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Abstract

The notion of two-scale convergence for sequences of Radon measures with finite total variation is generalized to
the case of multiple periodic length scales of oscillations. The main result concerns the characterization of (n+1)-
scale limit pairs (u,U) of sequences {(ucLN| o, Duc|o)}te>0 C M(RT) x M(Q;RY*N) whenever {uc}eso is
a bounded sequence in BV(Q;Rd). This characterization is useful in the study of the asymptotic behavior of
periodically oscillating functionals with linear growth, defined in the space BV of functions of bounded variation
and described by n € N microscales, undertaken in [10].
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1. Introduction and Main Results

The notion of two-scale convergence was first introduced by Nguetseng [13] and further developed by Allaire
[1]. Tt was used to provide a mathematical rigorous justification of the formal asymptotic expansions that
used to be commonly adopted in the study of homogenization problems (see, for example, [5], [12] and [14]).

In [2], Allaire and Briane extended that notion to the case of multiple separated scales of periodic oscillations.
Precisely,

Definition 1.1.1 Let n,N € N, let & C RY be an open and bounded set, and let Y := [0,1]". Let
015y 0n : (0,00) — (0,00) satisfy for all i € {1,---,n} and for all j € {2,---,n},
. . 0j(e)
lim g;(e) =0, lim —2¢) 1.1
L o) =0 B o ® -
A sequence {u.}e=o C L*(Q) is said to (n+ 1)-scale converge to a function ug € L*(Q x Yy x - -- x Y,,), where
each Y; is a copy of Y, if for every ¢ € L?(;Cx (Y1 x --- x Y,,)) we have

x X
lim U (37)90(%—;7—) d.’L':/ uo(xaybayn)w<xay1a7yn>dxdyldyn7
e—=0t Jo : 01(¢) on(€) QXY X XYy,

Here, and in the sequel, € is a small parameter taking values on an arbitrary sequence {e; }jeN of positive numbers converging
to zero. We write €, {uc}e>0 and e — 07 in place of ¢}, {ue;}jen and g5 — 0% as j — oo, respectively. Also, the subscript
# stands for Y7 X -+ X Yj,-periodic functions (or measures) with respect to the variables (y1,---,yn). We refer the reader to

Section 2 for the notations used throughout this paper.
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. . . 1 -
in which case we write usLs)siuo.

Remark 1.2. In the context of multiscale composites, the functions o1, ..., 0, stand for the length scales or
scales of oscillation. The second condition in (1.1) is known as a separation of scales hypothesis.

Also, Allaire and Briane [2] established a compactness result concerning this notion and provided the
relationship between the (n + 1)-scale limit and the usual weak limit in L?(Q2) (see [2, Thms. 2.4 and
2.5]). Precisely,

Theorem 1.3. Let {u.}.~o be a bounded sequence in L*(Q)). Then, there exist a (not relabeled) subsequence
of {uc}e>0 and a function ug € L*(2x Yy x---xY,,) such that u. (nt1)=se 0. Furthermore, u. — g weakly in
L?(Q), where tig(z) := fY1><-“><Yo uo (T, Y1, Yn) dyr -+ - Ay, and lim._ o+ [|ucllL2() = [|uollL2(@x vy x--xv,)
> [laol|L2(0)-

In general the (n + 1)-scale limit differs from the weak limit in L?(£2), with the (n + 1)-scale limit capturing
more information on the oscillatory behavior of a bounded sequence in L?(Q) than its weak limit in L?(2).
The proof of Theorem 1.3 follows the arguments introduced in the case n = 1 treated in [1] (see also [13]).

Moreover, in order to study the asymptotic behavior of the solutions of certain partial differential equations
with periodically oscillating coefficients in the space H'(£2), the (n + 1)-scale limit of gradients was fully
characterized in [2, Thm. 1.2]. Precisely,

Theorem 1.4. Let {u.}.~o be a bounded sequence in H (). Then there exist u € H*()) and n functions
ui € L*(2x Y1 x -+ x Yi_1; Hy(Y;)), for i € {1,---,n}, such that

UEL?_SL\U, (1.2)
and, up to a not relabeled subsequence,
Vu, ("Jri)_sc Vu+ Z V. ;. (1.3)

i=1

Furthermore, given any u € H'(Q) and u; € L*(Q x Y1 x --- x Yi_1; Hy(Y;)), i € {1,---,n}, there exists a
bounded sequence {u.}.~o for which (1.2) and (1.3) hold.

Remark 1.5. In the theorem above, the function u is the weak limit in H() of the sequence {u.}co.
The terms V,,u; in (1.3) may be interpreted as the gradient limits at each scale.

Remark 1.6. Definition 1.1 and Theorem 1.4 admit simple generalizations to the cases LP(Q) and WP (Q),
respectively, for any p € (1, 00).

Theorem 1.4 extends Prop. 1.14 (i) in [1] to the case in which n > 2, but its proof requires significant
changes and is rather more difficult. By means of this result, Allaire and Briane [2] completely characterize
the asymptotic behavior as € — 07 of solutions of the family of boundary value problems

—div(A:Vue) = f, a.e.in €,
ue = 0, on 012,

where f € L?(Q), Ac(x) := A(x, G gn—(s)), and A is a N x N matrix satisfying appropriate coercivity

and boundedness hypotheses, and such that A(x,-) Y7 x -+ x Y,,-periodic (see [2, Thm. 1.3]).
A similar analysis was undertaken in [1] in the case n = 1. Also in [1] (see [1, Thms. 3.1 and 3.3]), Allaire
provides a simple and elegant proof for the homogenized functional of a sequence {I.}.~¢ of functionals of
the form
ue WP RY) v L(u) == /f(g Vu(x)) da.
Q
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Following this last approach, in [3] Amar extended the notion of two-scale convergence to the case of bounded
sequences of Radon measures with finite total variation, and characterized the two-scale limit associated with
a bounded sequence in BV () (see [3, Thm. 3.6]). Using this characterization, the asymptotic behavior as
€ — 07 of sequences of positively 1-homogeneous and periodically oscillating functionals with linear growth,
defined in the space BV of functions of bounded variation, of the form

we BV(®) = L= [ F(Z J7tn@) dlDula)

is given in [3, Thm 4.1].

The purpose of the this paper is to extend the notion of two-scale convergence for sequences of Radon
measures with finite total variation introduced in [3] to the case of multiple periodic length scales of
oscillations, and to characterize the (n + 1)-limit associated with a bounded sequence in BV (Q;RY). Using
some ideas of [2] and [3], we fully develop the underlying measure-theoretical background.

Definition 1.7. Let m,n,N € N, let Q@ C RY be an open set and define Y := (0,1)N. Let
01, ..., 0n be positive functions in (0,00) satisfying (1.1). We say that a sequence {fic}e>0 C M(2;R™)
of Radon measures, with finite total variation in €, (n + 1)-scale converges to a Radon measure o €
(Co(%Cu(Yy x -+ x Yn;Rm))), ~ Myx(Q x Yy x -+ x Y,;R™) with finite total variation in the product
space Q x Y7 x --- x Y, where each Y; is a copy of Y, if for all p € Cy(§2; C(Y1 x --- x Y,,;;R™)) we have

x X
lim Sp(xa—a"'a >d/145$ :/ OL, Y1, Yn d:U/O TyYi, 5 Yn)s
28 P 0@ w0 ) T fver, 2 ol )

in which case we write uE%uo.

This notion of convergence is justified due to a compactness result asserting that every bounded sequence
{fte fe>0 iIn M(;R™) admits a (n + 1)-scale convergent subsequence (see Theorem 3.2). One can also show
that the weak-x limit in M(Q;R™) is the projection onto Q of the (n 4 1)-scale limit, and so, in general
the (n + 1)-scale limit captures more information on the oscillations of {j}eso than the weak-x limit in
M(Q;R™) (see Proposition 3.3). The proofs of these two properties are simple generalizations of those in
the case in which n =1 (see [3]).

Definition 1.8. For d,i € N, define the space M, (Q x Y1 x -+ x Y;_1; BV (Y;;R?)) of all BV4(Y;;R?)-
valued Radon measures p1 € M(2x Yy x -+ x Y;_1; BV (Y;; R?)) with finite total variation, for which there

exists a RN -valued Radon measure A € My (2 x Y1 X -+ x Y;; R¥N) | with finite total variation in the
product space Q x Y1 x -+ x Y;, such that for all B€ B(Q x Y; x --- xY;_1), B € B(Y;),

(Dy. (1(B)))(E) = A(B x E). (1.4)

We say that A is the measure associated with D, p.

Note that since B(Qx Y1 X -+ x Y;_1) @ B(Y;) = B(Q x Y1 x - - - x Y;), it follows that if p € M(Q2x Y x -+ x
Yi_1; BV (Yi;]Rd)), then there exists at most one measure A € M4 (Q X Y] X -- X Yi;RdXN) satisfying
(1.4).

In Subsection 2.4 we will make more detailed considerations on the space M (Q xY1x---XY;_1; BV (Yi; Rd)) ,
7€ N.

We now state our main result, which provides the characterization of (n + 1)-scale limit pairs (u,U) of
sequences {(UEENLQ, Du, LQ)}E>O C M(;RY) x M(Q; RN whenever {u.}.~¢ is a bounded sequence in
BV (;R%). We will assume a stronger separation of scales hypothesis than the one in (1.1), precisely (cf.

2),
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Definition 1.9. The scales o1, ..., 0, are said to be well-separated if there exists m € N such that for all

i€ {2}, iy (LELY" L (15)

e—0+ \ 0i—1(€) 0i(e)

The case in which g;(¢) := &’ is a simple example of well-separated scales. Indeed, it suffices to take m = n+1.

Theorem 1.10. Let {u.}.~0 C BV (:;R?) be a sequence such that u. = u weakly-x in BV (Q;R?) as
e — 0%, for some u € BV (Q;R?). Assume that the length scales o1, ..., 0, satisfy (1.1) and (1.5). Then

a) uLYq (n+?-sc Tu, where 7, € Myu (Q x Y1 x -+ x Yy,;R?) is the measure defined by
Tu i= uENm ® LN ,

Y1, 5Yn

ie., if p € Co(QCu(Y1 x -+ x Yy ;RY)) then

<Tu7‘p> :/ Qp(xvylv"'ayn) u(x)dxdyldyn
QAXYy X XYy,

b) there exist a subsequence {Duc/}er~o of {Duc}eso and n measures p; € M*(Q X Y] X -0 X
E_l;BV#(K-;Rd)), i€ {l,---,n}, such that

(n+1)-sc
DU&‘/ = )\“»I—‘1=""l‘n7

where Ay, o, € My (Qx Y7 x -+ x Y,,; RN) s the measure

n—1
Mir s, = Dujg @ L8+ 3" N@ 000, 4, (1.6)
=1

ie, if p € Co(Q;Cu (Y1 X -+ x Vs RN)) then

<)\u,u1,-~,/.l.n7(p> :/ QD(iC, Y1,y yn) : dDU(iU)dyl e dyn
QXY X+ XY,
n—1
+Z/ eyt yn) AN, yr, -, ) Ay - -~ dyn
i—1 OXY1 X XY,

+/ Sp(xayla"'ayn):d)\n(x?yla"'7yn)7
QXY X XY,

and each \; € Myx (Q XYy x - x K;RdXN) is the measure associated with Dy, p;, 1 € {1,---,n}.

The proof of Theorem 1.10 is not a simple generalization of the analogous result in the case n = 1 treated
in [3]. When n > 2, and similarly to [2], some new arguments are needed. We also show that Theorem 1.10
fully characterizes the (n + 1)-scale limit of bounded sequences in BV (€; R?), in that:

Proposition 1.11. Let u € BV (€;RY) and let p; € M, (2 x Yy X -+ x Y;_1; BV (Y;;RY)), i € {1,- -+, n}.
Then there exists a bounded sequence {uc}e~o C BV (€;R?) for which a) and b) of Theorem 1.10 hold (with
¢’ replaced by ).

Remark 1.12. Proposition 1.11 together with Theorem 1.10 represent the BV version of Theorem 1.4.

Using Theorem 1.10, in [10] we study the asymptotic behavior with respect to the (n + 1)-scale convergence
of first order derivatives and periodically oscillating functionals with linear growth, defined in the space BV

4
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of functions of bounded variation and described by n € N microscales. In the particular case in which n =1,
and as a corollary of our results in [10] we recover Thm. 4.1 in [3] under more general hypotheses.

This paper is organized as follows. In Section 2 we introduce the notation and we recall some basic properties
of (R™-valued) Radon measures and of functions of bounded variation. We collect properties of integration
with respect to certain Banach-valued measures, which seems to be hard to find in literature and that
will play an important role in the subsequent section, Section 3. The latter is devoted to the proofs of
Theorem 1.10 and of Proposition 1.11.

2. Notation and Preliminaries

2.1. Notation

In the sequel Z is a o-compact separable metric space, §2 is an open subset of RY, N € N, and Y := (0, 1)V
is the reference cell. For each i € N, Y; stands for a copy of Y. Given x € RY, we write [z] and (x) to denote
the integer and the fractional part of x componentwise, respectively, so that z = [z] + (z) and [z] € Z",
(x) €Y.

Let n,m € N. If 2,y € R™, then « - y stands for the Euclidean inner product of  and y, and |z| := \/z -z

for the Euclidean norm of x. The space of (m x n)-dimensional matrices will be identified with R™", and
we write R™*". If £ = (§)1<i<m,1<j<ns ¢ = (Gij)1<ism,1<j<n € R™X", then

E:0:=) Y &G

i=1 j=1

represents the inner product of £ and ¢, while |£| := /¢ : £ denotes the norm of £. If « € R™ and b € R,
then a ® b stands for the (m x n)-dimensional rank-one matrix defined by a ® b := (a;b;)1<i<m,1<j<n-

Let g : R™™ — R™ be a function. We denote the Lipschitz constant of g on a set D C R™™ by Lip(g; D); if
D coincides with the domain of g we omit its dependence. We say that ¢ is Y7 X - -+ X Y,-periodic if for all
(S {17"'7n}7 K€ ZN7 Y1y -3 Yn € RN? one has g(yh"'vyi +’{7"'7yn) = g(ylv"'7yi7"'ayn)'

We represent by C(Z; R™) the space of all continuous functions g : Z — R™, while C.(Z;R™) is the subspace
of C(Z;R™) of functions with compact support. The closure of C.(Z;R™) with respect to the supremum
norm || - || is denoted by Co(Z; R™). It is well know that Cy(Z; R™) is a separable Banach space, and that
g € Co(Z;R™) if, and only if, g € C(Z;R™) and for all n > 0 there exists a compact set K, C Z such that
for all z € Z\K,, |g(z)| < n. Moreover, if Z C RV is an open and bounded set, then Co(Z;R™) coincides
with the space of continuous functions on Z vanishing on 7.

We write C¥(Z;R™) (respectively, C¥(Z;R™) and C§(Z;R™)), k € N, to denote the space of all functions
in C(Z;R™) (respectively, C.(Z;R™) and Cy(Z;R™)) whose i*"-partial derivatives are continuous functions
in Z for alli € {1,---,k}. We say that g € C*°(Z;R™) (respectively, C°(Z;R™) and C§°(Z;R™)) if for all
k€N, g € C*(Z;R™) (respectively, C¥(Z;R™) and C¥(Z;R™)).

We will also consider the Banach spaces
Cu(Y1 x -+ x Yy R™) = {g € C(R™;R™): gis Y} x -+ x Y,-periodic}

endowed with the supremum norm || - ||, and Co(Z; Cx (Y1 X -+ x Y,; R™)), which is the closure with
respect to the supremum norm ||+ ||lo of Co(Z; Ce (Y1 X - - - X ¥,,; R™)). The latter is the space of all functions
g: Z xR"™W — R™ guch that for all z € Z, g(z,-) € Cx(Y1 x -++ x Y;,;; R™) and for all y1,...,y, € RY,
95y, Yn) € Ce(Z;R™). The spaces Cl (Y1 x -+ - x Yo, R™), CF (Y1 X - - X Yi; R™), CF(Z; CL(Yr x -+ - x
Yo R™)), C22(Z;C2 (Y1 X -+ x Yo R™)), CE(Z; CE(Yy x -+ x Vs R™)) and C§°(Z;C% (Y1 X -+ - X Y3 R™))
are now defined in an obvious way.

If m =1 the co-domain will often be omitted (e.g., we write Cy(Z) instead of Cy(Z;R)).

5
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The letter C represents a generic positive constant, whose value may change from expression to expression.

Let p € C°(RY) be the function defined by

1
xT) = celsF-1z[ <1,
o) {0, o > 1,

where ¢ > 0 is such that [py p(x)dz = 1. For each 0 <& < 1 let

pe(x) := gin (g) (2.1)

Then p. € C*(RY) and

/RN pe(x)de =1, suppp. C B(0,e), p-=0, p-(—z)=p(x), (2.2)

for all z € RV,

For 0 < £ < 1/2, let 7. denote the extension to RY by (—%, %)N—periodicity of the function Pei(—L LN - Then
ne € C3(Y) is such that

[ =1 nz0 0=, (23)
Q
for any unit cube @ C RY and z € RV,

2.2. Measure theory
For m € N, the m-dimensional Lebesgue measure is denoted by £™.

The Borel o-algebra on Z is denoted by B(Z), and M(Z;R™) is the Banach space of all Radon measures
A B(Z) — R™ endowed with the total variation norm || - ||(Z), with

[IN[(Z) := sup { Z IA(Bj)|: {Bj}jen C B(Z) is a partition of Z}.
j=1

By Riesz Representation Theorem, the dual of Cy(Z;R™) can be identified with M(Z;R™) through the
duality pairing

AP MzRm),Co(zRm) = /ZSD(Z) ~dA(z) == Z/Z%(Z) dAi(2),
=1

where ¢ = (1, -+, ¢om) and A = (A1, -+, A\yp), so that the total variation of A is alternatively given by

||A||<Z>—sup{ /Z o(2)-dA(z): @ € Co(Z:R™), |so|oo<1}.

We say that a sequence {\;};eny € M(Z;R™) weakly-+ converges to some measure A\ € M(Z;R™), and we

write A; = A, if for all ¢ € Co(Z;R™), [, ¢(2) - d\j(z) — [, ¢(2) - dA(z) as j — co. We recall that from
every bounded sequence in M(Z;R"™) we can extract a weakly-x convergent subsequence.

If p € Co(Z) and A = (A1, -+, Ap) € M(Z;R™), then we set

JECECS ( [ epane. . [ o) dAm<z>).

If o = (g1, pm) € Co(Z;R™) and A € M(Z;R), then we define

[eerue = ( [aeaw [oeae).

6
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We write M (Y7 x -+ - xYy,; R™) and My (Z x Y7 x - - - xY,,; R™) to denote the duals of Cy (Y7 x - - - x Yy, R™)
and Co(Z;Cu (Y7 X -+ x Y,;R™)), respectively.

Let Z1, Z be two o-compact separable metric spaces. We write B(Z1) ® B(Z2) to represent the smallest o-
algebra that contains all sets of the form B; x By, where By € B(Z,), Ba € B(Z5). Since Zy, Z, are separable
metric spaces, we have that B(Z;) @ B(Z2) = B(Z1 X Z3). Let us also recall that by Carathéodory’s Theorem
(see, for example, [11]), given two positive measures \; : B(Z1) — [0,00], Aa : B(Z3) — [0,00], we can
construct an outer measure, the product outer measure (A X Ag)* : 21%%2 — [0, oc], whose restriction to the
o-algebra B(Z1) x B(Z3) of the (A1 X A2)*-measurable sets is a complete measure. The latter is known as the
product measure of A\; and Ay, and is denoted by Ay x Ay. Moreover, it holds B(Z,)®B(Z2) C B(Z1) x B(Z3),
and for all By € B(Z1), B2 € B(Zs), one has

()\1 X )\2)(31 X BQ) = )\1(B1)>\2(BQ) (24)

We denote by A\; ® Ag the restriction of Ay x Az to the o-algebra B(Z1) @ B(Z2) = B(Zy x Zs).
More generally, for Ay € M(Z1;R), Ay € M(Z2;R), we define

MR =AM @A + AT @A — AT @A) — A\ @ AT,

where A\; = A — A] and A\ = A\J — )\, are the Hahn decompositions of A; and A2, respectively. Note that
A ® Ay € M(Zy x Z3;R) and (2.4) holds with A1 x Ay replaced by A\ ® Ao. Similarly, in the case in which
A € M(Z1;R) and Ay = (AL, -+, APY) € M(Z2;R™), Ay ® Ag is the measure in M(Z; x Z; R™) satisfying
(2.4) (with A1 x Az replaced by A\; ® A2) defined by Ay @ Ay := (A @ A, -+, Ay @ AY).

We recall the slicing decomposition of a Radon measure (see, for example, [9]). Let A € M(Z; x Za;R) be
a finite, nonnegative Radon measure on Z; x Z5. Represent by o the canonical projection of A onto Zs,
i.e., the measure defined by o(E) := A(Z; x E), for all E € B(Z;). Then for o-a.e. z5 € Z, there exists a
nonnegative Radon measure v,, on Z; such that v,,(Z;) = 1, and such that for all bounded and continuous
function g on Z; X Zs, the mapping

z2 = g(zlsz)dVZ2(zl)
Z1

is o-measurable and

/lezz g(z1,22) dX(21, 220) = /Z2 (/Zlg(zl,zg)dy22(zl)> do(2). (2.5)

2.3. The space of functions of bounded variation

A function v : @ — R? d € N, is said to be a function of bounded variation if v € L' (Q;Rd) and its
distributional derivative Du belongs to M(Q; ]RdXN), that is, if there exists a measure Du € M(Q; RdXN)
such that for all ¢ € C.(Q2), j € {1,---,d} and i € {1,---, N} one has

[ @52 @ e = [ o) Dy (z),

where u = (u1,---,uq) and Du; = (Diuj,---,Dnu;). The space of all such functions u is denoted by
BV (€;R?), which is a Banach space when endowed with the norm llull By (;ray = llull L1 @re) + [[Dul|(2).

We will also consider the space BV (Y; Rd) = {u € BVioc (RN; Rd) Do is Y—periodic}, endowed with the
norm of BV(Y;Rd). Notice that if u € BV (Y; Rd), then Du € M#(Y;RdXN).

We will consider the weak-x convergence in BV (Q;R?). We recall that {u;};eny C BV (€;R?) is said to
weakly-x converge in BV (€;R?) to some u € BV (Q;R?) if u; — u (strongly) in L*(Q;R?) and Du; X Du
weakly-x in M (Q; R*N). We recall also that from every bounded sequence in BV (€;R?) we can extract a
weakly-x convergent subsequence.
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2.4. Integration with respect to BVy(Y; R%)-valued Radon measures

In this subsection we will deal with integrals with respect to BV (Y;R%)-valued Radon measures. We start
by recalling the notion of Banach space-valued measures. For a more detailed exposition see, for example,

[7].

Definition 2.1. Let X be a Banach space. We say that p: B(Z) — X is a (X-valued) Radon measure if
the following conditions are satisfied:

i) () =0

ii) Given any countable family {B;};ecn of mutually disjoint Borel subsets of Z, the series Z;’il w(Bj)
converges (in X ) and
w(UB) =S wi)
j=1 j=1

If, in addition, the condition

iii) The total variation of p,

pl[(Z) := sup { Z (Bl x: {Bj}jen C B(Z) is a partition on},

is finite,

is satisfied, then we say that p is a (X-valued) Radon measure with finite total variation, and we write
pwEMZ;X).

Notice that if p € M(Z; X), then ||p| : B(Z) — [0,00) defined by
sl (B) = sup{z I(B,)1x: {B;}jens © B(Z) is a partition ofB}, BeB(2),

is a finite positive Radon measure on Z.

We will be particularly interested in the case in which Z =Q x Y} x -+ x Y;_1 for some i € N, where
AxYy x---xY,_1:=Q ifi=1,

and X = BV (Y;RY).

Let p € M(Z; BV (Y;RY)) and B € B(Z). Then u(B) € BV4(Y; Ji%d ,and so Dy(p(B)) € My (Y; RPN,

Moreover, it can be checked that the mapping D,pu : B € B(Z) — y/,L(B) D,(pn(B)) belongs to
M(Z; M#(Y;RdXN)) in the sense of Definition 2.1.

According to the statement of Theorem 1.10 (see also Definition 1.8), the measures p € M(Q x Y] X
- X Y 1;BVy (Y;;Rd)) for which there exists A € Myxu (Q X Y] X -0 X Yi;RdXN) such that for all
BeB(QxY; x--xY;_4), E€B(Y;), we have

Dy, (1(B))(E) = A(B x E), (2.6)

play an important role in the characterization of the multiscale limit of the sequence of distributional
derivatives of a bounded sequence in B V(Q; Rd).

Example 2.2. Fixi € N, let 7 € My4(Qx Yy x -+ xY;_1;R), and let v € BVy(Y;; R?). Then the mapping
p:BeBQXxY x - xYi 1)~ u(B):=7(BxY; x---xY;_q)v

8
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belongs to M(Q XY XX Yi,l;BV#(Yi;Rd)), with
[ell(2 x Yy x - x Yiq) = [[7[(Q x Y1 x - x Y1) |v] By (v;Ra).-

Observe also that for all B € B(Q x Y1 x --- x Y;_1), (Dy,p)(B) = D,,(u(B)) = 7(B)Dv. Moreover,
defining A := 7 ® Dv, we have that A\ € Myx(Q x Y1 x -+ x Y;;R™Y) and (2.6) holds. Thus,
peM(QXY) - xY;_1;BVy(Y;;RY)) (see Definition 1.8).

Our goal now is to give sense to the expression
/ ‘P(37>y17"'7yi) du‘(x7y17"'7yi71)dyiu (27)
QXY x---xY;

whenever ¢ € Cp(; Cp (Y1 X --- x Y;)) and p € M(Q XY X% Yi,l;BV#(Yi;Rd)).

Step 1. We start by assuming that ¢ = 1, and we write Y in place of Y;. As it is usual when defining
an integral, we will start by giving meaning to (2.7) for simple functions and then, using approximation
arguments, we will extend such notion to more general functions. Let s : 2 — R be a Borel simple function,
with

m
5= ZCiXBm (2.8)
i=1

where m € N, ¢y, ..., ¢;, € R are distinct and By, ..., B, € B(Q2) are mutually disjoint. If B € B(£2), then we
define the integral of s over B with respect to p, and we write [, s(z) du(z), as the function in BV (Y; Rd)
given by
/ s(2) dpa(e) = 3 esp(Bi 1 B). (2.9)
B i=1
Let ¢ : @ — R be a bounded, Borel measurable function, and let {s;};cn be a sequence of Borel simple

functions converging uniformly in Q to ¢, with s; :== >, cgj)xB@ as in (2.8). We have that

s

[ 5@ duto)

dy:L’icgj)u(ng)>’dy< i\cﬁj)lHu(ng))‘

L1(Y;R4)
and .
12, ([ss@anm) |07 < S 112, (n(50)) o
Q2 i=1
where we used (2.9). Consequently, using the definition of the total variation of p,
| [ss@autaa + |, ( [ st )| o) < sl (2.10)

and also

J

Since sup; [|s;||cc < 0o and p has finite total variation, we deduce from (2.10) that the sequence

{ [ du(x)}jGN

is uniformly bounded in BVy(Y;R?). Thus, up to a (not relabeled) subsequence, we may find u €
BV (Y;R?) such that

[ st dnta)

dy < > |e [l (BY) = /Q|sj<x>|d|mu<x>. (2.11)
=1

/sj(x) dp(x) 25 u weakly-x in BVy (V;RY).
Q

9
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Assume now that {z;},cn is another sequence of Borel simple functions converging uniformly in € to ¢, and
such that

/tj (z)dp(z) = v weakly-x in BV (V;RY),
Q

for some v € BV (Y;R?). Then {s; — t;},cn is a sequence of Borel simple functions converging uniformly
in  to 0, and so (2.10) ensures that v = v for £LV-a.e. y € RV, This gives sense to the following definition.

Definition 2.3. Let ¢ : @ — R be a bounded, Borel measurable function. If B € B() and
n < M(Q BV# (Y Rd)), then we define the integral of ¢ over B with respect to p, and we write
fB , as the function in BV (Y R ) given by

/qu(a:) dp(z) = (wx-BVg(Y;R?)) — lim [ s;(z)dp(z),

J—00 B
where {s;}cN Is a sequence of Borel simple functions converging uniformly in € to ¢.

The following lemma will be useful in the sequel. Its proof uses (2.10), (2.11), Definition 2.3, Lebesgue
Dominated Convergence Theorem and the lower semicontinuity of the total variation.

Lemma 2.4. Let ¢ : Q — R be a bounded, Borel measurable function, and let p € M(Q; BV (Y;Rd)).

The following hold:
i) /Y /Q o) dp() | dy < /Q 16(2)| ]l );

ii) If v is the set application given by v(B) := / ¢(z)dp(z), B € B(Q), then v € M(Q; BV4(Y;R?)),
B
and [[V]|(B) < [|¢llcc|lll(B) for all B € B(2).

Note that if ¢ : @ — R and v : ¥ — R are a bounded, Borel measurable functions, then given
ne M(Q; BV (Y;Rd)) and B € B(Q), the integral

/Jaxy¢( x)(y) dp(z)dy —/ </¢ ) dp(z ) y) (y) dy (2.12)

By considering first bounded, Borel simple functions, one can show that

[ ([ osto) e v Z oit

whenever ¢, : Q@ = R, ¢, : Y =R, i € {1,---,m}, are bounded, Borel functions.

is well defined in R<.

Hu\l ), (2.13)

In fact, for simplicity, assume that m = 2. Let sq, so, t1,t2 be simple functions, and write

mi mo 5 l2
51 = E a;XA;, S2= E bixp,, t1= E CiXc,, to= E diXD;»
=1 =1 =1 =1

with my,ma, l1,le € N, {a; }], {b: )2, {cz} L A{d; } , finite collections of distinct real numbers, {A4;}"",
(B} c B(Q), and {C;}1 |, {D;}2, € B(Y) finite collections of mutually disjoint sets.

It can be shown that

s1ty + salo = Z RiXE; XF;>
i=1

10
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where for all i € {1,---,m}, k; € Rand |k;| < ||s1t1 + sat2|leo, {Ei}", is a family of mutually disjoint Borel
subsets of Q, and for all ¢ € {1,---,m}, F; € B(Y).

Thus,

| ([s@an@)mtmars [ ([ s au)o am a
/Y (ia (u(Ai))(y)> (icim (y)> + (ib (H(Bi))(y)) (idimi (y)) d
/Z"% Ei))(y) xr,(y) dy| < ||51t1+32t2\|002/ I (y)| dy

||slt1+s2t2||ooz / ((ED) )] dy < [Isat1 + satalloo 81l (),

from which we deduce (2.13) for simple functions. To prove the general case, 1f ¢i Q= R, 1/Jz Y — R,

i €{1,---,m}, are bounded, Borel functions, then for each j € N we can find s : Q0 — R and t (Y — R,

(@ (

Borel simple functions, such that s;° — ¢; uniformly in £ as j — oo, and tj

j — oo. By definition,

— 1); uniformly in Y as

/Q b1() dpa(e) = (wx- BV (V;RY) — lim [ 9 (2) du(a),

j— Jo

so that the uniform convergence ty) — ) in Y entails

i [ ([0 @)t was= [ (o) o

for all i € {1,---,m}. To conclude, it suffices to pass to the limit as j — oo the inequality
[ ([P @an@)m ) < |80 i)
i=1 0o

established above for simple functions.

We are finally in position to give sense to (2.7) (for i = 1).

Definition 2.5. Let ¢ € Co(Q;Cx(Y)) and p € M(; BV (Y;R?)) be given. We define

/Q><Y (=:v) dus(w) JIL“;{Z/ (/ o (@) dp(a ))(y)¢§j)(y)dy}, (2.14)

where for each j € N, m; € N, and for all i € {1,...,m;}, (bl(-j) € Cu(Q), wl(j) € Cx(Y), and {p;}cN, with
=" (bmw(]) converges to ¢ in Co (€% Cx(Y)).

Remark 2.6. (i) Given ¢ € Co(%;C4(Y)), the existence of a sequence {p;};en as in Definition 2.5 is a
consequence of the Stone-Weierstrass Theorem.
(ii) Note that (2.14) reduces to (2.12) when p(x,y) = ¢(z)(y) with ¢ € Co(Q2), ¥ € Cx(Y).

(iii) Estimate (2.13) ensures that the limit in the Definition 2.5 exists and does not depend on the
approximating sequence. Moreover,

/ (@, y) dp(e)dy] < o]l (), (2.15)
QxY

11
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for all ¢ € Cy(2;C»(Y)) , and

€ Co(2;C4(Y)) — A Yw(w»y) dp(x)dy

defines a linear continuous functional.

(iv) We could have considered the more general setting in which ¢ € C(Q;Cx(Y))NL>*(2 x Y). In this
case, (iii) above still holds with “p € Cy(Q; Cx(Y))” replaced by “p € C(;Cx(Y))NL®(Q xY)".

Next we prove an integration by parts formula for measures in M, (Q; BV (Y; Rd)).

Lemma 2.7. Let p € M, (Q; BVy(Y;R?)), ¢ € Co(Q) and ¢ € C4(Y) be given. Then

/ ( / ¢<x>du<x>)<y>®vw<y>dy=— o(x) ¥(y) dA(z, ), (2.16)
Y Q QxyY

where A € My (Q x Y;RPN) js the measure associated with Dy p.

PRrROOF. Fix B € B(f2), and let Ap € M4 (Y;R) be the (projection) measure defined by Ag(-) := A(B X ).
We have that

(s an@)w) @ vot s = [ e o voma =~ [ vwap,u@)io)
v \Ja Y Y (2.17)

. /Y b)) =— [ ) dr(zy) = - / x5 () () dA(z, ),

BXY QxY

where we have used the fact that pu(B) € BV (Y;R?) and the slicing decomposition of a Radon measure
(see (2.5)) applied to A\|pxy-

Since any function in Cp(2) can be approximated with respect to the uniform convergence in €2 by Borel
simple functions, (2.16) follows from (2.17) and Definition 2.3. O

Step 2. We define (2.7) recursively for an arbitrary ¢ € N. Fix ¢ > 2, and let ¥ € Cp(2; C (Y1 x -+ X Y;_1))
and p € M(Q x Yy x -+ x Y;_1; BV (Y;,R)).

Proceeding as before (see (2.9) and Definition 2.3), we define the integral of ¥ over B € B(Q2x Yy x---xY;_1)
with respect to p, and we write [ 9(x,y1, -+, yi—1) dp(z, y1, - -+, yi—1), as the function in BV (Y;; R?) given
by

/; ¢(x7y1a o ayi—l)dl'l’(xayh o 7yi—1)

= (w*_BV# (}/;7 Rd)) - jllngo Sj(l', Y1, 7yi—1) d/,b(.]f, Y1, 7yi—1)7
— /B

where {s;};en is a sequence of Borel simple functions s; : © x ROE-DN R, Y] X --- x Y;_q-periodic in the
variables (y1,---,¥;—1), converging uniformly in Q x Y7 X --- x Y;_1 to .

Let ¢ € Co(; Cx (Y1 x --- x Y;)), and take a sequence {@;};en converging to ¢ in Co(€Q; Cy (Y1 x -+ - x Y;)),
where each ¢; is of the form ;(z,y1, -, yi—1,¥:) = ZZL:]l ﬂg)(x, Y1, s Yio1) ,(Cj)(yi) with m; € N, and for
all ke {1,---,m;}, ﬁg) € Co(Q;Cu(Yr x --- x Y1), ,(j) € C4x(Y;). Once again proceeding as before (see
(2.12) and Definition 2.5) we can give sense to the expression

m; - -
Z/ (/ O (@1, yimr) dpla, g, 7yi1))(yi)'¢;(€])(yi)dyi (2.18)
k=1 Y QXY1x--xY;_1

12
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in R%, and prove that the limit of (2.18) as j — oo exists and is independent of the approximating sequence.
We then define

/ 90(11‘7y1a"'7yi) d“(xayla"'ayi—l)dyi
QXY x---XY;

m; 4 , (2.19)
= lim Z/ </ ﬁ,&j)(ﬂf,yh'";yi—l)dp,(%yl,"'a%’—l))(yi) ](gj)(yi)dyi.
Il VY OXY1X-XYi 1
Similarly, if ¢ € Cy (Q; Cy (Y1 X - X Yi;Rd)), then we set
/ gp(xayly"'ayi)'dlu’(z7y17"'7yi—l)dyi
QAxXY x---XY;
m; _ _ (2.20)
= lim ) / ( / 19,27><x7y1,---,y2-1>du<x,yh~--,yz-1))<yi>~w,£”(yz->dyi,
Il /Y N JaxY i xexYig

where Soj<x7y17 T 7yi71uyi) = ZZZl ﬁg)(%yh T >y171)1/}](€])(y1) with mj; € N7 and for all k € {17 e 7mj}7
19,(3) € Co(;Cu (Y1 x -+ x Yi_1)), l(f) c C#(Yi,Rd), converges to ¢ in CO(Q;C#(Yl X oee X Yi;Rd)) as

J — oo.

If, in particular, u € M, (Q xYr x - xY,_1;BVy (YZ—, Rd)) then similar arguments to those of Lemma 2.7
ensure that for all ¥ € Co(;Cp (Y1 X --- X Y1), ¢ € C#(Yi) and 6 € C#(Yi;RN) one has

/ (/ K, 1,y yim) dp(z, v, -+ ym))(yi) ®@ Vib(y;) dy;
Y; OXYyX--xXY; 1 (2.21)

= —/ Iz, g1, yio1) V(i) AN @, Y1, -, vi),
QXY x---xXY;

where A € My (2 x Y7 x -+ x Y;; RPN is the measure associated with Dy, p, and for all k € {1,---,d},

/ ( / ﬂ(x,y17-~-,yi_nduk(m,ylf--,yi_n)(yz«)dive(yz«)dyi
Vi \JOxYix-xY; 4 (2.22)

= _/ 79(%1/1» o '7yi71) a(yl) : d)‘(k)(xayla o '7yi)7
QXY X XY;

where Ay denotes the k™ row of A and p;, denotes the k™" component of p.

Remark 2.8. As observed in Remark 2.6 (iv), in (2.20) we may consider the more general setting in which
p € C’(Q;C#(Yl X - X Y,»;Rd)) N L°°(Q XYy XX Yi;Rd). In this case, the functions 19,?) are to be
taken in C(€;Cu (Y1 x -+ - X Y;))NL®(Q2 x Y7 x --- xY;), and, as before, the correspondent limit in (2.20) is
independent of the approximating sequence (with respect to the supremum norm || - |loc in Q@ x Yy x -+ x Y;).
Moreover,

F(@) ::/ @(‘r7yla"'ayi)'dl'l’(xvylf"?yifl)dyi
QXY x--xXY;

for ¢ € C(Q; Cu (Y1 X o X Y ]Rd)) N L> (Q XYy X xYy; ]Rd), defines a linear continuous functional, and
we have
[P ()] < llelloollell (€ x Y1 x -+ x Yiey).

Furthermore, proceeding as in Lemma 2.4 and (2.19), in the particular case in which ¢ is scalar and does
not depend on y;, then
I,

< / |<P($,Z/17"',yi—1)|d||li|\($ay1,"',yi—l),
QXY1><--- }/7;_1

/ o(@,y1, - yim1) dp(, yi, - - yi—1) |dys
QAxYy x--xXY;_1

13
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and if we define for all B € B(Q x Y] X --- x Y;_1),
V(B) ::/B¢($7y1""7yi—1)d/'l’(x7y17"'7yi—1)7

then we have that v € M(Q x Y1 x -+ x Y;_1; BV (Yi;RY)), and ||[v||(B) < ||¢lloc||pl|(B).

3. Multiscale Convergence in BV

The main goal of this section is to characterize (n + 1)-scale limit pairs (u,U) associated with sequences
{(uLN g, Duc|0)}es0 € M(Q;RY) x M(Q;RPN) whenever {u.}.~¢ is a bounded sequence in BV (Q; RY).

We start by establishing some properties concerning the notion of multiscale convergence for sequences of
measures, introduced in Definition 1.7.

Let n € N be fixed. In the sequel, o1, ..., 05, : (0,00) — (0, 00) satisfy (1.1).

Remark 3.1. The (n+1)-scale limit ;19 may depend on the sequence {e}. Indeed, let n = 1, p1(g) = ¢ for all
£ >0, Iet Q C RN be open and bounded, and let ¥ € C(Y'). Define pic := () LN . If o € Co(Q;Cx(Y)),
then by the Riemann-Lebesgue Lemma (see [8])

lim gp(a@ 6) dpe(z) = lim Q(p(x, 6)19(5) dz /QXY o(z,y)0(y) dzdy =: (Lo @IL,, p)

e—0t Jo e—0t
and

e—0*t e—0t

lim ng(x, g) dptez(x) = lim Qcp(m, g)ﬁ(%) dr = /Qxylxyg o(z,y1)9(y2) dedy; dys

-/ so(ff,y)( / ﬂ<y2>dy2) dady = (3£, £V, ¢),
QxY Y2

where ¥ = fY Y(y) dy. Hence ME}%L’NLQ ® 19£yN, while pi 2 %@ENLQ ® /j]yv. This example shows that it
(n+1)-sc d (n+1)-sc
€ Ho ana fe =

po- This is due to the dependence of the test functions on the length scales.

may be the case that y. Ao, with e’ < e, but pg # Ag. What we can guarantee

(n+1)-sc
6/

is that puer

The notion of (n + 1)-scale convergence is justified in view of the following compactness result. The proof is
a straightforward generalization of that of [3, Thm 3.5] (see also [1]).

Theorem 3.2. Let {pc}es0 C M(€;R™) be a bounded sequence. Then there exist a subsequence {pie: }er~o
of {{1c}e>0 and a measure jig € Myx(Q x Yy X -+ x Y,,; R™) such that ;@%po.
As in the cases studied in [1], [2], and [3], the (n+1)-scale limit contains more information on the oscillations

of a bounded sequence in M(€2; R™) than its weak-* limit, in that the latter is the canonical projection of
the (n + 1)-scale limit onto €.

Proposition 3.3. Let {u:}.>0 € M(Q:R™) and pg € Myp(Q x Y7 x --- X Y,,;R™) be such that
Ile (n+i)_sc po. Then p. = fig weakly-—x in M(Q;R™) as ¢ — 0%, where fig € M(Q;R™) is the measure
defined for all B € B(Q2) by

ﬂo(B) = ‘[L()(B XY XX Yn)
Moreover, [|fioll(©) < loll(© x Y1 x -+ x ¥i) < liminf._ov 2| (%2).

The proof of Proposition 3.3 is a simple generalization of [3, Lemmas 3.3 and 3.4].

Remark 3.4. In view of Proposition 3.3, since every weakly-x convergent sequence in M(£2; R™) is bounded,
the same holds for any (n + 1)-scale convergent sequence in M(€2; R™).

Assume that {u.}eso C BV(;R9) is a bounded sequence. By Theorem 3.2, there exist subsequences of
{UE'CNLQ}5>O and {Dug }eso that (n + 1)-scale converge. Theorem 1.10 provides a characterization of these

14
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(n+ 1)-scale limits as well as the relationship between them. To prove it we need an auxiliary lemma, which
is an extension of [3, Thm. 2.5] (see also [2, Lemma 3.7]).

Lemma 3.5. Let A € M, (Q x Y7 x -+ x Y,,; RY) be given. The following conditions are equivalent:
i) for alli € {1,---,n} there exists a measure p; € M, (Q x Yy x --- x Y;_1; BV4(Y;)) such that
)\1 ifn= ].,

A= ZA@ﬁMh e A, ifn > 2,

where each \; € My (Q XY X XY, RN) is the measure associated with D, pu;;
i) for all p € CEO(Q;C;?(}G X oo X YH;RN)) such that div,, ¢ =0 and, ifn > 2, forallk € {1,---,n—1},
$€Q7 yieYi7i6{17"'an}7
/ divy, o(T, Y15+, Yn) QY1 -+ dyn = 0,
Yep1 X Yo

we have
/ @(1‘17y17"'7yn)'d)\(xayh"';yn):0'
QXY x Y,

Proor. We will give the proof only for n = 2, the argument being easily adapted for any n € N.
Step 1. Assume first that i) holds, and let ¢ € C2°(Q; cy (Y1 x Y2;RY)) be such that div,, ¢ = 0 and
divy1 §0($7 Y1, 92) dg? =0.
Y2

Using the decomposition of A as in i), we have

/ ¢ - dA(z,y1,92) =/ @ - dAi(z,y1)dye +/ ¢ - dAa(z,y1,92)- (3.1)
QXY1><Y2 SZXYlXY2 QXY1><Y2

We will show that both integrals on the right-hand side of (3.1) are equal to zero. Let {¢;}en be a
sequence of the form ¢;(z, y1,y2) = > 12, ;C])( ) ,(C])(yl)ﬂl(j)(yg), where m; € Nand for all k € {1,---,m;},
o) € C(), v € CF(W1), 8Y) € CF (Ya; RY), converging to ¢ in Cg° (2 O3 (Vi x Yz;RY)). Then,

/ divy, p;jdys = Z <¢,(cj)vwl(cj) / 91(3) dyg) — / divy, pdys =0 in Cy(Q; Cx(Y1)), (3.2)

Y k=1 Ys Ys

divy, p; = > o007 dive)!) — divy, o = 0 in Co(2 Cp (Y1 x ¥2)). (3.3)
k=1

The convergence ¢; — ¢ in Cy (Q; Cy (Y1 X Ya; RN)) and Lemma 2.7 (see also Remark 2.8) yield

/ (@, y1,y2) - dAi (2, y1)dys = lim ©j(x,y1,y2) - A (@, y1)dy2
QXY xYs T JOxY xYs
= lim / y1) dA\(z,y 99 yo) dy
jéw{z - D) dh (@) L, O (y2) dy2

= lim { Z /Y ( / o (@) dpuy (2 ))(yl)wf%yndyr /Y 29,ij)<yz>dyz}

i L3 ([ 1m00) o 10 |
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where 1;,? w(J) Iy, 9(]) dyz. By (3.2), 317, l(j)lzl(qj) — 0 in Cp(2; Cx(Y1)), and so, using (3.4) and
Definition 2.5, we obtain’

[ o) e = [ 0duy)dn o (35)
QXYl XYz QXYl
Similarly, in view of (2.19), (2.22) and (3.3), we get

/ o(x,y1,y2) - dA2(z,y1,92) = lim wi(x,y1,92) - dAa(x, y1,y2)
QXYlXYQ J—oo QXY1><Y2

= lim {Z / D @) (41)6 (1) -d&(x,yhyz)}
I | =g Y OX Y1 XY

= lim {—Z / ( / ¢>£”<x>w£”<y1>dw(x,yl))(y2>dive,i”<y2>dy2}
J—oo k=1 Y2 QXYl

:/ 0dpey (2, y1)dys = 0.
OxXY1 xXYs

From (3.1), (3.5) and (3.6), we conclude that
/ @(x7y17y2) 'd)\(x;yl7y2) = 0)
QXYl XYZ

which proves ii).
Step 2. Conversely, assume by contradiction that ii) holds but A ¢ &, where £ is the space of all
measures 7 € My (Q x Yy x Yo;RY) for which there exist two measures p; € M, (€Q; BV (Y1)) and

o € M, (Q x Y1; BV4(Y2)) such that
T = )\1 & ﬁN + )\2,

where A\ € My (Q X Yl;RN) and Ao € My (Q X Y7 X YQ;RN) are the measures associated with D,
and Dy, pt5, respectively.
Note that &£ is a vectorial subspace of M4 (Q x Y] X Yo; RN). We claim that it is weakly-x closed.

Substep 2a. Assume that the claim holds. Recalling that in a Banach space, a convex set is weakly closed if,
and only if, it is closed, then by a corollary to the Hahn—Banach Theorem (see, for example, [6, Cor. 1.8]),
there exists a function ¢ € Cy (Q; Cu (Y1 X Yo; RN)) such that for all 7 € &,

(T, ) My 4 (X Y1 X YaiRN),Co(QiC 4 (Y1 X YaiRN)) = / o(z,y1,y2) - d7(z,y1,92) = 0,
QxY; XYs
(3.7)
<)‘a90>My#(§l><Y1XYQ;RN),CO(Q;C#(YlxYQ;RN)) = / o(x,y1,y2) - dA(z,y1,92) # 0.
QXY XYs

Let f € C°(Q), g € CF (Y1) and h € CF(Y2) be arbitrary. Define p, : B(Q2) — BVy(Y1), py : B(x Y1) —
BVy(Y2) by

1 (B) = (/Bf(a:)dx>g, BeB), py(E (/f () dxdy1>h EeB@xY)

Clearly, p; € M(Q; BVx(Y1)) and py € M(Q x Yq; BV (Y3)). Moreover, for all B € B(2), E € B(Q2 x Y1),

Dy, (1 (B)) = ( / fa dx>Vg£ e Dy(ps(E ( / F(@)g(un dxdyl)vm .
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Hence py € M, (; BV4(Y7)) and pgy € M, (Q x Y1; BV4(Y3)), with
M= LY @ VoL, and = (forlh© £Ny,) @ VhLNy,,

respectively. Thus A1 ® EQQ, A2 € €, and so by the first condition in (3.7), and denoting by (-, -) the duality
pairing in the sense of distributions, we conclude that

0= / o(w,y1,92) - dAi (2, y1)dy2 = / o(x,y1,92) - (f(2)Vg(y1)) dedy:dys
QXY XYs QXY xYs

= /Qxyl </y2 w(w,yl,yz)dyz) (f(2)Vg(y1)) dzdy: = — </Y2 div,, sodyz,fg>,

and

0= / (@, y1,92) - dAa(z, 91, y2) = / o(x,y1,92) - (f(2)g(y1) Vh(y2)) dedyidys
OxXY; XY QXY xYs
= —(divy, ¢, fgh) .

The arbitrariness of f € C2°(12), g € C3° (Y1) and h € CF(Y2) yields

/ divy, ¢dyz =0 and divy, ¢ =0, (3.8)
Yo

in the sense of distributions.

Substep 2b. We show that (3.8) and ii) contradict the second condition in (3.7). We will derive such
contradiction by proving that there exists a sequence {p;};en C C°(Q;CF (Y1 x Yo;RY)) such that
divy, ¢; =0, sz divy, ¢;dys =0 and ¢; — ¢ in Cy (Q;C'# (Y1 X YQ;RN)) as j — oo.

Let 0 < e < 1/2, and let p. € C.(RY) and 7. € Cx(Y) be the functions introduced in Subsection 2.1 (see
(2.1), (2.2) and (2.3)). For z € Q, y1,y2 € RV, define

o (T, y1,42) == / (Y1, yo)ne (y1 — y1)ne(y2 — y3) dyidys.
Y1 ><Y2

Then ¢. € Cy (Q; C’;f (Y1 X YQ;RN)) and . — @ in C’O(Q; Cu (Y1 X YQ;RN)) as € — 0F. Moreover, by (3.8)
divy, pe = 0in @ x RN x RN and [, divy, ¢c dyz = 0 in Q x RY.

Extend . to RY x RV x RY by zero outside Q x RY x RY, and for each j € N let
.. 2
K= {w €0 lal <y dist(eRND) > 5} o9 (001,00) = el p2), (@),
S (@, 1, 90) = /RN s0§-€)(x’,y1,yz)p; (v —a')da’,

for all (z,y1,y2) € RY x RN x RV, where p1 is the function given by (2.1) with ¢ replaced by 1/j. Notice
J
that K; C Kj;1, and UjenK; = Q. Moreover, since supp p12 C B(0,1/5) we have

1
supp¢§_€) C {(m,yhyz) e RY x RN x RV : dist(z, K;) < 3}
1
C {x € Q: dist(z,00) > —,} x RY x RV,
J

Hence,

J J

P e (0 (Vi x Y RY)),  divy, 1) =0, / div,, 3\ dy, = 0.
Yo

17



Jan 18, 2011

Furthermore, arguing as in [11, Thm 2.78], we have that L,Z(-E) — @, in Cy (Q Cy (Yl X YQ;RN)) as j — oo.

Finally, using a diagonalization argument we can find a subsequence j. < j such that ¢, := cpga) €

CgO(Q,C# (Y1 x Yo, R )) divy, ¢ = 0, fY2 divy, ¢cdy2 = 0 and ¢. — ¢ in CO(Q C#(Yl X YQ,RN))
as e — 0%, Using ii),

0=/ Ge(,y1,y2) AN (@, y1,92) — o(x,y1,y2) ANz, y1,92),
QXY xYa e=0" JaxyixYs

which contradicts the second condition in (3.7).
It remains to prove the claim, i.e. £ is weakly-* closed.

Substep 2c. We start by proving that the set & of all measures 7 € Myx (Q x Y7; RN) for which there exists
a measure p; € M, (Q; BV4(Y1)) such that 7 is the measure associated with Dy, p; (i.e., for all B € B(Q),
E e B(Y1), 7(B x E) = Dy, (1 (B))(E)) is weakly-* closed.

Since the weak-x topology is metrizable on every closed ball of M4 (Q x Y1; RN ), by the Krein—Smulian
Theorem to prove that & is weakly-* closed it suffices to show that &£; is sequentially weakly-x closed. Let
{7i}jen C & and 7 € Myz(Q x Y1;RY) be such that 7; = 7 weakly-x in My (Q x Y1;RY) as j — oo,
that is, for all ¢ € Cy (Q; C'#(Yl;RN)) we have

tim [ p(esy) dr (o) = / (@, 1) dr(, ).
J—oo QXYl QXYl

We want to prove that 7 € £;. Let {Hg'l)}jeN C M, (92; BV4(Y1)) be such that 7; is the measure associated
with Dylu;l) for each j € N.

Fix j € N, and let i{" : B(Q) — BV (Y1) be defined by
i) = 1 (B) = [ W (B) . B eB@).

It can be seen that each ;15-1) satisfies conditions i) and ii) of Definition 2.1. Moreover, for all B € B(£),
1
Dy, (5" (B)) = Dy, (5 (1)) and

17$7]1(€2) = sup { Z 12 (Bl gy viy: {Bitien C B(Q) is a partition of Q}
=1

<2 || B)| . {Bi}ien C B(Q) i rtition of Q p = 2||u!V]|(Q) < co.

Sup NJ BVy(Y1)* ifieN S a pa on o 122 o0

Thus ﬁ;l) € M, (Q; BV4(Y1)), being 7; the measure associated with Dylﬁg-l). Furthermore,

- l P
1 |M<Q;Lw(y1>>—sup{2||uj oss ¢ {Bikien € B >1sapammonom}

< Csup { Z 1Dy, (B (B))I(Y1): {Bi}ien € B(R) is a partition of Q}

o

=C sup E sup E ’Dyl (Ek)‘ 3.9
(Bi}ienCB(®) $—7 {BrlrencBO) ¢ (3.9)
partition of Q partition of Y7
o0

=C sup Z sup Z |7;(B; x Ej)|

(Bi};enCB(®) =] (BilrencBO) %

partition of Q2 partition of Y|
o0
<€ sup > sup E 751 (Bi x Ex) < Cll7;[1(2 x Y1),
{B; }LeNCB(Q) ) {Ek}kenCB(Y1) h—1
partition of Q partition of Y

18
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where 1* is the Sobolev conjugate of N, and where we have used a Poincaré inequality in BV (see [4,

Rmk 3.50]) taking into account that for each B € B(2), ﬁ;l) is a function in BVx(Y7) with zero mean value.

Since sup;ep [|75[(2 x Y1) < oo, and as M(Q;Li (V1)) ~ (CO(Q;LQ(Yl)))/ (see, for example, [7, p.182]),
from (3.9) we deduce the existence of a (not relabeled) subsequence of {ﬂgl)}jeN and of a measure
e M(9Q; L;: (Y1)) such that

il = i weakly-—+ in M(; LY (Y1)).
In particular, for all ¢ € Co(€2; Cx (Y3

)) we have
tm [ () dit (2)dy, = / (e, y1) dja(z)dy, (3.10)
J—oo QXYl QXYl

where the integrals are to be understood in the sense of Subsection 2.4.

We want to prove that 1 € M, (; BVx(Y71)) and that 7 is the measure associated with D,, ft, thus proving
that 7 € £. We start by showing that 1 € M, (Q; BV4(Y1)). Let ¢ € Cp(2) and ) € C’# (Yl;RN) be given.
)

Taking into account that 7; is the measure associated with Dy, fr; 7, Lemma 2.7 and the weak-x convergence

7 7 in Myg (Q x Yi;RY), we have

lim o(z) div(y1) di) (z)dy, = lim ( / o() dﬁ;”(@)(yl)divw(yl)dyl
i Jaxy; j—oo Jy, \Ja (3.11)
——tim [ s i) dnem) == [ o) vm) -drlem).
J70 Jaxy: QAxYp
From (3.10) and (3.11), we get
[ ([otran@)om o an = [ oot - drien) (312
Yi Q QxYy
for all ¢ € Cyp(Q2) and ¥ € C#(Yl;RN).
We claim that for all B € B(Q?) and ¢ € C (Y1;RY), we have
[ B ) div i) dis = [ wlon) - droion). (3.13)

where 75(-) := 7(B X ), thus showing that ft(B) € BV (Y1) with Dy, (i(B)) = 75.

Indeed, proceeding as in Lemma 2.4, it can be proved that for all bounded, Borel measurable functions

¢ : Q) — R, we have
/Y / o(z) dia(z)| dy < / |6(2)| dl|u] (). (3.14)

Fix § > 0. Since ||| € M(Q2;R) and [|7]| € My, (Q x Y1;R) are positive, finite Radon measures, we may
find an open set As O B and a closed set C5 C B such that

18](As\Cs) <6, [I7[I(As\C5) < 6. (3.15)

By Urysohn’s Lemma, we may also find a function ¢5 € Cy(Q;[0,1]) such that ¢5 = 0 in Q\As and ¢5 = 1
in Cs. Then, in view of (3.14),

‘ /Y 1 ( /Q e dﬂ(x))(yl)divw(yl)dyl - /Y 1 A(B)(y1) divep(y1) dys 16)

<Vl [

Y1

/ (¢s(x) — xp(x))dp(z)
Q

dyr < 2C|VY oo [| 2] (A5\C5).-
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From (3.15) and (3.16), we get

[ () e ) v otomyam = | ) ) div ) . (3.17)
Similarly,
5lilgl+ bs(x)p(y1) - dr(w,y1) = [ P(y1) - dr(y1)- (3.18)
- QxY, Y1

Considering (3.12) with ¢ replaced by ¢s, passing to the limit as § — 0T taking into account (3.17) and
(3.18), we deduce (3.13). In particular, for all B € B(Q2), E € B(Y1),

Dy, (r(B))(E) = 7(E) = 7(B x E). (3.19)

To conclude that ft € M, (; BVx(Y7)) it remains to prove that fi has finite total variation. As in (3.9), by
(3.19) we get

sup { Z | Dy, (f(B;))||(Y1): {Bi}ien C B() is a partition of Q} < I7][(2 x Y7).

Consequently,

oo

Il @ —Sup{Ellu v (Bibien © BE) s o parition of 2}

(oo}

<Csup{z (B 1 vy + 1D ((BDI(V1)): {Bikiens C B() is a partition om}
i=1

<C (Sug 7511 (2 x Y1) + [|7[| (€2 x Yl)) < o0,
JjE

where we have also used (3.9). Thus, ft € M, (Q; BV4(Y1)) and 7 is the measure associated with Dy, f&, which
shows that 7 € £, and this concludes the proof that & is a weakly-* closed subspace of M, (Q x Y1; RY).

Substep 2d. Similarly to Substep 2c, one can show that the space &; of all measures 7 € M4 (QXY1 xY5s; RN)
for which there exists a measure gy, € M, (2 x Y7; BV4(Y2)) such that 7 is the measure associated with
Dy, py (ie., for all Be B(2 x Y1), E € B(Y2), 7(B x E) = Dy, (py(B))(E)) is weakly-* closed.

Substep 2e. We are now in position to prove that £ is a weakly-* closed vectorial subspace of M4 (Q X
Y] x YQ;RN). As before, it suffices to show that & is sequentially weakly-x closed. Let {7;},eny C & be a

sequence such that 7; X 7 weakly-+ in Mysu (Q X Y] X Yo RN) as j — oo. We want to prove that 7 € £.

FOI‘eaChJENWI"IteT]—T ®£N+T)Where7' EMy#(QxYl,]RN)andT GMy#(QxleYQ;RN)

are the measures associated with D, H§1) and DyQ,u;) for some H§) € M, (Q;BV4(Y1)) and ,uf) €
M, (Q x Yy; BV4(Ys)), respectively.

Let 9 € Cy (Q; Cy (Yl;RN)) be such that ||| < 1. Then ¢ can be seen as an element of Cj (Q; Cy (Y1 X
Yo: RN )), still with norm less than or equal to 1. Moreover,

<Tja79>/\/ty#(szxy1 X Yo;RNY) Co(Q;C% (Y1 X Yo;RNV)) = / Iz, 1) de(xay17y2)
QOxY; XY
=/ ﬁ(w,yl)del)(%yl)dszr/ I, y1) dr? (@, 91, 12)
QXY xYs QXY xYo

1
:/Q v V(x, y1)d . )(%Zh) = <T]( )719>My#(QxYl;RN),CO(Q;C#(Yl;RN))7
X Y1
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since [y, wy, V(@ 41) de@) (x,y1,92) = 0 by (2.21) (with ¢ = 2 and ¢ = 1). This implies that
I3l (€2 x Y1 x ¥3)

(Tj20) My 4 (X Vi xVaiRY ),Co (2:Cp (Vi x Yo RN - 0 € Co (2 C (Y1 x Yo; RY)), [lglloo < 1}

= sup{
= sup {<Tj,19>My#(szxy1xYQ;RN),CU(Q;C#(YIxY2;RN))1 0 € Co(Cx (Vi RY)), 9]0 < 1}
= sup {@(1)719>My#<ﬂxyl;RN>,CO(Q;C#<Y1;RN)): 0 € Co (2 Cy (YisRY)), [Wllos < 1}
1
= [l x Y1)

Hence {T;l)}jeN is a bounded sequence in M, (0 x Y1;RY), and so there exist a subsequence {T](kl)}keN of
{T](l)}jeN and a measure 71 € Myx(Q x Y1; RY) such that T](;) X 7 weakly—* in My (Q x Y1;RY). Since
T;kl) € & for all k € N, and & is a weakly-* closed subspace of My (Q x Y1;RY) (see Substep 2c), we
conclude that 7 € &. Let p; € M, (Q; BV (Y1)) be such that 7 is the measure associated with Dy, p;.

Next, write TJ(E) =T, 77'](]3) ®@Ly),, so that T;E) Sr—n QLY =: 73 weakly-x in My (2 x Y7 x Yy; RY). Since

T;f) € & for all k € N, by Substep 2c we conclude that 7 € . Thus we can find g, € M, (Q2xY7; BV4(Y3))
such that 7 is the measure associated with D,, p,. Finally,

T:T1®,C5; + 1 €&,
and this concludes the proof of the claim. O

PROOF OF THEOREM 1.10. a) We claim that for all ¢ € Cy (Q; Cu (Y1 X e X Yn;Rd)) we have

x x
lim @(x,—,---,—)-uexdx:/ oz, Y1, yn) - u(z) dedy - - - dyy,. 3.20
=0T Jo 01(e) on(e) (=) QXY XXV, = n ) () ' (3.20)

If p € C(Q;Cx(Yy X -+ x Yy, RY)), then by Riemann-Lebesgue’s Lemma

*

.,;7...,; alN YL, nd "'dn 3.21
o 01(2) ms)) /ylxii.xyf"( 1,0 o) B - dy (321

weakly-x in L® (Q; R?), from which (3.20) follows since by hypothesis u- — u (strongly) in L' (;R?), and

loc

since if ¢ € Co(Q;Cy (Y1 X -+ x Y3 RY)) then (3.21) holds weakly-* in L (€; R).

b) By reasoning component by component, we may assume without loss of generality that d = 1. Since
{Du.}.~0 is a bounded sequence in M (; RY), by Theorem 3.2, and up to a subsequence (not relabeled),

Du ey (3.22)
for some fig € My (2 x Yy x -+ x Y ; RY),
We claim that if ¢ € C®(Q;C (Y1 x --- x Y;; RY)) is such that divy, ¢ = 0 and, if n > 2, for all
ke {1,'~~,TL71}, era Yi GY;-’Z.E {L"’an}a
/ divyk (,0(.’17, Y1,y yn) dyk-‘rl e dyn = 07 (323)
Yk+1><"'><yn
then we have

/ So(xaylv"'vyn)'dﬂo(wvylv"'vyn) :/ (p(xvylvvyn)dDu(x)dyldyn (324)
QXY x--- XYy, QXYyx---XY,
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If the claim holds, then by Lemma 3.5 there exist n measures p; € M, (2 x Y7 x -+ x Y;_1; BV4(Y3)),
i€{1,---,n}, such that

n—1
fo — Dujq @ L;/Lfvyn = Z Ai ® ci(/::l)Nun + A,
i=1

where each \; € Myxu (Q XY XX Yi;RN) is the measure associated with D, u,. This will establish
statement b).

Let us prove (3.24). Let ¢ € C2° (€ cy (Y1 x -+ x Y,; RY)) be such that div,, ¢ = 0. Using the fact that
ue € BV(Q) we obtain

/w(g_()g_()) - dDu.(z)

_ —/Q(divx o) (:c ottt Qn—(g)) () dar — f le(g)/g(divyk o) (a: Ql—(g)gn—(g)> () da.

By a) and Fubini’s Theorem, we deduce that

xT

—) ue(z) de = / (dive @) (@, y1, -+ yn)u(z) dady; - - - dys,
Qn<5> OAXY]X--XY,

R

€T
li di —
6—1>%1+ Q( IV-’I) SO) (:E7 Ql (E)

= —/ o(@,y1,,Yn) - dDu(z)dy; - - - dy,.
OXY|X--XY,

(3.26)
We claim that, if in addition ¢ is such that for n > 2 and for all k € {1,---,n — 1},
/ divyk @(xayla"'ayn) dZ/k-+1 dyn :07
Yiqp1 X XY,

then for all k € {1,---,n — 1},

lim / (di )(x . )u (z)dz =0 (3.27)

AYs R s, = U. .
ot on@ o I\ a@ T e )

Assume that (3.27) holds. Then passing (3.25) to the limit as e — 07, from (3.22), (3.26) and (3.27) we get
(3.24), which concludes the proof of Theorem 1.10.

It remains to establish (3.27). The main ideas to prove (3.27) are those of [2, Thm. 3.3, Cor. 3.4], which we
will include here for the sake of completeness. Let n > 2, fix k € {1,---,n— 1} and define ¥, := div,, . By

(3.23), we can write
n

ﬁk(l‘»ylf"»yn): Z ﬁgk)(xay17"'ayi>7
i=k+1

where the functions ﬁgk) are given by the inductive formulae

I =, */ Uy dyn,
Y,

n

ﬁgk)::/ ﬁkdyi+1~-~dyn—/ ﬁkdyzdyn ifie{k+1,---,n—1}.
Yig1 X XYy Yix--xY,
By construction, for each i € {k+1,---,n} one has

0 e 0; = {19 €CX(QCF (Y1 x -+ x Yy)) : / O, y1, - yi) dys :0}.
Yi
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Moreover, for n > 2 and k € {1,---,n — 1},

Q%(E)/Sf(iivyk 7 <x7 91326) n eﬁe)) uele)de= le(é‘)/nﬁk (x, 913(35) S QHL(EQ s
> acaah (amaE) e

i=k+1
Hence, using the boundedness of {u:}e~o in BV (Q) and (1.1), to prove (3.27) it suffices to show that for
each i € {k+1,---,n} there exists a constant C; = C(ﬁz(-k)), independent of €, such that

s J7 (g 2t ) e

Fix i € {k+1,---,n}. To simplify the notation, in the remaining part of the proof we will drop the
dependence on i and k of the function 191(1@), so that 191(-k) =9€0;.

< Cillue| By ()- (3.28)

As shown in [2, Lemma 3.6], there exists a linear operator S : ¥ € O; — S € O such that div,, (S9) =¥
and ||SY|eo < C||¥|co, for some constant C. Then we can write

Qie) !/ <x’ le(é“) n Qz‘g(cff))

©) 1 (3.29)
. x x 0i(e x x
=div| (SY (x,—,~-, ))—( > T19<x, AR >7
(( N 0@ 0@ 010 ae) Y a(e) T aile)
where T, is the linear operator given by
<« 0i-1(c)
T = 0i1(e) div,(S9) + Y =2 div,, (SV).
€ % 1( ) ( ) ]; Qj(g) yg( )
Note that 1.9 € O;. Indeed, 1.9 € O; inherits the same regularity of Sv, and
/ lem<Sl9) dyi = le:z:/ Sv dy, = O, / diVy]. (519) dyz = diVyj / SV dyz = 0,
Y; Y; i i
for all j € {1,---,i— 1}, and so in T.9dy; = 0.
Let us now analyze the right-hand side of (3.29). On the one hand we have that
x x T x
div( (S| x,——, -+, —— | | ue(z)dx| = 7/519 <x,,~~~,>odDu x
fa(en(e g ) w@] = |- [e0(n 550 55 ) 4puto
<[99l oo | Due[[(2) < Cl|d|oo [| Due[[(€2).-
On the other hand, the function g%(e)(TEﬂ)(W O QL—(E)) is of the same type as the function

0 amwe)

Applying (3.29) to 7.9 instead of ¥, and reiterating this process m times, with m as in (1.5), we get

gkﬁgfiw“wiﬂy
- ;(_1)1( 0i(¢) ) div<(S(Tg)m)<x, . >) (3.30)

j Qz'—1(€)

+(_1yn< 0:(¢) )m/ 1 «Tamﬂ)(x7 e ).

Qifl(f‘:) Qi(E)
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Reasoning as above,

=y (;’(())) an (59 (55 ) o) e
2i(e)

; (3.31)
< ¢ (LY Y0 ol D) < CNTY DD )
91—1(5)
for all j € {0,---,m — 1}, while
m [ 0i() )m 1 m ( x x )
-1 )"z, ——, -, —— | us(x)dx
Lo (255) (e e ot ) e .
i€ m 1 ’
< (2L} SN il < CHE o
where we used (1.1) and (1.5).
Finally using the definition of the operator T, we deduce that for all j € {0,---,m},
S‘i{)’ I(T2)7 9o < C(”Sﬁ”cuﬂ;c;mx---xm;RN)) + ||19Hc:‘(9;c;(ylx---in)))’ (3.33)
g
so that (3.28) follows from (3.30)—(3.33). |

The proof of the converse of Theorem 1.10, that is, of Proposition 1.11, is hinged on a version for BV (Y; Rd)-
valued measures of the classical Meyers—Serrin’s (density) Theorem. We will need some auxiliary results.

For 0 <& < 1/2,let p. € C°(RY) and 7. € C(Y) be functions satisfying (2.2) and (2.3), respectively. Fix
ie{l,---,n}, let p e M, (Q XYy x - xY;_1;BVy (Y;,Rd)) and denote by A the measure associated with
D, p. We define

wﬁ(z7y17 e 7yi)

il (3.34)
= / (/ pe(x =) T ne(yn — vi) ds(a’, i, - 7y§_1)>(y£) 1 (yi — i) dyi,
Y; QXY X XY; 4 k=1

for x € Q. == {x € Q: dist(x,09) > ¢} and y1,...,y; € RV,

Lemma 3.6. The function vy, defined in (3.34) belongs to C'*° (QE; cy (Y1 X - X Yy Rd)).

PROOF. The proof is similar to the usual mollification case (see, for example, [4]). It is done by induction on
the order of the derivative, and the key ingredients are the difference quotients and the Lebesgue Dominated
Convergence Theorem, taking into account the regularity of p. and 7.. O

Lemma 3.7. Let Q' CcC Q be an open, bounded set, and let Yy, be the function defined in (3.34).
Then YLDV o vy, e BLN|y, weakly- in My, (2 x Y1 x -+ x Y;;RY), that is, for all
@ € Co(9;C4 (Y1 x -+ x Y33 R?)) we have

lim (@, g1, i) - Ya(w, g1, - -, yi) dedyy - - - dy;

e=0" JOrx vy x-x Y;

:/ <p(xvy17"'7yi)'du(xvyla"ﬁyifl)dyia
Q'xYyx--xXY;

where the last integral is to be understood in the sense of Subsection 2.4.
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Lemma 3.8. Let ' CC Q be an open, bounded set, and let ; be the function defined in (3.34). Then
Vyiwﬁﬁ(i+1)NLQ/XY1x.,,Xn X\ weakly-x in M#y(Q/ XYy x - x Y};RdXN) ase — 07, and

=0t JOrxyy x-xY;

PROOF. Fixx €. and y1,---,y; € RV, Set Y = Y] XX Yi,h Y =Y,9:=, ,¥i-1),y:=y; and
71:(9) == [T~ 1-(y.). Notice that due to (2.3), for all § € RN o/ € RN we have

/ﬁa(@ _§)dg=1, / ney —y)dy = 1. (3.35)
Y Y

Using (2.21) and (3.35), we get

V(@ ,5) = /

g (/Q _pelr —a2)7(g — §') dp(a’, z)’))(y’) @ Vyn(y —y')dy’

XY

— [ ([ oa =i =)l ))& Vs =) a

- /  pele— )G — ety — ) AN )
QOxY XY

Hence V95 = @e * A in Q¢ x RN where ¢ (91, ,vi) = pe(x) Hizl Ne(y;), and well known results on
mollification of measures yield the desired convergences (see, for example, [4, Thm. 2.2]). O

Remark 3.9. Let ¢ € C.(Q) and p € M*(Q X Y] X oo % Yi,l;BV#(Yi;Rd)) be given, and define
v(B) := [po(x)dp(z,y1, -, yi—1) for all B € B(Q x Yy x --- x Y;_1). By Remark 2.8, v € M(Q x
Y1 x -+ x Y;_1; BV (Y;;R?)). Note that suppv C supp ¢ x RE-DN,

Considering first functions ¢, ¢ of the form @(x,y1,---,vyi) = 9 (2, y1, -, ¥i—1)V(ys) and o(z,y1,- -, y:) =
@, y1, - yi-)¥(yi) with 0,0 € Co(QCx(Y1 x -+ x Yi1)), ¥ € Cx(Yi) and ¢ € CL(Y;), using
(2.21), arguing component by component, and finally considering a density argument, we conclude that
ve M, (Q XYy X XY 1;BVy (Y;; Rd)), with 7 := ¢ d\ being the measure associated with D,,v, so that

/ @(‘rayla"‘,yi)'dy(l’ayla"'ayifl)dyi
QXY x--XY;

= / (¢($791a7y2)¢($)) 'du(wayla”'ayi—l)dyh (336)
QXY x---xXY;
/ gp(xﬂylf"?yi):dT(l‘7yla"'7yi)
QXY x---XY;

- / (0@, y1, - 90)B(@)) A9 vi), (3.37)
QXY x---xXY;

for all g € Co (% Cy (Y1 X -+ x Y33 RY)) and ¢ € Cp (2 C (Y1 x -+ x Vi RNY )

Notice that the domain of the function 1%, given by (3.34), is Q. xR*N . In order to have it defined on the whole
QxRN we extend v by zero. Precisely, for B € B(RN xY; x---xY;_1), let (B) := v(BNQXY; x---xY;_1).
Then v € M, (RY x Y7 x -+ x Y;_1; BV (Y;;R?)), and supp v = supp v.

In this setting, the function %, defined in (3.34) (with p and Q replaced by v and RY, respectively) belongs
to C°(RN; C3 (Y1 x -+ x Y;;R?)). Furthermore,

supp s C Q x RN for all ¢ > 0 small enough, (3.38)
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since for all yy, ...,y; € RN, WS- y1,---,y;) = 0in {x € RY: dist(z,supp ¢) > e}. Arguing as in Lemmas 3.7
and 3.8, we conclude that

¢;§£“+1)meylx...xyi SN VENLyi weakly-x in My, (Q X Y] XX Yi;Rd),

Vs LN o veyy 2o 7 weakly—x in Mg (Qx Yy x -+ x Y RV, (3.39)

e=0F JOxy; x--xY;

Proposition 3.10. Fixi € {1,---,n}, and let p € M, (Qx Yy X -+ x Y;_1; BV (Y;;R?)). Denote by X the
measure associated with Dy, p. Then there exists a sequence {1;};eny C C™ (€ cy (V1 x -+ x Yi;RY)) N
Lt (Q XYy X xXY;_q; Wl’l(Yi;Rd)) satisfying
VLIV o vy 25 LNy, weaklyx in M, (Q x Yy x -+ x Vi RY),
vyi@/Jjﬁ(H_l)Nmelxmx)@ Lj A Weak]y—* in My# (Q XY x--x Y;;RdXN)7 (340)

lim \Vy0i(x,y1, -+ yi) | dedyy - - dy; = [[A[(Q x Y1 x - x ).

J7® JOaxYy; x--xY;
PRroOF. For simplicity we will assume that ¢ = 1. The case ¢ > 2 may be treated similarly.

Let {Q4}ren be a sequence of open sets such that € CC Q41 and

0= G O,
k=1

and consider a smooth partition of unity subordinated to the open cover {Qkﬂ\ﬂk,l}keN of 2, where
Qo := ), that is, a sequence {¢y }ren such that

¢k € C2 (e \ 13 0,1]), ) n(z) =1 forall z € Q. (3.41)
k=1

For each k € N, define vy, := ¢ dp in the sense of Remark 3.9. In particular, supp v, C (Qk+1\Qk—1)~ Let
{@;}en and {p;}jen be dense in Co (€ C (Y13 R?)) and Co(Q; Ce (Y1; RN)), respectively.

By induction and by (3.38) and (3.39) (with v replaced by vy), given j € N we can find a sequence {51(3)}1@61\1
of positive numbers converging to zero, with 555) < 8,(5_1) (and 5,20) := 1/2), such that for all £ € N and
le{l,---,7} we have
(@) N
supp ¥y C (Qk+1\Qk—1) x RY, (3.42)
@)
[ o) il @ndedy — [ i) - dmle)dn| < 5. (3.43)
axv; Oxv; J2
) 1
[ alen): Vit @ dodi— [ alen) o) < o
QxYy QOxY; Jj2
() 1
| [Tt )| dodin — Imli@ x )| < o7 (3.49)
QXYl

where 7, is the measure associated with D,,v;. For every open, bounded ' CC € only finitely many
Qp41\Qi—1 cover ', and so, in view of (3.42), for each j € N the function v; defined by

@)

iz, 1) = Zlﬁ;’; (z,91) (3.45)
=1
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belongs to C>(€; C3° (Y1;RY)), with V,, 45 = 732, Vylw,ii‘j). Moreover, ¢; € L' (€; Wt (Yy;R?)) and

sug H%”Ll(szxYl;Rd) =M < o0, SUP va"/)JHLl(QthRdXN) : M < co. (3.46)
Jj€E jeN

)
Indeed, thanks to (3.42), and defining 1/1;‘5 := 0, we obtain

/ 3y 0) dadyy < S / ey dady,
QXY k Qk+1\Qk_1)XY1 3 47
§C7)1 k; 1 ( . )

< Z/ S - =12 )+ 05 (@) + Vi (2, y1)| dadyn,
k+1 k—1 1
and
/ V0052, 9)] ddy < Z / V()| dedyy
QxYy (241 \Qk—1) XY

(3.48)

< Z/ _ Vy1¢uk 1($ y1) + Vylz/Jl,k (:r y1) + Vyﬂ/JukH(l" y1)|dady;.
k=1 (41 \ Q1) x Y1

We have that

R
/ — 7/}171 (39, yl)‘ dady,
(41 \Qk—1) XY
N /(Q \ T 1)xY; /Y (/R P (z = w’)dzxk(m/)>(y'1)776<kj>(y1 —y}) dy}
k41 k—1)X Y1 1 N X
<o UL L= am@ o
(Qp4+1\Q%—1) /Y1 vi o k
:/ {/ (/ p <j)(fv—x')duk(m’)>(y1) dy’l} dx
(U1 \Qp—1) Y1 o °k

< / B / P (& — 2) dl|e| (@) dz < (|7 (e \Tan) < [lall (i \ D),
(U1 \ Q1) JQ

dxdy;

URE (y1 — 1) dy1:| dyjdz

where we used Fubini’s Theorem, (2.3), Lemma 2.4 (see also Remark 2.8), (3.42) and (2.2) in this order.
Thus,

o0

)
Uil (@) dedyr < 21|ull(Q). (3.49)

=1 /(Qk+1\9k1)><yl

Z/Qk\ﬂk 1)XY1

o0

Similarly,

(@)
o ()| dadys < 2]l (),

» (3.50)

o ()| dadys < 2]l ().

=1 /(Qk+1\9k)><Y1

From (3.47), (3.49) and (3.50), we deduce the first condition in (3.46). To prove the second condition in
(3.46), we observe that from (3.42), (3.44), (3.41) and equality 7, = ¢ d\ (see Remark 3.9), we have that

00
; ~/(Qk+1\9k1) xY1

RO > — 1
Vot (o) dedys <37 (Imell(@esn\Bua) + 55 )

k=1

<Y I\ Q) + 1 < 2[A(Q) + 1
k=1

8
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Arguing as above, and taking into account (3.48),

/ IV, (2, dzdyy < 6] A|(Q x Y1) + 3,
QXYI

which concludes the proof of (3.46).

Now we prove the first convergence in (3.40). Let ¢ € Co(Q; Cy(Y1;R?)) be given, and fix n > 0. There
exists m € N such that

16 — @mllco@ouviRe)) < N
#

Using (3.46), (3.45), (3.41), (3.42), (2.15) (see also Remark 2.8), (3.36) and (3.43), we obtain for any j > m

/ B, 1) - by () dady — / (1) - dp(z)dy:
QXYl QXYl

‘ | (0en) = fmon) ys0) docy
QXYl

QxYy QxYy

" ‘/QXYI (Gm (@ y1) = G, y1)) - dp(w)dy:

)
<M + Z / (2, 91) - Y5l (2,91) dady: — / (@m (@, y1) ok (@) - dps()dys | + nl| ]| ()
Q><Y1 QxY;y
1
<Cn+ -
J
Letting first j — oo and then  — 07, we conclude that
i [ en) o) dedin = [ (o) dula)dn.
i Jaxy, QxY;
Since ¢ € Co (% C (Y1;R?)) was taken arbitrarily, this proves that
VLN oy, =5 pLN |y, weakly-x in M(Q x Y1;RY).
The proof of the convergence
Vi 0 L% axy, =5 A weakly-+ in M,z (Q x Yi; RN, (3.51)
is similar.
Using the lower semicontinuity of the total variation, convergence (3.51) yields
timin [V, 05z, 0] dodgn > [A](2 % Y2) (3.52)
i—=o0 Jaxy,

To prove the converse inequality, let ¢ € C.(Q;Cyu(Y1;R*N)) be such that [|¢[| < 1. Using similar
arguments to those in the proof of Lemma 3.8, Fubini’s Theorem, the symmetry of p_; and 7_y) with
k k
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respect to the origin, (3.37) and the inclusion supp ¢ C Q; x RY for some [ € N, we deduce that

)
/Q . p(x,y1) : Vy, ¥ (z, y1) dedy, = Z/Q . oz, 41) : Vo, vt (z,91) dady,
XY XYy

l

=SSt | [ e gt - ) dne ) s
QXYI RNXY1 k k

k=1

!
- Z/ [/ (@, y1)p.o) (x — 2 ) (Y1 — y’l)dxdyl} A, o)
RN xY1 QXY k IS
!
/ / _ ’ ’
- (penn.) * @) (@' 1)+ dTe (2, 1) = / p.n.)* ), y1) : dri(z, y1
Z/RNxYl ey ey ) )( 1) ( 1) ; - (( SCLAS ) )( ) ( )

— [ S [(ng) <A@ an@)] s ) = [ pywan) s N,
QxY1 k k

QxYy
(3.53)

where @;(z,y1) = S _, [((pal(jmag)) * ¢)(x,y1)¢k(x)] Notice that [|@;]ls < 1. Indeed, for all 2 € €,
y1 € Y7, we have

l
=13 [ ple =g o~ i)l 0h) do'dy; ()
QxYy k k

k=1

|90j z, 1)

l

<lell 32 / oo =2 (0~ 1) ' n(2) ) < ||so\|oo2¢k

k=1

where we used (2.2), (2.3), (3.41) and the condition ||¢|w < 1. Taking the supremum over x €  and
y1 € Y1, we get ||@;]|o < 1. Moreover, ¢; € CQ(Q; Cy (Yl;RdXN)) and so, from (3.53), we deduce that

/Q | plaan) s Vit ) dadyy < A2 x V2) (3.54)
XY

By density, taking into account (3.46) and using Lebesgue Dominated Convergence Theorem, we conclude
that (3.54) holds for all ¢ € Co(Q; C (Y1; RP*N)) with [|¢[les < 1. Hence

/ |V, i (2, y1)| dedyy < [|A[(€Q x Y1),
QXY
which together with (3.52) yield

lim IV, (2, y1) [ dadyy = [[A[(2 x Y1) 0O

I Jaxy;

Corollary 3.11. Fix i € {1,---,n}, and let pp € M*(Q X Y] X o0 % }Q_l;BV#(K-;Rd)). Denote by A
the measure associated with Dy, p. Then there exists a sequence {¢;};eny C C2°(9; O (Y1 x -+ x Yj;R?))
satisfying (3.40).

PROOF. As in the previous proof, we may assume without loss of generality that ¢ = 1. Let {¢}reny C
Ok (Q; Oy (Yl; Rd)) be the sequence given by Proposition 3.10. Let {€2;},cn be a sequence of open sets such
that Q; CC Q41 and Q = U;i1 Q;, and let {¢;},en be a sequence of cut-off functions ¢; € CZ°(£2;[0, 1])
satisfying ¢; =1 in Q; and ¢; = 0 in Q\Q;4, for all j € N. Define

V(@ y1) = () ve(z, ).
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We have that z/;j,k e Cx (Q;Cgf (Yl;Rd)). Let ¢ € CO(Q;C#(Yl;Rd)) and ¢ € CO(Q;C#(H;RWN)) be
given. Then for all j € N, ¢¢; € Cy (Q; Cy (Yl;Rd)) and ¢¢; € Cy (Q; Cy (Yl;RdXN)). Using the first two
convergences in (3.40), Remark 2.6 (iii) (see also Remark 2.8), the convergence lim; . ||pe||(2\€2;) = 0, the
pointwise convergence ¢; — 1 in €2, and Lebesgue Dominated Convergence Theorem, we get

lim lim Gz, y1) - ¥jp(z,y1) dedy; = lim lim (@(z,y1)¢5(x)) - r(z, y1) dady

joook—oo Joyy, Jmook—oo Joxy;
:zimj%o/ (P2, 91)¢j(x)) - dp(z)dy: :/ @(@,y1) - dp(x)dys,
QXYl QXYI
and

lim lim o(,y1) : Vit p(x, y1) dedy; = lim lim e(@, 1) : (0 (@)Vy, ¥r(z, y1)) dedy

J—)OO k—oo QXYl _}OOk_)OO QXYl

=tim [ (o) ) = [ plwan) s ).

J=% Jaxy;
On the other hand,
/ VW) (2, y1)| dwdy: :/ |6 (2)Vy, Yr (2, y1)| dzdys < / IV, x (2, y1)| dadyy,
QxYy QxY; QXY

and so
limsuplimsup/ IV i k(2 y1)] dedyr < A2 xY),
QXYl

j—00 k—o0

where we have used the third convergence in (3.40). Using a diagonal argument together with the separability
of the spaces Cj (Q; Cy (Yl; ]Rd)) and Cj (Q; Cy (Yl; RdXN)), we can find a subsequence k; < k such that

v = QLJ‘J%' € C (0 (Y1;RY)) and
¢j£2NLQ><Y1 Lj N‘CND& weakly-x in M(Q % Yl;Rd),
Vi 0 L2 axy, =5 A weakly-x in Mz (Q x Yi; RPN,

timsup [ (9,05, 0)] dodyn < (@ x V1),
QxYy

Jj—o0

Finally, the convergence Vquz}j£2NLQ><Y1 i\j A implies

J—0o0

timinf [V, (e, 0] dodgn > [A](2 % V)
QxYy

which concludes the proof. O

Corollary 3.12. Assume that 0§ is Lipschitz. Let u € BV (S;RY) and for each i € {1, n}, let
n; € M*(Q X Y] X o X Yl-_l;BV#(Yi;Rd)). Then there exist sequences {u;j}jcn C C>(Q;R?) and

{0} jen € O (2 C (Vi x -+ x Vi3 RY)) satisfying

uj = u weakly-x in BV(Q;R?),  lim |Vuj( )| dz = || Dul|(£2),

Jj—00

(Vuj + ZVyi¢§i)>£(n+l)NLQxY1x---xYn i\j Ny, Weakly-x in Myy (Q xY] x - X% Yn;RdXN),

i=1

lim ’Vuj(x) +Zvyi¢;i)($ay1w“,yi)
n i—1

I JOaxY: x---xY,

dedyr - dyn = [[Aupey oo, (2 x Y1 X2 X Y),

(3.55)
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where Ay u, ..., i the measure defined in (1.6).

Proor. We will proceed in two steps.

Step 1. We first prove that there are sequences {u;};eny C C*®(;RY) N WH(Q;R?) and {%(i)}jeN C
ce (Q;C;f (Y1 x -+ x Y;;RY)) satisfying (3.55).

Let {Q}ren be a sequence of open sets such that Q CC Q41 and Q = U;ozl Q}, and consider a smooth
partition of unity {¢y}reny subordinated to the open cover {QkH\Qk_l}keN of Q, where Qg := ), as in
(3.41).

For each k € N and i € {1,---,n}, define v/¥ := ¢, dy; in the sense of Remark 3.9, and let {gogi)}jeN be
dense in C (Q; Cu (Y1 X XYy RdXN)). Arguing as in the proof of Proposition 3.10 and as in [4, Thm 3.9],

for each j7 € N we can find a sequence {Ez(cj)}keN of positive numbers converging to zero, with 5,(6 ) < E(J b
and ¥ .= 1/2 , such that for all k e N, [ € {1,---,j} and 7 € {1,---,n} one has
k
supp (PE;;‘) * (udr)) C (U1 \ Q-1 ),
1
[lo.0) * (udr) — ugr| + |p ) * (u® Voy) —u @ Voy|] do < —, (3.56)
o €k i 2k
) ,
supp wf’“ C (1 \ Q1 ) x RN,
€
’ / (Z‘ Y1, - 'ayi) : v%w;ﬁ (x7y1, "'7yi) dxdyl o dyl
QxYy x-- N
_ (4) N drk N < 1 §
e @y yi) AT (@Y 0) | S o
QXY x Y,

dady; - dy; — [|[7F (2 x Y1 x - x V;)| <

EECJ')
‘vlhw,;k (x7y17 7yl)
QXY x---xXY; 4

)
£ . . . . .
where ¢} were introduced in (3.34) and 7F is the measure associated with D, U¥.

Similarly to the proof of Proposition 3.10 and as in [4, Thm 3.9], for each j € N and ¢ € {1,---,n} the
functions u; and 1/)3(»2) defined by

k3

= (( P * (ugr)) (), O @) Zl/fﬁ T,Y1s Vi), (3.57)
k=1 =1
belong to C>(; RY) N W(Q;RY) and C*> (Q; cy (Yl X e X Yi;Rd)), respectively, and are such that
u; —; uw in LY(Q;RY),  lim \Vuj( )| da = || Du||(2),

Jj—00

SU.p ||Vy1’lp HLI(Q><Y1>< -XY; ]Rde) < o0, (358)

Vi LOFIN o sy, 255 A weakly- in My (2 x Y1 x -+ x Y RTV), (3.59)

*

In particular, u; X weakly-x in BV(Q;R%). In turn, this implies that Vujﬁ(""‘l)NmelX...Xyn —
Dujg ® EZlNyn weakly-x in My# (Q X Y] X e % Yn;RdXN) as j — oo. Also, convergences (3.59) imply

that Vy, 0\ LOFDN o vy N @ LETON, wealdy-x in Myg (Q x Y1 x -+ x Y RPN as j — .
Hence,

(Vuj + ZVyiwj(-i))ﬁ("H)meylX_.Axyn Lj Ny, Weakly-x in My (Q X Y] XX Yn;RdXN).

i=1
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Using the lower semicontinuity of the total variation,

dedy; - dyn = [[Aupy oo, (2 x Y1 X - X Y.

J—0o0

lim inf/ )wj(a:) +Y Vi (@, )
QxYy x i=1
(3.60)

Finally, let ¢ € _C’C(Q;C’#(Yl X oo X Yn;]RdXN)) with ||¢]lec < 1 be given. Let m € N be such that
supp ¢ C 2, x R¥N. Taking into account (2.3), similar arguments to those of Proposition 3.10 (see (3.53))
show that

/ 80(35,917 e 7yn) : vylw](Z) (xvyla e 7y2) d$dy1 e dyn
QxYy % Y,

(3.61)
= / @j(xayla e 7yn) : d)‘i(l'ayla T ayi)dyi—Q—I o dyna
QXY x Y,
where @] (Jf, Y1, ayn) = ZZ’L:I [((pagj) H::l 775567')) * 80) (‘T7 Y, 7yn) ¢k(x):| is such that
@; € Co(Cx(Yr x - x Vs RPN [ @] 0 < 1 (3.62)

On the other hand, using the identity
Vu,; = j dDu) + j \Y — \Y%
u;j ,}leeé) * (¢ dDu) ,}Zl Pt * (U Vor) —u® qbk]

the estimate (3.56) and the condition ||¢]|s < 1, we deduce that

QXY XY,
N . (3.63)
< Z/ ¢<x’y1’.“7yn) : (ps(j) * (¢k; dDu))(x) dxdyldyn + =
k=1 QxYyx Y, k j

In turn, using (2.2), (2.3) and Fubini’s Theorem,

m

/ (@91, yn) : (por * (¢ dDuw)) (x) dzdy; - - - dyn
QXY % Y, k

m

= Z/ (@, Y1, yn) : </ Ps(j)(x_x/)¢k(x/)dD“<x/)) dzdy; - - - dyn,
1/ QXY XY, RN Tk

/ Pz, y1, yn) : (/ or(@")p_o (x — ")
QXY X XYy, RN XYy XX Yy k

20

k=1
H 7, (7) —yi)dDu(x")dy - - - dyé) dady; - - - dy, (3.64)
m
:Z/ |:(/ @('r7y17"'7yn)p€(j)(xl_37)
=1 Y RN XY % XYy, QOXY1 X XYn k

Hn 0= )+ onl) |+ Dt -
QxY1 x Y,
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Thus, from (3.61), (3.63) and (3.64) we conclude that

/ oz, Y1, yn) : (Vuj(x) + Zvyiw;i)($7y17 . 7?42)) dxdy, - - - dy,
QxYy X XY, =

1
< / @j(xayh'"ayn) : dAuyﬂl,»»-,#,L(xayla'",yn)+ N (365)
QXY1 X XY, J
1
< ||)‘U7N1a<-~7ll'nH(Q X Yi X X Yn) + }a

where in the last inequality we have used (3.62). Lebesgue Dominated Convergence Theorem, (3.58) and an
approximation argument ensure that for all ¢ € Co(Q; Cy (Y;RP*Y)) with [|¢[|oc < 1 one has

/ o(®, Y1, Yn) :(Vu] +Zvyl (z,y1, - 7yz)) dzdy; - - - dy,
QxY7 x Y

1
g, (2 X Yy X X Y) + 5
Hence,
limsup/ ‘Vuj(x) + Zvyiwj(_i)(%yh oy dadyr - dyn < Ay, [(Q X Y7 X x Y,
J—00 QxYq X Py

which, together with (3.60), concludes Step 1.

Step 2. We prove that the sequences {u; } ;e and {wj(-i) }jen may be taken in C*° (Q; R?) and C2°(©; Cy (1%
- X Yy Rd)), respectively.

The argument is similar to that of Corollary 3.11. Let {u;};cn and {1;};cn be the sequences constructed in
Step 1. Let {Q}ren be a sequence of open sets such that Qp CC Qppq and Q = (Jyo; Q, and let {0k }ren
be a sequence of cut-off functions 0, € C°(£2; [0, 1]) satisfying for all k € N, 0, = 1 in . Define

We have that 1/;](1,)C € C» (Q;C’;;O (Yl X e X Yi;]Rd)), with Vy7¢(z) okvyi@“. For each j € N, let
{Uz(@j)}keN C C*°(Q2;R?) be a sequence such that
ul =y uy i WRL(Q;RY). (3.66)

We observe that here, and only here, we use the hypothesis that OS2 is Lipschitz. We have that

lim lim / ‘u,(f)(x) — u(x)) dr=0, lim lim / ’Vu da: = || Dul|(€2). (3.67)
Jj—o00 k—o00 Jj— o0 k—oo

Let ¢ € Cy (Q;C# (Y1 X oo X Yn;RdXN)) be given. Using on the one hand convergence (3.66), and on

the other hand the pointwise convergence 6 — 1 in ) together with Lebesgue Dominated Convergence

Theorem and taking into account estimate (3.58), we obtain

n
lim i ;( () MY, )
ey p(@,y1, - un) - (Vg () +;Vyle,k(x,y1, yi) ) dadys - -+ dyy,
= hm 90(-% Y,y yn . (vuj + Z Vyz 3? y Y1, - 7y2)) dxdyl T dyn (368)

JI70 JAxXYy X XYy,

= / @(xvyh T 7yn) : d)‘u,ul,.u,/.l.n (x7y11 T 7yn)7
QxYyx Y,
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where in the last equality we have used Step 1. By similar arguments,

dzdyy - - - dy,

Jj—00 k—o0

n
lim sup lim sup/ ‘Vu,(f)(x) + Z Vy, wj(f,)c(x, Yty 5 Yi)
QxYyx---XY, =1

< lim lim {/ ‘Vu,(cj)(x) —Vuj(x)‘dx
Q

j—o0 k—oo

+ V() + 3 Vi @) dxdy1-~dyn+/<1—9k<x>>|wj<x>|dx}
QXY X--XY, i—1 Q

dxdy; - - - dyy,

= hm ‘vuj(x) +Zvyi¢§l)(gj’ylv""yi)
J7® JAXY: X XY, =1
= Aty oo, (X Y7 X X YD),
(3.69)
From (3.67), (3.68) and (3.69), using the separability of Co(Q;Cy (Y1 x -+ x Y,; RN)) and a diagonal
argument, and finally the lower semicontinuity of the total variation, we can find sequences as in the statement
of Corollary 3.12. O

Remark 3.13. As it was observed within the previous proof, if S) fails to be Lipschitz, then Corollary 3.12
holds replacing the condition “{u;};en C C®(QRY)” by “{u;}jen C C°(QRY) N WHIH(Q;RY) 7.

We are now in place to prove Proposition 1.11.

PROOF OF PROPOSITION 1.11. Let u € BV (Q;R?) and for i € {1,--,n}, let p; € M, (2 x ¥y x -+ x
Yio1; BV (Y RY)). Let {u;}en © C®(QRONWEH(QRY) and {17} ey € O (2505 (Vi x - - x Yi; RY))
be sequences satisfying (3.55).

For each ¢ > 0 and j € N, define

n

we (@) = us(2) + 3 este)ul (o, e

Then u. ; € WH(Q;R?), and

Ve (@) = Vi) + 300 Vo (o oy o)

3N G ) (o e ) £ 3 (),

Tai(e)” Taie) Taie)” Taie)

Let ¢ € CO(Q;C#(Yl X e X Yn;Rd)) and p € C’O(Q;C#(Yl X oo X Yn;RdXN)) be given. Since for fixed

j€Nandie€{l,---,n}, and for all (y1,---,vy;) € RN, x> z/;.gi)(x,yl, -+, ;) has compact support in RY,
from (1.1) and (3.21) we deduce that

x x x T
lim N(m,—,~-~,—)-u i(x)dz = lim ~(ac,—,'n,—)-u-acdac
2 P e ) e = e ) )
:/ @(m,yl,m,yn)-uj(:r)dxdy1~-dyn,
QXY X+ XY,
and
T T
lim <p(x,—,---, ):Vu,lscdx
2 P @ ) V)

. x x - (i) x x

lim x, R | Vu,(z) + V7 z, R dx

dm o ) (T >Vt (= 0 o))
QXY X XY, i=1
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Thus, in view of (3.55),

T T
1. 1 D ) s, . 1 d - D ) P ) dd d ) 370
Jggo Ei}%{r Q<‘0<x 01(¢) Qn(E)) He.d (@) de /Q><Y1>< Yo Bewn bn) - ule) dodyy b, { )
and
T x
li li ,——y oy —— ) Ve, d
Jim [ e(m @ @) V@

(3.71)
= / L)O(J:a Y1, 7yn) : d)\uvlhwwllfn (Z‘, Y1, 7y7l)
QXY x Y,

We claim that we may find a sequence {j.}.>0 such that j. — co as ¢ — 07, and if we define v, := u. j_,
then {v.}.~0 is a bounded sequence in Wh! (Q; Rd) satisfying a) and b) of Theorem 1.10.

In fact, let {@m}men and {@m bmen be dense in Co(Q;Cu(Yy x -+ x Y3 R?)) and Co(Q; Cy (Y1 x -+ - X
Ya; RdXN)), respectively. For each € > 0, j,m € N, define

~ X T
\ijﬂn::/(ﬁ (xa—a"'7 )'U7'x)d£,
i = J el P e ) e

Ly, == / %n(%yl,“',yn) u(x) dzdy; - - - dyn,
QxYy % Y,

x x
\Ija'm::/ m |\ L, PR IVUE7‘Z‘d$,
s Q(p ( Ql(g) Qn(€)> J( )

Ly, = / @m(xayla te 73/11) : d)\u,p.l,“.,p,n (-7373/17 ce 7yn)~
QxYy % Y,

By (3.70) and (3.71), for all m € N, we have

lim lim . cgm =L, lim lim WU, ;. = Ly, (3.72)

j—00e—0+ Jj—00 e—0+

For each ¢ > 0, 7 € N, set

,:i[ ( Wesm =Ll [¥ejm = L] ﬂ
I 1+ |\I/ £,j.m _Lm‘ 1+ |\Ils,j,m *Lm|

1

oo

1
Fix § > 0, and let ms € N be such that Z om < 0/2. Then,

m=mgs+1

0<06., < f: [i< e jom = L] b Nejm = L )} 15
X £, X m = =
! = 2 1+ |\I’e,j7m - Lm| 1+ ‘\Ils,j,m - L

m |

and so, using (3.72),

0 < limsuplimsup O, ; <9, < limsupliminf ©, ; < 6.
j—o0 e—0*1 Jj—00 e—0t

Letting 6 — 0%, we obtain
lim limsup ©, ; = lim liminf ©, ; = 0.
J—0o0 oo+ Jj—0oo e—0t

By a diagonalization argument, we may find a sequence {j.}.~o such that j. — oo as € — 0T, and

lim ©.; =0. (3.73)

e—0+
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This way, given m € N, by definition of ©. ;. and by (3.73), we have

2m 1 + |\Ils7j£7m - Lm| 1 + |\:[157j€7m - Lm| E_'O-F

which implies

lim U, ,, =L, lim ¥, =L, 3.74
m Yejem my L ®ejom (3.74)
Finally, the existence of a sequence {v.}.~o as claimed above follows from (3.74), taking into account the
boundedness of {uc j_}es0 in W (Q;RY). 0

We finish this section by proving an extension of Corollary 3.12 to the case in which 2 is bounded, and that
will play an important role in our application to homogenization [10].

Proposition 3.14. Let Q C RY be an open and bounded set such that OS2 is Lipschitz. Let u € BV (£;R%)
and for each i € {1,---,n}, let p; € M, (Q XYy x - xY;_1;BVy (Yi;]Rd)). Then there exist sequences
{u;}jen € C=(Q;R?) and {¢§z)}j€N C O (9 Cy (Y1 x -+ x Y;;RY)) satistying (3.55), and such that

N2 Xy, Weakly-x in Mg (Q x V7 x -+ x Vi RN X R),

. > > 3.75
T 00 Y % V) = Ry, [0 X Vi % x Vo), (3.75)

where, for any B € B( x Y7 x -+ x Y},),
8= ([ (Vo0 30Vt ) - L OV(B) ),
i=1

Sassg o, (B) = (Mo, (B),L0F0N(B)),

PROOF. The proof is very similar to that of Corollary 3.12. We will just point out the main differences.

In Step 1 of the proof of Corollary 3.12, for each j € N we require the sequence {5 )}keN to satisfy the
additional conditions

— 1

supp (p_ * ¢r) C (Q1\ 1), sup [¢r(z) — p_ W * or(2)| < —¢
k e .] 2

This is possible since if ¢ € C(Q), then p. * ¢ converges uniformly to ¢ as € — 07 on every compact subset

of Q, and supp ¢, C (Q}g+1\Qk 1)

(3.76)

Defining u; € C*°(Q;RY) nWhH(Q; R )) and 1/1(1 € C™=( Cy (Y1 x - x Y;;R?)) as in (3.57), then (3.55)

holds. Moreover, we clearly have \; = Ay u, ... 0, Weakly-x in M4 (Q X Y1 X oo X Vi RN R) as j — oo,
which in turn implies that

liminf [ Aj[[(2 x Y3 x -+ X ¥n) = [ Xupyooope,
J—00

Q2xY; x---xY,).

Furthermore, given ¢ = (¢,6) € C.(Q; O (Y1 x - X Y ; RPNV)) 5 Co (€ Cpe(Yy x - -+ x Yy,)) with [[¢)]|ee < 1,
then by (3.65)

/ w(xvyla"'ayn) 'dj‘j(xaylv"'ayn)
QXY x Y,
:/ @(waylf"ayn . (V’U/J + E th Jf , Yty 7yi)> dxdyldyn
QxY1x Yy

+/ e(xayhayn)dxdyldyn
QXY X XY,

_ 1
/ spj(xu Y1, 7yn) : d)‘u,/.tl,“.,/.l,n(w7y17 e 7yn) + =
QOXYy X XY, J

N

+/ O(x,y1,- -, yn) dedy, - - - dyp,
QXY x Y,
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where @;(2, Y1, Yn) == D pey |:((p€§€j) [T, 775;”) * @) (T, Y1, Yn) gzbk(x)] . Similarly, setting

ej(xayla"'7yn) =

NE

{((ngy ,ani”) 0)(z,y1, - Yn) ¢k($)} :

k=1

then, using (3.76) and Fubini’s Theorem, we deduce that

5 LN (Q)
0(x,y1,- -+, yn) dzdys - - - dyy, — 0i(x,y1,- -+, yn) dadys - - dypn | < ——
QXY X XY, QAXY] X--XY, J
Hence, defining 9, (z,y1,**,Yn) == D pey [((ps(kj) T, neﬁj)) V) (@, Y1, Yn) (m(x)}, we conclude that
/ w(mvyla"'vyn)'dj‘j(xaylv"'ayn)
QAXY]X--XY,
_ - 1+ LN (Q
< / wj('r7yla"'ayn) 'dAu,ul,...,un(xayh"'ayn)+ - ( ) (377)
QXYi X XYy J
< 1+ LN(Q
e L R DR e}

where in the last inequality we have used the fact that ;€ Cy (Q;C'# (Y1 X oo X Y RN % ]R)) and
lj]loo < 1. Using a density argument, together with Lebesgue Dominated Convergence Theorem, we deduce
that (3.77) holds for every ¢ € Cy (Q;C# (Y1 X oo X Y RN % IR)) with [|¥]|s < 1. Consequently,

limsup||5\j||(Q XYy x--xY,) < ||5\u,”1$...#n||(§2 XY x - xYy).

J—00

Thus (3.75) holds. We proceed as in Step 2 of Corollary 3.12 to prove that the sequence {u;};cy may be
taken in C>°(Q; RY) and that the sequences {wj(-z)}jeN may be taken in C°(Q; O (Y1 x --- x Y;;RY)). O
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