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1 Introduction

Many problems in continuous fluid and solid mechanics lead to a variational problems with a saddle
point structure of the form: (u, p1, p2) ∈ U × P1 × P2, A −BT

1 −BT
2

B1 0 0
B2 0 0

 up1

p2

 =

 fg1
g2

 (1.1)

or  A 0 −BT
1

0 0 −BT
2

B1 B2 0

 up1

p2

 =

 fg1
g2

 . (1.2)

Here U , P1 and P2 are Banach spaces, A : U → U ′ is typically nonlinear, and B1 and B2 are linear
operators. In this paper we develop necessary and sufficient conditions for this class of problems to
be well-posed and consider their numerical approximation.
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Problems of type (1.2) can be written as A −BT
1 0

B1 0 B2

0 −BT
2 0

 up2

p1

 =

 fg2
g1

 . (1.3)

These problems are often described as twofold saddle point problems due to the nested structure
they exhibit. Each of these problems can be viewed as a single saddle point problem of the form[
A −BT

B 0

]
=
[
f
g

]
where B acts on a product space. The classical theory requires B to satisfy an inf-

sup condition [8,13,14]. The development of discrete spaces which inherit such inf-sup conditions
for each specific problem is notoriously difficult, and this difficulty is compounded by the product
structure of the twofold saddle point problems. In Lemmas 3.1 and 3.2 we establish necessary and
sufficient inf-sup conditions on the constituent operators B1 and B2 to guarantee that the compound
operator B satisfies inf-sup conditions on the corresponding product space.

The rest of this paper is organized as follows. This introductory section continues with a motivat-
ing example, followed by a review of prior results and some notation. Section 2 considers solution of
single saddle point problems with nonlinear operator A and their Galerkin approximation. Section
3 develops necessary and sufficient conditions on the operators B1 and B2 for problems of type (1.1)
and (1.2) to be well posed. An application of the theory is illustrated in Section 4.

1.1 Examples of Twofold Saddle Point Problems

Twofold saddle point problems arise ubiquitously when mixed finite element formulations are used
to approximate the stress in an incompressible fluid or solid [2,9,27,29,24,15,22,23,6,26]. When
the usual linear relation S0 = νD(u) for the viscous stress is replaced with a more general relation
S0 = νA(D(u)) the equations for the creeping (Stokes) flow of a fluid in a domain Ω ⊂ Rd become,

−div(S) = f , div(u) = 0, S = −pI +A(D(u)).

Here D(u) = (1/2)(∇u+(∇u)T ), S is the stress tensor, and for incompressible fluids takes the form
S = −pI +S0 where tr(S0) = 0 is the devatoric part of the stress. If ∂Ω = Γ0∪Γ1 typical boundary
conditions would be

u|Γ0 = u0, Sn|Γ1 = t.

To illustrate our results we review three formulations of this problem:

(1) A single saddle point problem arises when the stress S is eliminated using the constitutive relation
as in [30] (classical primal mixed formulation).

(2) Eliminating the gradient of the velocity using the constitutive relation gives rise to a dual mixed
variational formulation [32]. A twofold saddle point problem of the form (1.1) then arises when
the problem is posed in three variables [9] or the symmetry of the stress tensor is enforced weakly
[2].

(3) Alternatively, independent approximation of (the symmetric part of) the velocity gradient gives
rise to a twofold saddle problem of the form (1.2) (alternate dual mixed formulation). Dual mixed
approaches that approximate the (nonsymmetric) velocity gradient directly are presented in [24,
19].

When the fluid is incompressible the stress-strain relation only acts on the trace free (devatoric)
part of the strain. Letting (Rd×d

sym)0 denote the symmetric trace free matrices, we assume

1. A : Rd×d → (Rd×d
sym)0.
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2. A(D) = A(Dsym − (tr(D)/d)I).
3. The restriction A : (Rd×d

sym)0 → (Rd×d
sym)0 is bijective.

Primal Mixed Formulation: The classical weak statement of this problem seeks u−u0 ∈ U =
{u ∈ H1(Ω)d | u|Γ0 = 0} and p ∈ L2(Ω) satisfying∫

Ω

(
A(D(u)) : D(v)− p div(v)

)
=
∫
Ω

f .v +
∫
Γ1

t.v, v ∈ U,∫
Ω

div(u) q = 0, q ∈ L2(Ω).

If Γ1 = ∅, then p, q are required to have average zero. This is a classical saddle point problem taking
the form [

A −div′

div 0

] [
u
p

]
=
[

f + γ′(t)
0

]
.

Here 〈div′(p),u〉 = (p,div(u)) is the dual operator, and similarly 〈γ′(t),v〉 = (t, γ(v))Γ1 is the dual
of the trace operator γ : U → U/H1

0 (Ω)d. Here (·, ·) is the L2(Ω) inner product and 〈·, ·〉 is the
induced duality pairing.

Dual Mixed Formulation: If the inverse of the stress strain relation is available, D(u) =
A−1(S), it is possible to write a weak statement that evaluates the stress explicitly. Let

S = {S ∈ H(Ω; div)sym | Sn|Γ1 = 0} and U = L2(Ω),

and S(t) be the elements in S ∈ H(Ω; div)sym for which Sn|Γ1 = t. Then (S,u) ∈ S(t)×U satisfies∫
Ω

(
A−1(S) : T + u.div(T )

)
=
∫
Γ0

u0.Tn, T ∈ S,∫
Ω
−div(S).v =

∫
Ω
f.v. v ∈ U.

This weak statement is again a classical saddle point problem. A mixed finite element method for
this formulation in linear elasticity was studied in [3].

If finite element subspaces of H(Ω; div)sym are not available, it is possible to pose the previous
weak statement in H(Ω; div) and to use Raviart–Thomas elements. In this instance ∇u = A−1(S)+
(∇u)skew. Let

T = {S ∈ H(Ω; div) | Sn|Γ1 = 0} and U = (L2(Ω))2,

and T(t) be the elements in S ∈ H(Ω; div) for which Sn|Γ1 = t. Next, define W : Rd → Rd×d
skew by

W (w)ij = εijkwk Then (S,u,w) ∈ T(t)× U × L2(Ω) satisfies∫
Ω

(
A−1(S) : T +W (w) : T + u.div(T )

)
=
∫
Γ0

u0.Tn, T ∈ T,∫
Ω
−div(S).v =

∫
Ω
f.v, v ∈ U,∫

Ω
−S : W (z) = 0, z ∈ L2(Ω).

This is a twofold saddle point problem taking the form A−1 div′ W
−div 0 0
−W ′ 0 0

 Su
w

 =

γ′(u0)
f
0

 . (1.4)
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Here 〈γ′(u0), T 〉 = (u0, Tn)Γ0 .
Finite element methods for the formulation (1.4) arising in linear elasticity were developed by

Arnold, Brezzi, and Douglas [2] (see [6] for a survey of approaches with weakly imposed symmetry).
Alternative Dual Mixed Formulation: If the inverse A−1 if the constitutive relation is not

available it is possible to pose a mixed formulation which computes both D(u) and S. Let S and
U = L2(Ω)d be as above and

D = {D ∈ L2(Ω)d×dsym | tr(D) = 0}.

and S(t) be the elements in S ∈ H(Ω; div)sym for which Sn|Γ1 = t. Then (D,u, S) ∈ D× U × S(t)
satisfies ∫

Ω
A(D) : E − S : E = 0, E ∈ D,∫

Ω
(D : T + u.div(T )) =

∫
Γ0

u0.Tn, T ∈ S,∫
Ω
−div(S).v =

∫
Ω
f.v. v ∈ U.

This is a twofold saddle point problem taking the formA 0 −I
0 0 −div
I ′ div′ 0

Du
S

 =

 0
f

γ′(u0)

 . (1.5)

If the trace-free requirement on tensors in D is relaxed a formulation which includes the pressure
requires (D,u, S, p) ∈ L2(Ω)d×dsym × U × S(t)× P satisfying∫

Ω
A(D) : E − S : E − pI : E = 0, E ∈ L2(Ω)d×dsym,∫

Ω
(D : T + qI : D + u.div(T )) =

∫
Γ0

u0.Tn, (T, q) ∈ S× P, (1.6)∫
Ω
−div(S).v =

∫
Ω
f.v. v ∈ U.

where P = L2(Ω). This formulation takes the form of (1.5) where the identity operator is replaced
with I × p tr(.).

1.2 Related Results

Problems (1.1) and (1.2) are simplified versions of a full twofold saddle point problem described
by Brezzi and Fortin [14, pp. 41, §II.1]. Existing results regarding different formulations of inf-sup
conditions for problems of type (1.1) can be found in [28] and [20]. Problems with this structure
arise in various applications, including elasticity ([2,6]), complex fluids ([9,20]), and hybridized mixed
methods for second order elliptic problems [18]. Solvability of these problems is usually established
by showing that A has the required properties and either (i) the combined operator B1 + B2 is
surjective or (ii) the operators B1 and B2 individually satisfy appropriate inf-sup conditions.

Problems of type (1.2) are analyzed in a similar manner. In [21] and [25], problems of this type
were treated as nested saddle problems, with the upper left 2 × 2 block of (1.3) being treated as
one operator and then showing that block is coercive over the kernel of the operator B2. Sufficient
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conditions for solvability and abstract error analysis are also given in [21] and [25]. This theory has
been applied to many problems in elasticity and fluids as well, see [27,29,24,15,22,23,26] for some
examples. Problems of type (1.2) were also studied in [16,17]. In these works the twofold saddle
point problems are treated as single saddle point problems, and solvability is shown by requiring
B1 +B2 to satisfy a certain inf-sup condition.

1.3 Notation

For Banach spaces X and Y , X ′ and Y ′ denote their duals, and if F : X → Y is an operator, its
dual operator is denoted by F ′ : Y ′ → X ′ or F T : Y ′ → X ′. If Z ⊂ X is a closed subspace the
quotient space is denoted by X/Z and frequently x ∈ X is identified with x + Z ∈ X/Z. The dual
space (X/Z)′ will be identified with the (polar) subspace of X ′,

Z0 = {f ∈ X ′ | f(z) = 0, z ∈ Z}.

Under this identification ‖f‖(X/Z)′ = ‖f‖X′ .
Standard notation is used for the Lebesgue spaces Lp(Ω), the Sobolev spaces W k,p(Ω) and

Hk(Ω) = W k,2(Ω). We will always assume Ω ⊂ Rd is a bounded Lipschitz domain with boundary
partition ∂Ω = Γ0 ∪ Γ1. The inner product L2(Ω) will be denoted as (·, ·). Recall that H(Ω; div) is
the space of vector valued functions in L2(Ω)d having divergence in L2(Ω),

H(Ω; div) = {v ∈ L2(Ω)d | div(v) ∈ L2(Ω)},

equipped with inner-product

(v, w)H(Ω;div) = (v, w) + (div(v),div(w)).

The space of matrix (tensor) valued functions S ∈ L2(Ω)d×d having divergence div(S) = Sij.j ∈
L2(Ω)d is denoted by H(Ω; div) with inner product

(S, T )H(Ω;div) = (S, T ) + (div(S),div(T )).

Matrix valued quantities will be denoted with upper case letters, vectors with bold face lower case
letters.

The Generalized Lax Milgram theorem will be used ubiquitously below. The following is a par-
ticularly convenient statement of this fundamental result.

Theorem 1.1 (Generalized Lax Milgram) Let U and V be a Banach spaces, V be reflexive,
and c > 0. Let a : U × V → R be bilinear and continuous; that is, there exists C > 0 such that
|a(u, v)| ≤ C‖u‖U‖v‖V for all u ∈ U and v ∈ V . Then the following are equivalent:

[C ] (Coercivity) For each u ∈ U ,

sup
0 6=v∈V

a(u, v)
‖v‖V

≥ c‖u‖U ,

and for each v ∈ V \ {0}, supu∈U a(u, v) > 0.
[E ] (Existence of Solutions) For each f ∈ V ′ there exists a unique u ∈ U such that

a(u, v) = f(v), ∀ v ∈ V,

and ‖u‖U ≤ (1/c)‖f‖V ′.
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[E
′

] (Existence of Solutions for the Adjoint Problem) For each g ∈ U ′ there exists a unique v ∈ V
such that

a(u, v) = g(u), ∀u ∈ U,

and ‖v‖V ≤ (1/c)‖g‖U ′.

In addition, if U is reflexive then each of the above are equivalent to:

[C
′

] (Adjoint Coercivity) For each u ∈ U ,

sup
06=u∈U

a(u, v)
‖u‖U

≥ c‖v‖V ,

and for each u ∈ U \ {0}, supv∈V a(u, v) > 0.

The following classical result for linear saddle point problems is a special case of this theorem.

Corollary 1.1 Let U and P be reflexive Banach spaces and assume that a : U × U → R and
b : P × U → R are continuous and bilinear. Then the following are equivalent.

1. (Existence of Solutions) For all f ∈ U ′ and g ∈ P ′ there exists (u, p) ∈ U × P such that

a(u, v)− b(p, v) = f(v), and b(q, u) = g(q),

for all (v, q) ∈ U × P , and there exists C > 0 such that ‖u‖U + ‖p‖P ≤ C(‖f‖U ′ + ‖g‖P ′).
2. There exists a constant c > 0 such that

– The restriction a : Z × Z → R is coercive over Z ≡ {u ∈ U | b(p, u) = 0, ∀ p ∈ P}.

sup
v∈Z

a(u, v)
‖v‖U

≥ c‖u‖U , and sup
u∈Z

a(u, v) > 0, for all 0 6= v ∈ Z.

– (inf-sup condition) sup
u∈U

b(p, u)
‖u‖U

≥ c‖p‖P .

3. (Coercivity) The bilinear map A
(
(u, p), (v, q)

)
= a(u, v)− b(p, v) + b(q, u), is coercive on U ×P :

there exists c > 0 such that

sup
(v,q)∈U×P

A
(
(u, p), (v, q)

)
‖v‖U + ‖q‖P

≥ c(‖u‖U + ‖p‖P ),

and

sup
(u,p)∈U×P

A
(
(u, p), (v, q)

)
> 0, for all (0, 0) 6= (v, q) ∈ U × P.

If b : U × P → R satisfies the inf-sup condition in (2) and Z is the kernel, then the restriction
b : U/Z ×P → R satisfies coercivity hypothesis [C] of the Lax Milgram theorem. We make frequent
use of the fact that, in this situation, this implies adjoint coercivity [C

′
] as well as existence for both

the primal and dual problem.
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2 Nonlinear Saddle Point Problem

Viscoelastic properties of fluids are frequently modeled with a nonlinear constitutive relation. When
the fluid is incompressible this gives rise to a saddle point problem of the form; (u, p) ∈ U × P ,

a(u, v)−b(p, v) = f(v),
b(q, u) = g(q),

for all (v, q) ∈ U × P , where a : U × U → R is linear in the second argument and b : U × P → R is
bilinear. When a(., .) is bilinear the Lax Milgram theorem shows that this problem is well-posed if
(and only if) b(., .) satisfies and inf-sup condition and a(., .) is coercive over the kernel of b(., .). The
following theorem is the natural extension of this result to the situation where a(., .) is nonlinear.

Theorem 2.1 Let U and P be reflexive Banach spaces, b : P × U → R be continuous and bilinear,
and let a : U ×U → R be linear in its second argument. Let Z = {u ∈ U | b(p, u) = 0, ∀ p ∈ P} and
c > 0. Then the following are equivalent.

1. (Existence of Solutions) For all f ∈ U ′ and g ∈ P ′ there exists (u, p) ∈ U × P such that (a)

a(u, v)− b(p, v) = f(v), and b(q, u) = g(q), (2.1)

for all (v, q) ∈ U × P , and (b) ‖u‖U/Z ≤ (1/c)‖g‖P ′.
2.(a) For all f ∈ U ′ and ug ∈ U there exists u ∈ U such that u− ug ∈ Z and

a(u, v) = f(v), v ∈ Z, (2.2)

(b) (inf-sup condition)

sup
u∈U

b(p, u)
‖u‖U

≥ c‖p‖P . (2.3)

Proof When b(., .) is viewed as a bilinear form on P × U/Z the equivalence of statements 1(b) and
2(b) follow directly from the Generalized Lax Milgram theorem.

(1)⇒ (2) : Fix f ∈ U ′, ug ∈ U and let (u, p) ∈ U × P satisfying

a(u, v)− b(p, v) = f(v), b(q, u) = b(q, ug), (v, q) ∈ U × P,

with ‖u‖U/Z ≤ (Cb/c)‖ug‖U/Z . Then u− ug ∈ Z so u satisfies 2(a).
(2) ⇒ (1) : Fix (f, g) ∈ U ′ × P ′. The Generalized Lax Milgram applied to b : P × U/Z → R

guarantees the existence of ug ∈ U such that b(q, ug) = g(q) and ‖ug‖U/Z ≤ (1/c)‖g‖P ′ . Let u ∈ U
satisfy u− ug ∈ Z and a(u, v) = f(v) for v ∈ Z. Then b(u, q) = g(q),

‖u‖U/Z = ‖ug‖U/Z ≤ (1/c)‖g‖P ′ ,

and a(u, v) − f(v) = 0 for v ∈ Z; that is, a(u, .) − f(.) ∈ (U/Z)′. The Generalized Lax Milgram
theorem applied to b : P × U/Z → R then guarantees the existence of p ∈ P such that

a(u, v)− f(v) = b(p, v), v ∈ U,

which establishes 1(a).

Remarks:

1. Uniqueness of solutions will follow if, for example,

u2 − u1 ∈ Z and a(u2, v)− a(u1, v) = 0, v ∈ Z ⇒ u2 = u1.

2. The above theorem is valid if a : D(A) × U → R has domain strictly contained in U provided
the hypotheses in (1) and (2) require u ∈ D(A).
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2.1 Finite Element Approximation

We consider Galerkin approximations of solutions to the saddle point problems in Theorem 2.1.
Approximation properties of Galerkin schemes for nonlinear problems depend in a non-trivial fashion
upon the structure of the nonlinearity, [10,11]. In this section linearity of the constraints is exploited
to develop some useful formulae for the error. These are then used to develop estimates for the special
case where the nonlinear operator is strictly monotone and Lipschitz.

Lemma 2.1 Let U and P be reflexive Banach spaces, b : P × U → R be continuous and bilinear,
and let a : U ×U → R be linear in its second argument. Let Z = {u ∈ U | b(p, u) = 0, ∀ p ∈ P} and
assume that b(., .) satisfies the inf-sup condition: there exists c > 0 such that

sup
v∈U

b(p, v)
‖v‖U

≥ c‖p‖P .

Fix (f, g) ∈ U ′ × P ′ and suppose that (u, p) ∈ U × P satisfies

a(u, v)− b(p, v) = f(v), b(q, u) = g(q), (v, q) ∈ U × P.

Let Uh ⊂ U and Ph ⊂ P be subspaces and suppose (uh, ph) ∈ Uh × Ph satisfy

a(uh, vh)− b(ph, vh) = f(vh), b(qh, uh) = g(qh), (vh, qh) ∈ Uh × Ph.

Then
a(u, vh)− a(uh, vh) = b(p− qh, vh), (vh, qh) ∈ Zh × Ph,

and

‖p− ph‖P ≤ (1 + C/c)‖p− qh‖P + (1/c) sup
vh∈Uh

a(u, vh)− a(uh, vh)
‖vh‖U

, qh ∈ Ph,

where Zh = {uh ∈ Uh | b(ph, uh) = 0, ∀ ph ∈ Ph} is the discrete null space of b(., .).

Proof The Galerkin orthogonality relations for this problem becomes

a(u, vh)− a(uh, vh)− b(p− ph, vh) = 0, vh ∈ Uh, (2.4)

and (this condition is not used here, see the following lemma)

b(qh, u− uh) = 0, qh ∈ Ph. (2.5)

Restricting the test functions in the first Galerkin orthogonality statement to to vh ∈ Zh shows

a(u, vh)− a(uh, vh) = b(p− qh, vh), (vh, qh) ∈ Zh × Ph.

Using the inf-sup condition on b(., .) we find

‖p− ph‖P ≤ ‖p− qh‖P + ‖qh − ph‖P

≤ ‖p− qh‖P + (1/c) sup
vh∈Uh

b(qh − ph, vh)
‖vh‖U

≤ ‖p− qh‖P + (1/c) sup
vh∈Uh

b(qh − p+ p− ph, vh)
‖vh‖U

≤ (1 + C/c)‖p− qh‖P + (1/c) sup
vh∈Uh

a(u, vh)− a(uh, vh)
‖vh‖U

.
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The first statement of this lemma typically gives rise to estimates of the form ‖u− uh‖U ≤
C(‖u− vh‖U+‖p− ph‖P ) for all (vh, qh) ∈ Zh×Ph. The proof of this lemma did not use the Galerkin
orthogonality relation (2.5) arising from the constraint equation. This relation is used to show that
u−uh satisfies the hypotheses of the following classical result which shows that approximation of u
by vh ∈ uh + Zh is optimal.

Lemma 2.2 Let U and P be reflexive Banach spaces and b : P ×U → R be continuous and bilinear,
and satisfy the inf-sup condition

sup
u∈U

b(p, u)
‖u‖

≥ cb‖p‖, u ∈ U.

Let Uh ⊂ U and Ph ⊂ P be subspaces and let

Ẑh = {u ∈ U | b(ph, u) = 0, ph ∈ Ph},

and
Zh = Uh ∩ Ẑh = {uh ∈ Uh | b(ph, uh) = 0, ph ∈ Ph}.

Then the following are equivalent.

1. The restriction of b to Uh × Ph satisfies the inf-sup condition,

sup
uh∈Uh

b(ph, uh)
‖uh‖

≥ cb‖ph‖, ph ∈ Ph.

2. There exists C > 0 such that ‖uh‖U/Zh
≤ C‖uh‖U/Ẑh

for all uh ∈ Uh, and

sup
uh∈Uh

b(ph, uh) > 0, ph 6= 0.

In either case there exists C > 0 such that

inf
zh∈Zh

‖u− zh‖ ≤ C inf
vh∈Uh

‖u− vh‖ for all u ∈ Ẑh.

As stated previously, the form of the error estimates for a specific problem depends upon the
structure of the nonlinear operator a(., .). The following theorem considers the simplest situation
where the operator is (strictly) maximal monotone and Lipschitz continuous (in which case U is
typically a Hilbert space).

Theorem 2.2 Let U and P be reflexive Banach spaces, b : P × U → R be continuous and bilinear,
and let a : U × U → R be linear in its second argument. Assume that b(., .) satisfies the inf-sup
condition: there exists cb > 0 such that

sup
v∈U

b(p, v)
‖v‖U

≥ cb‖p‖P .

Assume additionally that a(., .) is strictly monotone and Lipschitz in its first argument:

c‖u− v‖2U ≤ a(u, u− v)− a(v, u− v), and a(u,w)− a(v, w) ≤ C‖u− v‖U‖w‖U .

Let Uh ⊂ U and Ph ⊂ P be subspaces and suppose that b : Uh × Ph → R satisfies the inf-sup
condition: there exists cb > 0 (independent of h) such that

sup
vh∈Uh

b(ph, vh)
‖vh‖U

≥ cb‖ph‖P .
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Fix (f, g) ∈ U ′ × P ′ and suppose that (u, p) ∈ U × P satisfies

a(u, v)− b(p, v) = f(v), b(q, u) = g(q), (v, q) ∈ U × P,

and suppose (uh, ph) ∈ Uh × Ph satisfies

a(uh, vh)− b(ph, vh) = f(vh), b(qh, uh) = g(qh), (vh, qh) ∈ Uh × Ph.

Then there exists a constant C > 0 such that

‖u− uh‖U + ‖p− ph‖P ≤ C
{

inf
vh∈Uh

‖u− vh‖U + inf
qh∈Ph

‖p− qh‖P
}
. (2.6)

Proof Using the monotonicity and continuity properties of a(., .) and the Galerkin orthogonality
condition (2.4) shows

c‖u− uh‖2U ≤ a(u, u− uh)− a(uh, u− uh)
≤ a(u, u− vh + vh − uh)− a(uh, u− vh + vh − uh)
≤ C‖u− uh‖U‖u− vh‖U + b(p− ph, vh − uh).

If vh ∈ uh + Zh, then

c‖u− uh‖2U ≤ C‖u− uh‖U‖u− vh‖U + b(p− qh, vh − uh) qh ∈ Ph
≤ C(‖u− vh‖U + ‖p− qh‖P )2 + (c/2)‖u− uh‖2U .

It follows that

‖u− uh‖U ≤ C (‖u− vh‖U + ‖p− qh‖P ) , vh ∈ uh + Zh, qh ∈ Ph.

Adopting the notation of Lemma 2.2 we have u− vh = u− uh − zh for zh ∈ Zh and u− uh ∈ Ẑh, in
which case the lemma can be used to obtain

‖u− uh‖U ≤ C inf
(vh,qh)∈Uh×Ph

(‖u− vh‖U + ‖p− qh‖P ) .

The second statement of Lemma 2.1 and the Lipschitz continuity assumption on a(., .) show

‖p− ph‖P ≤ (1 + C/c)‖p− qh‖P + (1/c) sup
vh∈Uh

a(u, vh)− a(uh, vh)
‖vh‖U

≤ (1 + C/c)‖p− qh‖P + C‖u− uh‖U
≤ C inf

(vh,qh)∈Uh×Ph

(‖u− uh‖U + ‖p− qh‖P ) .

3 Twofold Saddle Point Problems

In this section, the twofold saddle point problems (1.1) and (1.2) are considered, and equivalent
conditions for the existence and uniqueness of solutions are formulated.
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3.1 Problem Type 1

In this section we consider the twofold saddle problem arising from (1.1): find (u, p1, p2) ∈ U×P1×P2

such that

a(u, v)− b1(p1, v)− b2(p2, v) = f(v) ∀v ∈ U,
b1(q1, u) = g1(q1) ∀q1 ∈ P1, (3.1)
b2(q2, u) = g2(q2) ∀q2 ∈ P2.

This can be viewed as a single saddle point problem on (P1 × P2)× U with bilinear form

b((p1, p2), u) = b1(p1, u) + b2(p2, u).

The following lemma provides several criteria which guarantee that this bilinear form satisfies the
inf-sup condition. Frequently one of these criteria is more readily verified for the discrete spaces
used a particular numerical scheme. This lemma extends results in [28] and [20].

Lemma 3.1 Let U , P1, and P2 be reflexive Banach spaces, and let b : P1×U → R, and b2 : P2×U →
R be bilinear and continuous. Let

Zbi = {v ∈ U | bi(qi, v) = 0∀qi ∈ Pi} ⊂ U, i = 1, 2,

then the following are equivalent:

(1) There exists c > 0 such that

sup
v∈U

b1(p1, v) + b2(p2, v)
‖v‖U

≥ c(‖p1‖P1 + ‖p2‖P2) (p1, p2) ∈ P1 × P2

(2) There exists c > 0 such that

sup
v∈U

b1(p1, v)
‖v‖U

≥ c‖p1‖P1 , p1 ∈ P1 and sup
v∈Zb1

b2(p2, v)
‖v‖U

≥ c‖p2‖P2 , p2 ∈ P2

(3) There exists c > 0 such that

sup
v∈Zb2

b1(p1, v)
‖v‖U

≥ c‖p1‖P1 , p1 ∈ P1 and sup
v∈U

b2(p2, v)
‖v‖U

≥ c‖p2‖P2 , p2 ∈ P2

(4) There exists c > 0 such that

sup
v∈Zb2

b1(p1, v)
‖v‖U

≥ c‖p1‖P1 , p1 ∈ P1 and sup
v∈Zb1

b2(p2, v)
‖v‖U

≥ c‖p2‖P2 , p2 ∈ P2.

Proof The result is shown by proving (4) ⇒ (2) ⇒ (1) ⇒ (4) and (4) ⇒ (3) ⇒ (1) ⇒ (4). The
implications (4)⇒ (2) and (4)⇒ (3) are clear.

As shown in [20], to prove (2)⇒ (1) note that (2) implies the existence of v1 ∈ U with ‖v1‖U = 1
and b1(q1, v1) ≥ (c/2)‖q1‖P1 , and the existence of v2 ∈ Zb2 with ‖v2‖U = 1 and b2(q2, v2) ≥
(c/2)‖q2‖P2 . Since b2(·, ·) is continuous, there is a C > 0 such that b2(q2, v) ≤ C‖q2‖P2‖v‖U for all
(q2, v) ∈ P2 × U . Set u = v1 + (1 + 2C/c)v2. Then ‖u‖U ≤ 2(1 + 2C/c),

b1(q1, u) = b1(q1, v1) ≥ c

2
‖q1‖P1 ,
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and

b2(q2, u) = b2(q2, v1) +
(

1 +
2C
c

)
b2(q2, v2)

≥ −C‖q2‖P2 +
(

1 +
2C
c

)
c

2
‖q2‖P2

=
c

2
‖q2‖P2 .

Then
b1(q1, u) + b2(q2, u)

‖u‖U
≥ c

4(1 + 2C/c)
(
‖q1‖P1 + ‖q2‖P2

)
proving (1). The proof that (3)⇒(1) is similar.

To complete the equivalence, assume (1) and let

Z = Zb1 ∩ Zb2 = {u ∈ U | b1(p1, u) + b2(p2, u) = 0, (p1, p2) ∈ P1 × P2}.

The generalized Lax Milgram theorem then shows that for each f ∈ (U/Z)′ there exists a unique
(p1, p2) ∈ P1 × P2 satisfying

b1(p1, v) + b2(p2, v) = f(v), v ∈ U,

with (‖p1‖P1 + ‖p2‖P2) ≤ (1/c)‖f‖U ′ . Here we identify (U/Z)′ ' {f ∈ U ′ | f(u) = 0, u ∈ Z}.
It follows that for each f ∈ (U/Z)′ there exists p2 ∈ P2 satisfying b2(p2, v) = f(v) for all v ∈ Zb1

with ‖p2‖P2 ≤ (1/c)‖f‖U ′ . The Lax-Milgram condition then shows that b2 is coercive on P2×Zb1/Z
so satisfies the inf-sup condition stated in (4).

Similarly for each f ∈ (U/Z)′ there exists p1 ∈ P1 satisfying b1(p1, v) = f(v) for all v ∈ Zb2 with
‖p1‖P1 ≤ (1/c)‖f‖U ′ so b1 satisfies the inf-sup condition stated in (4).

Combining Lemma 3.1 and Theorem 2.1 gives necessary and sufficient conditions for twofold
saddle problem (3.1).

Theorem 3.1 Let U,P1, P2, b1, b2, Zb1 and Zb2 be as in Lemma 3.1, and let Z = Zb1 ∩Zb2. Assume
a : U ×U → R is linear in its second argument. Assume that for all f ∈ U ′ and ug ∈ U there exists
u0 ∈ Z such that

a(ug + u0, v) = f(v) v ∈ Z,

and that one of the conditions (1)–(4) of Lemma 3.1 are satisfied. Then for all f ∈ U ′, g1 ∈ P ′1, and
g2 ∈ P ′2 there exists (u, p1, p2) ∈ U × P1 × P2 satisfying (3.1) with ‖u‖U/Z ≤ C(‖g1‖P ′1 + ‖g2‖P ′2) .

Remark 3.1 Problems of the form

a(u, v)−
k∑
j=1

bj(pj , v) = f(v),
k∑
i=1

bi(qi, u) =
k∑
i=1

gi(qi),

for all (v, q1, . . . , qk) ∈ U × P1 × · · · × Pk are considered in [20] and [28].
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3.2 Problem Type 2

We next consider the twofold saddle problems (1.2) and (1.3) corresponding to the variational
problem (u, p1, p2) ∈ U × P1 × P2,

a(u, v) − b1(p2, v) = f(v) ∀v ∈ U,
− b2(p2, q1) = g1(q1) ∀q1 ∈ P1, (3.2)

b1(q2, u) + b2(q2, p1) = g2(q2) ∀q2 ∈ P2.

As indicated in the introduction, two different single saddle problems result with different groupings
of the variables. This gives rise to different, but equivalent, statements of the inf-sup conditions
required for the existence of solutions. Different characterizations of the inf-sup condition are useful
when constructing numerical schemes since one form is frequently easier to verify than the other.

Define

Zb2 = {q2 ∈ P2 | b2(q2, p1) = 0, p1 ∈ P1} and D = {u ∈ U | b1(q2, u) = 0, q2 ∈ Zb2}.

Grouping the variables as (U × P1)× P2 gives rise to a single saddle problem with operator having
block form

[
A 0
0 0

]
. Coercivity of this operator on Z ⊂ U × P1 will require ‖p1‖P1 ≤ C‖u‖U when

(u, p1) ∈ Z. Alternately stated, Z is the graph of the operator B−1
2 B1 : D ⊂ U → P1, and the inf-sup

condition on b2 guarantees that this operator is well-defined and continuous. This is the content of
statement (1) of Lemma 3.2 below.

With the grouping (U × P2) × P1 problem (3.2) has the form of the single saddle problem, the
solution of which requires b2(·, ·) to satisfy an inf-sup condition on P2 and the operator defined by
the block

[
A −BT

1
B1 0

]
must be coercive over U×Zb2 . This latter condition requires b1(., .) to satisfy an

inf-sup condition on Zb2 . These two inf-sup conditions correspond to statement (2) of the following
lemma.

The inf-sup conditions in statement (3) of the lemma arose in one approach to proving an error
estimate for the twofold saddle problem [19]. The first condition gives the existence of a projection
operator necessary to ensure that the best approximation of (u, p1) can be lifted from the discrete
kernel Zh to Uh × P1h, while the second condition provides the same lifting for approximations of
p2 from Zb2h to P2h.

Lemma 3.2 Let U,P1, P2 be reflexive Banach spaces, and b1 : P2 × U → R and b2 : P2 × P1 → R
be bilinear and continuous. Define the bilinear form b : P2 × (U × P1 → R by b(p2, (u, p1)) =
b1(p2, u) + b2(p2, p1), and let

Zb2 = {q2 ∈ P2 | b2(q2, p1) = 0, p1 ∈ P1},

and
Zb = {(u, p1) ∈ U × P1 | b(p2, (u, p1)) = 0, p2 ∈ P2}.

Then the following are equivalent:

(1) There exists a constants C and c > 0 such that

sup
(v,q1)∈U×P1

b(p2, (v, q1))
‖(v, q1)‖U×P1

≥ c‖p2‖P2 and ‖q1‖P1 ≤ C‖v‖U for (v, q1) ∈ Zb.

(2) There exists c > 0 such that

sup
p2∈P2

b2(p2, q1)
‖p2‖P2

≥ c‖q1‖P1 , and sup
v∈U

b1(p2, v)
‖v‖U

≥ c‖p2‖P2 , for p2 ∈ Zb2 .
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(3) There exists c > 0 such that

sup
(v,q1)∈U×P1

b(p2, (v, q1))
‖(v, q1)‖U×P1

≥ c‖p2‖P2 , and sup
p2∈P2

b2(p2, q1)
‖p2‖P2

≥ c‖q1‖P1 .

Moreover, when one of these conditions holds Zb is the graph of a linear function with domain

D = {u ∈ U | b1(q2, u) = 0, q2 ∈ Zb2} = {u | (u, p1) ∈ Zb}.

Remark: The inclusion {u | (u, p1) ∈ Zb} ⊂ {u ∈ U | b1(q2, u) = 0, q2 ∈ Zb2} always holds;
the reverse inclusion requires b2 to satisfy an inf-sup condition.

Proof We show (1)⇒ (2)⇒ (3)⇒ (1).
(1) ⇒ (2) Setting p2 ∈ Zb2 in the inf-sup condition satisfied by b(., .) immediately gives the

inf-sup condition on b1(., .) sated in (2). To establish the inf-sup condition on b2(., .) use adjoint
coercivity of b : P2 × (U × P1)/Zb to obtain

sup
p2∈P2

b(p2, (u, p1))
‖p2‖P2

≥ c‖(u, p1)‖(U×P1)/Zb
.

Setting u = 0 and expanding the definition of the quotient norm shows

sup
p2∈P2

b2(p2, p1)
‖p2‖P2

≥ c inf
(v,q1)∈Zb

(‖v‖U + ‖p1 − q1‖P1)

≥ (c/C) inf
(v,q1)∈Z

(‖q1‖P1 + ‖p1 − q1‖P1)

≥ (c/C)‖p1‖P1 .

The second line follows from the property assumed upon elements of Zb and it was assumed without
loss of generality that C ≥ 1.

(2)⇒ (3) We first show that for each g2 ∈ P ′2 there exists a solution of (v, q1) ∈ U × P1 of

b(q2, (v, q1)) ≡ b1(q2, v) + b2(q2, q1) = g2(q2), q2 ∈ P2, (3.3)

with c‖(v, q1)‖U×P1 ≤ ‖g2‖P ′2 . The inf-sup assumed on b1(., .) shows that its restriction to b1 :
Zb2 × U/D → R is coercive where

D = {u ∈ U | b1(q2, u) = 0, q2 ∈ Zb2}.

It follows that there exists v ∈ U such that

b1(q2, v) = g2(q2) q2 ∈ Zb2 ,

with c‖v‖U ≤ ‖g2‖P ′2 . Next, the inf-sup condition on b2(·, ·) shows that b2 : P2/Zb2 × P1 → R is
coercive. Since g2(q2)− b1(q2, v) vanishes for q2 ∈ Zb2 there exists a solution q1 of

b2(q2, q1) = g2(q2)− b1(q2, v) q2 ∈ P2,

with
c‖q1‖P1 ≤ ‖g2‖+ C‖v‖U ≤ (1 + C/c)‖g2‖P ′2 .

This gives a solution of equation (3.3) with c‖(v, q1)‖U×P1 ≤ ‖g2‖P ′2 .
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To establish the inf-sup condition on b in (3), fix p2 ∈ P2 and let g2 ∈ P ′2 satisfy g2(p2) = ‖g1‖2P ′ =
‖p2‖2P2

. Then the solution of (3.3) satisfies c‖(v, q1)‖U×P1 ≤ ‖g2‖P ′2 = ‖p2‖P2 and

‖p2‖P2 =
g2(p2)
‖p2‖P2

=
b(p2, (v, q1))
‖p2‖P2

≤ b(p2, (v, q1))
c‖(v, q1)‖U×P1

.

(3)⇒ (1) Adjoint coercivity of b : P2 × (U × P1)→ R shows

sup
p2∈P2

b(p2, (v, q1))
‖p2‖P2

≥ c‖(v, q1)‖(U×P1)/Zb
.

If (v, q1) ∈ Zb it follows that b(p2, (v, q1)) = 0 for all p2 ∈ P2; that is, b2(p2, q1) = −b1(p2, v) for all
p2 ∈ P2. The coercivity assumed on b2(., .) then shows

c‖q1‖P1 ≤ sup
p2∈P2

b2(p2, q1)
‖p2‖P2

= sup
p2∈P2

−b1(p2, v)
‖p2‖P2

≤ C‖v‖U .

It follows that problems of the form (3.2) can be treated as single saddle point problems and the
application of Theorem 2.1 gives rise to necessary and sufficient conditions for existence of solutions.

Theorem 3.2 Let U,P1, P2, b1, b2,D be as in Lemma 3.2 and assume a : U ×U → R is linear in its
second argument. Assume that for all f ∈ U ′ and ug ∈ U there exists u0 ∈ D such that

a(ug + u0, v) = f(v) v ∈ D,
and that one of the conditions (1)–(3) of Lemma 3.2 are satisfied. Then for all f ∈ U ′, g1 ∈ P ′1, and
g2 ∈ P ′2 there exists (u, p1, p2) ∈ U × P1 × P2 satisfying (3.2) with ‖u‖U/D ≤ C

(
‖g1‖P ′1 + ‖g2‖P ′2

)
.

4 Application to Problem (1.5)

In this section the saddle point theory developed above is used to solve the nonlinear Stokes problem
(1.5) and to formulate numerical schemes to approximate the solution.

Assume Ω ⊂ Rd, d = 2, 3, is bounded and simply connected and ∂Ω = Γ0 ∪ Γ1 is Lipschitz-
continuous and the boundary partition is sufficiently regular for classical H2(Ω) regularity to apply.
Let

S =
{
S ∈ H(Ω; div)sym | Sn|Γ1 = 0

}
, U = L2(Ω)d,

D =
{
D ∈ L2(Ω)d×dsym | tr(D) = 0

}
.

For simplicity we assume a homogeneous traction boundary condition Γ1; non-homogeneous bound-
ary data can be accommodated with the usual translation argument. The variational problem is:
given f ∈ L2(Ω)d and u0 ∈ H1/2(Γ0)d, find (D,u, S) ∈ D× U × S satisfying∫

Ω
A(D) : E − S : E = 0, E ∈ D,∫

Ω
−div(S).v =

∫
Ω
f.v. v ∈ U. (4.1)∫

Ω
(D : T + u.div(T )) =

∫
Γ0

u0.Tn, T ∈ S,

This problem takes the form of the twofold saddle problem considered in Section 3.2 with operators

a(D,E) =
∫
Ω
A(D) : E, b1(S,E) =

∫
Ω
S : E, b2(S,v) =

∫
Ω
div(S).v.

Below we will assume |Γ1| 6= 0, otherwise it is necessary to require S ∈ S to satisfy
∫
Ω tr(S) = 0.
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4.1 Solution of the Continuous Problem

Theorem 3.2 will be used to solve problem (4.1) using condition (2) of Lemma 3.2 to establish the
inf-sup hypotheses.

First Inf-Sup Condition: The inf-sup condition on b2(., .) becomes

sup
S∈S

∫
Ω div(S).v
‖S‖H(Ω;div)

≥ c‖v‖L2(Ω), ∀v ∈ U. (4.2)

A proof of this inequality may be found in [12, §11.1, 11.2]. Briefly, given v ∈ U select S = D(u) ≡
(1/2)(∇u + (u)T ) where u is the solution of the linear elasticity problem,

div(D(u)) = v, u|Γ0 = 0, D(u)n|Γ1 = 0.

Then
∫
Ω div(S).v = ‖v‖2L2(Ω) the Poincaré and Korn inequalities may be used to verify that there

exists C > 0 such that ‖S‖H(Ω;div) ≤ C‖v‖L2(Ω), and (4.2) follows. For the discrete problem we use

the property that regularity theory for the linear elastic problem shows that if v ∈ L2(Ω)d then
u ∈ H2(Ω)d so S = D(u) ∈ H1(Ω)d×d.

Second Inf-Sup Condition: Setting Zb2 = {S ∈ S | divS = 0}, the inf-sup condition required
of b1(., .) becomes

sup
D∈D

∫
ΩD : S
‖D‖L2(Ω)

≥ c‖S‖L2(Ω), ∀S ∈ Zb2 . (4.3)

Given S ∈ Zb2 the inf-sup condition is established upon setting D = S − (1/e)tr(S) ∈ D to obtain∫
ΩD : S = ‖D‖2L2(Ω). Lemma A.2 in the appendix shows that there is a constant C > 0 such that
‖S‖L2(Ω) ≤ C‖D‖L2(Ω) when S ∈ Zb2 and (4.3) follows.

Define the set

D =
{
D ∈ D |

∫
Ω
D : S = 0 ∀S ∈ Zb2

}
⊂ D.

This set is not easily characterized so minimal conditions onA : Rd×d → Rd×d to guarantee coercivity
over D are not available. Fortunately A is typically a maximal monotone operator on all of Rd×d so
this is not an issue. Granted this, Theorem 3.2 establishes existence of solutions to problem (4.1).

Theorem 4.1 Let Ω ⊂ Rd and the spaces S, U , and D be given at the beginning of this section.
Assume A : Rd×d → Rd×d maps bounded sets to bounded sets, and satisfies

(A(E)−A(D)) : (E −D) ≥ 0 and lim
|D|→∞

A(D) : D/|D| → ∞.

Then for all f ∈ L2(Ω)d and u0 ∈ H1/2(Γ0)d, problem (4.1) has a solution (D,u, S) ∈ D × U × S
satisfying

‖D‖D/D ≤ C
(
‖f‖L2(Ω) + ‖u0‖H1/2(Γ0)

)
,

where
D = {D ∈ D |

∫
Ω
D : S = 0, ∀S ∈ S with div(S) = 0}.

Moreover, if A is strictly monotone,

(A(E)−A(D)) : (E −D) > 0, E 6= D,

the solution is unique.
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Fig. 4.1. Lowest–order Arnold–Winther elements in two dimensions for Sh (left) and uh (right). For Sh, the points
represent values of the components of Sh (vertices) and the value of the three components of the moment of degree 0
of Sh (interior), and the arrows represent the values of the moments of degree 0 and 1 of the two normal components
of Shon each edge. For uh, the points represent the value of of the two components at the three interior nodes.

4.2 Galerkin Approximation

Let {Th}h>0 be a regular family of triangulations of Ω and let Dh, Uh, Sh be finite dimensional
subspaces of D, U, S, respectively. We consider Galerkin approximations of problem (4.1) satisfying
(Dh,uh, Sh) ∈ Dh × Uh × Sh,∫

Ω
A(Dh) : Eh − Sh : Eh = 0, Eh ∈ Dh,∫

Ω
−div(Sh).vh =

∫
Ω
f.vh, vh ∈ Uh, (4.4)∫

Ω
(Dh : Th + uh.div(Th)) =

∫
Γ0

u0.Thn, Th ∈ Sh,

In this context establishing discrete versions of (4.2) and (4.3) can be considerably less compli-
cated and technical than showing a condition of the form

sup
(Dh,uh)∈Dh×Uh

∫
Ω (Dh : Th + uh.div(Th))
‖Dh‖D + ‖uh‖U

≥ c‖Th‖H(Ω;div),

since the discrete form of (4.3) only needs to be verified for divergence free Th.
First Inf-Sup Condition: The issue of finding conforming finite elements for symmetric tensors

satisfying an inf-sup condition of the form (4.2) is well-documented ([14,32,4,5]). We consider the
finite element pairs (Sh, Uh) of symmetric tensors and vectors constructed by Arnold and Winther
[7,1] which satisfy the inf-sup condition.

Let k ≥ 1 and define Pk(K) to be the set of all polynomials of degree at most k on the simplex
K ∈ Th. On K, define SK to be the symmetric Arnold-Winther tensors

SK =
{
Sh ∈ H(div,K)sym | Sh ∈ (Pk+d(K))d×dsym and div(Sh) ∈ (Pk(K)

}
.

The space Sh is the union of SK over all K ∈ Th, subject to the condition that the normal components
are continuous across mesh edges (faces for d = 3) and all components are continuous at vertices.
Define

Uh =
{

u ∈ L2(Ω)d | u|K ∈ Pk(K) ∀K ∈ Th
}

and note that there is no interelement continuity requirement for Uh. Figure 4.1 gives a diagram of
the degrees of freedom on each triangle for the lowest order Arnold-Winther (Sh, uh) pair (k = 1) in
two dimensions. In [7,1] an interpolation operator Πh : S∩H1(Ω)d×d → Sh is constructed for which



18 Noel J. Walkington, Jason S. Howell

div(ΠhS) = PUh div(S),

S ∩H1(Ω)d×d div−−−−→ U

Πh

y yPU
h

Sh
div−−−−→ Uh

where is the orthogonal projection PUh : U → Uh and s > 0.
The discrete analog of (4.2) follows since for any vh ∈ Uh there is a S ∈ S∩H1(Ω)d×d satisfying

div(S) = vh and ‖S‖L2(Ω) ≤ C‖vh‖L2(Ω). Then div(ΠhS) = PUh div(S) = vh and ‖ΠhS‖H(Ω;div) ≤
C‖vh‖U and the discrete inf-sup condition follows.

Second Inf-Sup Condition: The commuting diagram for the Arnold Winther spaces shows

Zh ≡
{
Sh ∈ Sh |

∫
Ω

div(Sh).uh = 0, uh ∈ Uh
}

= {Sh ∈ Sh | div(Sh) = 0}

The second inf-sup condition for the discrete spaces becomes

sup
Dh∈Dh

∫
ΩDh : Sh
‖Dh‖L2(Ω)

≥ c‖Sh‖L2(Ω), Sh ∈ Zh. (4.5)

When div(S) = 0, Lemma A.2 of the appendix shows that ‖S‖L2(Ω) ≤ C‖S0‖L2(Ω) where S0 =
S − (tr(S)/d)I is the trace free part of S. Since Sh ∈ Sh is piecewise polynomial of degree k + d on
Th, so it suffices to let

Dh =
{
Dh ∈ L2(Ω)d×d | tr(Dh) = 0 and Dh|K ∈ Pk+d(K)d×d, K ∈ Th

}
;

however, typically much smaller spaces (and hence cheaper numerical schemes) suffice. Note too
that smaller spaces will not necessarily result in a loss of accuracy. For smooth functions the Arnold
Winther spaces exhibit the following approximation properties,

‖S −ΠhS‖H(div;Ω) ≤ Chk+1

‖u− PUh u‖L2(Ω) ≤ Chk+1,

and this rate would be achieved for ‖Dh −D‖L2(Ω) if Dh contained the piecewise polynomials of
degree k.

Having constructed discrete subspaces which satisfy these inf-sup conditions, Theorem 2.2 pro-
vides error estimates for the Galerkin approximations.

Theorem 4.2 Let Ω ⊂ Rd and the spaces S, U , and D be given at the beginning of this section.
Assume there exist constants C, c > 0 such that A : Rd×d → Rd×d satisfies

c|D − E|2 ≤ (A(E)−A(D)) : (E −D) and (A(E)−A(D)) : F ≤ |E −D| |F |.

Let {Th}h>0 be a regular family of triangulations of Ω, Sh ⊂ S be the Arnold Winther space of index
k over Th, Uh ⊂ U be the discontinuous piecewise polynomial space of degree k, and Dh ⊂ D be the
discontinuous piecewise polynomial space of degree k + d.

Let (D,u, S) satisfy (4.1) and (Dh,uh, Sh) satisfy (4.4). Then there is a constant c > 0 such
that, for 1 ≤ m ≤ k + 1,

‖D −Dh‖D + ‖u− uh‖U + ‖S − Sh‖S ≤ Chm
{
‖D‖m + ‖u‖m + ‖S‖m + ‖div(S)‖m

}
.



Inf-Sup Conditions for Twofold Saddle Point Problems 19

4.3 Finite Element Subspaces for D

In this section a macroelement construction [33] is employed to determine subspaces Dh ⊂ D that
will satisfy the inf-sup condition (4.5) and are smaller than naive ones considered in Theorem 4.2.

4.3.1 Macroelement Construction We employ the concept of a macroelement from [33].

Definition 4.1 (1) A parent macroelement M̂ is a connected finite union of simplices in Rd.
(2) A macroelement M in Th affine equivalent to M̂ is a set of simplices of Th whose union is

homeomorphic to M̂ by a homeomorphism which is piecewise affine on each simplex K ⊂M .

The following lemma relates local inf-sup conditions on macroelements to the corresponding
condition on a parent macroelement

Lemma 4.1 Let M and M̂ be affine equivalent macroelements and let χ : M̂ → M be the corre-
sponding piecewise affine homeomorphism. If K̂ ⊂ M̂ is a simplex and χ(K̂) = K, write

χ(ξ)|K̂ = x0K + FKξ, ξ ∈ K̂,

where FK ∈ Rd×d, and let J = det(F ). Let Ŝ(M̂), Dh(M̂) ⊂ L2(M̂)d×d and define the mappings
ˆ: S(M̂)→ Sh(M) ⊂ L2(M)d×d andˆ: D̂(M̂)→ Dh(M) ⊂ L2(M)d×d by

Sh = (1/
√
J)FŜF T and Dh = (1/

√
J)F−T D̂F−1. (4.6)

Under these transformations,

1. Symmetric matrices on M̂ are mapped to symmetric matrices on M .
2. Piecewise polynomials of degree k on M̂ map to piecewise polynomials of degree k on M .
3. If all of the Jacobian matrices FK are equal to a scalar multiple of an orthogonal matrix then

trace free functions on M̂ to trace free functions on M .
4. The mapping Ŝ(M̂) 7→ Sh(M) maps functions in H(div, M̂) to functions in H(div,M); moreover,

divergence free functions on M̂ map to divergence free functions on M . In particular, the (di-
vergence free) Arnold–Winther space on M̂ is mapped to the (divergence free) Arnold–Winther
space on M .

5. For each K̂ ⊂ M̂ and K = χ(K̂)

‖Sh‖L2(K) ≤ ‖FK‖2‖Ŝ‖L2(K̂), ‖Dh‖L2(K) ≤ ‖F−1
K ‖

2‖D̂‖L2(K̂),

and ∫
Ki

Sh : Dh =
∫
K̂i

Ŝ : D̂.

6. Define the “condition number” to be κM = ‖F‖L∞(M̂)‖F
−1‖L∞(M̂). If Ŝ ∈ Ŝ \ {0}, then

sup
Dh∈Dh(M)

∫
M Sh : Dh

‖Dh‖L2(M)‖Sh‖L2(M)
≥ 1
κ2
M

sup
D̂∈D̂(M̂)

∫
M̂ (Ŝ, D̂)

‖D̂‖L2(M̂)‖Ŝ‖L2(M̂)

. (4.7)

The mapping Ŝ 7→ Sh is the symmetric version of the Piola transform [31,14] and the transfor-
mation D̂ 7→ Dh was constructed to be the dual operator preserving the inner product.

The next step is to show that a global inf-sup condition in Th will follow from the local inf-sup
condition on the right hand side of (4.7).
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Theorem 4.3 Let M̂ be a family of parent macroelements and Ω = ∪HMH be a covering of Ω
by macroelements of Th each affine equivalent to some M̂ ∈ M̂. For each M̂ ∈ M̂ let D̂(M̂),
Ŝ(M̂) ⊂ L2(M̂)d×d be specified and assume that there exists ĉ > 0

sup
D̂∈D̂(M̂)

∫
M̂ (Ŝ, D̂)

‖D̂‖L2(M̂)

≥ ĉ‖Ŝ‖L2(M̂), Ŝ ∈ Ŝ(M̂), M̂ ∈ M̂.

Let Sh ⊂ L2(Ω)d×d and assume that the local spaces Sh(M) formed by restriction to M are the
images of Ŝ(M̂) under the (symmetric) Piola transform (4.6). If Dh is the (discontinuous) finite
element space on Th spanned by the local spaces Dh(M), then

sup
Dh∈Dh

∫
ω Sh : Dh

‖Dh‖L2(Ω)
≥ ĉ

γκ2
‖Sh‖L2(Ω),

where κ = maxM κM is the maximal condition number on each macroelement and γ is the ply of the
covering Ω = ∪HMH ; that is, x ∈ Ω belongs to at most γ macroelements.

Proof Fix Sh ∈ Sh and for each H let DH ∈ Dh(MH) satisfy ‖DH‖L2(MH) = ‖Sh‖L2(MH) and∫
MH

DH : Sh ≥ (ĉ/κ2)‖Sh‖2L2(MH).

Then define Dh =
∑

H DH , and use the property that {MH} cover Ω to conclude∫
Ω
Dh : Sh ≥ (ĉ/κ2)‖Sh‖2L2(Ω).

Next, since the covering has finite ply we compute

‖Dh‖2L2(Ω) =
∑
K∈Th

∫
K

∣∣∣∣∣∣
∑

H:K⊂MH

DH

∣∣∣∣∣∣
2

≤
∑
K∈Th

∫
K
γ

∑
H:K⊂MH

|DH |2

= γ
∑
K∈Th

∑
H:K⊂MH

∫
K
|DH |2

= γ
∑
H

∑
K⊂MH

∫
K
|DH |2

= γ
∑
H

∫
MH

|DH |2

= γ
∑
H

∫
MH

|Sh|2

≤ γ2

∫
Ω
|Sh|2.

It follows that ‖Dh‖L2(Ω) ≤ γ‖Sh‖L2(Ω), and∫
ΩDh : Sh
‖Dh‖L2(Ω)

≥ (ĉ/γκ2)‖Sh‖L2(Ω).
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Fig. 4.2. Reference M̂ and affine equivalent M macroelements.

In practice it is trivial to construct a covering of Ω by macroelements with finite ply, and a bound
upon the condition number follows from the bound upon the aspect ratio of the simplices in Th. In
this situation the global inf-sup condition will follow provided the local inf-sup condition holds on
each parent macroelement with constant independent of M̂ ∈ M̂. The following lemma shows that
verification of the inf-sup condition on each macroelement reduces to linear algebra.

Lemma 4.2 Let M̂ be a parent macroelement and suppose D̂, Ŝ ⊂ L2(M̂)d×dsym are finite dimensional
subspaces and that for all Ŝ ∈ Ŝ∫

M̂
D̂ : Ŝ = 0 ∀D̂ ∈ D̂ ⇒ Ŝ = 0.

Then there exists ĉ > 0 such that

sup
D̂∈D̂

∫
M̂ D̂ : Ŝ

‖D̂‖L2(M̂)

≥ ĉ‖Ŝ‖L2(M̂), Ŝ ∈ Ŝ. (4.8)

Proof Let the linear map φ : D̂ → Ŝ be characterized by (φ(D̂), Ŝ)L2 = (D̂, Ŝ)L2 for all Ŝ. The
hypothesis of the theorem shows Rg(φ)⊥ = {0}, and finite dimensionality guarantees Rg(φ) is closed
so is all of Ŝ. Then φ is surjective and is an isomorphism on Ker(φ)⊥. Selecting D̂ = φ−1(Ŝ) ∈
Ker(φ)⊥ establishes the inf-sup condition (4.8).

If M̂ is finite the inf-sup condition then reduces to linear algebra. When M̂ is infinite the
macroelements can usually be parameterized by a compact set; for example, the vertices if the sim-
plices on M̂ typically lie in a compact set of Rd. If the constants ĉ = ĉ(M̂) > 0 depend continuously
upon the parameters a uniform bound from below will follow (positive functions on compact sets
achieve their minimum).
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(1, 0)(0, 0)

α

α α

x̂1

K̂1

Fig. 4.3. If K̂1 has minimum angle α then x̂1 lies in a compact subset of R2.

4.3.2 Two Dimensional Example In this section the macroelement technique is used to show that
in two dimensions the inf-sup condition (4.5) holds for the lowest order Arnold Winther elements,
k = 1, when Dh is the space of discontinuous “quadratic plus bubble” symmetric trace free matrices.
For this purpose we select the macroelements to be pairs of triangles which have an edge in common,
and the reference macro elements be pairs of simplices with common edge lying on the unit interval
of the x-axis (see Figure 4.2),

M̂ = {M̂ = K̂1 ∪ K̂2 | K̂1 ∩ K̂2 = [0, 1]× {0}, and K̂1, K̂2 have aspect ratio bounded by C}.

If {Th} is a regular family of triangulations of Ω then each pair of triangles M = K1 ∪K2 sharing
an edge of length hM can be mapped to M̂ ∈ M̂ with an affine homeomorphism of the form,

x = χ(x̂) = x0 + hMQx̂, QTQ = I.

Selecting the Jacobians to be orthogonal guarantees that trace free matrices are mapped to trace
free matrices under the Piola transformations (4.6), and that condition numbers κM = 1 are trivially
bounded.

It remains to verify the inf-sup condition on each macroelement M̂ ∈ M̂. To do this we param-
eterize M̂ = K̂1 ∪ K̂2 ∈ M̂ by the coordinates of the vertices x̂1 and x̂2 of K̂1 and K̂2 not on the
x̂1-axis. Since each simplex has bounded aspect ratio it follows that the pair (x̂1, x̂2) lie in a compact
subset of R2 as indicated in Figure 4.3. Moreover, since the inf-sup condition only involves integrals
over M̂ = M̂(x̂1, x̂2) it is clear that the constant depends continuously upon the two parameters.
In this situation it suffices to establish the inf-sup condition on each M̂(x̂1, x̂2) using, for example,
Lemma 4.2.

The linear algebra required to complete the proof of the inf-sup condition involves large matrices
with symbolic components, (x̂1, x̂2). Maple was used to verify the hypothesis in Lemma 4.2 as
follows:

1. On each of K̂1 and K̂2 the divergence free functions in the lowest order Arnold–Winther space
take the form

Ŝ11 = 1/2 a0x
2 + 1/6 a1x

3 + 1/2 a2yx
2 +

(
a3 + a4y + a5y

2
)
x+ a6 + a7y + a8y

2 + a9y
3

Ŝ12 = −a0xy − 1/2 a1x
2y − 1/2 a2y

2x− a3y − 1/2 a4y
2 − 1/3 a5y

3

−a10x− 1/2 a11x
2 − 1/3 a12x

3 + a17

Ŝ22 = 1/2 a0y
2 + 1/2 a1xy

2 + 1/6 a2y
3 +

(
a10 + a11x+ a12x

2
)
y + a13 + a14x+ a15x

2 + a16x
3
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2. Accumulate the set of equations to enforce the following:
(a) Ŝ is continuous at the vertices (0, 0) and (1, 0),

Ŝ(0, 0−) = Ŝ(0, 0+), and Ŝ(1, 0−) = Ŝ(1, 0+).

(b) Ŝn is continuous across the x-axis where n = (0, 1)T . Along the x-axis the normal components
are univariate polynomials of degree three which agree at the end points, so it suffices to require
continuity at two more points.

Ŝ(1/3, 0−)n = Ŝ(1/2, 0+)n, and Ŝ(2/3, 0−)n = Ŝ(2/3, 0+)n.

(c) On each of the triangles, Ki, Ŝ is orthogonal to a basis of the trace free matrices with
components in P2(K̂i)⊕ bK̂i

.

∫
K̂i

(
Ŝ11 − Ŝ22

)
p = 0,

∫
K̂i

Ŝ12p = 0, p ∈ {1, x, y, x2, xy, y2, bKi(x, y)}.

3. Solve the system of linear equations. If the solution is a constant diagonal matrix, Ŝ(x, y) = αI,
conclude the inf-sup condition holds. Since the coefficient matrix of the linear system has symbolic
entries corresponding to the components of x̂1 and x̂2 fraction free Gauss elimination should be
employed for their solution.

Granted the integrity of the linear algebra system, this procedure provides a proof of the following
lemma.

Lemma 4.3 Let {Th}h>0 be a regular family of triangulations of a bounded domain Ω ⊂ R2 and let
Zh ⊂ Sh be the subspace of the lowest order (k = 1) Arnold-Winther tensors with divergence zero
and let

Dh = {D ∈ D | Dij |K ∈ P2(K)⊕ bK ∀K ∈ Th} .

Then there is a constant c > 0 independent of h such that

sup
Dh∈Dh

∫
Ω Dh : Sh
‖Dh‖D

≥ c‖Sh‖, Sh ∈ Zh.

The bubble component was necessary for the two element macroelement construction. However,
numerical experiments suggest that it may not be required if a larger macroelement is used. For
example, if Ω is a square (or L-shaped etc.) and is triangulated by dividing uniform square grids
along the diagonal, then groups of 8 triangles (four squares) can be mapped to the macroelement
shown in Figure 4.4(a) by maps of the form x = χM (x̂) = x0 +hξ so that the Jacobian is F = hI. In
this situation the linear system only contains numerical entries, and the macroelement calculations
shows that the bubble is not required; that is the inf-sup condition is satisfied when

Dh = {D ∈ D | Dij |K ∈ P2(K) ∀K ∈ Th} .
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(a) Eight triangle macroele-
ment

(b) Four triangle macroele-
ment

Fig. 4.4. Parent macroelements used for inf-sup conditions for the trace-free D formulation (a) and for the formulation
with pressure (b).

4.4 Alternate Formulation with Pressure

The solution (1.6) requires

sup
D∈D

∫
ΩD : S + pI : D

‖D‖
≥ c(‖S‖S + ‖p‖P ) , ∀(S, p) ∈ Z × P. (4.9)

The proof of (4.9) is shown by setting D = S−(1/e)tr(S) (as for (4.3)) if ‖S‖S ≥ ‖p‖P and choosing
D = pI − S when ‖S‖S ≤ ‖p‖P .

The macroelement construction is vastly simplified in this situation since the mappings χ : M̂ →
M do not need to preserve the trace. In particular, a single parent element suffices and the inf-
sup condition reduces to showing a single (numerical) matrix has full rank. For the parent element
with four triangles shown in Figure 4.4(b), the macroelement construction shows that the inf-sup
condition (4.9) is satisfied when Sh and Uh are as in Section 4.2, and

Dh =
{
D ∈ L2(Ω)d×dsym | Dij |K ∈ P1(K)⊕ bK ∀K ∈ Th

}
,

and

Ph = {p ∈ P | p|K ∈ P1(K)⊕ bK ∀K ∈ Th} .

If PD
h and PPh denote the orthogonal projections, onto these spaces we have

‖D − PD
hD‖L2(Ω) ≤ chm‖D‖m , 0 ≤ m ≤ 2,

‖p− PPh p‖L2(Ω) ≤ chm‖p‖m , 0 ≤ m ≤ 2.

The error estimate for the discrete problem becomes

‖D −Dh‖D + ‖u− uh‖U + ‖S − Sh‖S + ‖p− ph‖P

≤ Chm
{
‖D‖m + ‖u‖m + ‖S‖m + ‖div(S)‖m + ‖p‖m

}
.
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A Auxiliary Results

Lemma A.1 Let Ω ⊂ Rd be a bounded Lipschitz domain and let ∂Ω = Γ̄0 ∪ Γ̄1 be a decomposition
into two open sets with |Γ1| 6= 0. Let U = {u ∈ H1(Ω)d | u|Γ0 = 0}. Then there exists c > 0 such
that

sup
u∈U

∫
Ω p div(u)
‖u‖H1(Ω)

≥ c‖p‖L2(Ω), p ∈ L2(Ω).

Proof Recall that

sup
u0∈H1

0 (Ω)
d

∫
Ω p div(u0)
‖u0‖H1(Ω)

≥ c0‖p‖L2(Ω)/R,

and ‖p‖2L2(Ω) = ‖p‖2L2(Ω)/R + |Ω|p̄2 = ‖p− p̄‖2L2(Ω) + |Ω|p̄2 where p̄ is the average value of p. Let

U = H1
0 (Ω)d⊕U1 be the orthogonal decomposition. Then writing u ∈ U as u = u0 +u1 we compute∫

Ω
pu =

∫
Ω

(p− p̄) div(u0 + u1) + p̄ div(u1)

=
∫
Ω

(p− p̄) div(u0 + u1) + p̄

∫
Γ1

u1.n.

Since the trace operator γ : U → H1/2(Γ1) is surjective, there exists u1 ∈ U1 with ‖u1‖H1(Ω) = 1
such that the integral on the right is positive. Then∫

Ω
pu ≥

∫
Ω

(p− p̄) div(u0)− ‖p− p̄‖L2(Ω) + c1|p̄|

≥ (c0‖u0‖ − 1)‖p− p̄‖L2(Ω) + c1|p̄|
= (c0‖u0‖ − 1)‖p‖L2(Ω)/R + c1|p̄|.

Selecting ‖u0‖ = (1 + c1)/c0 gives ‖u‖ ≤ C(c0, c1) which completes the proof.

Lemma A.2 Let Ω ⊂ Rd be a bounded Lipschitz domain and let ∂Ω = Γ̄0 ∪ Γ̄1 be a decomposition
into two open sets with |Γ1| 6= 0. Let S = {S ∈ H(div;Ω) | Sn|Γ1 = 0} and U = {u ∈ H1(Ω)d |
u|Γ0 = 0}. Then there exists c > 0 such that

‖tr(S)‖L2(Ω) ≤ C
(
‖S0‖L2(Ω) + ‖div(S)‖U ′

)
,

where S0 = S − (tr(S)/d)I is the deviatoric part of S.

Proof Let (u, p) ∈ U × L2(Ω) satisfy

(u,v)H1(Ω) + (p, div(v))L2(Ω) = 0, (div(u), q)L2(Ω) = (tr(S), q)L2(Ω),

for all (v, q) ∈ U × L2(Ω). The previous lemma shows that the inf-sup condition is satisfied, so
solutions exists and ‖u‖H1(Ω) ≤ C‖tr(S)‖L2(Ω). Then

‖tr(S)‖2L2(Ω) =
∫
Ω
tr(S) div(u)

=
∫
Ω
tr(S)I : (∇u)

= d

∫
Ω

(S − S0) : (∇u)

= −d
∫
Ω
div(S).u + S0 : (∇u)

≤ d
(
‖div(S)‖2U ′ + ‖S0‖2L2(Ω)

)1/2
‖u‖H1(Ω).
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In the third line we used the identity (1/d)tr(S)I = S − S0, and the fourth line follows since Sn.u
vanishes on the boundary.
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