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Abstract. We analyze the asymptotic behavior of the antiplane deforma-
tions of a fragile material reinforced by a reticulated elastic structure. The
microscopic geometry of this material is described by means of two “small”
parameters: the size ε of the periodic grid and the ratio δ between the thick-
ness of each of the fibers and their period of distribution. We show that
this behavior depends dramatically on the relative size of the parameters.
Indeed, in the two considered cases, i.e., ε ≪ δ and ε ≫ δ, we obtain two
different limit models: a perfectly elastic model and an elastic model with
macroscopic cracks, respectively.
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1. Introduction

The aim of this paper is to study the asymptotic behavior of the antiplane deformations of
a fragile material reinforced by a reticulated elastic structure (the dark and the white part
in Figure 1, respectively). This structure is reinforced by thin unbreakable fibers disposed
periodically along two orthogonal directions of the plane. Two parameters are involved:
the size ε of the periodic grid and the ratio δ between the thickness of each of the fibers
and their period of distribution.

We show how the overall behavior of the structure depends dramatically on the rel-
ative size of the parameters. If δ/ε → +∞ the asymptotic behavior is perfectly elastic
without cracks. Instead, if δ/ε → 0 we obtain in the limit an elastic material with brittle
macroscopic cracks.

Let Ω ⊆ R
2 be the reference configuration of the material. Since we are taking into ac-

count the presence of cracks, the natural mathematical setting for our problem is the space
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Figure 1. A representation of the composite material.

GSBV (Ω), introduced by De Giorgi and Ambrosio [10], where the asymptotic behavior
of the composite can be described by the following family of functionals

Fε(u) :=





∫

Ω
|∇u(x)|2 dx + H1(Su) if Su ⊆ Ωε,

+∞ otherwise,
(1.1)

where Ωε := Ω ∩ ε
(
(δ, 1 − δ)2 + Z

2
)

and δ = δ(ε) ∈ (0, 1/2).
The function u denotes the displacement, while its discontinuity set Su represents the

crack. In addition to the volume term, which is the standard elastic energy in the antiplane
case, the expression of the functional Fε presents a surface term, which accounts for the
energy needed to open the crack. The set Ωε represents the soft zone where the crack
could lie while the set Ω \ Ωε represents the unbreakable fibers inside the material.

Our purpose is to determine the Γ-limit Fhom of Fε and distinguish the different asymp-
totic models according to the limit ϑ of δ(ε)/ε. More precisely, we analyze the extremal
cases

ϑ = +∞ and ϑ = 0.

In the first case, we show that

Fhom(u) =





∫

Ω
|∇u(x)|2 dx if u ∈ H1(Ω),

+∞ otherwise.

This functional describes a material without cracks. Indeed, even if at scale ε the material
has microscopic cracks, these cannot glue together into a macroscopic one and they have
not effect on the limit, since the elastic fibers well separate the brittle regions.

In the second case we prove that

Fhom(u) =

∫

Ω
|∇u(x)|2 dx + H1(Su).

This means that, despite the presence of the unbreakable fibers, the collective behavior of
microscopic cracks is equivalent in the limit to a macroscopic crack.

In the intermediate case ϑ ∈ (0,+∞), under the assumption that the Γ-limit has an
integral representation, we obtain that the surface term depends also on the size [u] of the
jump.



HOMOGENIZATION OF FIBER REINFORCED MICROSTRUCTURES 3

Remark 1.1. Homogenization in SBV setting has been developed in previous works [5, 3].
Anyway, these classical results do not apply to our particular case, because the surface
energy in (1.1) does not satisfy the required hypotheses.

Remark 1.2. Another interesting situation occurs when the parameter δ is fixed and
independent of ε and the family of functionals has the form

Fε(u) :=





∫

Ω
|∇u(x)|2 dx + a(ε)H1(Su) if Su ⊆ Ωε,

+∞ otherwise,

where a(ε) ց 0+ as ε ց 0+. Recently, in [11, 12] a model of damage has been deduced
from this case.

2. Problem setting

In the following we assume that Ω is a bounded open subset of R
2 with Lipschitz boundary.

We recall here some notation about the space of special functions of bounded variation on
Ω, briefly SBV (Ω), and we refer to [1] for the definitions and the standard theory.

If u ∈ SBV (Ω),

• ∇u is the approximate gradient of u;
• Su is the approximate discontinuity set of u;
• νu is the generalized normal to Su;
• u± is the traces of u on both sides of Su;
• [u] := |u+ − u−| is the size of the jump.

The same notations are used when u ∈ GSBV (Ω), the space of generalized special func-
tions of bounded variation on Ω. We recall that GSBV (Ω) is made of all measurable
functions u : Ω → R such that (u∧m)∨ (−m) ∈ SBV (U) for every m ∈ N and every open
subset U ⊂⊂ Ω.

Other spaces that we will frequently use are

SBV 2(Ω) :=
{
u ∈ SBV (Ω) : ∇u ∈ L2(Ω, Rn) and H1(Su) < +∞

}
;

Up(Ω) :=
{
u ∈ GSBV (Ω) ∩ Lp(Ω) : ∇u ∈ L2(Ω, Rn) and H1(Su) < +∞

}
,

where p ∈ [1,+∞). It is easy to see that Up(Ω) ∩ L∞(Ω) ⊆ SBV 2(Ω).
We say that a sequence uk ⊂ SBV 2(Ω) converges weakly to some u ∈ SBV 2(Ω), and

we write uk ⇀ u in SBV 2(Ω), if




uk is bounded in L∞(Ω);

uk → u strongly in L1(Ω);

∇uk ⇀ ∇u weakly in L2(Ω, R2);

sup
k∈N

H1(Suk
) < +∞.

We define the Mumford-Shah functional MS : Lp(Ω) → [0,+∞] as

MS(u) :=





∫

Ω
|∇u(x)|2 dx + H1(Su) if u ∈ Up(Ω),

+∞ otherwise.

We make explicit the dependence on the domain Ω with the notation MS(·,Ω).
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Finally, we consider the family of functionals Fε : Lp(Ω) → [0,+∞] defined by

Fε(u) :=





∫

Ω
|∇u(x)|2 dx + H1(Su) if u ∈ Up(Ω) and Su ⊆ Ωε,

+∞ otherwise,
(2.1)

where Ωε := Ω ∩ ε
(
(δ, 1 − δ)2 + Z

2
)

and δ = δ(ε) ∈ (0, 1/2).
The goal of this paper is to analyze the Γ-limit of the family Fε in the space Lp(Ω)

endowed with the strong topology. We refer to [4] for the definition and properties of Γ-
convergence. In Theorem 4.1 and Theorem 5.1 we show that the Γ-limit varies depending
on ϑ := lim δ(ε)/ε.

Throughout the paper, given a subset A of R
2, we employ the following notations

• χA is the characteristic function of A;
• Bη(A) := {x ∈ R

2 : dist(x,A) < η}.

3. A lower bound estimate

The aim of this section is to provide a lower bound for the Γ-limit of the family Fε.

Theorem 3.1. Assume Ω := (−1/2, 1/2)2 and denote by S
1 the unitary circle in R

2.

Given t ≥ 0 and ν ∈ S
1, we define the function ut,ν : Ω → R by

ut,ν := tχ{x∈Ω : x·ν≤0}.

Then, for any sequence εk ց 0+ and any sequence uk in Lp(Ω) such that uk → ut,ν

strongly in Lp(Ω), we have the estimate

lim inf
k→+∞

Fεk
(uk) ≥ 10−6

√
ϑ t. (3.1)

In the proof of Theorem 3.1 we will use the following two lemmas. The first is a well
known trick that allows us to modify a sequence uk keeping the limit. The second is an ad
hoc adaptation of the argument used in [9, Subsection 4.2]. For the readers convenience,
we prefer to present here a simplified proof with the suitable modifications.

Lemma 3.2. Let B be a Borel subset of (0, 1)2 with c := L2(B) > 0 and let εk ց 0+.

Given two sequences uk and vk in L1(Ω) such that uk → u and vk → v strongly in L1(Ω),
suppose that

uk = vk in Bk := Ω ∩ εk(B + Z
2).

Then u = v.

Proof. By the Riemann-Lebesgue lemma, χBh
tends to c weakly* in L∞(Ω). Since the

sequence (uk − vk)χBk
converges in distribution to c(u − v), for any ϕ ∈ C∞

c (Ω) we have

c

∫

Ω
ϕ(u − v)dx =

∫

Ω
ϕ(uk − vk)χBk

dx = 0.

Since ϕ is arbitrary and c is strictly positive, we can conclude that u = v. �

Patching Lemma. Let U := (0, 1) × (−1/2, 1/2). Then for any u ∈ SBV 2(U) ∩ L∞(U)
with H1(Su) ≤ 1/28, there exists v ∈ SBV 2(U) ∩ L∞(U) such that

(i) v is constant in (0, 1) × (−2/7, 2/7);
(ii) v = u in (0, 1) × [(−1/2,−3/7) ∪ (3/7, 1/2)];
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(iii) ‖v‖L∞(U) ≤ ‖u‖L∞(U);

(iv) ‖∇v‖L2(U,R2) ≤ 103 ‖∇u‖L2(U,R2);

(v) Sv ⊆ Su;
(vi) if u is (0, 1)-periodic in the first variable, then v has the same property.

Proof. The plan of the proof is the following. In the first step we carry out a suitable
truncation of u so as to control ‖u‖L∞ with ‖∇u‖L1 . In the second step we obtain (i)
thank to a simple cut-off argument. We remark that we need the first step because in the
SBV setting Poincaré type inequalities in general do not work.

Step 1: Truncation. Since we are going to use the slicing procedure, we need to fix
the precise representative u∗ of u as defined in [1, Definition 3.63 and Corollary 3.80]. We
make use of the following notations:

• Lr := (0, 1) × {r} and Lr := {r} × (−1/2, 1/2), r ∈ R;
• I :=

{
r ∈ (5/14, 3/7) : Lr ∩ Su∗ = Ø

}
;

• J :=
{
r ∈ (−3/7,−5/4) : Lr ∩ Su∗ = Ø

}
;

• H :=
{
r ∈ (0, 1) : Lr ∩ Su∗ = Ø

}
;

• oscr(u
∗) := supLr

u∗ − infLr u∗ the oscillation of u∗ along Lr, r ∈ (−1/2, 1/2);
• oscr(u∗) := supLr u∗ − infLr u∗ the oscillation of u∗ along Lr, r ∈ (0, 1).

We have L1(I), L1(J) and L1(H) ≥ 1/28. Moreover, by [1, Theorems 3.28, 3.107 and
3.108], for L1 a.e. r ∈ I u∗(·, r) is absolutely continuous with derivative given L1 a.e. by
∂x1

u∗(·, r). Then

oscr(u
∗) ≤

∫ 1

0
|∂x1

u∗(x1, r)| dx1

and so, integrating over I, we obtain
∫
I oscr(u

∗)dr ≤ ‖∇u‖L1(U,R2). By the Mean Value

Theorem, there exists r1 ∈ (5/14, 3/7) such that

oscr1
(u∗) ≤ 28 ‖∇u‖L1(U,R2) .

Similarly, it is possible to prove that there exist r2 ∈ (−3/7,−5/4) and r3 ∈ (0, 1) such
that oscr1

(u∗) and oscr3(u∗) are smaller than 28 ‖∇u‖L1(U,R2).

Since L := Lr1
∪ Lr2

∪ Lr3 is a connected set, if mu∗ := (supL u∗ + infL u∗)/2, we have
that

|u∗(x) − mu∗ | ≤ cu∗ for H1a.e. x ∈ L,

where cu∗ := 42 ‖∇u‖L1(U,R2).

In this way we can truncate the function u∗ on (0, 1) × [r2, r1] (the light grey part of
Figure 2) without generate new fracture along Lr1

and Lr2
:

w :=





[u∗ ∧ (mu∗ + cu∗)] ∨ (mu∗ − cu∗) in (0, 1) × [r2, r1]

u∗ in (0, 1) × [(−1/2, r2) ∪ (r1, 1/2)].

Obviously w satisfies (ii)-(vi).

Step 2: Cut-Off. Let φ ∈ C1((1/2, 1/2), [0, 1]) be a cut-off function such that

φ(t) :=

{
0 if t ∈ (−2/7, 2/7)

1 if t ∈ (−1/2,−5/14) ∪ (5/14, 1/2),
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Figure 3

and |φ′

(t)| ≤ 15. If we define the function v on U as v(x) := φ(x2)[w(x) − mu∗ ] + mu∗ ,
by construction v satisfies (i)-(iii), (v) and (vi). In particular v is constant on (0, 1) ×
(−2/7, 2/7) (the light grey part of Figure 3).

Let Ũ := (0, 1) × [(−5/14,−2/7) ∪ (2/7, 5/14)]. Since ∇v = φ∇w + φ′(w − mu∗) and
∥∥φ′(w − mu∗)

∥∥
L∞(U)

≤ 15 sup
eU

|w − mu∗ |

≤ 630 ‖∇v‖L1(U,R2) ≤ 630 ‖∇v‖L2(U,R2) ,

we have that v satisfies also (iv):

‖∇v‖L2(U,R2) ≤ 631 ‖∇u‖L2(U,R2) .

�

Proof of Theorem 3.1. Let Θ := lim infk Fεk
(uk). If Θ is finite, we can assume uk ∈

Up(Ω) and MS(uk) bounded. By truncating uk between 0 and t, we can also assume
uk ∈ SBV 2(Ω) ∩ L∞(Ω) and ‖uk‖L∞(Ω) bounded. Thanks to the compactness result in

SBV (Ω) stated in [1, Theorem 4.8], we have that uk converges weakly to ut,ν in SBV 2(Ω)
and limk MS(uk) = Θ.

The plan of the proof is to handily modify both u and uk keeping a control on the
energies. We split the argument in two steps. We assume initially that

ε−1
k is an even integer. (3.2)

Step 1: Symmetrization. With suitable ninety degree rotations, we can suppose that
ν = (cos γ, sin γ) with γ ∈ [π/4, 3π/4]. Starting from uk we will construct a new sequence
usym

k having more symmetry and converging to a function usym with an horizontal crack.
We fix a small η > 0 and we choose a sequence mk in N such that mk ր +∞ and

mk

∫

Ω
|u − uk|p dx ≤ η. (3.3)
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For any integer j ∈ {−ε−1
k , . . . , ε−1

k − 1} we consider in SBV 2(Ω, R2) the functional

F k
j (v(1), v(2)) := MS(v(2),Xk

j ) + mk

∫

Xk
j

∣∣v(1) − v(2)
∣∣pdx,

where Xk
j denotes the vertical strip (j εk/2, (j + 1)εk/2) × (−1/2, 1/2).

For any k ∈ N let jk be an integer realizing

F k
jk

(u, uk) = min
{
F k

j (u, uk) : j ∈ {−ε−1
k , . . . , ε−1

k − 1}
}

and let usym
k (resp. wk) be the extension of uk|Xk

jk

(resp. ut,ν |Xk
jk

) to Ω obtained with

horizontal reflections. Notice that Susym
k

⊆ εk

(
(δk, 1 − δk)

2 + Z
2
)

and that

uk(x) = uk(x1 + εk, x2) ∀x ∈ Ω and ∀k ∈ N. (3.4)

Xk
jk

Sut,ν

Swk

Figure 4

Obviously we have MS(wk,Ω) = MS(ut,ν ,Ω). Moreover, from the minimality on Xk
jk

we deduce that

MS(usym
k ,Ω) ≤ MS(uk,Ω) + η.

Since wk and usym
k are also bounded in L∞(Ω), thanks again to the compactness result in

SBV (Ω), there exist w and usym in SBV 2(Ω) such that (up to subsequences not relabeled)
wk ⇀ w and usym

k ⇀ usym weakly in SV B2(Ω). Again from the minimality on Xk
hk

and

(3.3), we deduce that

sup
k∈N

{
mk

∥∥wk − usym
k

∥∥p

Lp(Ω)

}
< +∞

and therefore w = usym. Let now gk : (−1/2, 1/2) → (−1/2, 1/2) be a Lipschitz map
such that Grafgk = Swk

. The oscillation of gk is bounded by εk/ |cos γ| and therefore
(up to subsequences not relabeled) gk converges uniformly to a certain constant β. If
γ ∈ (π/4, 3π/4), then β ∈ (−1/2, 1/2). Instead, if γ = π/4 or 3π/4, with the previous
construction we could have β = ±1/2. To avoid this possibility, when γ = π/4 or 3π/4 we
change a little the construction of usym

k . Recalling that ε−1
k is an even integer, we choose
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the vertical strips Xk
j only in (−1/4, 1/4) × (−1/2, 1/2) so that β ∈ (−1/4, 1/4). In this

case we get
MS(usym

k ,Ω) ≤ 2MS(uk,Ω) + 2η.

Given ξ > 0, for k sufficiently large

wk(x) =

{
0 if x ∈ (−1/2, 1/2) × [β + ξ, 1/2)

t if x ∈ (−1/2, 1/2) × (−1/2, β − ξ],

therefore usym = tχ(−1/2,1/2)×(−1/2,β).

Step 2: Regularization. Here the idea is to smooth usym
k on those cubes where Susym

k

is “small” by using the Patching Lemma.
For any i, j ∈ Ik := {−ε−1

k /2, . . . , ε−1
k /2 − 1} we define the following sets:

• Qi,j := εk(0, 1)
2 + (iεk, jεk) ;

• Q
′

i,j := εk ((0, 1) × (1/14, 13/14)) + (iεk, jεk) ;

• Q
′′

i,j := εk ((0, 1) × (3/14, 11/14)) + (iεk, jεk);

• Tj := (0, 1) × (jεk, (j + 1)εk).

Notice that by the periodicity property (3.4), if

H1(Susym
k

∩ Qi,j) < εk/28 (3.5)

for a certain (i, j), then H1(Susym

k
∩ Qh,j) < εk/28 for all h ∈ Ik, i.e., condition (3.5)

is satisfied by all the cubes in the strip Tj . Let Jk be the set of the indices j ∈ {1 −
ε−1
k , . . . , ε−1

k − 2} such that all the cubes in the strips Tj−1, Tj and Tj+1 satisfy (3.5).

Q
′′

i,j

Figure 5 Figure 6

By a rescaling argument, thanks to the Patching Lemma, inside at every cube Qi,j

satisfying (3.5), we can change usym
k on Q

′

i,j so that it becomes smooth (because constant)

in Q
′′

i,j (see Figure 5). We remark in particular that by keeping the periodic condition (3.4),
we did not created new cracks along the vertical boundary of the cubes Qi,j. Moreover,

since the sequence is unchanged on Qi,j \ Q
′

i,j, by Lemma 3.2 the limit remains usym.

To erase the crack also in Qi,j \ Q
′′

i,j for i ∈ Jk, we proceed in a similar way, by using
the Patching Lemma to modify uk so that it becomes constant on the light grey part of



HOMOGENIZATION OF FIBER REINFORCED MICROSTRUCTURES 9

Figures 6 and 7. We denote ureg
k the sequence obtained regularizing usym

k through the
above two modifications. By construction ureg

k converges weakly to usym in SBV 2(Ω),

Sureg
k

⊆ εk

(
(δk, 1 − δk)

2 + Z
2
)

and

MS(ureg
k ,Ω) ≤ 106MS(usym

k ,Ω).

Moreover, for any j ∈ Jk the function ureg
k belongs to H1(Tj) and it is constant along the

horizontal boundary of the strip Tj .
Let now vk ∈ H1(Ω) be a function with zero average such that ∇vk = ∇ureg

k on the
strips Tj when j ∈ Jk and ∇vk = 0 otherwise. Up to a subsequence, vk converges weakly
to a certain v in H1(Ω). We denote by ũk := ureg

k −vk the sequence obtained by flattening
ureg

k on the strips Tj , j ∈ Jk. We have that ũk converges weakly to ũ := usym − v in
SBV 2(Ω). Moreover Sũ = Susym and [ũ] = t on Sũ.

Figure 7

Uk

Figure 8

Let m1
k := min Jk (resp. m2

k := max Jk) and c1
k (resp. c2

k) be the constant value
of ũk on x2 = εkm

1
k (resp. x2 = εkm

2
k). Since Tm1

k
⊆ (−1/2, 1/2) × (−1/2, β) (resp.

Tm2
k
⊆ (−1/2, 1/2) × (β, 1/2)) for k sufficiently large, we have

∣∣c2
k − c1

k

∣∣ > t/2. Consider

now the set

Uk :=
⋃

i∈Ik

⋃

j∈Ic
k

εk

[
((0, δk) ∪ (1 − δk, 1)) × (0, 1)

]
+ (iεk, jεk),
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where Jc
k := {j ∈ Ik : j /∈ Jk and m1

k < j < m2
k}. The set Uk is constituted by the

vertical frame of the cubes belonging at the strips Tj , j ∈ Jc
k (the dark grey vertical zones

of Figure 8).
Denoted by nk the number of strips Tj where the cubes Qi,j do not satisfy (3.5), we

trivially have the estimate H1(Sũk
) ≥ 28nk. Moreover, noted that Jc

k has at most 3nk

elements, since
∣∣c2

k − c1
k

∣∣ > t/2 and ũk is constant on the strips Tj when j ∈ Jk, by
comparing ũk with the affine junction on Uk (the lower volume energy configuration on
Uk), we get

∫

Uk

|ũk|2 dx ≥ ϑ t2

6nk
.

Gathering all the previous estimates, we obtain

Θ + η ≥ lim inf
k→+∞

1

2
MS(usym

k ,Ω) ≥ 10−6

2
lim inf
k→+∞

MS(ureg
k ,Ω)

≥ 10−6

2
lim inf
k→+∞

MS(ũk,Ω) ≥ 10−6

2
lim inf
k→+∞

(ϑ t2

6nk
+ 28nk

)
≥ 10−6

√
ϑ t,

where the last inequality is obtained by minimizing with respect to nk. Being η > 0
arbitrary, the previous inequality gives estimate (3.1).

In order to remove assumption (3.2) we consider, for k ∈ N, the largest even integer mk

such that mk ≤ ε−1
k . Let sk := mkεk. We define ûk : Ω → R by

ûk(x) := uk(sk x)/
√

sk.

Since sk converges to 1, we have that ûk tends to ut,ν strongly in Lp(Ω). Moreover

Sûk
⊆ m−1

k

(
(δk, 1 − δk)

2 + Z
2
)

and limk δkmk = ϑ. By applying the previous result we
get

lim inf
k→+∞

F (uk) ≥ lim inf
k→+∞

skMS(ûk) ≥ 10−6
√

ϑ t.

�

Remark 3.3. Given a sequence εk ց 0+, by a well known compactness argument (see
[4, Proposition 2.14]), there exists a subsequence εkj

such that Fεkj
Γ-converges to some

functional F : Lp(Ω) → [0,+∞]. When ϑ ∈ (0,+∞), it is proved in [8] that the functional
F admits an integral representation: there exists a Borel function g : [0,+∞) × S

1 →
[0,+∞) such that

F (u) :=





∫

Ω
|∇u(x)|2 dx +

∫

Su

g
(
[u], νu

)
H1 if u ∈ Up(Ω),

+∞ otherwise.

Estimate (3.1) shows that g = g(t, ν) effectively depends on the variable t. In fact, fixed
ν ∈ S

1 and denoted by l the length of Su1,ν
, for t sufficiently large we have

g(t, ν)l = F (ut,ν) ≥ 10−6
√

ϑ t > g(1, ν)l.
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4. The perfectly elastic case

The main result of the present section is the following.

Theorem 4.1. Let Fε be defined as in (2.1). If ϑ = +∞, then the family Fε Γ-converges

to

Fhom(u) :=





∫

Ω
|∇u(x)|2 dx if u ∈ H1(Ω),

+∞ otherwise.

Proof. Let εk ց 0+ and let uk be a sequence in Up(Ω) such that uk tends to u strongly
in Lp(Ω) and lim supk Fεk

(uk) is finite. We want to show that u ∈ H1(Ω). We start by
assuming in addition that

sup
k∈N

‖uk‖L∞(Ω) < +∞ (4.1)

and, consequently, uk ∈ SBV 2(Ω)∩L∞(Ω). Thanks to the compactness result in SBV (Ω)
stated in [1, Theorem 4.8], we have that u ∈ SBV 2(Ω) and uk converges weakly to u in
SBV 2(Ω). To prove that u /∈ SBV 2(Ω)\H1(Ω) we proceed by contradiction, by assuming
that

H1(Su) > 0.

The idea is to carry out a blow up around a suitable jump point of u, so to be in position
to use Theorem 3.1.

Since the sequence of measures H1⌊Suk
is bounded, up to a subsequence (not relabeled)

we have that
µk := H1⌊Suk

⇀ µ weakly* in the sense of measures

for some finite non-negative Radon measure µ. For any x ∈ Ω we define

l(x) := lim sup
r→0+

µ
(
Br(x)

)

r
.

By applying [1, Theorem 2.56], if l(x) = +∞ on a Borel set B with H1(B) > 0, then
necessarily µ(B) = +∞, in contradiction with µ(Ω) < +∞. Therefore l(x) < +∞ for
H1a.e. x ∈ Ω.

Let x be an approximate jump point for u such that l(x) < +∞ holds. Given r > 0
sufficiently small so that Br(x) is included in Ω, we define on B1(0) the following real
functions

• ur
k(x) := uk(x + rx);

• ur(x) := u(x + rx);
• ũ := χ{x∈B1(0) : x·νu(x)≤0}.

With respect the strong topology of Lp(B1(0)), we have that ur
k tends to ur as k ր +∞

and (see [1, Remark 3.72]) ur tends to ũ as r ց 0+. Moreover we have that

lim
k→+∞

MS
(
ur

k, B1(0)
)

=

∫

Br(x)
|∇u(x)|2 dx +

µ(Br(x))

r
.

Let rh ց 0+ be a sequence such that l(x) is the limit of µ(Brh
(x))/rh for h ր +∞.

Setted δk := δ(εk), by applying a diagonalization argument (see [2, Corollary 1.18]) to the
double indexed sequence (urh

k ,MS(urh

k , B1(0)),
εk

δkrh
), we can find a sequence hk ր +∞

such that

u
rhk

k
Lp

−→ ũ, MS
(
u

rhk

k , B1(0)
)
→ l(x) and

εk

δkrhk

ց 0+.
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Notice that the last condition implies also that ε̃k := εk/rhk
ց 0+.

Let Ω̃ := (−1/2, 1/2)2 and let V be the set of vertices of (0, 1)2. Chosen for any k ∈ N

a point xk in Ω ∩ εk(V + Z
2) with minimal distance from x, we define ũk : Ω̃ → R by

ũk(x) := u
rhk

k

(
x − x − xk

rhk

)
.

The definition of ũk is well posed: (x − xk)/rhk
tends to zero as k ր +∞ and so,

for k sufficiently large, the cube with side rhk
centered in xk is included in Brhk

(x).

Moreover, we have that ũk tends to ũ strongly in Lp(Ω̃), MS(ũk, Ω̃) remains bounded and
Sũk

⊆ ε̃k

(
(δk, 1 − δk)

2 + Z
2
)
. Then, since limk δk/ε̃k = +∞, we have a contradiction with

estimate (3.1).

In order to remove assumption (4.1) we consider, for m ∈ N, the truncations of the
functions u and uk:

• um
k := (uk ∧ m) ∨ (−m);

• um := (u ∧ m) ∨ (−m).

By applying the previous result, we have um ∈ H1(Ω). Moreover

‖um‖Lp(Ω) + ‖∇um‖L2(Ω,R2) ≤ lim inf
k→+∞

(
‖um

k ‖Lp(Ω) + ‖∇um
k ‖L2(Ω,R2)

)

≤ lim inf
k→+∞

(
‖uk‖Lp(Ω) + ‖∇uk‖L2(Ω,R2)

)
< +∞.

As Ω has Lipschitz boundary, ‖·‖Lp(Ω) + ‖∇·‖L2(Ω,R2) is an equivalent norm in H1(Ω) and

therefore, up to a subsequence, um is weakly convergent in H1(Ω) to some û ∈ H1(Ω).
Since um converges pointwise a.e. to û, necessarily u = û. �

5. The brittle case

The main result of the present section is the following.

Theorem 5.1. Let Fε be defined as in (2.1). If ϑ = 0, then the family Fε Γ-converges

to MS.

We shall use the following two lemmas about SBV functions. The first is an extension
result, while the second is an approximation argument.

Lemma 5.2. (See [6, Theorem 3.1]). Let U ⊆ R
2 be a bounded open set and assume

that Ω ⊂⊂ U . Then there exists a constant b = b(Ω, U) > 0 and an extension operator

T : SBV 2(Ω) ∩ L∞(Ω) → SBV 2(U) ∩ L∞(U) such that

(i) Tu = u a.e. in Ω;

(ii) ‖Tu‖L∞(U) ≤ b ‖u‖L∞(Ω);

(iii) MS(Tu,U) ≤ bMS(u,Ω).

Lemma 5.3. (See [7, Corollary 3.11]). Let U ⊆ R
2 be a bounded open set with Lipschitz

boundary and let u ∈ SBV 2(U) ∩ L∞(U). For every η > 0, there exists a function

v ∈ SBV 2(U) ∩ L∞(U) such that

(i) Sv is essentially closed, i.e., H1(Sv \ Sv) = 0;
(ii) Sv coincides with the intersection of U with the union of a finite number of disjoint

segments;
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(iii) v ∈ W 1,∞(U \ Sv);
(iv) ‖u − v‖Lp(U) < η;

(v) ‖∇u −∇v‖L2(U,R2) < η;

(vi)
∣∣H1(Su) −H1(Sv)

∣∣ < η.

Within this section, we shall use the compact notation W(U) to denote the space of all
measurable functions for which conditions (i), (ii), (iii) hold.

Proof of Theorem 4.1. The liminf inequality is a straight consequence of [1, Theorem 4.36],
so we only need to construct a recovery sequence uk for any u ∈ Up(Ω). Thanks to a
truncation argument we can suppose that u ∈ SBV 2(Ω) ∩ L∞(Ω). Moreover, fixed a
small η > 0, thanks to Lemmas 5.2 and 5.3, we can suppose that u is the restriction to
Ω of a function v ∈ W(B2η(Ω)). Accordingly to the definition of W(B2η(Ω)), there exist

S1, . . . , Sl disjoint segments such that
⋃l

i=1 Si = Sv.
Let εk ց 0+ and let δk := δ(εk). To construct a recovery sequence uk the idea is to

smooth the function u in the unbreakable zone Ω \ Ωεk
. To obtain this easily, we would

need that the extreme points of Su do not fall in Ω \ Ωεk
and that large vertical (resp.

horizontal) portions of Su do not fall in Bεkδk
(εkZ × R) (resp. Bεkδk

(R × εkZ)). We can
obviate with a shift of u. Let w := v|Bη(Ω). Since δk ց 0+, we can find a sequence tk ց 0+

in [0, η) such that

• the extreme points of Sw + (tk, tk) are in εk((δk, 1 − δk)
2 + Z

2);

• if Si is a vertical segment, then Bεkη

(
Si + (tk, tk)

)
∩ Bεkδk

(εkZ × R) = Ø;

• if Si is an horizontal segment, then Bεkη

(
Si + (tk, tk)

)
∩ Bεkδk

(R × εkZ) = Ø.

We define wk(x) := v(x + (tk, tk)) for x ∈ Bη(Ω).

εkη

Swk

Figure 9

Since the function v|B2η(Ω)\Bεkη(Sv) has Lipschitz constant bounded from above by

c ε−1
k ‖∇v‖L∞(B2η(Ω),R2), with c depending only on η, we can find a Lipschitz extension

vk to B2η(Ω) satisfying

‖∇vk‖L∞(B2η(Ω),R2) ≤
c

εk
‖∇v‖L∞(B2η(Ω),R2) .
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Now we can obtain a recovery sequence uk for u by modifying the functions wk on
Bεk η(Swk

) ∩ (Ω \ Ωεk
) (the grey zones in Figure 9) in the following way:

uk(x) :=

{
vk(x + (tk, tk)) if x ∈ Bεk η(Sv) ∩ (Ω \ Ωεk

)

wk(x) otherwise.

Note that uk could present an additional fracture with respect to wk|Ω along Bεk η(Swk
)∩

Ω ∩ εk

(
∂(δk, 1 − δk)

2 + Z
2
)

(the vertical and horizontal boundary of the grey zones in
Figure 9).

By noting that Bεkη(S
i) ∩ Bεkη(S

h) = Ø if i 6= h and k is large enough, in the rest of
the proof we can assume for simplicity that i = 1. Let γ ∈ [0, π) be the angle formed by
S1 with a horizontal line and let l be the length of S1.

Since S1 intersects both R×εkZ and εkZ×R at most [ε−1
k ]l times, we have the following

estimates:

L1
(
Bεk η(Swk

) ∩ (Ω \ Ωεk
)
)
≤ c1η l δk εk

H1
(
Bεk η(Swk

) ∩ Ω ∩ εk

(
∂(δk, 1 − δk)

2 + Z
2
))

≤ 2c1η l,

where

c1 :=

{
1 if γ = 0 or π/2

1
|cos γ| + 1

sinγ otherwise.

Therefore uk tends to u strongly in Lp(Ω) and

lim sup
k→+∞

Fεk
(uk) ≤ MS(u) + η l(c2 ϑ ‖∇v‖2

L∞(B2η(Ω),R2) + 2c1) = MS(u) + 2c1η l.

Being η > 0 arbitrary, the previous inequality completes the proof.
�
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