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Abstract

We study a semi-implicit time-difference scheme for magnetohydrodynamics of a viscous
and resistive incompressible fluid in a bounded smooth domain with perfectly conducting bound-
ary. In the scheme, velocity and magnetic fields are updated by solving simple Helmholtz equa-
tions. Pressure is treated explicitly in time, by solving Poisson equations corresponding to a re-
cently developed formula for the Navier-Stokes pressure involving the commutator of Laplacian
and Leray projection operators. We prove stability of the time-difference scheme, and deduce
a local-time well-posedness theorem for MHD dynamics extended to ignore the divergence-free
constraint on velocity and magnetic fields. These fields are divergence-free for all later time if
they are initially so.
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1 Introduction
The equations of magnetohydrodynamics (MHD) for incompressible, viscous and re-
sistive, electrically conducting fluid flow take the form [Ja]

∂tu+u·∇u+∇p = ν∆u+α(∇×b)×b+ f, (1)
∂tb+∇× (b×u) = η∆b, (2)

∇ ·u = 0, (3)
∇ ·b = 0. (4)

Examples of such fluids include plasmas, liquid metals (mercury, liquid sodium), and
salt water. Here u is the fluid velocity, p is the pressure, f is the external force, and
b is the magnetic field (more properly, flux density or induction). The coefficients
ν , η and α are assumed to be fixed positive constants, and represent, respectively,
the kinematic viscosity, the magnetic diffusivity, and α = 1/(4πµρ) where µ is the
magnetic permeability and ρ is the fluid density.

In general, the magnetic field penetrates the boundary and interacts with the outside
environment. For simplicity and in order to focus on the main issues of concern here,
we consider MHD in a perfectly conducting container. This confines the magnetic
field inside and decouples it from the exterior. We assume the flow is contained in a
bounded and connected domain Ω ⊂ RN (N = 2 or 3) with smooth boundary Γ = ∂Ω.
We specify the velocity on Γ, with no sources or sinks of fluid, requiring

u = g, n ·g = 0 on Γ. (5)

We refer to this as a no-flow boundary condition. When g≡ 0, we refer to it as a no-slip
boundary condition. Requiring the container be perfectly conducting means requiring

n× e = 0, n ·b = 0 on Γ, (6)

where ce = b×u + η∇×b is the electric field (c is the speed of light). If we assume
n ·b = 0 on Γ, then the boundary condition n× e = 0 becomes

n× (∇×b) =− 1
η

(n ·g)b on Γ, (7)

which is similar to the Navier slip boundary condition. Because we impose the no flow
boundary condition n ·g = 0, the boundary conditions in (6) for the magnetic field take
the form

n× (∇×b) = 0, n ·b = 0 on Γ. (8)

Our aim is to study the stability of discretization schemes for these MHD equations
in bounded domains, supplemented with initial conditions of the form

u(·,0) = uin, b(·,0) = bin in Ω. (9)

Particular attention must be paid to the constraint that magnetic field and velocity be
divergence-free. We will demonstrate, however, that updating the velocity and mag-
netic field can be based on simple Helmholtz equations, and the pressure can be sepa-
rately computed by Poisson equations. The analysis is based on a commutator formula
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and estimates for pressure that derive from our work on incompressible Navier-Stokes
equations [LLP1, LLP2, LLP3]. These estimates show that the pressure gradient is
strictly dominated by the viscosity term in L2-norm at leading order. One aim of the
present work is to demonstrate the utility of these estimates for studying problems cou-
pling incompressible viscous flow to more complicated physics.

From this stability analysis we obtain a local-time well-posedness theorem for
strong solutions of the MHD equations (1), (2) with boundary conditions (5), (8) but
without the divergence-free constraints (3)-(4); pressure is determined as described in
the next section below. The velocity and magnetic fields will be divergence-free for
all time if they are divergence-free at the initial time. (They satisfy diffusion equa-
tions with no-flux boundary conditions.) We will show that these unconstrained MHD
equations have a locally unique strong solution with the regularity

u, b ∈ L2(0,T ;H2(Ω,RN))∩H1(0,T ;L2(Ω,RN)), (10)

∇p ∈ L2(0,T ;L2(Ω,RN)), (11)

provided that

uin,bin ∈ H1(Ω,RN), (12)

f ∈ L2(0,T ;L2(Ω,RN)), (13)

g ∈ Hg := H3/4(0,T ;L2(Γ,RN))∩L2(0,T ;H3/2(Γ,RN)), (14)

and provided that the appropriate compatibility conditions hold:

n ·uin = 0, n ·bin = 0, n ·g = 0, uin = g(·,0) on Γ. (15)

(The space Hg is the space of boundary traces of functions in (10), see [LM].)
We anticipate that this unconstrained formulation will serve as a starting point for

the development of more accurate and flexible numerical schemes for MHD, much as
the well-posedness theory for the Navier-Stokes equations in [LLP1] served as a basis
for the significantly improved numerical methods described in [LLP2, LLP3].

2 Preliminaries

2.1 The Laplace-Leray commutator
Recall that an arbitrary square-integrable velocity field u has a unique Helmholtz de-
composition

u = v+∇φ , (16)

where v is L2-orthogonal to all square-integrable gradients:
∫

Ω
v ·∇q = 0 for all q

smooth enough. Then v is divergence-free and at the boundary has vanishing compo-
nent in the direction of the outward unit normal n:

∇ ·v = 0 in Ω, n ·v = 0 on Γ. (17)
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We write v = Pu, defining the Leray-Helmholtz projection operator P , and write
φ = Qu to denote the zero-mean potential field in (16). That is, ∇φ = (I−P)u. Then
since ∆φ = ∇ ·u, we find ∆(I−P)u = ∆∇φ = ∇∆φ = ∇∇ ·u, and from this, the fact
P∇ = 0, and the vector identity

∇×∇×u =−∆u+∇∇ ·u, (18)

one immediately obtains the following identities described in [LLP1]:

∆Pu = (∆−∇∇·)u =−∇×∇×u, (19)
(∆P−P∆)u = (I−P)(∆−∇∇·)u =−(I−P)(∇×∇×u). (20)

In (20) we require u ∈ H2(Ω,RN). Then we see that the commutator of the Laplacian
and Leray projection operators is the gradient of a potential field pS(u) satisfying

pS(u) = Q(∆−∇∇·)u, ∇pS(u) = (∆P−P∆)u. (21)

From (21) it follows that pS(u) is the unique zero-mean solution of the boundary value
problem

∆pS(u) = 0 in Ω, n ·∇pS(u) = n · (∆−∇∇·)u on Γ. (22)

(Since (∆−∇∇·)u has zero divergence, the boundary condition holds in H−1/2(Γ), due
to a standard trace theorem.) The following estimate from [LLP1] will play a key role
in our stability analysis.

Theorem 2.1 Suppose Ω is a bounded domain with C3 boundary, and ε > 0. Then
there is a constant C such that for all u ∈ H2∩H1

0 (Ω,RN),∫
Ω

|∇pS(u)|2 ≤
(

1
2

+ ε

)∫
Ω

|∆u|2 +C
∫

Ω

|∇u|2. (23)

If Ω is replaced by a half-space, the estimate (23) holds with ε = C = 0 and is sharp;
see [LLP1].

2.2 Formula for pressure
Suppose now that u is a (sufficiently regular) solution of (1) satisfying (3) and (5).
Then u = Pu. We apply P to (2), while collecting together the nonlinear and forcing
terms in (1) to write

ftot =−u·∇u+α(∇×b)×b+ f. (24)

If we use (21) to say P∆u = ∆Pu−∇pS(u), since P∇p = 0 we find

∂tu+ν∇pS(u) = ν∆u+Pftot. (25)

Since P = I−∇Q, comparing (25) with (2) shows that necessarily (up to constants)

p = ν pS(u)+Qftot. (26)
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This formula expresses the pressure directly in terms of the current velocity, magnetic
and forcing fields. We refer to pS(u) as the Stokes pressure since the other terms vanish
when forcing and nonlinear terms are absent.

For numerical computation of this pressure by finite element methods, it is best to
base discretization on the following weak-form characterization that involves only first
derivatives: For all test functions ψ with square-integrable gradient,∫

Ω

∇p ·∇ψ =
∫

Γ

ν(∇×u) · (n×∇ψ)+
∫

Ω

ftot ·∇ψ. (27)

This means that for sufficiently regular data, p is determined by the boundary value
problem

∆p = ∇ · ftot in Ω, (28)
n ·∇p =−n · (ν∇×∇×u)+n · ftot on Γ. (29)

2.3 Div-curl norms and calculus inequalities
Below, we let

〈
f ,g
〉

Ω
=
∫

Ω
f g denote the L2 inner product of functions f and g in Ω,

and let ‖ · ‖Ω denote the corresponding norm in L2(Ω). We drop the subscript on the
inner product and norm when the domain of integration is understood in context.

We let

V := {v ∈ L2(Ω,RN) : ∇ ·v ∈ L2(Ω), ∇×v ∈ L2(Ω,RN), n ·v|Γ ∈ H1/2(Γ)} (30)

denote the space of square-integrable vector fields on Ω with square-integrable diver-
gence and curl, with normal component at the boundary in the space of traces of H1

functions. On V we use the norm

‖v‖2
V = ‖v‖2 +‖∇ ·v‖2 +‖∇×v‖2 +‖n ·v‖2

H1/2(Γ). (31)

From Proposition 6 on p. 235 of [DaL], it follows V = H1(Ω,RN), and the norm above
is equivalent to the usual H1 norm.

Next we introduce V ∆ := {v ∈V : ∆v ∈ L2(Ω,RN)}, and the norm

‖v‖2
W = ‖v‖2

V +‖∆v‖2. (32)

The space of smooth functions C∞(Ω,RN) is dense in V ∆ with this norm. (This is not
difficult to prove by a standard technique, see [Ad, Theorem 3.18].) We claim that the
map

v 7→ βv =−n× (∇×v)+n(∇ ·v)

extends to a bounded map from V ∆ to H−3/2(Γ,RN). To see this, observe that and
whenever v, w ∈V ∆ are smooth, we have the Green’s formula〈

∆v,w
〉

Ω
−
〈
v,∆w

〉
Ω

=
〈
βv,w

〉
Γ
−
〈
v,βw

〉
Γ
. (33)

By standard extension theorems, there is a bounded map g 7→ w from H3/2(Γ,RN) to
H2(Ω,RN) such that w|Γ = g. Then (33) implies that the map β extends as claimed,
and (33) holds for all v ∈V ∆ and w ∈ H2(Ω,RN).
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For later use, we introduce the space

W := {v ∈V ∆ : n ·v = 0, n× (∇×v) = 0 on Γ}, (34)

with norm given by (32). By the result of Lemma 2.2 below, we have that W ⊂
H2(Ω,RN) and the norm in (32) is equivalent to usual the H2 norm on W . It is then
easy to show that if v ∈W , then

‖∆v‖2 = ‖∇×∇×v‖2 +‖∇∇ ·v‖2.

To establish the solvability of the time-discrete scheme that we will study, we use
the following lemma.

Lemma 2.2 Let λ > 0 and assume Ω ⊂ RN is a bounded domain with smooth bound-
ary, N = 2 or 3. Then for any f ∈ L2(Ω,RN), there is a unique v ∈V ∩H2(Ω,RN) such
that

λv−∆v = f in Ω, (35)
n ·v = 0, n× (∇×v) = 0 on Γ, (36)

Further, there is a constant C ≥ 0 independent of f such that

‖v‖H2(Ω) ≤C‖f‖L2(Ω). (37)

Proof: Formally testing (35) by w and integrating by parts, we arrive at the following
weak form of (35)-(36): Let V0 = {v ∈V : n ·v = 0 on Γ}. Find v ∈V0 such that for all
w ∈V0,

λ
〈
v,w

〉
+
〈
∇ ·v,∇ ·w

〉
+
〈
∇×v,∇×w

〉
=
〈
f,w
〉
. (38)

Using the norm equivalence referred to above, existence, uniqueness and boundedness
in H1 of the solution to this problem is a simple consequence of the Lax-Milgram theo-
rem. Taking w as a smooth test function, we find (35) holds in the sense of distributions
and ∆v ∈ L2. Taking w smooth with n ·w = 0 on Γ, from (38) we infer then that〈

f,w
〉

=
〈
v,λw−∆w

〉
+
〈
v,n× (∇×w)

〉
Γ

=
〈
λv−∆v,w

〉
+
〈
n× (∇×v),w

〉
Γ
, (39)

by invoking (33), and it follows n× (∇× v) = 0 in H−3/2(Γ,RN). It then follows
directly from a regularity result of Georgescu [Ge, Theorem 3.2.3], that v∈H2(Ω,RN),
and the estimate (37) is a consequence of the inverse mapping theorem. �

For estimating nonlinear terms, we will make use of Ladyzhenskaya’s inequalities
[La] ∫

RN
g4 ≤ 2

(∫
RN

g2
)(∫

RN
|∇g|2

)
(N = 2), (40)

∫
RN

g4 ≤ 4
(∫

RN
g2
)1/2(∫

RN
|∇g|2

)3/2

(N = 3), (41)
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valid for g ∈ H1(RN) with N = 2 and 3 respectively, in combination with the fact
that the standard bounded extension operator H1(Ω)→ H1(RN) is also bounded in L2

norm, to deduce that for all g ∈ H1(Ω),

‖g‖2
L4 ≤C‖g‖L2‖g‖H1 (N = 2), (42)

‖g‖2
L3 ≤ ‖g‖2/3

L2 ‖g‖4/3
L4 ≤C‖g‖L2‖g‖H1 (N = 3). (43)

3 Stability analysis for a time-discrete scheme

3.1 Unconstrained MHD system
The traditional way to regard the pressure in (1) is that it is to be determined so that
the divergence-free condition (3) holds. Our aim, however, is to show that the MHD
system (1)-(2), with the boundary conditions (5) and (8), is stably approximated by
discretization, and indeed becomes well posed, if the pressure formula (26) is used
to determine pressure, regardless of whether velocity and magnetic fields are initially
divergence-free or not.

The divergences of the velocity and magnetic fields will turn out to satisfy diffusion
equations with no-flux boundary conditions. Let us describe how this works formally.
For the velocity, let φ be an arbitrary smooth test function and note that〈

∇pS(u),∇φ
〉

=
〈
(∆−∇∇·)u,∇φ

〉
(44)

by (21) and (20). Then by testing (25) with ∇φ , we find that〈
∂tu,∇φ

〉
=
〈
ν∇∇ ·u,∇φ

〉
, (45)

and this is the weak form of the equations

∂t(∇ ·u) = ν∆(∇ ·u) in Ω, n ·∇(∇ ·u) = 0 on Γ. (46)

For the magnetic field, observe that for any smooth φ we have〈
∇×∇×b,∇φ

〉
=
〈
n×∇×b,∇φ

〉
Γ

= 0, (47)〈
∇× (b×u),∇φ

〉
=
〈
n× (b×u),∇φ

〉
Γ

= 0, (48)

since n× (b×u) = (n ·u)b− (n ·b)u = 0 on Γ. Thus, testing (2) with ∇φ and using
(18) we find 〈

∂tb,∇φ
〉

=
〈
η∇∇ ·b,∇φ

〉
, (49)

and this is the weak form of

∂t(∇ ·b) = η∆(∇ ·b) in Ω, n ·∇(∇ ·b) = 0 on Γ. (50)
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3.2 Time discretization
Our main aim is to study the following time-discretization scheme, implicit only in the
viscosity and resistivity terms and explicit in the pressure and nonlinear terms.

We assume uin,bin ∈ V , and for some given T > 0, f ∈ L2(0,T ;L2(Ω,RN)) and
g ∈ Hg with n ·g = 0 on Γ. We take u0, b0 ∈W = V ∩H2(Ω,RN) to approximate uin
and bin in H1(Ω,RN), respectively, and set

fn =
1
∆t

∫ (n+1)∆t

n∆t
f(t)dt, gn =

1
∆t

∫ (n+1)∆t

n∆t
g(t)dt. (51)

We consider the following time-discrete scheme: Find un+1, bn+1 ∈H2(Ω,RN) (n≥ 0)
such that

un+1−un

∆t
−ν∆un+1 =−∇pn + fn

tot in Ω, (52)

bn+1−bn

∆t
−η∆bn+1 =−∇× (bn×un) in Ω, (53)

un+1 = gn+1, n× (∇×bn+1) = 0, n ·bn+1 = 0 on Γ, (54)

where
fn

tot =−un ·∇un +α(∇×bn)×bn + fn, (55)

and where we determine ∇pn from a weak-form pressure Poisson equation correspond-
ing to (27), requiring〈

∇pn,∇ψ
〉

= ν
〈
∇×un,n×∇ψ

〉
Γ
+
〈
fn

tot,∇ψ
〉

∀ψ ∈ H1(Ω). (56)

This means that
−∇pn + fn

tot =−ν∇pS(un)+Pfn
tot. (57)

The unique solvability of (53) with the boundary conditions in (54) is a consequence
of Lemma 2.2.

3.3 Stability analysis for no-slip boundary conditions
For simplicity, at first we consider no-slip boundary conditions, taking g = 0. Our goal
in this section is to prove the following stability estimate for the time-discrete scheme
in (52)-(56).

Theorem 3.1 Let Ω be a bounded domain in RN (N = 2 or 3) with smooth boundary,
and let ν , η , M0 > 0. Then there exist T∗, C3 > 0 such that, if u0 ∈ H1

0 ∩H2(Ω,RN),
b0 ∈W, g = 0, and f ∈ L2(0,T ;L2(Ω,RN)) for some T ∈ (0,T∗), with

‖b0‖2
H1 +‖∇u0‖2 +η∆t‖∆b0‖2 +ν∆t‖∆u0‖2 +

∫ T

0
‖f(t)‖2 dt ≤ M0,
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then whenever 2η∆t ≤ 1 and 0 < (n + 1)∆t ≤ T , the solution to the time-discrete
scheme (52)-(56) satisfies

sup
0≤k≤n

(‖bk‖2
H1 +‖∇uk‖2)+

n

∑
k=0

(‖∆bk‖2 +‖∆uk‖2)∆t ≤C3, (58)

n−1

∑
k=0

(
‖∇× (bk×uk)‖2 +‖(∇×bk)×bk)‖2 +‖uk ·∇uk‖2

)
∆t ≤C3. (59)

n−1

∑
k=0

(∥∥∥∥bk+1−bk

∆t

∥∥∥∥2

+
∥∥∥∥uk+1−uk

∆t

∥∥∥∥2
)

∆t ≤C3. (60)

Proof: 1. Testing bn+1−∆bn+1 against the various terms in (53) and using the bound-
ary conditions, we find〈

bn+1−∆bn+1,
bn+1−bn

∆t

〉
=

1
2∆t

(
‖bn+1‖2

V −‖bn‖2
V +‖bn+1−bn‖2

V

)
, (61)〈

bn+1−∆bn+1,−η∆bn+1〉= η‖∆bn+1‖2 +η‖∇ ·bn+1‖2 +η‖∇×bn+1‖2, (62)〈
bn+1−∆bn+1,∇× (bn×un)

〉
≤ η

2
(‖∆bn+1‖2 +‖∇×bn+1‖2)

+
1

2η
‖∇× (bn×un)‖2 +

1
2η

‖bn×un‖2. (63)

Combining these estimates with (53) one has

‖bn+1‖2
V −‖bn‖2

V +‖bn+1−bn‖2
V

∆t
+η

(
‖∆bn+1‖2 +‖∇ ·bn+1‖2 +‖∇×bn+1‖2)

≤ 1
η
‖∇× (bn×un)‖2 +

1
η
‖bn×un‖2.

This gives

‖bn+1‖2
V −‖bn‖2

V +‖bn+1−bn‖2
V

∆t
+η(‖bn+1‖2

W −‖bn‖2
W )+η‖bn‖2

W

≤ 1
η
‖∇× (bn×un)‖2 +

1
η
‖bn×un‖2 +η‖bn+1‖2 (64)

We assume 2η∆t ≤ 1, thus

η‖bn+1‖2 ≤ 2η‖bn+1−bn‖2 +2η‖bn‖2 ≤ ‖bn+1−bn‖2
V

∆t
+2η‖bn‖2,

and hence

‖bn+1‖2
V −‖bn‖2

V
∆t

+η(‖bn+1‖2
W −‖bn‖2

W )+η‖bn‖2
W

≤ 1
η
‖∇× (bn×un)‖2 +

1
η
‖bn×un‖2 +2η‖bn‖2. (65)
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One estimates the momentum equation the same as for the Navier-Stokes equations,
as in [LLP1]. Fix any β ∈ ( 1

2 ,1) and let Cβ be C as given by Theorem 2.1 with β =
1
2 + ε , so that we have the estimate

‖∇pS(un)‖2 ≤ β‖∆un‖2 +Cβ‖∇un‖2. (66)

After testing (52) against −∆un+1 and using (57) and that ‖P‖ ≤ 1, we estimate the
right-hand side by

|
〈
∆un+1,−ν pS(un)+Pfn

tot

〉
|

≤ ‖∆un+1‖(‖ν pS(un)‖+‖fn‖+‖un ·∇un‖+‖α(∇×bn)×bn‖) .

≤
(

ν

2
+

ε1

2

)
‖∆un+1‖2 +

ν

2
‖pS(un)‖2

+
3

2ε1

(
‖fn‖2 +‖un ·∇un‖2 +‖α(∇×bn)×bn‖2) (67)

for any ε1 > 0. Then using (66), one finds easily that

1
∆t

(
‖∇un+1‖2−‖∇un‖2

)
+(ν − ε1)

(
‖∆un+1‖2−‖∆un‖2)+(ν − ε1−νβ )‖∆un‖2

≤ 3
ε1

(
‖fn‖2 +α

2‖(∇×bn)×bn‖2 +‖un ·∇un‖2)+νCβ‖∇un‖2. (68)

2. Now we turn to estimate nonlinear terms in (68) and (65), using the calculus
inequalities in section 2.3 and the fact that H1(Ω) embeds into L4 and L6:

‖(∇×b)×b‖2 ≤

{
‖b‖2

L4‖∇b‖2
L4 ≤C‖b‖‖∇b‖2‖∇b‖H1 (N = 2),

‖b‖2
L6‖∇b‖2

L3 ≤C‖∇b‖3‖∇b‖H1 (N = 3).
(69)

By the elliptic regularity estimates ‖b‖H1 ≤ C‖b‖V and ‖∇b‖H1 ≤ ‖b‖H2 ≤ C‖b‖W ,
we conclude that for any ε2 > 0,

‖(∇×b)×b‖2 ≤

{
C‖b‖‖b‖2

V‖b‖W ≤ ε2‖b‖2
W +4Cε

−1
2 ‖b‖2‖b‖4

V (N = 2),

C‖b‖3
V‖b‖W ≤ ε2‖b‖2

W +4Cε
−1
2 ‖b‖6

V (N = 3).
(70)

Next, we find

‖∇× (b×u)‖2 ≤

{
‖u‖2

L4‖∇b‖2
L4 +‖b‖2

L4‖∇u‖2
L4 (N = 2),

‖u‖2
L6‖∇b‖2

L3 +‖b‖2
L6‖∇u‖2

L3 (N = 2 or 3),

≤

{
C(‖u‖‖∇u‖‖b‖V‖b‖W +‖b‖‖b‖V‖∇u‖‖∆u‖) (N = 2),

C(‖∇u‖2‖b‖V‖b‖W +‖b‖2
V‖∇u‖‖∆u‖) (N = 3),

≤ ε2(‖b‖2
W +‖∆u‖2)+

4C
ε2

(
‖∇u‖4‖b‖2

V +‖b‖2
V‖∇u‖4)

≤ ε2(‖b‖2
W +‖∆u‖2)+

4C
ε2

(‖b‖6
V +‖∇u‖6),

10



this last line due to Young’s inequality a4b2 +a2b4 ≤ a6 +b6. We also have

‖b×u‖2 ≤ ‖u‖2
L4‖b‖2

L4 ≤ ‖u‖‖∇u‖‖b‖‖∇b‖
≤C(‖∇u‖4 +‖b‖4

V )≤C(‖∇u‖2 +‖∇u‖6 +‖b‖2
V +‖b‖6

V ). (71)

Finally, the velocity advection term is estimated similarly, as in [LLP1], by

‖un ·∇un‖2 ≤ ε2‖∆un‖2 +4Cε
−1
2 ‖∇un‖6 (N = 2 or 3). (72)

3. We plug these estimates into (68) and (65) and take ε1, ε2 > 0 to satisfy

ν̂ := ν − ε1−νβ − 3ε2

ε1
− ε2

η
> 0, η̂ := η − ε2

η
− 3ε2α2

ε1
> 0.

We get

1
∆t

(
‖bn+1‖2

V +‖∇un+1‖2−‖bn‖2
V −‖∇un‖2)+ η̂‖bn‖2

W + ν̂‖∆un‖2

+η(‖bn+1‖2
W −‖bn‖2

W )+(ν − ε1)
(
‖∆un+1‖2−‖∆un‖2)

≤ 3
ε1
‖fn‖2 +

(
νCβ +

C
η

)
‖∇un‖2 +

(
2η +

C
η

)
‖bn‖2

V

+
(

4C
ηε2

+
12C
ε1ε2

+
C
η

)
‖∇un‖6 +

(
4C
ηε2

+α
2 12C

ε1ε2
+

C
η

)
‖b‖6

V . (73)

A simple discrete Gronwall-type argument concludes the proof: Put

zn = ‖bn‖2
V +‖∇un‖2 +η∆t‖bn‖2

W +(ν − ε1)∆t‖∆un‖2, (74)

wn = η̂‖bn‖2
W + ν̂‖∆un‖2, bn = ‖fn‖2, (75)

and note that from (51) we have that as long as n∆t ≤ T ,

n−1

∑
k=0

‖fk‖2
∆t ≤

∫ T

0
|f(t)|2 dt, (76)

by the Cauchy-Schwarz inequality. Then by (73),

zn+1 +wn∆t ≤ zn +C∆t(bn + zn + z3
n), (77)

for a constant C now depending on η and ν . Summing from 0 to n−1 and using (76)
yields

zn +
n−1

∑
k=0

wk∆t ≤CM0 +C∆t
n−1

∑
k=0

(zk + z3
k) =: yn. (78)

The quantities yn so defined increase with n and satisfy

yn+1− yn = C∆t(zn + z3
n)≤C∆t(yn + y3

n). (79)

11



Now set F(y) = ln(y/
√

1+ y2) so that F ′(y) = (y+ y3)−1. Then on (0,∞), F is nega-
tive, increasing and concave, and we have

F(yn+1)−F(yn)≤ F ′(yn)(yn+1− yn) =
yn+1− yn

yn + y3
n
≤C∆t, (80)

whence
F(yn)≤ F(y0)+Cn∆t = F(CM0)+Cn∆t. (81)

Choosing any T∗ > 0 so that C∗ := F(CM0)+CT∗ < 0, we infer that as long as n∆t ≤ T∗
we have yn ≤ F−1(C∗), and this together with (78) yields the stability estimate (58).

Now, using (72) and elliptic regularity, we get from (58) that

n

∑
k=0

‖∇× (bk×uk)‖2
∆t ≤C

n

∑
k=0

(‖bk‖2
V‖∆uk‖2 +‖∇uk‖2‖bk‖2

W )∆t

≤C
n

∑
k=0

(‖∆uk‖2 +‖bk‖2
W )∆t ≤C.

Similarly, one finds

n

∑
k=0

(‖(∇×bk)×bk)‖2 +‖uk ·∇uk‖2)∆t ≤C,

giving (59). Then the difference equations (52)-(53) yield

n−1

∑
k=0

(∥∥∥∥bk+1−bk

∆t

∥∥∥∥2

+
∥∥∥∥uk+1−uk

∆t

∥∥∥∥2
)

∆t ≤C. (82)

This yields (60) and finishes the proof of the Theorem. �

3.4 Approximation of initial data
According to our hypotheses, we take the initial data in (9) to satisfy uin, bin ∈H1(Ω,RN)
with

n ·uin = 0, n ·bin = 0 on Γ. (83)

Given ∆t > 0, it is convenient to determine u0 in H1
0 ∩H2(Ω,RN) by solving (I −

∆t ∆)u0 = uin. An energy estimate yields

‖∇u0‖2 +∆t‖∆u0‖2 =
〈
∇uin,∇u0〉≤ ‖∇uin‖‖∇u0‖ ≤ ‖∇uin‖2.

Then ‖∆t ∆u0‖2 = O(∆t) as ∆t → 0, so u0 → uin strongly in L2 and weakly in H1.
In a similar way, using Lemma 2.2 we determine b0 in H2(Ω,RN) by solving

(I−∆t ∆)b0 = bin, n ·b0|Γ = 0, n× (∇×b0)|Γ = 0. (84)

Then b0 ∈W . An energy estimate yields

‖∇ ·b0‖2 +‖∇×b0‖2 +∆t‖∆b0‖2 =−
〈
∆b0,bin

〉
=
〈
∇ ·b0,∇ ·bin

〉
+
〈
∇×b0,∇×bin

〉
.

12



Hence
‖∇ ·b0‖2 +‖∇×b0‖2 +2∆t‖∆b0‖2 ≤ ‖∇ ·bin‖2 +‖∇×bin‖2.

Then ‖∆t ∆b0‖2 = O(∆t) as ∆t → 0, so b0 → bin strongly in L2 and weakly in H1.
For later use, we remark that multiplying the first equation in (84) by −∇∇ ·b0 and

integration by parts gives an estimate on the divergence of b0:

‖∇ ·b0‖2 +∆t‖∇∇ ·b0‖2 =
〈
∇ ·b0,∇ ·bin

〉
≤ ‖∇ ·b0‖‖∇ ·bin‖ ≤ ‖∇ ·bin‖2. (85)

3.5 Homogenizing the boundary conditions
We proceed next to consider the case of general boundary data g having the regularity
indicated in (14), and initial data for velocity with regularity uin ∈ Hin := H1(Ω,RN).
We also assume the compatibility conditions (15) hold. The space in which we seek
strong solutions is

V (0,T ) := L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)). (86)

From the theory of Lions and Magenes [LM] (see Theorems 2.3 and 4.3 in vol. II),
taking the trace on the parabolic boundary of Ω× (0,T ), defined for smooth enough
functions by u 7→ (u(·,0),u|Γ), extends to yield a bounded map

V (0,T )→ H1(Ω)× (H3/4(0,T ;L2(Γ))∩L2(0,T ;H3/2(Γ))) (87)
∩{(u,g) | u = g on Γ for t = 0},

and this map admits a bounded right inverse. By consequence, given (uin,g) satisfying
our assumptions above, there exists ũ such that

ũ ∈V (0,T )N , ũ(0) = uin, ũ|Γ = g, (88)

and the norm of ũ in V (0,T )N is bounded in terms of the norm of (uin,g) in Hin×Hg.
One can regard ũ as given data, instead of the pair (uin,g).

We define v = u− ũ. Then v(·,0) = 0 in Ω and v = 0 on Γ. We can rewrite (25) as
an equation for v:

∂v
∂ t

+ν∇pS(v) = ν∆v+P f̂tot−P(v ·∇ũ+ ũ ·∇v)− f̃, (89)

where

f̂tot =−v ·∇v+α(∇×b)×b+ f, (90)

f̃ = ∂t ũ+ν∇pS(ũ)−ν∆ũ+P(ũ ·∇ũ). (91)

3.6 Stability analysis for non-homogeneous boundary conditions
We assume the data satisfy (12)–(14) for some given T > 0, together with (15). To
prove the stability and convergence of the discretization scheme, we use ũ which satis-
fies (88) and is bounded in terms of (uin,g). We define

ũn =
1
∆t

∫ (n+1)∆t

n∆t
ũ(t)dt, vn = un− ũn, (92)
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and we assume that u0 = ũ0. Then v0 = 0 in Ω, and vn = 0 on Γ for n ≥ 0. We can
rewrite (52) as an equation for vn:

vn+1−vn

∆t
−ν∆vn+1 =−ν∇pS(vn)+P f̂n

tot−P(vn ·∇ũn + ũn ·∇vn)− f̃n, (93)

where

f̂n
tot =−vn ·∇vn +α(∇×bn)×bn + fn, (94)

f̃n =
ũn+1− ũn

∆t
+ν∇pS(ũn)−ν∆ũn+1 +P(ũn ·∇ũn). (95)

Equation (53) and the boundary conditions for bn in (54) remain unchanged.
We claim there exists M∗ > 0 depending only on the norm of the data (uin,g) such

that
n−1

∑
k=0

‖f̃k‖2
∆t ≤ M∗, (96)

provided (n+1)∆t ≤T . Because of the embedding ũ∈V (0,T )N ↪→C([0,T ],H1(Ω,RN))
(see [Ta, p. 42] or [Ev, p. 288]) and

ũn+1− ũn

∆t
=
∫ tn+1

tn

∫
∆t

0
∂t ũ(t + s)

ds
∆t

dt
∆t

=
∫ 2

0
∂t ũ(tn + τ∆t)Λ(τ)dτ (97)

where Λ(τ) = 1−|1− τ|, due to the Cauchy-Schwarz inequality we have

sup
0≤k≤n

‖ũk‖2
H1 +

n

∑
k=0

‖ũk‖2
H2∆t +

n−1

∑
k=1

∥∥∥∥ ũn+1− ũn

∆t

∥∥∥∥2

∆t ≤C‖ũ‖2
V (0,T )≤C(‖uin‖2

H1 +‖g‖2
Hg),

(98)
Using this with (72) bounds the nonlinear term in (91). Thus we obtain the bound (96).

Following the approach of subsection 3.3, we obtain an extension of Theorem 3.1.

Theorem 3.2 Let Ω be a bounded domain in RN (N = 2 or 3) with smooth boundary,
and let ν , η , M0 > 0. Then there exist positive constants T∗ and C3, such that if (12)–
(15) hold for some T > 0, with

‖uin‖2
H1 +‖bin‖2

H1 +
∫ T

0
‖f(t)‖2 dt +‖g‖2

Hg ≤ M0,

then whenever 2η∆t ≤ 1 and (n + 1)∆t ≤ T < T∗, the solution to the time-discrete
scheme (52)–(56), with u0 = ũ0 from (92) and (88), and b0 given by (84), satisfies

sup
0≤k≤n

(‖bk‖2
H1 +‖uk‖2

H1)+
n

∑
k=0

(‖bk‖2
H2 +‖uk‖2

H2)∆t ≤C3, (99)

n−1

∑
k=0

(
‖∇× (bk×uk)‖2 +‖(∇×bk)×bk)‖2 +‖uk ·∇uk‖2

)
∆t ≤C3. (100)

n−1

∑
k=0

(∥∥∥∥bk+1−bk

∆t

∥∥∥∥2

+
∥∥∥∥uk+1−uk

∆t

∥∥∥∥2
)

∆t ≤C3. (101)

Inequalities (99)-(101) are also true with uk replaced by vk as given by (92).
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Proof: We first write (52) as (93). Using (96) and comparing with the proof of The-
orem 3.1, we see that the only essential difference is that in (93) we have some extra
linear terms of the form

P(ũn ·∇vn +vn ·∇ũn), (102)

and the term f̃n. Similar to (72), we get

‖P(ũ ·∇v)‖2 ≤ ε‖∆v‖2 +
C
ε
‖ũ‖4

H1‖∇v‖2. (103)

We estimate the other term in (102) by using Gagliardo-Nirenberg inequalities [Fr,
Thm. 10.1] and the Sobolev embeddings of H1 into L3 and L6:

‖v‖L∞ ≤

C‖∆v‖1/2
L3/2‖v‖1/2

L3 ≤C‖∆v‖1/2‖∇v‖1/2 (N = 2),

C‖∆v‖1/2‖v‖1/2
L6 ≤C‖∆v‖1/2‖∇v‖1/2 (N = 3).

(104)

Then for N = 2 and 3 we have

‖P(v ·∇ũ)‖2 ≤ ‖v‖2
L∞‖∇ũ‖2 ≤ ε‖∆v‖2 +

C
ε
‖ũ‖4

H1‖∇v‖2. (105)

With these estimates, the rest of the proof of the stability of vn is essentially the same
as that of Theorem 3.1 and therefore we omit the details. The stability of vn leads to
that of un, using (98).

4 Existence, uniqueness, convergence
For the constrained MHD equations that include the divergence-free conditions (3)-(4),
in which pressure is determined accordingly, local existence and uniqueness of strong
solutions with no-slip boundary condition is classical, see [DuL]. Here we will extend
the local existence and uniqueness theory to treat the unconstrained formulation of the
MHD equations (1), (2) with pressure given by (26), intial conditions (9) and bound-
ary conditions (5) and (8). The stability estimates in Theorem 3.2 lead to a standard
compactness proof for existence of a strong solution. The estimates in the stability
argument, based on Theorem 2.1 in particular, also permit a simple uniqueness proof.
Full convergence of the time-discrete scheme (52)-(56) follows as a consequence.

Theorem 4.1 Let Ω be a bounded domain in R3 with smooth boundary Γ, and let ν ,
η , M1 > 0. Then, there exists T∗ > 0 such that if the data satisfy (12)–(15) for some
T ∈ (0,T∗), with

‖uin‖H1 +‖bin‖H1 +‖f‖L2(0,T,L2(Ω,RN)) +‖g‖Hg ≤ M1,

then a unique strong solution of (1), (2) and (26) exists on [0,T ], that satisfies the
conditions (5), (8) and (9) and has the regularity indicated in (10)-(11), and thus u,b∈
C([0,T ],H1(Ω,RN)).
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Moreover, for t > 0, ∇ · u and ∇ · b are C∞ classical solutions of the diffusion
equations with no-flux boundary conditions (46) and (50), respectively. The maps t 7→
‖∇ ·u‖2 and t 7→ ‖∇ ·b‖2 are smooth for t > 0 and we have the dissipation identities

d
dt

1
2
‖∇ ·u‖2 +ν‖∇(∇ ·u)‖2 = 0, (106)

d
dt

1
2
‖∇ ·b‖2 +η‖∇(∇ ·b)‖2 = 0. (107)

We will not give the full existence proof, since the compactness method is classical
[Ta, Te1, LM] and the details are similar to the treatment of an unconstrained formula-
tion of the Navier-Stokes equations in [LLP1]. The main steps are: (i) piecewise linear
interpolation of the time-discrete scheme, (ii) using the stability estimates of Theo-
rem 3.2 to extract weakly convergent subsequences, (iii) using strong convergence in
L2([0,T ]×Ω) to establish convergence of nonlinear terms in the sense of distributions.
Passing to the limit, one shows the velocity is a strong solution of

∂tu = ν∇∇ ·u+P(ν∆u+ ftot), (108)

which is equivalent to (25) by (21) and (19). Here we will not discuss the details, and
refer to [LLP1]. We proceed to address the uniqueness and the properties of ∇ ·u and
∇ ·b.

4.1 Uniqueness for unconstrained MHD equations
Proof of uniqueness: Recall the definition of V (0,T ) from (86). Suppose u1, b1 ∈
V (0,T )N and u2, b2 ∈ V (0,T )N are both solutions of (1), (2) and (27), satisfying the
boundary conditions (5), (8) and the initial conditions (9).

Put u = u1−u2, b = b1−b2 and p = pS(u). Then u(0) = b(0) = 0 and

∂tu+P(u1 ·∇u+u ·∇u2) = ν∆u−ν∇p+αP((∇×b1)×b+(∇×b)×b2), (109)

∂tb+∇× (b1×u+b×u2) = η∆b, (110)

with boundary conditions

u = 0, n ·b = 0, n× (∇×b) = 0. (111)

Dot (109) with −∆u and dot (110) with b− ∆b. Due to the boundary conditions
(111), we infer that the quantities

〈
∂tu,−∆u

〉
and

〈
∂tb,b−∆b

〉
are in L1(0,T ) and

t 7→ ‖∇u‖2 +‖b‖2
V is absolutely continuous with

〈
∂tu,−∆u

〉
+
〈
∂tb,b−∆b

〉
=

1
2

d
dt

(
‖∇u‖2 +‖b‖2

V
)
. (112)

This can be justified using approximation by smooth functions; Evans [Ev, p. 287]
provides a detailed proof of a similar result.
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We estimate remaining terms as follows. Using Theorem 2.1 we get〈
ν∆u−ν∇p,−∆u

〉
≤−ν

2
‖∆u‖2 +

ν

2
‖∇p‖2 ≤−νβ

2
‖∆u‖2 +C‖∇u‖2. (113)

with β = 1
2 − ε > 0. Next, use the Cauchy-Schwarz inequality for the nonlinear terms,

estimating them as follows in a manner similar to step 2 in the proof of Theorem 3.1,
using that u1, u2, b1, b2 are a priori bounded in H1 norm:

‖u1 ·∇u‖‖∆u‖ ≤C‖∇u1‖‖∇u‖1/2‖∆u‖3/2 ≤ ε‖∆u‖2 +C‖∇u‖2, (114)

‖u ·∇u2‖‖∆u‖ ≤C‖∇u‖‖∇u2‖H1‖∆u‖ ≤ ε‖∆u‖2 +C‖u2‖2
H2‖∇u‖2, (115)

‖(∇×b)×b2‖‖∆u‖ ≤C‖b2‖H1‖∇b‖1/2‖b‖1/2
H2 ‖∆u‖

≤ ε(‖∆u‖2 +‖b‖2
H2)+C‖b‖2

H1 , (116)

‖(∇×b1)×b‖‖∆u‖ ≤C‖b‖H1‖∇b1‖H1‖∆u‖ ≤ ε‖∆u‖2 +C‖b2‖2
H2‖b‖2

H1 , (117)

‖∇× (b1×u)‖‖b−∆b‖ ≤ ε(‖∆u‖2 +‖b‖2
H2)+C‖∇u‖2(1+‖b1‖2

H2), (118)

‖∇× (b×u2)‖‖b−∆b‖ ≤ ε‖b‖2
H2 +C(1+‖∆u2)‖2‖∇b‖2. (119)

This gives

d
dt

(‖∇u‖2 +‖b‖2
V )+ν‖∆u‖2 +η‖b‖2

W

≤C(1+‖b1‖2
H2 +‖b2‖2

H2 +‖∆u2‖2)(‖∇u‖2 +‖b‖2
V ). (120)

Because ‖b1‖2
H2 , ‖b2‖2

H2 , and ‖∆u2‖2 are in L1(0,T ), by Gronwall’s inequality we get
‖∇u‖2 +‖b‖2

V ≡ 0. This finishes the proof of uniqueness.

4.2 Divergence of the velocity and magnetic fields
It remains to discuss the properties stated in Theorem 4.1 regarding the regularity and
behavior of ∇ · u and ∇ · b for t > 0. The first step is to observe that since u and
b are strong solutions on (0,T ), for any φ ∈ H1(Ω) the computations leading to the
weak-form equations (45) and (49) are valid in L1(0,T ). Then just as in the proof for
the Navier-Stokes equations in [LLP1], the smoothness of ∇ ·u and ∇ ·b follow from
semigroup theory, using Ball’s characterization of weak solutions of abstract evolution
equations [Ba]. The dissipation identities (106), (107) follow by dotting (46) and (50)
with ∇ ·u and ∇ ·b respectively.

5 Time-discrete divergence estimate
In this section we estimate the divergence of the time-discrete velocity and magnetic
field for the scheme (52)-(56). The main results are the bounds in (122) and (129)
below.
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Consider the magnetic field first. Take a test function φ ∈ H1(Ω) with mean zero,
and dot (53) with ∇φ . As in section 3.1, we find

〈bn+1−bn

∆t
,∇φ

〉
= η

〈
∇(∇ ·bn+1),∇φ

〉
. (121)

Taking φ = ∇ ·bn+1, integrating the time difference term by parts, and summing, one
infers

‖∇ ·bn‖2 +ν

n

∑
k=1

‖∇∇ ·bk‖2
∆t ≤ ‖∇ ·b0‖2 ≤ ‖∇ ·bin‖2, (122)

using (85) for the last step. This controls the right-hand side of (122) by initial data,
and indeed we see that if ∇ · bin = 0 then the discrete divergence ∇ · bn vanishes on
each time step.

Now consider the velocity. Writing pn
S = pS(un), dotting (52) with ∇φ we have

〈un+1−un

∆t
,∇φ

〉
+ν
〈
∇pn

S ,∇φ
〉

= ν
〈
∇(∇ ·un+1),∇φ

〉
−ν
〈
∇× (∇×un+1),∇φ

〉
.

(123)
Using the fact that

−ν
〈
∇× (∇×un+1),∇φ

〉
= ν

〈
∇pn+1

S ,∇φ
〉
, (124)

one has 〈
∇ ·un+1−∇ ·un

∆t
,φ

〉
+ν
〈
∇(∇ ·un+1 + pn+1

S − pn
S ),∇φ

〉
= 0. (125)

As in [LLP1], we let qn = Qun be the mean-zero solution of

−∆qn = ∇ ·un, n ·∇qn = 0 on Γ. (126)

Note that ‖∇qn‖ is equivalent to ‖∇ ·un‖H1(Ω)′ . (Here H1(Ω)′ is the dual of H1(Ω).)
Taking φ = qn+1 in (125), we find〈

∇qn+1−∇qn

∆t
,∇qn+1

〉
+ν
〈
∇ ·un+1 + pn+1

S − pn
S ,∇ ·un+1〉= 0,

whence
‖∇qn+1‖2−‖∇qn‖2

∆t
+ν‖∇ ·un+1‖2 ≤ ν‖pn+1

S − pn
S‖2,

and

‖∇qn‖2 +ν

n−1

∑
k=0

‖∇ ·uk+1‖2
∆t ≤ ‖∇q0‖2 +ν

n−1

∑
k=0

‖pk+1
S − pk

S‖2
∆t. (127)

Using Lemma 8.1 of [LLP1], we have the bound

‖pn+1
S − pn

S‖2 ≤C‖un+1−un‖1/2‖un+1−un‖3/2
H2 . (128)
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By Hölder’s inequality and the stability estimate in Theorem 3.2,

n−1

∑
k=0

‖pk+1
S − pk

S‖2
∆t ≤C

[
n−1

∑
k=0

‖uk+1−uk‖2
∆t

] 1
4
[

n−1

∑
k=0

‖uk+1−uk‖2
H2 ∆t

] 3
4

≤C
√

∆t. �

To control this by data, note that ∇q0 = (I−P)u0, hence as ∆t → 0,

‖∇q0‖ ≤ ‖(I−P)uin‖+‖u0−uin‖= ‖(I−P)uin‖+o(1).

Hence we find

‖∇qn‖2 +ν

n−1

∑
k=0

‖∇ ·uk+1‖2
∆t ≤ ‖(I−P)uin‖+‖u0−uin‖+C

√
∆t. (129)
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