary conditions (2.26) reduce to the usual no-slip conditions in the physically
relevant situation where u = Pu.

Armed with (2.2), we obtain a 2D global existence result without a smallness
assumption, or any additional divergence damping.

Proposition 2.9. Let Ω ⊂ R2 be locally Lipschitz and bounded, and let u0 ∈
H1(Ω). There exists a time-global strong solution to (1.1)–(1.2) with initial data
u0 and boundary conditions (2.26).

We prove the identity (2.2) and Proposition 2.9 in Section 9. The proof of
Proposition 2.9 emphasizes another (analytical) advantage of the boundary con-
ditions (2.26). Under all the boundary conditions we consider (no-slip, periodic,
and (2.26)) the evolution equation for the gradient projection is always linear, self
contained, and decays at an explicitly known rate. The evolution equation for the
Leray projection (equation (9.2)), is coupled to the gradient projection; however
the coupling terms are harmless. What causes trouble under the no-slip bound-
ary conditions is that the evolution of the Leray projection is also coupled to the
gradient projection through boundary conditions! This proves problematic in the
case of 2D global existence. On the other hand, periodic boundary conditions, or
the boundary conditions (2.26) provide an explicit de-coupled boundary condition
for the Leray projection, which simplifies the analysis greatly. Unfortunately, the
price paid is that the boundary conditions (2.26) are much harder to implement
numerically.

3. Coercivity of the extended Stokes operator.

As mentioned earlier, the extended Stokes operator is not coercive under the
standard L2 inner product. However, it is coercive under a non-standard, but H1-
equivalent, inner product. This is the main tool we use in studying the extended
Navier-Stokes. The aim of this section is to prove Proposition 2.2 (coercivity under
the adjusted H1 inner product). The main ingredient in the proof is the following
estimate on the Laplace-Leray commutator.
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Theorem 3.1 (Liu, Liu, Pego [12]). Let Ω be a connected, bounded domain with
C3 boundary. For any δ > 0 there exists Cδ > 0 such that

(3.1) ‖∇ps(u)‖2L2 6

(
1

2
+ δ

)
‖∆u‖2L2 + Cδ‖∇u‖2L2

for all u ∈ H2 ∩H1
0 (Ω).

We refer the reader to [12] for the proof of Theorem 3.1.

3.1. H1equivalent coercivity on D(A2). The idea behind the proof of Proposi-
tion 2.2 is to use Theorem 3.1 and prove coercivity assuming the ‘extra’ boundary
condition Au ∈ H1

0 . We will later use an approximation argument to prove the
Proposition for all H2 ∩H1

0 functions.

Lemma 3.2. For any ε > 0 sufficiently small, there exists a constant c = c(Ω),
independent of ε, and a constant Cε = Cε(Ω) > 0, depending on ε and Ω, such
that (2.7) holds for all u ∈ H2 ∩H1

0 , such that Au ∈ H1
0 .

Proof. Observe first that there exists a constant C = C(Ω) such that for all u ∈
H2 ∩H1

0 we have

(3.2) ‖∇ps(u)‖L2 6 C‖∆u‖L2 .

While this immediately follows from Theorem 3.1 and the Poincaré inequality, we
can see it directly from (1.7) because, due to elliptic regularity,

(3.3) ‖∇ps(u)‖2L2 6 C
(
‖∆u‖2L2 + ‖∇∇ · u‖2L2

)
6 C‖∆u‖2L2 .

Now let u ∈ H2 ∩H1
0 be such that Au ∈ H1

0 , and q = Q(u) be the unique mean
zero function such that ∇q = (I − P )u. Then

(3.4) 〈u,Au〉 = 〈u,−∆u〉+ 〈u,∇ps〉 = ‖∇u‖2L2 + 〈∇q,∇ps〉

> ‖∇u‖2L2 − ‖∇q‖L2‖∇ps‖L2 > ‖∇u‖2L2 − C‖∇q‖L2‖∆u‖L2

> ‖∇u‖2L2 −
ε

16
‖∆u‖2L2 − Cε‖∇q‖2L2

where the second last inequality followed from (3.2), and Cε is some constant de-
pending only on Ω and ε.

Since Au = 0 on ∂Ω by assumption, we can integrate the H1-term by parts.
This gives

(3.5) 〈∇u,∇Au〉 = −〈∆u,−∆u+∇ps〉 >
1

8
‖∆u‖2L2 − C1‖∇u‖2

where C1 is the constant that arises from Theorem 3.1.
Thus if ε < 1

2C1
, equations (3.4) and (3.5) give

(3.6) 〈u,Au〉+ ε〈∇u,∇Au〉 > 1

2
‖∇u‖2L2 +

ε

16
‖∆u‖2L2 − Cε‖∇q‖2L2

Now let r be the unique mean zero function such that ∇r = (I−P )Au. Observe
that

(I − P )Au = (I − P )(−P∆u−∇∇ · u) = −∇∇ · u.
Since

∫
Ω
∇ · u = 0, we must have r = −∇ · u = −∆q. Thus

〈q, r〉 = 〈q,−∆q〉 = ‖∇q‖2L2 .

Combining this with (3.6) we get (2.7) as desired. �



12 GAUTAM IYER, ROBERT L. PEGO, AND ARGHIR ZARNESCU

3.2. Properties of the extended Stokes operator. Consider the extended
Stokes operator A as an operator from L2(Ω) into L2(Ω) with domain D(A) =
H2 ∩ H1

0 . In this context, we recall that Proposition 2.2 asserts (2.7) for all
u ∈ D(A); however, Lemma 3.2 only proves (2.7) for all u ∈ D(A2). To address
this gap, and finish the proof of Proposition 2.2, we need a few basic properties of
the extended Stokes operator.

Lemma 3.3 (Regularity and invertibility). The extended Stokes operator A has a
compact inverse. Furthermore, there exists a constant c = c(Ω) > 0 such that

(3.7)
1

c
‖u‖H2 6 ‖Au‖L2 6 c‖u‖H2 , for all u ∈ H2 ∩H1

0

Proof. Our first step is to obtain estimates for the operator A + λI with λ large
enough. For an arbitrary u ∈ H2 ∩ H1

0 , let f = (A + λI)u. Multiplying by −∆u
and integrating gives

λ‖∇u‖2L2 + ‖∆u‖2L2 =

∫
Ω

∇ps ·∆u dx−
∫

Ω

f∆u dx

6
1

2
‖∆u‖2L2 +

1

2
‖∇ps‖2L2 +

1

16
‖∆u‖2L2 + 4‖f‖2L2

6

(
1

2
+

3

8
+

1

16

)
‖∆u‖2L2 + c‖∇u‖2L2 + 4‖f‖2L2

where the last inequality followed from Theorem 3.1, and c = c(Ω) is a constant.
This gives

(λ− c)‖∇u‖2L2 +
1

16
‖∆u‖2L2 6 4‖f‖2L2 .

Thus, when λ > c, we immediately see

(3.8) ‖u‖H2 6 C‖f‖L2 = C‖(A+ λI)u‖L2 , when u ∈ H2 ∩H1
0 .

One can use the last relation to check that A is closed. We claim further that
A + λI is surjective for some large enough λ. This can be proved by a Neumann-
series perturbation argument based on the identity

(3.9) A+ λI = (I +B)(λI −∆),

where B = ∇ps ◦ (λI −∆)−1. That is,

Bu = ∇ps(v), v = (λI −∆)−1u.

It suffices to prove that the operator norm of B on L2 is strictly less than one, if λ is
positive and large enough. By easy energy estimates, we have that λ‖v‖L2 ≤ ‖u‖L2

and ‖∆v‖L2 ≤ ‖u‖L2 . Then due to Theorem 3.1 and interpolation, we have

‖Bu‖2L2 =

∫
Ω

|∇ps(v)|2 6 β‖∆v‖2L2 + Cβ‖v‖2L2 ≤
(
β + Cβλ

−2
)
‖u‖2L2 ,

and the coefficient on the right is less than 1 for λ large enough. Thus I +B is an
isomorphism on L2, hence A+ λI is surjective.

Further, the Rellich-Kondrachov compact embedding theorem and the bound
(3.8) imply that A+λI has compact inverse. Since we have shown that the resolvent
of A contains at least one element with a compact inverse, the spectrum of A consists
only of (isolated) eigenvalues, of finite multiplicity (see for instance [9, Theorem
III.6.29]). Thus to prove invertibility of A, it suffices to show that 0 is not an
eigenvalue of A.
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To see this, suppose u ∈ D(A) is such that Au = 0. Then −P∆u = ∇∇ · u ∈
L2(Ω). Since the range of the Leray projection (by definition) is orthogonal to
gradients, we must have ∇∇ · u = P∆u = 0, and hence ∇ · u must be constant.
Since

∫
Ω
∇·u =

∫
∂Ω
u ·ν = 0, this forces ∇·u = 0. Thus u = Pu, and is orthogonal

to gradients. Since Au = 0, we have

0 =

∫
Ω

u ·Audx = −
∫

Ω

u ·∆u dx+

∫
Ω

Pu · ∇ps(u) dx = ‖∇u‖2L2 + 0,

forcing u = 0. Hence 0 is not an eigenvalue of A, and we conclude that A is
invertible.

It remains to establish (3.7). The upper bound follows immediately from (2.1)
and (3.2). To prove the lower bound, observe first that boundedness of A−1 implies

(3.10) ‖A−1u‖L2 6 C‖u‖L2 ,

for some constant C = C(Ω), which we subsequently allow to change from line to
line. Thus using the operator identity

A−1 = (A+ λI)−1
(
I + λA−1

)
,

and the inequalities (3.8), (3.10) we see

‖A−1u‖H2 = ‖(A+ λI)−1
(
I + λA−1

)
u‖H2

6 C‖
(
I + λA−1

)
u‖L2 6 C(1 + Cλ)‖u‖L2

proving the lower bound in (3.7). �

Lemma 3.4. For the extended Stokes operator, D(A2) is dense in D(A).

Proof. Let u ∈ D(A), and v = Au. Since v ∈ L2(Ω), we can find vn ∈ H2 ∩ H1
0

such that (vn)→ v in L2. Since D(A) = H2 ∩H1
0 by letting un

def
= A−1vn, we have

un ∈ D(A2). Finally, by Lemma 3.3 we see

‖un − u‖H2 6 c‖Aun −Au‖L2 = c‖vn − v‖L2 → 0,

concluding the proof. �

3.3. H1-equivalent coercivity on D(A). Lemmas 3.2 and 3.4 quickly imply
Proposition 2.2.

Proof of Proposition 2.2. Let u ∈ D(A). By Lemma 3.4, there exists a sequence
un ∈ D(A2) such that (un) → u in H2. By Lemma 3.2, there exists constants
c(Ω), Cε(Ω) > 0 such that

〈un, Aun〉ε >
1

c

(
‖∇un‖2L2 + ε‖∆un‖2L2 + Cε‖∇qn‖2L2

)
,

where qn is the unique, mean-zero function such that ∇qn = (I − P )un. Since
(un) → u in H2, taking limits as n → ∞ yields (2.7). Now using the Poincaré
inequality, (2.8) follows. �
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3.4. Hdiv equivalent coercivity. We conclude this section by proving coercivity
under an Hdiv-equivalent inner product. The rest of this paper is independent of
this result and its proof.

Proposition 3.5 (Hdiv-coercivity). Let Ω ⊂ R3 be a C3 domain. There exists
positive constants ε0 > 0 and c = c(Ω) such that for all ε ∈ (0, ε0), there exists a
constant Cε = Cε(Ω) > 0 such that the following hold.

(1) Let 〈·, ·〉′ε be defined by

(3.11) 〈u, v〉′ε
def
= 〈u, v〉+ ε〈∇ · u,∇ · v〉+ Cε〈A−1u,A−1v〉ε−

−〈u,∇ps(A−1v)〉 − 〈∇ps(A−1u), v〉,

where 〈u, v〉 is the standard inner product on L2(Ω), and 〈·, ·〉ε denotes the
inner product from Proposition 2.2. Then

(3.12)
1

c
‖u‖L2 + ε‖∇ · u‖2L2 6 〈u, u〉′ε 6 c(1 + Cε)‖u‖2L2 + ε‖∇ · u‖2L2

for any u ∈ L2(Ω) with ∇ · u ∈ L2(Ω) and u · ν = 0 on ∂Ω.
(2) For any u ∈ H2 ∩H1

0 with ∇ · u ∈ H1, we have

〈u,Au〉′ε > ‖∇u‖
2
L2 +

ε

2
‖∇∇ · u‖2L2(3.13)

and 〈u,Au〉′ε >
1

c
〈u, u〉′ε.(3.14)

Proof. We begin by proving (3.12) for all u ∈ D(A). Density of D(A) in L2 and
a standard approximation argument will now establish (3.12) for all u ∈ Hdiv. We
will assume Cε and c are constants that can change from line to line, provided their
dependence on parameters is as required in the Proposition. Let u ∈ D(A), and
v = A−1u. Then from (3.11) we have

(3.15)

〈u, u〉′ε = 〈Av,Av〉 − 2〈Av,∇ps(v)〉+ ε‖∇ · u‖2L2 + Cε〈v, v〉ε
= 〈−∆v +∇ps(v),−∆v −∇ps(v)〉+ ε‖∇ · u‖2L2 + Cε〈v, v〉ε
= ‖∆v‖2L2 − ‖∇ps(v)‖2L2 + ε‖∇ · u‖2L2 + Cε〈v, v〉ε

>
1

4
‖∆v‖2L2 − c‖v‖2L2 + ε‖∇ · u‖2L2 + Cε〈v, v〉ε

where the last inequality followed from Theorem 3.1 and interpolation. Now since
Av = u, we immediately see

‖u‖2L2 = ‖−P∆v −∇∇ · v‖2L2 6 c‖∆v‖2L2 .

Finally, by definition of 〈v, v〉ε, we have 〈v, v〉ε > ‖v‖
2
L2 . Thus if Cε > c, the lower

bound in equation (3.12) will hold for all ε > 0.
For the upper bound in (3.12), observe that by definition of ∇ps, and Lemma 3.3

we have

‖∇psA−1u‖L2 6 c‖A−1u‖H2 6 c‖u‖L2 .

Combined with the estimate ‖A−1u‖L2 6 c‖u‖L2 , which is also a consequence of
Lemma 3.3, we immediately obtain the upper bound in (3.12).

Finally, it remains to prove the inequality (3.13). We will prove (3.13) for u ∈
D(A2); since D(A2) is dense in D(A), the same approximation argument from the
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proof of Proposition 2.2 will show that (3.13) holds on D(A). In keeping with the
above notation, we again set v = A−1u. This gives

〈u,Au〉′ε = 〈u,Au〉 − 〈u,∇ps(u)〉 − 〈∇ps(v), Au〉+ ε〈∇ · u,∇ ·Au〉+ Cε〈v,Av〉ε.
We deal with the terms on the right individually. Combining the first two terms,
the dangerous term involving the Stokes pressure cancels. This gives

〈u,Au〉 − 〈u,∇ps(u)〉 = 〈u,−∆u〉 = ‖∇u‖2L2 .

For the third term,

−〈∇ps(v), Au〉 = −〈∇ps(v), (I − P )Au〉 = 〈∇ps(v),∇∇ · u〉.
For the fourth term, observe that if u ∈ D(A2), then Au = 0 on ∂Ω. Thus
integrating by parts gives

〈∇ · u,∇ ·Au〉 = −〈∇∇ · u,Au〉 = ‖∇∇ · u‖2L2 .

Combining these identities we have

〈u,Au〉′ε = ‖∇u‖2L2 + 〈∇ps(v),∇∇ · u〉+ ε‖∇∇ · u‖2L2 + Cε〈v,Av〉ε

> ‖∇u‖2L2 +
ε

2
‖∇∇ · u‖2L2 −

1

2ε
‖∇ps(v)‖2L2 + Cε〈v,Av〉ε

> ‖∇u‖2L2 +
ε

2
‖∇∇ · u‖2L2 −

c

ε
‖∆v‖2L2 + Cε〈v,Av〉ε

> ‖∇u‖2L2 +
ε

2
‖∇∇ · u‖2L2 +

(
εCε
2c1
− c

ε

)
‖∆v‖2L2 +

Cε
2
〈v,Av〉ε

where the last inequality followed from Proposition 2.2, and c1 is the constant
in (2.7). We note that Proposition 2.2 guarantees that c1 is independent of ε. Now
we choose Cε large enough so that εCε

2c1
− c

ε > 1, giving

(3.16) 〈u,Au〉′ε > ‖∇u‖
2
L2 +

ε

2
‖∇∇ · u‖2L2 + ‖∆v‖2L2 +

Cε
2
〈v,Av〉ε,

from which inequality (3.13) follows.
Finally for (3.14), observe that from (3.15) we have

〈u, u〉′ε = ‖∆v‖2L2 − ‖∇ps(v)‖2L2 + ε‖∇ · u‖2L2 + Cε〈v, v〉ε
6 c2‖∆v‖2L2 + ε‖∇ · u‖2L2 + Cε〈v, v〉ε,

for some constant c2 = c2(Ω). Now using Proposition 2.2 and (3.16), the inequal-
ity (3.14) follows. �

4. Decay of a non-quadratic form energy.

This section comprises the proof of Proposition 2.4, addressing the long time
behaviour of solutions to the extended Stokes equations (2.10). The result and
proof are independent of the rest of this paper.

Proof of Proposition 2.4. In this proof, we use C to denote an intermediate constant
that depends only on Ω whose value can change from line to line. We use C1, C2, . . .
to denote fixed positive constants that depend only on Ω, whose values do not
change from line to line.

As usual, let q = Q(u) be the unique mean zero function such that∇q = (I−P )u.
We begin by establishing the energy inequalities

∂t‖u‖2L2 + 2‖∇u‖2L2 6 C1‖∇q‖L2‖∆u‖L2 ,(4.1)
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∂t‖∇u‖2L2 +
1

4
‖∆u‖2L2 6 C‖∇u‖2L2 ,(4.2)

∂t‖∇q‖2L2 + 2‖∇ · u‖2L2 6 0.(4.3)

Before proving the above inequalities, we remark that the L2 balance (4.1) does
not close by itself. On the other hand, the H1 balance (4.2) closes, but does not
give decay. A combination of the norms, however, gives us the desired exponential
decay.

For the proof of (4.1), multiply (2.10) by u and integrate over Ω to obtain

1

2
∂t‖u‖2L2 + ‖∇u‖2L2 = −

∫
Ω

u · ∇ps = −
∫

Ω

∇q · ∇ps 6 C1‖∇q‖L2‖∆u‖L2 ,

where we used (3.3). This establishes (4.1).

Turning to (4.2), we multiply (2.10) by −∆u and integrate over Ω to obtain

(4.4)
1

2
∂t‖∇u‖2L2 + ‖∆u‖2L2 =

∫
Ω

∇ps ·∆u.

Using Theorem 3.1, we know that for any δ > 0 there exists a constant Cδ = Cδ(Ω)
such that

‖∇ps‖2L2 6

(
1 + δ

2

)
‖∆u‖2L2 + Cδ‖∇u‖2L2 .

Hence

(4.5)

∣∣∣∣∫
Ω

∇ps ·∆u
∣∣∣∣ 6 1

2
‖∇ps‖2L2 +

1

2
‖∆u‖2L2 6

(
3 + δ

4

)
‖∆u‖2L2 +

1

2
Cδ‖∇u‖2L2 .

Choosing δ = 1
2 , equation (4.4) reduces to (4.2) as desired.

Finally for (4.3), we apply (I − P ) to (2.10) to get

∂t∇q + (I − P )(−∆u+∇ps(u)) = 0.

Since ∇ · u = ∆q and

(I − P )(−∆u+∇ps(u)) = (I − P )(P∆u−∇∇ · u) = ∇∇ · u = ∇∆q,

we see
∂t∇q −∆∇q = 0,

and hence ∂tq−∆q = C(t), where C is constant in space. Now, since u = 0 on ∂Ω,

we must have ∂q
∂ν = 0 on ∂Ω. This means

∫
Ω

∆q = 0; since
∫

Ω
q = 0 by our choice

of q, we must have C(t) = 0. Thus we obtain

(4.6) ∂tq −∆q = 0 in Ω, with
∂

∂ν
q = 0 for x ∈ ∂Ω.

Multiplying by −∆q and integrating over Ω gives (4.3) as desired.

Now we combine (4.1)–(4.3) to obtain the desired exponential decay. First
from (4.2), (4.3) and the Poincaré inequality we have

∂t‖∇q‖L2 +
1

C2
‖∇q‖L2 6 0,

∂t‖∇u‖L2 +
1

C2
‖∆u‖L2 6 C3‖∇u‖.

Thus

∂t (‖∇u‖L2‖∇q‖L2) +
1

C2
‖∆u‖L2‖∇q‖L2 6 C4‖∇u‖L2‖∇q‖L2 .
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where C4 = C3 − 1
C2

. Using this in (4.1) we see

∂t

(
‖u‖2L2 + C2(C1 + 1)‖∇u‖L2‖∇q‖L2

)
+

+ 2‖∇u‖2L2 + ‖∆u‖L2‖∇q‖L2 6 C5‖∇u‖L2‖∇q‖L2

where C5 = C2(C1 + 1)C4. Now letting c1 = C2(C1 + 1), and c2 = c2(Ω, ε) to be
chosen later, we see that

∂t

(
‖u‖2L2 + c1‖∇u‖L2‖∇q‖L2 + c2‖∇q‖2L2

)
+

+ 2‖∇u‖2L2 + ‖∆u‖L2‖∇q‖L2 + 2c2‖∇ · u‖2L2 6 ε‖∇u‖2L2 +
C2

5

2λ1ε
‖∇ · u‖2L2

where λ1 is the best constant in the Poincaré inequality

λ1‖∇q‖2L2 6 ‖∆q‖2L2 = ‖∇ · u‖2L2 .

Thus choosing c2 =
C2

5

4λ1ε
+ 1

2 , we obtain (2.14). �

5. Global stability of time discretization for the extended Stokes
equations

We devote this section to proving Proposition 2.5. The main idea again is similar:
to introduce a stabilizing, high order term in the definition of the energies.

Proof of Proposition 2.5. In the following we use C1, C2, . . . to denote fixed positive
constants that depend only on Ω, whose values do not change from line to line and a
generic constant C whose value might change from one line to the next, depending
only on Ω.

Let pns be the Stokes pressure for un hence ∇pns = (∆P − P∆)un and thus∫
Ω

∇pns · ∇ϕ =

∫
Ω

(∆un −∇∇ · un) · ∇ϕ, ∀ϕ ∈ H1(Ω).

Using (2.17) with ϕ = pn and combining it with the last relation we obtain

(5.1) ‖∇pn‖L2 6 ‖∇pns ‖L2 + ‖fn‖L2 .

We derive first the discrete H1 estimate just as in [12]. Taking the L2 inner
product of (2.18) with −∆un+1 gives

1

2δt

(
‖∇un+1‖2L2 − ‖∇un‖2L2 + ‖∇un+1 −∇un‖2L2

)
+ ‖∆un+1‖2L2

6 ‖∆un+1‖L2 (2‖fn‖L2 + ‖∇pns ‖L2)

6
ε1

2
‖∆un+1‖2L2 +

2

ε1
‖fn‖2L2 +

1

2
(‖∆un+1‖2L2 + ‖∇pns ‖

2
L2)

for all ε1 > 0. This implies

(5.2)
1

δt

(
‖∇un+1‖2L2 − ‖∇un‖2L2

)
+

1

δt
‖∇un+1 −∇un‖2L2 +

+ (1− ε1)‖∆un+1‖2L2 6
4

ε1
‖fn‖2L2 + ‖∇pns ‖

2
L2 .

Fix any β ∈ ( 1
2 ,

2
3 ). By Theorem 3.1 we have

‖∇pns ‖
2
L2 6

3

2
β‖∆un‖2L2 +

2Cβ
3
‖∇un‖2L2 .
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Using this in (5.2) and dividing by 2Cβ we get

(5.3)
1

2Cβδt

(
‖∇un+1‖2L2 − ‖∇un‖2L2 + ‖∇un+1 −∇un‖2L2

)
+

(1− ε1)

2Cβ

(
‖∆un+1‖2L2 − ‖∆un‖2L2

)
+

(2− 2ε1 − 3β)

4Cβ
‖∆un‖2L2

6
2

ε1Cβ
‖fn‖2L2 +

1

3
‖∇un‖2L2 ,

and we may assume that ε1 > 0 is small enough so that 1− ε1 − 3
2β > 0.

We continue by obtaining the discrete L2 estimate. We dot the equation (2.18)
by un+1 in L2 and obtain

1

2δt

(
‖un+1‖2L2 − ‖un‖2L2 + ‖un+1 − un‖2L2

)
+

1

3
‖∇un+1‖2L2 +

2

3

(
‖∇un+1‖2L2 − ‖∇un‖2L2

)
+

2

3
‖∇un‖2L2

=

∫
Ω

(fn −∇pn) · un+1 =

∫
Ω

(Pfn) · un+1 −
∫

Ω

∇ps(un) · ∇qn+1

6 ‖fn‖L2‖un+1‖L2 + ‖∇ps(un)‖L2‖∇qn+1‖L2

6
λ0

3
‖un+1‖2L2 +

2− 2ε1 − 3β

8Cβ
‖∆un‖2L2 + C1(‖fn‖2L2 + ‖∇qn+1‖2L2),(5.4)

where qn+1 = Q(un+1), and λ0 is the principal eigenvalue of the Laplacian on Ω
with zero Dirichlet boundary conditions.

Since pn = pns +Q(fn), by applying I − P to (2.18) we find that qn satisfies the
time-discrete inhomogeneous heat equation

(5.5)
1

δt

(
qn+1 − qn

)
−∆qn+1 = pn+1

s − pns .

Then we find after testing with −∆qn+1 that, as above (and as in [12, page 1477]),

(5.6)
1

δt

(
‖∇qn+1‖2L2 − ‖∇qn‖2L2

)
+ ‖∆qn+1‖2 6 ‖pn+1

s − pns ‖
2
L2 .

Also, since pn satisfies a Neumann boundary value problem, we have the estimate

(5.7) ‖pn+1
s − pns ‖

2
L2 6 C‖un+1 − un‖

1
2

L2‖un+1 − un‖
3
2

H2 .

Now choose C2 large enough to ensure

C1‖∇qn+1‖2L2 6
C2

2
‖∆qn+1‖2L2 ,

and ε2 small enough so that 4ε2 < 1−ε1−β. Combining (5.6) and (5.7), we obtain

1

δt

(
‖∇qn+1‖2L2 − ‖∇qn‖2L2

)
+ ‖∆qn+1‖2(5.8)

6
ε2

4CβC2
‖∆un+1 −∆un‖2L2 + C3‖un+1 − un‖2L2

6
ε2

4CβC2
‖∆un+1 −∆un‖2L2 + C4‖∇un+1 −∇un‖2L2

for large enough constants C3 and C4.
Assume that δt is small enough so that (2CβC2C4)δt < 1. Multiplying (5.8) by

C2, and adding it to (5.3) and (5.4) then gives
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(5.9)
C2

δt

(
‖∇qn+1‖2L2 − ‖∇qn‖2L2

)
+
C2

2
‖∆qn+1‖2L2 +

1

2δt

(
‖un+1‖2L2 − ‖un‖2L2

)
+

(
1

2Cβδt
+

2

3

)(
‖∇un+1‖2L2 − ‖∇un‖2L2

)
+

1

3
‖∇un‖2L2

+
1− ε1

2Cβ

(
‖∆un+1‖2L2 − ‖∆un‖2L2

)
+

2− 2ε1 − 3β

8Cβ
‖∆un‖2L2

6
ε2

2Cβ

(
‖∆un+1‖2 + ‖∆un‖2L2

)
+

(
2

ε1Cβ
+ C1

)
‖fn‖2L2 .

Now summing from n = 0 to N the last inequality gives (for small enough δt, and
for a suitable constant C > 0) the claimed inequality (2.19).

We rearrange (5.9) and obtain

(5.10)
1

δt

(
‖∇qn+1‖2L2 − (1− Ĉδt)‖∇qn‖2L2

)
+

1

δt

(
‖un+1‖2L2 − (1− Ĉδt)‖un‖2L2

)
+

1

δt

(
‖∇un+1‖2L2 − (1− Ĉδt)‖∇un‖2L2

)
+

+
(
‖∇un+1‖2L2 − (1− Ĉδt)‖∇un‖2L2

)
+

+ (1 + δt)
(
‖∆un+1‖2L2 − (1− Ĉδt)‖∆un‖2L2

)
+(

‖∆qn+1‖2L2 − (1− Ĉδt)‖∆qn‖2
)

+(1− Ĉδt)‖∆qn‖2L2 6 C‖fn‖2L2

provided that δt is small enough, for suitable constants C and Ĉ. Defining

an
def
=

1

δt
‖∇qn‖2L2 +

1

δt
‖un‖2L2 +

1

δt
‖∇un‖2L2

+ ‖∇un‖2L2 + (1 + δt)‖∆un‖2L2 + ‖∆qn‖2L2 ,

(5.10) becomes

(5.11) an+1 − (1− Ĉδt)an 6 C‖fn‖2L2 .

Solving this recurrence relation yields (2.20). �

6. Small data global existence for the extended Navier-Stokes
equations

This section is devoted to the proof of a long time, small data existence result
(Theorem 2.6) for the system (1.1)–(1.4). As bounds for the linear terms have al-
ready been established (Proposition 2.2), we begin with a bound on the nonlinear
term. When obtaining energy estimates for solutions to (1.1), the explicit, expo-
nential decay of ∇ · u allows sharper estimates for many terms. However, in order
to exploit coercivity of the linear terms, we are forced to use an H1-equivalent inner
product. In this case, the ‘worst’ term that arises from the nonlinearity isn’t aided
by decay of ∇ · u, and must be estimated brutally. Consequently, estimating the
remaining terms similarly doesn’t weaken the final result. Thus, we begin with a
lemma that provides a ‘brutal’ estimate on the nonlinearity.
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Lemma 6.1. Let f, g, h ∈ H2 ∩ H1
0 (Ω) with Ω ⊂ Rd, d = 2, 3 a bounded domain

with C3 boundary. Then there exists a constant C = C(Ω) > 0 such that2

|〈P ((f · ∇)g), h〉ε| = C‖f‖H1‖∇g‖
H

1
2
‖∆h‖L2 .

Proof. Observe first that

〈P ((f · ∇)g), h〉ε = 〈P ((f · ∇)g), h〉+ ε〈∇P ((f · ∇)g),∇h〉,

since (I − P )P ((f · ∇)g) = 0. Thus to prove the lemma, it suffices to show the
estimates

|〈P ((f · ∇)g), h〉| 6 C‖f‖H1‖∇g‖
H

1
2
‖h‖L2(6.1)

and |〈∇P ((f · ∇)g),∇h〉| 6 C‖f‖H1‖∇g‖
H

1
2
‖∆h‖L2 .(6.2)

for some constant C = C(Ω).
The inequality (6.1) follows directly from the Sobolev embedding theorem. In-

deed, for any three functions f1, f2, f3, we know3

(6.3)

∣∣∣∣∫
Ω

f1f2f3

∣∣∣∣ 6 C‖f1‖Hs1‖f2‖Hs2 ‖f3‖Hs3

provided 0 6 si 6 3, s1 + s2 + s3 > d
2 and at least two of s1, . . . , s3 are non-zero

(see for instance the proof of Proposition 6.1 in [4]). Choosing s1 = 1, s2 = 1/2
and s3 = 0, we have

|〈P ((f · ∇)g), h〉| = |〈(f · ∇)g, Ph〉| 6 C‖f‖H1‖∇g‖
H

1
2
‖h‖L2 ,

proving (6.1).
For (6.2), we first integrate by parts and observe ∆P is a regular differential

operator (identity (1.10)). Now we can integrate by parts again to obtain the
desired estimate. Explicitly,

〈∇P ((f · ∇)g),∇h〉 = −〈∆P ((f · ∇)g), h〉
= −〈(∆−∇∇·) ((f · ∇)g), h〉 = −〈(f · ∇)g, (∆−∇∇·)h〉,

where all boundary integrals vanish because f, g, h ∈ H1
0 . Now using (6.3) with s1 =

1, s2 = 1/2, s3 = 0, and elliptic regularity we have

|〈∇P ((f · ∇)g),∇h〉| = |〈(f · ∇)g, (∆−∇∇·)h〉| 6 C‖f‖H1‖∇g‖
H

1
2
‖∆h‖L2 .

This concludes the proof. �

We now return to the proof of Theorem 2.6.

Proof. We assume there exists a smooth solution u of (1.1)–(1.4) on the time inter-
val [0, T ] for some T > 0. We will find appropriate a priori estimates for the norm
of u (see relation (2.22), below) in terms of the initial data and T . Now a standard
approximating scheme (e.g. the one constructed in [12]) will prove global existence
of solutions.

2Our estimates on the nonlinear term are not optimal. Using ‘optimal’ estimates here would
be at the expense of simplicity, and obfuscate the main idea. Further, the ‘optimal’ estimates are
still insufficient to prove global existence without a smallness assumption on the initial data.

3For non-integer values of s, we define the fractional Sobolev norms by interpolation. See for
instance [4, Page 50].
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Fix ε > 0 to be small enough so that Proposition 2.2 holds, and 〈·, ·〉ε denote
the H1 equivalent inner product from Proposition 2.2. Then

(6.4)
1

2
∂t‖u‖2H1

ε
+ 〈P ((u · ∇)u), u〉ε + 〈u,Au〉ε = 0.

where

‖v‖H1
ε

def
=
√
〈v, v〉ε.

By Lemma 6.1, for any c0 > 0, we can find a constant C = C(ε, c0,Ω) > 0 such
that

(6.5) |〈P ((u · ∇)u), u〉ε| 6 ‖u‖H1‖∇u‖H1/2‖∆u‖L2

6 C‖∇u‖3/2L2 ‖∆u‖3/2L2 6 C‖∇u‖6 +
ε

8c0
‖∆u‖2.

We will subsequently fix c0 to be the constant c that appears on the right of (2.7).
Using Proposition 2.2 and equations (6.4), (6.5) we obtain

∂t‖u‖2H1
ε

+
2

c0

(
‖∇u‖2L2 +

ε

2
‖∆u‖2L2 + Cε‖∇q(u)‖2L2

)
6 C‖∇u‖6L2 ,

where Cε is the constant in (2.7). Allowing the constant C = C(ε, c0,Ω) to change
from line to line, and using the Poincaré inequality, we obtain

∂t‖u‖2H1
ε

+
1

c0

(
‖∇u‖2L2 +

ε

2
‖∆u‖2L2 + Cε‖∇q(u)‖2L2

)
6 C‖u‖6H1

ε
− 1

c1
‖u‖2H1

ε
.

for some constant c1 = c1(ε,Ω). Thus if at time t = 0 we have

‖u0‖H1
ε
6

1

(Cc1)1/4
,

then for all t > 0,

‖u(t)‖2H1
ε

+
1

c0

∫ t

0

(
‖∇u‖2L2 +

ε

2
‖∆u‖2L2 + Cε‖∇q(u)‖2L2

)
ds 6 ‖u0‖2H1

ε
.

Now using the local existence result in [12], and the fact that ‖·‖H1
ε

is equivalent

to the usual H1 norm, we conclude the proof of Theorem 2.6. �

7. Two dimensional Small divergence global existence for the
extended Navier-Stokes equations

The aim of this section is to prove Theorem 2.7. We recall first the H1
0 -orthogonal

projection onto divergence free vector fields. For u0 ∈ H1
0 (Ω), we define v0, w0 ∈

H1
0 (Ω) to be solutions of the PDE’s

(7.1)


−∆v0 +∇φ = −∆u0 in Ω,

∇ · v0 = 0 in Ω,

v = 0 on ∂Ω,

and


−∆w0 +∇ψ = 0 in Ω,

∇ · w0 = ∇ · u0 in Ω,

w0 = 0 on ∂Ω.

respectively. Note that u0 ∈ H1
0 (Ω) guarantees the required compatibility condition∫

Ω
∇ · u0 = 0, and so the existence of v0, w0 satisfying (7.1) is well known (see for

instance [15, §2]). Clearly u0 = v0 + w0, and orthogonality of v0 and w0 in H1
0

follows from the identity

〈v0, w0〉H1
0 (Ω)

def
= 〈∇v0,∇w0〉 = 〈v0,−∆w0〉 = 〈v0,−∇ψ〉 = 0.
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Let v be the solution to equation (1.1)–(1.4) with initial data v0. As shown
earlier, ∇ · v0 = 0 implies that ∇ · v = 0 for all time, and consequently v is a
solution of the 2D Navier-Stokes with initial data v0. Let w = u− v, and observe

(7.2)


∂tw + P ((w · ∇)w) +

+P ((v · ∇)w) + P ((w · ∇)v) = ∆w −∇ps(w) in Ω,

w = 0 on ∂Ω.

The strategy to prove Theorem 2.7 is as follows. First standard existence theory
for the 2D Navier-Stokes equations implies that for any initial data v0 ∈ H1

0 , with
∇ · v0 = 0, we have global existence of a strong solution v. Further, after a long
time T0, the solution v becomes small. Now making u0 − v0 is sufficiently small,
we can guarantee that w, a solution to (7.2) with initial data u0 − v0, both exists
on the time interval [0, T0], and is small at time T0. Thus u = v + w is a solution
to (1.1)–(1.4) defined, which is small at time T0. Now a small data global existence
result (Theorem 2.6) will allow us to continue this solution for all time.

We begin with a Lemma concerning the existence and smallness of solutions
to (7.2).

Lemma 7.1. Let Ω ⊂ R2 be a bounded C3 domain, and v0 ∈ H1
0 (Ω) with ∇·v0 = 0.

Let u0 ∈ H1
0 (Ω) be such that P0u0 = v0. Then, for any T0, δ0 > 0 there exists a

(small) constant W0 = W0(Ω, ‖v0‖H1 , T0, δ0) such that if

‖w0‖H1
ε
6W0

then there exists a solution of (7.2) on the interval [0, T0] and

‖w(T0)‖H1 6 δ0.

Momentarily postponing the proof of the lemma, we prove Theorem 2.7.

Proof of Theorem 2.7. We let V0 be as in Theorem 2.6, and let v be the solution to
the 2D Navier-Stokes equations with initial data v0 = P0u0 ∈ H1

0 . It is well known
(see for instance [4, 15]) that there exists T0 large enough, so that ‖v(T0)‖H1

0
6

1
2V0. Indeed, from the standard L2 energy identity we can choose T0 to satisfy

T0( 1
2V0)2 ≤ ‖v0‖2L2 .

By Lemma 7.1 there exists W0 > 0 small enough so that if initially

(7.3) ‖w0‖H1
ε
6W0

then the solution w to (7.2) exists up to time T0, and further ‖w(T0)‖H1 6 1
2V0.

From (7.1), we know ‖w0‖H1 6 c‖∇·u0‖L2 (see [15, §2]). Since the norms ‖·‖H1
ε

and

‖·‖H1 are equivalent, making U0 small enough will guarantee (7.3), thus allowing
to apply Lemma 7.1 and obtain the existence of w on the interval [0, T0]. Then we
obtain that (1.1)–(1.4) has a solution u = w+v on [0, T0] and moreover ‖u(T0)‖H1 6
‖w(T0)‖H1 + ‖v(T0)‖H1 6 V0. Applying Theorem 2.6 we can continue the solution
u on the interval [T0,∞). �

It remains to prove the Lemma.

Proof of Lemma 7.1. As with the proof of Theorem 2.6, it suffices to obtain an a
priori estimate for ‖w‖H1 . Fix ε > 0 to be small enough so that Proposition 2.2
holds. Then
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(7.4)
1

2
∂t‖w‖2H1

ε
+

J1︷ ︸︸ ︷
〈P ((w · ∇)w), w〉ε + 〈w,Aw〉ε =

− 〈P ((v · ∇)w), w〉ε︸ ︷︷ ︸
J2

−〈P ((w · ∇)v), w〉ε︸ ︷︷ ︸
J3

where 〈·, ·〉ε denotes the inner product defined in Proposition 2.2, and ‖·‖H1
ε

the

induced norm.
We estimate each term individually. The term J1 is identical to the term that

appears in the proof of Theorem 2.6, and thus

J1 >
1

c0

(
‖∇w‖2L2 +

ε

2
‖∆w‖2L2 + Cε‖∇q‖2L2

)
−
(
c2‖w‖6H1

ε
− 1

c1
‖w‖2H1

ε

)
,

where q is the unique, mean-zero function such that ∇q = (I − P )w. As before, c0
is the constant that appears in (2.7), and c1 = c1(ε,Ω), c2 = c2(ε,Ω) are positive
constants.

Using C = C(ε,Ω) > 0 to denote an intermediate constant that can change from
line to line, Lemma 6.1 bounds J2 and J3 by

|J2|+ |J3| 6 C (‖v‖H1‖∇w‖H1/2‖∆w‖L2 + ‖w‖H1‖∇v‖H1/2‖∆w‖L2)

6
ε

4c0
‖∆w‖2L2 + c3

(
‖v‖4H1 + ‖∇v‖2H1/2

)
‖w‖2H1

ε

for some constant c3 = c3(ε,Ω).
Combining our estimates,

(7.5)
1

2
∂t‖w‖2H1

ε
+

1

c0

(
‖∇w‖2L2 +

ε

4
‖∆w‖2L2 + Cε‖∇q‖2L2

)
6 c2‖w‖6H1

ε
−
(

1

c1
− c3

(
‖v‖4H1 + ‖∇v‖2H1/2

))
‖w‖2H1

ε
.

Since v is a strong solution to the 2D incompressible Navier-Stokes equations
with initial data v0 ∈ H1

0 , we have (see for instance [4, p. 78]) that

sup
t>0
‖v(t)‖2H1 +

∫ ∞
0

‖v(s)‖2H1 ds < C

for some constant C depending only on Ω and ‖v0‖H1 . Using this in (7.5) will prove
local well-posedness of (7.2). Further, for any T0, δ0 > 0, equation (7.5) will also
show that the solution to (7.2) exists up to time T0, and ‖w(T0)‖H1 < δ0, provided
‖w0‖H1 is small enough. �

8. Divergence damped equations

The aim of this section is to prove coercivity of Bα (defined in (2.25)), with
constants independent of α, and 2D global existence with strong enough divergence
damping (Corollary 2.8).

Proposition 8.1. For any α > 0, and u ∈ D(Bα) we have

(8.1) 〈u,Bαu〉ε = 〈u,Au〉ε + α
(
‖∇Q(u)‖2L2 + Cε‖Q(u)‖2L2 + ε‖∆Q(u)‖2L2

)
.
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Proof. By linearity,

(8.2) 〈u,Bαu〉ε = 〈u,Au〉ε + α〈u, (I − P )u〉ε.

For the second term on the right,

〈u, (I − P )u〉ε = 〈u, (I − P )u〉+ Cε〈Q(u), Q((I − P )u)〉+ ε〈∇u,∇(I − P )u〉.

The first two terms on the right are equal to ‖(I−P )u‖2L2 and Cε‖Q(u)‖2L2 respec-
tively. For the last term,

〈∇u,∇(I − P )u〉 = −〈u,∆(I − P )u〉+

∫
∂Ω

ui
∂

∂ν
((I − P )u)i

= −〈u,∇∇ · u〉+ 0

= ‖∇ · u‖2L2 −
∫
∂Ω

(∇ · u)u · ν = ‖∇ · u‖2L2

Consequently,

(8.3) 〈u, (I − P )u〉ε = ‖(I − P )u‖2L2 + Cε‖Q(u)‖2L2 + ε‖∇ · u‖2L2 ,

and using (8.2), we obtain (8.1). �

Before moving to the proof of Corollary 2.8, we digress briefly to remark that
we can also consider higher order divergence damped operators of the form

B′α
def
= A− α∇∇ · .

The results we obtain for (1.1)–(1.2) with a zeroth order damping term will also
apply when we add the second order damping term above. However, while the
operator B′α has a stronger (second order) damping term, it is not as easy to deal
with numerically. The zeroth order damping terms in Bα, on the other hand, can
easily be implemented numerically, and has a strong enough damping effect to give
a better existence result (Corollary 2.8). We now return to prove Corollary 2.8.

Proof of Corollary 2.8. Since Theorems 2.6 and 2.7 work verbatim for (2.24), there
exists a time T0 = T0(‖u0‖H1 ,Ω), independent of α, such that there exists a solution
u of (2.24) on the interval [0, T0], with ‖u(T0)‖H1 bounded, independent of α. Let
U0 be the constant from Theorem 2.7. Observe that (2.24) implies that∇·u satisfies

∂t∇ · u+ α∇ · u = ∆∇ · u in Ω,

∂

∂ν
∇ · u = 0 for x ∈ ∂Ω, t > 0,

Consequently,

‖∇ · u(t)‖2L2 6 e−(λ1+α)t‖∇ · u0‖2L2 ,

where λ1 > 0 is the smallest non-zero eigenvalue of the Laplacian with Neumann
boundary conditions. Thus there exists α0 > 0, such that

‖∇ · u(T0)‖L2 < U0,

for all α > α0. Now, by Theorem 2.7 the solution to (2.24) also exists and is regular
on the time interval [T0,∞). �
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9. Existence results under coercive boundary conditions.

The aim of this section is to show that the extended Stokes operator is coercive
under the boundary conditions (2.26), and prove Proposition 2.9. We begin with
coercivity.

Proposition 9.1. If either u and v are in H1(Td) and periodic, or if u and v are
in H2(Ω) and satisfy the boundary conditions (2.26), then

(9.1) 〈Au, v〉 = 〈u,Av〉 and 〈u,Au〉 =

∫
Ω

|∇u|2.

Proof. In the periodic case, P∆ = ∆P . Thus ∇ps = 0, A = −∆, and both
equalities in (9.1) follow easily.

Suppose now u, v satisfy (2.26). In view of (2.1), we have

〈Au, v〉 = −〈P∆u, v〉 − 〈∇∇ · u, v〉 = −〈P∆Pu, v〉 − 〈∇∇ · u, v〉

= 〈∇Pu,∇Pv〉+ 〈∇ · u,∇ · v〉 −
∫
∂Ω

[
(Pv)i

∂(Pu)i
∂ν

− (∇ · u)v · ν
]
.

Observe that Pv = 0 on ∂Ω, because because Pv · ν = 0 by definition of P , and
Pv · τ = 0 by (2.26). Thus both the above boundary integrals vanish, giving

〈Au, v〉 = 〈∇Pu,∇Pv〉+ 〈∇ · u,∇ · v〉.

A similar calculation shows

〈Av, u〉 = 〈∇Pu,∇Pv〉+ 〈∇ · u,∇ · v〉

proving that A is self adjoint.
Now because Pu = Pv = 0 on ∂Ω, a direct calculation shows that

〈∇Pu,∇Pv〉 = 〈∇ × Pu,∇× Pv〉 = 〈∇ × u,∇× v〉.

Consequently, we see

〈Au, v〉 = 〈∇ × u,∇× v〉+ 〈∇ · u,∇ · v〉 = 〈∇u,∇v〉.

Setting u = v, the second assertion in (9.1) follows. �

Finally, we turn to Proposition 2.9. Before presenting the proof, we remark
that if we instead impose periodic boundary conditions, Proposition 2.9 and its
proof (below) go through almost unchanged. The only modification required is
the justification of the Poincaré inequality that will be (implicitly) used in many
estimates. For this justification, observe that with periodic boundary conditions,
the mean of solutions to (1.1)–(1.2) is conserved. Thus, by switching to a moving
frame, we can assume that the initial data, and hence the solution for all time, are
mean zero. This will justify the use of the Poincaré inequality in the proof. With
this, we prove Proposition 2.9.

Proof of Proposition 2.9. Let v = Pu, and q = Q(u). Since

P ((∇q · ∇)∇q) = P (∇|∇q|2/2) = 0,

applying P to (1.1) gives

(9.2)

{
∂tv − P∆v + P ((v · ∇)(v +∇q) + (∇q · ∇)v) = 0 in Ω,

v = 0 on ∂Ω,
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where the boundary condition on v comes from (2.26). The point is that energy
estimates can be used directly to estimate v, since it satisfies explicit boundary
conditions.

Since Pv = v, multiplying (9.2) by v and integrating yields,

1

2
∂t‖v‖2L2 + ‖∇v‖2L2 =

1

2

∫
Ω

|v|2∆q −
∫

Ω

v · ((v · ∇)∇q)

6 C‖v‖2L4‖∇2q‖L2 6 C‖v‖L2‖∇v‖L2‖∆q‖L2

6
1

2
‖∇v‖2L2 + C‖v‖2L2‖∇ · u‖2L2 .(9.3)

Here we used elliptic regularity to control ‖∇2q‖ by ‖∆q‖, which is valid since ∂q
∂ν =

0 on ∂Ω. We also used the (2D) Ladyzhenskaya inequality ‖v‖2L4 6 C‖v‖L2‖∇v‖L2 ,
which is valid since v = 0 on ∂Ω.

Since ∇ · u is a mean-zero solution of (1.6), we know that∫ ∞
0

‖∇ · u(t)‖2L2 dt 6
1

2λ1
‖∇ · u0‖2L2 ,

where λ1 is the smallest non-zero eigenvalue of the Laplacian with Neumann bound-
ary conditions. Thus Gronwall’s lemma and (9.3) gives the closed estimate

(9.4) ‖v(t)‖2L2 +

∫ t

0

‖∇v(s)‖2L2 ds 6 exp
(
C‖∇ · u0‖2L2

)
‖v0‖2L2 .

Since Pv = v, regularity of the (standard) Stokes operator tells us that the norms
‖−P∆v‖L2 and ‖v‖H2 are equivalent (see for instance [4, Chapter 4]). Multiplying
(9.2) by −P∆v, integrating by parts, and using (6.3) to bound the nonlinear term
in the usual way gives

∂t‖∇v‖2L2 +
1

c
‖∆v‖2L2 6 C

(
‖v‖2L2‖∇v‖2L2 + ‖∇∇ · u‖2L2 + ‖∇ · u‖4L2

)
‖∇v‖2L2 .

Using Gronwall’s lemma, equation (9.4) and (1.6), we obtain

(9.5) ‖∇v(t)‖2L2 +
1

c

∫ t

0

‖∆v(s)‖2L2 ds 6 K‖∇v0‖2L2 ,

for some constant K = K(Ω, ‖∇ · u0‖L2 , ‖v0‖L2). In fact, one can bound K above
by

K 6 C exp
(
C
(

exp
(
C‖∇ · u0‖2L2

)
‖v0‖4L2 + ‖∇ · u0‖2L2 + ‖∇ · u0‖4L2

))
for some constant C = C(Ω).

Finally, we consider a Galerkian scheme for (1.1)–(1.2) using eigenfunctions of the
Stokes operator (with no-slip boundary conditions), and gradients of eigenfunctions
of the Laplacian (with no-flux boundary conditions). It is easy to check that these
Galerkian approximations satisfy the same energy estimates (9.4) and (9.5). A
bound for ∂tu will then follow from (1.1), and standard techniques will prove global
existence. �

Appendix A. Failure of coercivity under the standard inner product.

Most of this section is devoted to the proof that Stokes operator is not positive
under the standard L2 inner product (Proposition 2.1).
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Proof of Proposition 2.1. As mentioned earlier, the key idea in the proof is to iden-
tify the harmonic conjugate of the Stokes pressure as the harmonic extension of the
vorticity. We begin by working up to this. Since

∆ps = ∇ · ∇ps = ∇ · (∆P − P∆)u = 0,

the Poincaré lemma guarantees the existence of qs such that

(A.1) ∇ps = ∇⊥qs
def
=

(
−∂2qs
∂1qs

)
.

Observe that both ps and qs are harmonic. Indeed,

(A.2) ∆qs = ∇×∇⊥qs = ∇×∇ps = 0.

We remark that equations (A.1) and (A.2) above show that −qs is the harmonic
conjugate of ps.

To obtain boundary conditions for qs, let τ = −ν⊥ be the unit tangent vector

on ∂Ω. To clarify our sign convention, if ν =
(
ν1
ν2

)
, then τ

def
=
(
ν2
−ν1

)
. Now observe

∂qs
∂τ

= ∇qs · τ = ∇⊥qs · ν =
∂ps
∂ν

= ν · (∆P − P∆)u

= ν · (∆u−∇∇ · u) = ν · ∇⊥∇× u = τ · ∇ω =
∂ω

∂τ
,

where, as before, ∇× u = ∂1u2− ∂2u1 is the two dimensional curl, and ω = ∇× u.
Thus, adding a constant to qs, we may, without loss of generality assume

(A.3) qs = ω on ∂Ω.

A direct calculation shows∫
Ω

u ·Au =

∫
Ω

|∇u|2 +

∫
Ω

∇ps · u =

∫
Ω

(
ω2 + |∇ · u|2

)
−
∫

Ω

qs · ω,

where we used the boundary condition u = 0 on ∂Ω to integrate by parts. Thus to
prove Proposition 2.1, it is enough to produce a function u, satisfying the required
boundary conditions, such that

(A.4)

∫
Ω

qsω > ‖ω‖2L2 + (C + 1)‖∇ · u‖2L2

We prove the existence of such functions separately.

Lemma A.1. For any C > 0, there exists u ∈ H1
0 (Ω) such that (A.4) holds. As

usual, ω = ∇× u, and qs is the solution of the Dirichlet problem

(A.5)

{
∆qs = 0 in Ω,

qs = ω on ∂Ω

The Lemma immediately finishes the proof of Proposition 2.1. �

Proof of Lemma A.1. We look for u of the form u = v + ∇p with ∇ · v = 0 in Ω
and v · ν = 0 on ∂Ω, where ν denotes the outward pointing normal vector on the
boundary. Then there exists ψ on Ω so that v = ∇⊥ψ. The boundary condition
v · ν = 0 becomes ∂ψ

∂τ = 0 where τ denotes the tangential direction on ∂Ω.
We note that u = 0 and v · ν = 0 on ∂Ω imply

∂p

∂τ
= −v · τ = −∂ψ

∂ν
,

∂p

∂ν
= 0, v · ν =

∂ψ

∂τ
= 0.
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As ∂ψ
∂τ = 0 and ψ is determined up to a constant we can assume without loss

of generality that ψ = 0 on ∂Ω and then for a given u the stream function ψ is
uniquely determined as the solution of the Dirichlet problem

∆ψ = ω in Ω,

ψ = 0 on ∂Ω.

Then, we have∫
Ω

qsω dx =

∫
Ω

qs∆ψ dx =

∫
Ω

∆qsψ dx+

∫
∂Ω

∂ψ

∂ν
qs dσ −

∫
∂Ω

∂qs
∂ν

ψ dσ

=

∫
∂Ω

∂ψ

∂ν
qs dσ =

∫
∂Ω

∂ψ

∂ν
∆ψ dσ,

and (A.4) becomes

(A.6)

∫
∂Ω

∂ψ

∂ν
∆ψ dσ > ‖∆ψ‖2L2 + (C + 1)‖∆p‖2L2 .

Summarizing it suffices to find ψ, p such that (A.6) holds together with the
boundary conditions

(A.7) ψ = 0,
∂p

∂ν
= 0, and

∂p

∂τ
= −∂ψ

∂ν
on ∂Ω.

Fix some point x0 ∈ ∂Ω and let s 7→ x̂(s) be an arclength parametrization of
the (C3) boundary ∂Ω, such that x0 = x̂(0) and oriented so that the outward unit
normal ν̂(s) at x̂(s) satisfies ν̂(s)⊥ = x̂′(s). Then the map (s, r) 7→ x = x̂(s)−rν̂(s)
is C2 and is locally invertible near x0, providing orthogonal coordinates x 7→ (s, r) ∈
(−ε, ε)× (0, ε) in some neighborhood of x0 in Ω.

We fix p to be of the form p(x) = α(s)β(r) where α and β are in C∞c ((−ε, ε))
and β(0) = 1, β′(0) = 0. We will then choose ψ of the form ψ(x) = α′(s)γ(r) where
γ ∈ C∞c ((−ε, ε)) with γ(0) = 0 and γ′(0) = 1. Then (A.7) will hold, and direct
calculation shows ∫

∂Ω

∂ψ

∂ν
∆ψ dσ =

∫ ε

−ε
α′(s)2(γ′′(0) + κ(s)) ds

where κ(s) = ∆r(x̂(s)) is the curvature of the boundary. The right-hand side of
(A.6) on the other hand, is easily computed to be bounded by C +C‖γ‖2H2 , with a
constant C independent of the choice of γ. It is clear that γ can be chosen to make
γ′′(0) arbitrarily large while ‖γ‖2H2 remains bounded. Thus (A.6) holds for some ψ
and p. �

Finally, to conclude this section we turn to the proof of Corollary 2.3. Of course
the proof is immediate from Proposition 2.1, and we only present it here for com-
pleteness.

Proof of Corollary 2.3. Choose u0 ∈ C2(Ω̄) to be such that (2.5) holds, and let u
be the solution to (2.10) with initial data u0. By continuity in time, we must have∫

Ω

u(t) ·Au(t) < 0

for all t in some small interval [0, t0]. Thus ∂t‖u‖2L2 = −
∫

Ω
u · Au > 0 on the

interval (0, t0] which immediately completes the proof. �
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